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A refined formulation of the gyrokinetic equations for large-flow shears caused by an equilibrium
electric field has been presented. It is achieved by choosing more suitable equilibrium drift velocity
for the reference frame of a charged particle instead of the previous one �H. Qin, Contrib. Plasma
Phys., 46, 477 �2006��. This modification yields improvements in the accuracy of the gyrokinetic
equations even in the case of considerably large flow. The equations of motion and Maxwell’s
equations are obtained using the Lie perturbation analysis and the pullback technique. From the
numerical comparisons of the gyrokinetic equations given by Qin and the one derived here, the
advantage of the present formulation is confirmed for both uniform and nonuniform large electric
fields. Parameter dependence of the error in the energy expression is also numerically evaluated.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2902016�

I. INTRODUCTION

Understanding the role of flow shears in turbulent trans-
port is one of the major issues in tokamak plasmas. The
stabilizing effect1–5 of the E�B flow shears on the toroidal
ion-temperature-gradient �ITG� mode and various drift
waves is believed to be one of the essential elements in the
core and edge transport barriers. The existence of large-flow
shears associated with the short scale length is a characteris-
tic feature of the edge plasmas. In addition to the relatively
short time-scale dynamics such as the microinstabilities, the
pedestal plasmas involve the longer time-scale equilibrium
dynamics such as the edge localized modes �ELMs� and the
Low to High mode transition. In order to treat the multiscale
physics such as the microinstabilities and the equilibrium
dynamics, a global full-f simulation is required for the un-
derstanding of pedestal physics. Recently, the development
of such simulation codes6,7 began. They employ the gyroki-
netic equations8–10 as the fundamental equations to describe
the low-frequency behavior of plasmas. The most distinct
advantage of the gyrokinetic theory is in the separation of the
time scale between the fast gyrating motion of particles and
the relatively slow drift motions. Discarding the gyrating
motion and the gyrophase dependence of the velocity distri-
bution functions, one can choose a much larger time step
than the gyroperiod in simulations. It is also a benefit that the
gyroaveraged expressions of the potentials and other physi-
cal quantities can reduce the numerical noise caused by the
discreteness of the particles and the spatial grids.

The modern derivation of gyrokinetic equations has been
developed with the aid of mathematics and the analytic me-
chanics such as 1-form representations of the particle dynam-
ics, the Lie perturbation analysis, and pullback representa-
tions. The commonly used procedures in the derivation are
understood as two steps of coordinate transformations and
the formulation of Maxwell’s equations on the new coordi-
nate. The first transformation introduces the guiding-center
position, the gyrophase, and the magnetic moment. The sec-

ond one decomposes the gyrophase dependences in the
1-form through successive Lie transformations. The gy-
rophase dependences in the original equations of motion are
removed and thus the gyration and the drift motion are de-
coupled. The Vlasov equation and Maxwell’s equations ex-
pressed by pullbacks in the new coordinate enable one to
treat the low-frequency phenomena without resolving the
fast gyrations of particles.

The improvement of the gyrokinetics for the strong E
�B drift flow was provided by Littlejohn11 for the first time
and extended for plasma with potential perturbations by
Brizard,12 Hahm,13 and Qin.14 Applications to the global lin-
ear analysis of ITG modes have also been made.2,3 We note
that the gyrokinetic equations based on the conventional re-
cursive method15–19 have also been formulated for large-flow
shears by Sugama and Horton.20 Although the formulation
by Littlejohn differs slightly from others because of the dif-
ference in the expression of mechanics, their basic concepts
are the same. They introduced a reference frame moving
with the E�B drift velocity in the guiding-center coordinate
and decomposed the drift motion and the gyration not in the
first-order equations of motion but in the zeroth-order equa-
tions. The physical meaning of this treatment is easily under-
stood in an ideal case as follows. If the reference frame is
moving with a constant velocity D and the electromagnetic
fields are uniform, the Galilei transformation with D yields a
uniform induced electromotive force, qv�B. If the velocity
D is given by the E�B drift velocity, E�B /B2, the perpen-
dicular components of the electric field are canceled, and the
particle simply gyrates as if the electric field is not applied
from the beginning. In this case, the drift motion is success-
fully decomposed from the particle motion and included in
the zeroth-order equations of motion.

In the case of a general electric field, however, the ve-
locity D=E�B /B2 acquires the gyrophase dependence
through the coupling of the gyration and spatial variation of
the potential through E=−���x�. This dependence makes
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the derivation of the gyrokinetic equations complicated.11 On
the other hand, if the velocity D is defined as the E�B drift
velocity measured at the guiding-center position as is com-
mon in previous works,12–14 it differs from the averaged drift
velocity of the gyrating particle in the case of the nonuni-
form electric fields. In order to obtain the most appropriate
zeroth-order equation of motion, refinement of the velocity
of the reference frame is necessary.

In the present study, using the conservation property of
the magnetic moment as the criterion of the accuracy of the
zeroth-order equation of motion, we examine several kinds
of drift velocities including the previous expression and ob-
tain the practically most accurate expression of the velocity
D. The advantages of our gyrokinetic equations of motion
are verified through comparisons between the numerical so-
lutions of the previous gyrokinetic equations and ours.

In Sec. II, the guiding-center coordinate variables are
introduced in the 1-form for a single particle. An equilibrium
drift velocity D is also introduced in the transformation of
the velocity coordinates so that the particle motion becomes
a nearly simple gyration in the reference frame. In Sec. III,
the criterion to choose the appropriate velocity D is dis-
cussed. After examining several possible choices for D, a
most practical expression is determined. The rest of the stan-
dard procedures—Lie perturbation analysis and the formula-
tion of field equations—are carried out and the gyrokinetic
equations are obtained in Sec. IV. The accuracy of the result-
ant equations is compared with those of Qin’s formulation14

in Sec. V. Finally, conclusions are presented in Sec. VI.

II. PRELIMINARY TRANSFORMATION

The first step in the derivation of gyrokinetic equations
is a guiding-center transformation introducing a guiding-
center position X, a gyrophase �, a perpendicular velocity
V�, and a parallel velocity V�. In the conventional
derivations,8–10 the velocity is simply separated into the per-

pendicular and parallel components, i.e., v���b̂� �v� b̂��
and v� �v · b̂, where the unit vector b̂ represents the magnetic
field direction. In the gyrokinetic theory for large E�B drift
flow shears,11–14 however, the velocity space is defined on a
reference frame moving with an equilibrium E�B velocity
D. The vector field of the flow plays an essential role in the
improvement of the theory and is discussed in Sec. III. In
order to distinguish the modified velocity space variables
from those on the stationary frame, v� and v�, we denote the
new velocity components in the moving frame as capital
letters, V� and V�. We note that if the velocity D is zero
everywhere, the modified gyrokinetic theory coincides with
that of usual ordering, i.e., the equilibrium flow is much
slower than the thermal velocity. In this case, the guiding-
center velocity variables also coincide, or V�=v� and V�

=v�.
We assume that the equilibrium E�B flow is a function

of the guiding-center position X to avoid undesirable com-
plexities due to the dependences on the velocity space such
as �D /�V�. The guiding-center transformation is defined as
inverse coordinate transformations,

x � X +
mV�

qB�X�
â��X,��� , �1�

v � D�X� + V�ĉ��X,��� + V�b̂�X� , �2�

where the gyrophase ��, the orthonormal vectors b̂�B /B,
ĉ� ê1 cos ��− ê2 sin ��, and â� ê1 sin ��+ ê2 cos �� are in-
troduced. The perpendicular unit vectors ê1 and ê2 are func-
tions of the guiding-center position X and assumed to be
given beforehand. Since their definitions are arbitrary unless
they have any singularities, the gyrogauge transformation,8,11

����+�, is introduced to remove the arbitrariness in the
definition of the gyrophase ��. The gyrogauge � is given by
���0

t ��dX /dt� ·�ê1 · ê2+ ��ê1 /�t� · ê2�dt. We denote the new
direction vectors ĉ�X ,��� ĉ�X ,�−�� and â�X ,��
� â�X ,�−�� simply by ĉ and â in the remainder of this
paper. We note that if the base direction for � is defined by
û�X�� ĉ�X ,0�, its time evolution is described by the “rota-

tionless” transport equation,21 dû /dt=−b̂�db̂ /dt� · û. The us-
age of the new gyrophase � ensures the uniqueness of the
base direction for the gyrophase �. The relation dâ · ĉ
=dX ·�â · ĉ+dt��â /�t� · ĉ=d� is utilized later in the gauge
transformation of 1-form to simplify the calculations.

Although the definition of the guiding-center X does not
have an explicit dependence on D, a difference arises from
the modification of the perpendicular velocity V�. When the
guiding-center position for D=0 is denoted by X�, the dif-
ference from the present guiding-center position is written as

�p�X−X�	�m /qB�b̂�D, where we used the approxima-
tion B�X�	B�X��. If the velocity D is given by the simple
E�B drift velocity, the quantity �p is reduced to �p

=−m��� /qB2. The fact that its derivative with respect to
time coincides with the polarization drift velocity, vp

�−�d /dt�m��� /qB2, indicates that the modified guiding-
center coordinate X recovers the polarization drift due to the
equilibrium electric fields in the zeroth-order equations of
motion, i.e., dX /dt−dX� /dt=vp.

In order to separate the fundamental 1-form for a single
charged particle,

� � �qA�x� + mv� · dx − 
m

2
v2 + q��x��dt , �3�

into zeroth-, first-, and successive higher-order components,
we introduce the perturbation potentials �=�0+�1 and A
=A0+A1 and the following orderings:

�1 � �
mvt

2

q
, A1 � �

mvt

q
, �4�

where the quantity m, q, and vt are mass, charge, and thermal
speed of the particle species, respectively. The frequency of
the perturbation � is assumed to be much lower than the
gyrofrequency 	; ���	. The equilibrium E�B drift speed
is assumed to be comparable to the thermal speed at most,
and the spatial scale of equilibrium magnetic field is assumed
to be a second-order quantity,
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E0

B0
� vt,

��B0�
B0

� �2 vt

	
. �5�

The time scale of the equilibrium potentials is assumed as

��0

�t
� �2vt

2B0,
�A0

�t
� 0 . �6�

From the fundamental 1-form, Eq. �3�, and the above
orderings, the 1-form in the guiding-center coordinate can be
written order by order,

�0 = �qA0 + mV�b̂ + mD� · dX +
m

q

d�

− 
m

2
V�

2 + B0
 +
m

2
D2 + q�̄0�dt , �7�

�1 = �qA1 − m� � D · â� · dX + q�A1 · ĉd�

+
1

V�

A1 · âd
 − �q�̃0 + mV�D · ĉ + q�1�X + �â��dt ,

�8�

�2 = 
m


q
�â · �b̂ · ĉb̂ − â · � ln B0ĉ�

−
mV�V�

	
� b̂ · â� · dX −

m


q
�â · � ln B0d�

− m�
�D

�t
· âdt . �9�

The higher-order components, �3 ,�4 , . . ., are omitted. Gy-
roaveraged quantities and their corresponding perturbation
components for the electromagnetic potentials, �=�0, �1, or

A1, are denoted by �̄����X+�â�d� /2 and �̃���X
+�â�− �̄. Here the perturbation of the equilibrium potential
is expressed as �̃0 instead of the Taylor expanded one, �̃0

	�â ·��0. Although the latter form is commonly used in
previous works,12–14 the former exact form without the Tay-
lor expansion is desirable in the case of the present ordering,
E0 /B0�vt. The gyroradius and the direction of the equilib-
rium magnetic field at X are denoted by ��mV� /qB0�X�
and b̂�B0 /B0, respectively. The magnetic moment 

�mV�

2 /B0 has been introduced and the gauge transforma-
tion, ���+dS, has been applied to simplify the expres-
sions.

From the truncated zeroth-order 1-form under the as-
sumption of the drift-kinetic ordering k�����1,

�drift = �qA0 + mV�b̂ + mD� · dX +
m

q

d�

− 
m

2
V�

2 + B0
 +
m

2
D2 + q�0�dt , �10�

we can obtain the zeroth-order drift-kinetic equations,

dX

dt
=

1

B
�
*
B*V� + b̂

� ��0 +



q
� B0 +

m

2q
� D2 +

m

q

�D

�t
�� , �11�

d�

dt
=

qB0

m
, �12�

d


dt
= 0, �13�

dV�

dt
= −

qB*

mB
�
*

· ��0 +



q
� B0 +

m

2q
� D2 +

m

q

�D

�t
� ,

�14�

where a modified magnetic field is introduced as

B* � � � A0 +
mV�

q
b̂ +

m

q
D� , �15�

B
�
* � b̂ · B* = B0 +

mV�

q
b̂ · � � b̂ +

m

q
b̂ · � � D . �16�

We confirm that the velocity of the guiding center involves
E�B, grad B, curvature, and polarization drifts due to the
temporal variation of �0 and due to the parallel motion by

taking account of the relation B*=B
�
*b̂+ �mV� /q�b̂

� �b̂ ·�b̂�+ �m /q�� �D��. Although we omitted the Baños
drift22 in the above equations, it can be recovered from the
second-order 1-form. The phase-space volume is calculated
as B

�
* /m and Liouville’s theorem is confirmed; �� /�Zi�

��B
�
*Żi /m�=0, where the coordinate variables,

�t ,X ,� ,
 ,V��, are denoted by Zi for i=0,1 , . . . ,6.

III. EQUILIBRIUM DRIFT VELOCITY

In this section, we discuss how the equilibrium drift ve-
locity D should be chosen. The introduction of the vector
field D in Sec. II is aimed at decomposing the circular gyra-
tion from the particle dynamics. Therefore, one might expect
the drift velocity obtained from the drift-kinetic equation
�11� to be the best choice of D. The dependences on the
velocity space, however, cause difficulties in the calcula-
tions, i.e., the fundamental 1-form acquires some additional
terms such as �D /�
 and �D /�V�. In order to keep the com-
plexities in the same level as the previous study by Qin,14 we
assume that the vector field D is an only function of the
guiding-center position X. From the guiding-center velocity,
Eq. �11�, and this assumption, we can obtain the practically
most precise drift velocity,

D �
b̂

1 + b̂ · � � D/	
� ��0�X�

B0
+

�D2

2	
� . �17�

This nonlinear differential vector equation can be rewritten
as another mathematically equivalent form,
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D � b̂ � ��0

B0
+ D ·

�D

	
� . �18�

Since the definition in the previous study is given by DQin

� b̂���0 /B, the modification introduced into our definition
is the second term on the right-hand side in Eq. �18�.

The physical meaning of Eq. �18� is easily understood
through the vector product with the magnetic field,

mD · � � D�� = qD � B0 − q���0. �19�

This equation represents the perpendicular force balance in
the stationary flow. The convection term on the left-hand side

is missing in DQin. A similar equation, u ·�u=	u� b̂
− �	 /B0���0−�P /mN, is discussed by Brizard12 in the for-
mulation of the gyrokinetic Vlasov equation for the plasma
with toroidal rotation. Since their main interest is in the tor-
oidal flow, their equilibrium velocity includes the parallel
flow and they adopt an approximate expression of the flow,

u0=u0�b̂+ b̂���0 /B0, as the vector field D. Although the
equilibrium parallel flow can be included in the definition of
D, we omit it for clarity in the examination of the equilib-
rium perpendicular drift velocity.

One of the straightforward ways to examine the proper-
ness of this choice is to verify the conservation property of
the magnetic moment 
. Since the gyrophase dependence is
truncated in the drift-kinetic 1-form, Eq. �10�, the drift-
kinetic equation �13� conserves the magnetic moment. The
general equation of motion, however, does not conserve 
,

d


dt
= qV�D · â − ĉ ·

��0

B0
− Ẋ ·

�D

	
· ĉ� , �20�

because of the gyrophase dependence in the general 1-form

� = �qA0 + mV�b̂ + mD − m� � D · â� · dX +
m


q
d�

− 
m

2
V�

2 + B
 +
m

2
D2 + mV�D · ĉ + q�0�X + �â��dt ,

�21�

where we neglect �B0, �b̂, and the perturbation potentials. If
the gyration and the drift motion are decoupled well, the
value of d
 /dt should be small. We calculate d
 /dt for three
choices of D. The first is the zero velocity case, which cor-
responds to the conventional formulation with the equilib-
rium potential �0 but without special treatments for the large
flow. The time derivative of 
 becomes

d


dt
= −

qV�

B
ĉ · ��0. �22�

If the electric field is large, E0 /B0�vt, the variation of the
magnetic moment becomes the same order as 
 itself. In
other words, the electric field has to be as small as the per-
turbation potential �1 in this case. The second is the simple
E�B drift velocity, which corresponds to Qin’s formulation,

d


dt
= −

qV�

B
ĉ · ���0 − �0�X�� − qV�Ẋâ:

���0�X�
B

.

�23�

Since most of the electric field is canceled, it is applicable for
a strong electric field in this case. The second derivative of
�, however, appears in d
 /dt and can be significant if the
potential contour has a large curvature. The last is our defi-
nition, Eq. �18�,

d


dt
= − qV�
���0 − �0�X��

B
+ �Ẋ − D� ·

�D

	
� · ĉ . �24�

Since the velocity of the guiding center Ẋ can be approxi-

mated as Ẋ	V�B* /B
�
*+D, the second term proportional to

�D is considerably reduced. From the above observations,
we confirm that the refinement of the gyrokinetic equations
is achieved through our new choice of the vector field, Eq.
�18�. Numerical verifications of the new equilibrium velocity
are given in Sec. V.

IV. GYROKINETIC EQUATIONS

A. The general derivation of the gyrokinetic
equations

The remaining procedures to obtain the gyrokinetic
equations are the Lie perturbation analysis and the formula-
tion of the gyrokinetic Maxwell’s equations. Since these
treatments are essentially the same as the previous works,8–14

we omit detailed discussions and describe the outline and the
results.

Successive Lie transformations are introduced, T
� ¯exp��2L2�exp��L1�. The ith order operator Li is a Lie
derivative operator defined by an ith order Lie generator gi,
Liv� igi

�dv�. Although the correct Lie derivative has the
form ig�dv�+d�igv�, we adopt the truncated expression be-
cause the second term does not affect scalars and resultant
equations of motion. In other words, the second term d�igv�
is eliminated through the gauge transformation. The guiding-
center coordinate variables Zi= �t ,X ,� ,
 ,V�� are trans-

formed to the gyrocenter coordinate variables Z̄i

= �t , X̄ ,�̄ , 
̄ , V̄��, Z̄=T Z= ¯exp��2ig2
d�exp��ig1

d�Z, where
the time variable t is not changed through the Lie transfor-
mation. The 1-form in the guiding-center coordinate, �=�0

+��1+�2�2+¯, is also transformed to the gyrokinetic
1-form, �=�0+��1+�2�2+¯, in the gyrocenter coordinate.
The new 1-form � is determined by the Lie generator gi and
the gauge function Si,

�0 = �0, �25�

�1 = �1 − ig1
d�0 + dS1, �26�

�2 = �2 − ig1
d�1 + 1

2 ��ig1
d�2 − ig2

d��0 + dS2. �27�

The first-order gauge function S1 and the first-order Lie gen-
erator g1 are determined as follows:
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V0
i �S1

�Z̄i
= − V0

i ��1i − ��1i�� , �28�

g1
j = �ij�1i +

�S1

�Z̄i� for j � 0, �29�

where the vector field V0
i is defined as the flow created by the

zeroth-order equation of motion,

V0
i = �ij ��0j

�Z̄0
−

��00

�Z̄j � . �30�

The time-component of the Lie generator, g1
0, is defined as

zero, which corresponds to the identical transformation for
the variable t. The tensor �J represents the Poisson tensor
calculated from the zeroth-order 1-form, Eq. �7�,

�J =�b̂ � IJ/qB
�
* 0 0 B*/mB

�
*

0 0 q/m 0

0 − q/m 0 0

− B*/mB
�
* 0 0 0

� .

�31�

The gyrokinetic 1-form is obtained up to the first order,

� = �0 + �1 = �0 − V0
i ��1i�dt . �32�

This 1-form yields the gyrokinetic equations of motion,

dZi

dt
= � ij �� j

�t
−

��0

�Zj � . �33�

The Vlasov equation and its conservation form are also ob-

tained as Żi��F̄ /�Zi�=0 and �� /�Zi��ŻiB
�
*F̄�=0, respectively.

The gyrokinetic expressions of Maxwell’s equations can
be obtained by writing the charge density and current density
with the distribution function in the gyrocenter coordinate.
The formulation is achieved by the pullback technique intro-
duced by Brizard8 and Qin.9,23 When a physical quantity is
given by ��x ,v�, e.g., �=q for the charge density and �
=qv for the current density, its moment is expressed as

�̄�x�=���x� ,v��f�x� ,v����x�−x�d3x�d3v�. Thus, the pull-
back expression of �, ��Z�=��X+�â ,v�� ,
 ,V���yields the

averaged quantity in the guiding-center coordinate, �̄�x�
=���Z��F�Z����X�+�â−x�B

�
* /md6Z�. The distribution

function F�Z� is that of the guiding center and can also be

written in the gyrocenter coordinate as f�z�=F�Z�= F̄�Z̄�. The

gyrocenter distribution function F̄ is usually assumed to be

independent of the gyrophase �̄. From the pullback expres-
sions, we can write the moment integral of arbitrary physical

quantities with the gyrocenter distribution function F̄,

�̄�x� =� ��Z��T*F̄�Z����X� + �â − x�
B

�
*

m
d6Z�. �34�

B. Limiting case with electrostatic perturbation

We show the gyrokinetic equations with the electrostatic
perturbation as an example of the limiting case. The equa-
tions of motion in this section are used in Sec. V for numeri-
cal verifications. We use some approximations commonly as-
sumed in the analysis of the microinstabilities.13,24,25 First,
the vector field of the zeroth order, V0, used in the determin-
ing equations of the gauge function S1, Eq. �28�, and the

1-form, Eq. �32�, is reduced to V0	�V̄�b̂+D��X̄+	��̄+�t.
Second, we assume that the dependences of the gauge func-

tion S1 on the coordinate variables �X̄ , 
̄ , V̄� , t� are much

smaller than on the gyrophase �̄, i.e., dS1	��̄S1d�̄.
Under these approximations, the gyrokinetic 1-form is

obtained up to the first order as

� = �qA0 + mV̄�b̂ + mD� · dX̄ +
m

q

̄d�̄

− 
m

2
V̄�

2 + B
̄ +
m

2
D2 + q�̄0 + q�̄1�dt . �35�

Although this equation is almost same as the corresponding
equations in the previous works of Hahm13 and Qin,14 there
are two differences. One is the definition of D from the
simple E�B drift velocity to the generalized one. The other
difference is the expression of the gyroaveraged equilibrium

potential �0. Hahm and Qin employ �0+ �m
 /2q2�b̂ ·��D
and �0+ �
 /2q	���

2 �0 as the gyroaveraged potential, re-

spectively. The term �m
 /2q2�b̂ ·��D is also found in
Brizard’s paper12 and can be written as �
 /2q	���

2 �0 ap-
proximately. Since our expression of the gyroaveraged po-
tential is also approximated as �̄0	�0+ �
 /2q	���

2 �0,
these three expressions are essentially the same. Our equa-
tion, however, has an advantage in the rigorousness because
of the absence of the truncation due to the Taylor expansion.

The first-order gauge function is also obtained as

S1 =
q

	
�̃0 +

q�

	
ĉ · ��0 −

mV̄��

	
b̂ · �D · ĉ +

q

	
�̃1, �36�

where the notation �̃� � �̃d�̄− ���̃d�̄��̄ is introduced. It is
calculated by the partial integral,

�̃ =
1

2
�

�

�+2

��� − � − ���X + �â�����d��. �37�

The previous expression given by Qin for the simple equi-

librium velocity DQin� b̂���0 /B is

S1Qin =
q

	
�̃0 +

q�

	
ĉ · ��0 −

V�

B2 DQin · �DQin · ĉ

−
V�V�

B2 b̂ · �DQin · c +
q

	
�̃1. �38�

The third term in S1Qin has been canceled in our gauge func-
tion S1. This fact shows that the zeroth-order equation of
motion adopted here is more accurate than that of Qin’s
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study. The first-order Lie generator g1 is calculated from this
approximated S1 as

g1
X̄ = −

1

qB
�
* b̂ � 
− m� � D · â + � q

	
�̃0 +

q

	
�̃1

+
q�

	
ĉ · ��0 −

mV��

	
b̂ · �D · ĉ��

−
B*

mB
�
*−

m�

	
b̂ · �D · ĉ� , �39�

g1
�̄ = −

q2

m	
 ��̃0

�
̄
+

��̃1

�
̄
+

1

qV�

ĉ · ��0

−
mV�

q2V�

b̂ · �D · ĉ� , �40�

g1

̄ =

q2

m	
�̃0 + �̃1 − �â · ��0 +

m�V�

q
b̂ · �D · â� , �41�

g1
V̄� =

B*

mB
�
*

· 
− m� � D · â + � q

	
�̃0 +

q

	
�̃1

+
q�

	
ĉ · ��0 −

mV��

	
b̂ · �D · ĉ�� . �42�

Terms proportional to D ·�D have been canceled also in the
Lie generator.

Since the first-order equations have been obtained from
the above discussions, we can obtain the second-order
1-form as follows:

�2 = iV0��2 − ig1d�1 +
1

2
�ig1d�2�0�dt . �43�

This quantity has only the second-order terms in magnitude
but consists of linear and nonlinear, or square, terms with
respect to the perturbation potential �1. If we omit the linear
terms, the explicit nonlinear part of �2 under the assumption
of electrostatic perturbation is given by

�2 	
q3

2m	

�

�
̄
���̃�2�dt +

q

2B
�
*	

�b̂ � ��̃1� · ��̃1dt . �44�

This expression coincide with that of Hahm’s equation,13,24

Although we omitted the linear terms here, they may
become significant in the presence of a strong perturbation
potential.

From the gyrokinetic 1-form, the gyrokinetic equations
of motion are obtained as

dX

dt
=

1

B
�
*
B*V� + b̂

� ��̄0 + ��̄1 +



q
� B0 +

m

2q
� D2 +

m

q

�D

�t
�� ,

�45�

d�

dt
=

qB0

m
+

q2

m

��̄0

�
̄
+

q2

m

��̄1

�
̄
, �46�

d


dt
= 0, �47�

dV�

dt
= −

qB*

mB
�
*

· ��̄0 + ��̄1 +



q
� B0 +

m

2q
� D2 +

m

q

�D

�t
� , �48�

where the second-order nonlinear term was omitted here.
The term proportional to �D /�t in Eq. �45� represents the
polarization drift due to the temporal variation of the equi-
librium electric field. This term is not in Hahm’s paper13

because of the assumption that the equilibrium potential is
constant in time. In the case of numerical calculations, it is
convenient to rewrite the 
̄ derivative of the gyroaveraged

potential expressed as ��̄ /�
̄= �â ·���X+�â�� /qV̄�

= �ĉĉ :����X+�â�� /B. If the spatial scale of the equilibrium
potential is much larger than the gyroradius, we can use ap-
proximate expressions, �̄0	�0+ ��2 /4���

2 �0 and ��̄0 /�
̄
	��

2 �0 /2B.
The particle density is calculated up to the first order as

a pullback expression,

n�x� =� F̄ + g1
X̄ ·

�F̄

�X
+ g1


̄ �F̄

�

+ g1

V̄�
�F̄

�V�

�
�

B
�
*

m
��X + �â − x�d3Xd�d
dV� . �49�

If we used the approximate expression of the Lie generator,
g1	g1


̄, as is often the case with most of the gyrokinetic
analyses, the density equation is reduced to

n =� �F̄ + g1

̄�
̄F̄�

B
�
*

m
��X + �â − x�d3Xd�d
dV� . �50�

Although we introduce this approximation to obtain the equi-
librium density equation under the same condition as Qin’s
study, we can obtain more rigorous perturbation density in-
cluding g1

X such as Hahm’s expression.13 Using the partial
integral for 
̄ and assuming that the spatial scale of the equi-
librium potential is much larger than the gyroradius, we can
obtain the reduced expression
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n 	 N +
1

	2�� · �U���D� + Np, �51�

where we define the gyrocenter density N, the parallel veloc-
ity U�, and the polarization density Np due to the potential
perturbation as

N �� F̄
B

�
*

m
��X + �â − x�d3Xd�d
dV� , �52�

U� � � V�F̄
B

�
*

m
��X + �â − x�d3Xd�d
dV� , �53�

Np �� q2

m	
�̃1

�F̄

�
̄

B
�
*

m
��X + �â − x�d3Xd�d
dV� . �54�

The density equation for Qin’s equilibrium velocity is given
by

nQin = N +
1

	2�� · ��NDQin + U�b̂� · �DQin� + Np. �55�

The term proportional to D ·�D has been canceled also in the
equation of the density. This relation gives the Poisson equa-
tion and thus we have obtained the whole set of the gyroki-
netic equations.

V. NUMERICAL COMPARISONS

In this section, numerical verifications are given to con-
firm the advantages of the present equilibrium drift velocity.
We solve the gyrokinetic equations of motion �45�–�48� and
compare the solutions with that of the full-kinetic equations
and the previous gyrokinetic equations for three kinds of
potential profiles. In order to compare the solutions between
those of gyrokinetics and full kinetics, the relation between
the guiding-center and gyrocenter coordinate systems

Z̄i = Zi + g1
i . �56�

The relation between the particle and guiding-center coordi-
nate systems is given by Eqs. �1� and �2�. Although approxi-
mations in the derivation of Eq. �51� are commonly used for
the Lie generators in the calculations of coordinate transfor-
mations, its exact calculation yields small but not negligible
improvement in solutions in the case of strong electric fields.
Therefore, we use the complete expressions of the Lie gen-
erators, g1

X, g1
�, g1


, and g1
V� in our numerical calculation code.

First, we examine the particle trajectories for the poten-
tial �0=−Ey and �1=0. The solution of the new equilibrium
drift velocity, Eq. �18�, for the uniform electric field is given
by a simple E�B drift velocity D=E /Bx̂ for B=Bẑ. There-
fore, the equations of motion for the previous definition of
D=DQin and our definition coincide with each other for the
uniform electric field. We solved the full-kinetic equations
and the gyrokinetic equations and plotted the particle posi-
tion and the gyrocenter position in Fig. 1. The initial position
and velocity used in solving the gyrokinetic equations are
determined from those of the full-kinetic calculation through

the coordinate transformation, X̄=x−�â+g1
X. The last term

g1
X comes from the Lie transformation between the guiding-

center and the gyrocenter coordinates. It represents a correc-
tion of the gyrocenter position related to the perturbation
generated from the nonuniformity of the equilibrium poten-
tial and the particle gyration. The solutions of the gyrokinetic
equations are transformed inversely to the particle positions,

x= X̄+�â−g1
X̄, and plotted. We note that the Lie generator g1

vanishes and can be ignored in the case of the uniform elec-
tric field because the reference frame moves with E�B drift
velocity and cancels the electric field. In the case of general
potential profiles, however, the Lie generator g1 should be
calculated numerically.

The gyrating curve labeled “full” in Fig. 1 represents the
particle trajectory calculated from the full-kinetic equations.
The plus and cross marks represent the particle positions
calculated from the gyrokinetic equations with and without
D, respectively. Although the equations without D, or D=0,
involve the equilibrium potential �0 in the calculation, they

assume the ordering �b̂���0� /B0�vt and may yield large
errors for strong electric fields. The effectiveness of the em-
ployment of the equilibrium drift velocity D for strong elec-
tric fields is confirmed by the fact that the particle positions
with D are just on the curve of the full-kinetic solution, while
those of D=0 are not. The upper and lower horizontal lines
in Fig. 1 represent the trajectories of the gyrocenter with and
without D, respectively. The difference in the gyrocenter po-
sitions is caused by the modification of the velocity space.
Since the velocity in the gyrokinetics with D is defined in the
frame moving with the velocity D, the gyrocenter position
shifts along the electric field. The amount of the shift is given

by b̂�D /	=E /B	ŷ and corresponds to the polarization
due to the equilibrium electric field.

Secondly, we use a potential profile with circular con-
tours, �0�r�=−Er. A particle drifts along the contour to the
clockwise direction for a positive E. The solution of Eq. �18�
for this potential is given by

D =
2

1 + �1 − 4C
b̂ �

��0

B
,

�57�

-1

0

1

2

0 1 2 3 4 5 6 7 8

y

x

gyrocenter

w/o D with D

full

E

FIG. 1. Comparisons of particle trajectories calculated from the full-kinetic
gyrokinetic equations with and without D. The curve labeled “full” repre-
sents the particle orbit calculated from the full-kinetic equations of motion.
The plus and cross marks correspond to the solutions of the gyrokinetic
equations with and without D, respectively. The gyrocenter orbits with and
without D are shown as dashed and dotted lines, respectively.
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C � −
�b̂ � r̂�2

rB	

d�0

dr
=

E

rB	
,

where we denote the radius and the radial unit vector by r
=�x2+y2 and r̂= �xx̂+yŷ� /r, respectively. This velocity is

larger �smaller� than that of Qin’s expression DQin� b̂
���0 /B for positive �negative� E by a factor of 2 / �1
+�1−4C� and the polarization shift b̂�D /	 is also larger
�smaller�. In order to confirm the accuracy of the equation in
the nonuniform electric field, the conservation of the energy
is examined. There are two expressions for the energy ac-
cording to the coordinate systems,

Hf�x,v� =
m

2
v2 + q�0, �58�

Hg�X̄,
̄,V̄�� =
m

2
V̄�

2 + B
̄ +
m

2
D2 + q��0� . �59�

The former is the Hamiltonian on the particle coordinate
system and represents the energy of the particle at the phase-
space position �x ,v�. The latter expression, Hg, is the gyro-
kinetic Hamiltonian on the gyrocenter coordinate system

�X̄ ,�̄ , 
̄ , V̄��. Since the description of dynamics consists of
the definition of the coordinate system and the equations of
motion, or time derivative of the coordinate variables, the
Hamiltonian becomes an invariant if and only if the corre-
sponding equations of motion are employed. Thus, the full-
kinetic equation conserves the particle energy Hf but not the
gyrokinetic energy Hg, and vice versa for the gyrokinetic
equations. The reason for no conservation is that the gyroki-
netic 1-form and the coordinate transformation between the
particle and the gyrocenter involve truncation errors through
the Taylor expansions with respect to �. Therefore, the de-
gree of energy conservation is a suitable criterion to evaluate
the accuracy of the equations.

We employ two combinations of the energy expressions
and equations of motion. One is the “proper” pair of the
particle energy, Hf, and the full-kinetic equations of motion,
and also Hg and the gyrokinetic equations. In this case, the
energy is conserved rigorously. From the numerical compari-
son with the full-kinetic one, the consistency of the gyroki-
netic equations is examined. The other combination, i.e., Hf

and the gyrokinetic equations, is useful to examine the accu-
racy of the equations of motion and the coordinate transfor-
mations used in the calculation of Hf from the gyrokinetic
coordinate variables. Although the time evolution of the en-
ergy is not stationary, it does not have a secular variation but
oscillates with the gyrofrequency and its harmonics. The am-
plitude of the oscillation is employed as the criterion of the
accuracy.

We solve the full-kinetic and the gyrokinetic equations
numerically and plot three kinds of energy values in Fig. 2.
First is the particle energy Hf calculated from the full-kinetic
solution. It is shown as a solid horizontal line labeled Hf in
the figure. Second is the gyrokinetic energy Hg calculated
from the gyrokinetic solution. The dashed and dotted hori-
zontal lines labeled Hg represent the gyrokinetic energy for
our equilibrium drift velocity field D and that of Qin, respec-

tively. Since the gyrokinetic energy is constant in time, we
confirm that the gyrokinetic equations derived here are con-
sistent with the 1-form. From the comparison of the devia-
tion of the gyrokinetic energy from the full-kinetic energy, a
significant improvement of the accuracy on the energy is also
confirmed, i.e., �Hg

Kawamura−Hf�� �Hg
Qin−Hf�. The third energy

value is the particle energy Hf calculated from the gyroki-
netic solution. Since Hf is a function on the particle coordi-
nate system, it is evaluated with the particle coordinate vari-
ables transformed from the gyrocenter coordinate variables.
The dashed and dotted oscillatory curves correspond to the
solutions obtained from the equations with D and DQin, re-
spectively. Since the amplitude of the energy oscillation for
the present D is reduced by a factor of 3 compared with that
for the previous DQin, we confirm that the refinement of the
gyrokinetic equations has been achieved by the new equilib-
rium velocity.

In order to study the dependence of the error on the
various plasma parameters, we plot the standard deviations
of the energy oscillation for various E, B, vt, and the initial
velocity in Fig. 3. The standard deviation � is normalized by
the perpendicular energy B
 and can be interpreted as a
relative error. The horizontal axis represents the E�B drift
velocity normalized by the thermal velocity. Figures
3�a�–3�c� correspond to three kinds of initial positions of the
particle, r /�t=25, 100, and 400, respectively. The cross, tri-
angle, and circle marks correspond to the gyrokinetic equa-
tions with D=0, the improved equations of Qin, and the
equations derived here, respectively. The broad distributions
in � /B
, especially for the equations with D=0, are caused
by the thermal spread in the perpendicular velocity space,
which has a Maxwellian distribution. The relative error of
the equations with D=0 does not depend on the initial posi-
tion, which corresponds to the curvature of the potential con-
tour in this case, while the error of the improved equations
with D decreases for smaller curvature. This fact indicates
that the error in the equations with D=0 depends on the
electric field strength, while that of the equations with D
depends on the second derivative of �0 rather than the
first derivative or the strength of the electric field. This
tendency agrees with the observation on the conservation
of the magnetic moment in Sec. III. The relative error

-6.06
-6.04
-6.02
-6.00
-5.98
-5.96
-5.94
-5.92
-5.90

0 5 10 15 20 25 30 35 40

en
er

gy

t

Qin
Kawamura
full-kinetic

Hf Hg

FIG. 2. Time evolution of the particle energy Hf, Eq. �58�, and the gyroki-
netic energy Hg, Eq. �59�. They are calculated from the full-kinetic equa-
tions �solid� and the gyrokinetic equations with the equilibrium velocity
field D �dashed� and DQin �dotted�.
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with the present D is roughly estimated from Fig. 3 as
�	�vE�B /vt�2 /2�r /�t�2= �E /rB	�2 /2	��2� /B	�2 /2.
From the comparisons between Qin’s previous solutions �tri-
angle marks in Fig. 3� and ours �circle marks�, the reduction
of the error is achieved when the E�B drift velocity ex-
ceeds approximately 1 /10 of the thermal velocity. The maxi-
mum reduction around 1 /10 is achieved when vE�B�vt.

Finally, we examine the energy oscillation for a more
general potential profile. Since there is no analytic expres-
sion for the solution of Eq. �18�, numerical calculations are
required for general profiles. We used a simple recurrence
equation to solve the equilibrium drift velocity,

D0 = b̂ �
��0

B
, �60�

Dn+1 = b̂ � ��0

B
+ Dn+1 ·

�Dn

	
� , �61�

where the gradient of the vector Dn�X� is calculated as

�Dn�X� = �
i

ẑiDn�X + �ẑi� − Dn�X − �ẑi�
2�

. �62�

The small quantity � is chosen to be much smaller than the
scale length of the potential �0. Sufficient accuracy for gen-
eral purposes can be obtained by two or three iterations. We
used an equilibrium potential with elliptic contours as an
example, �0=−E�4x2+y2. The time evolution of the particle
energy calculated from the gyrokinetic equations with D and
DQin is shown in Fig. 4. The period, T=92, equals a 1-cycle
of the rotation along the contour. At the beginning of the
calculation, the particle is located on the x axis, �x ,y�
= �l ,0�, and drifts clockwise to �0,−2l� at t=T /4=23. The
slow variation of the envelope is caused by the spatial dif-
ference of the curvature of the potential contour. The ampli-
tude of the energy oscillation is reduced by a factor of 3 also
in the potential with the elliptic contour.

VI. CONCLUSIONS

Refinement of the equilibrium drift velocity in the gyro-
kinetic theory has been proposed for edge plasmas with large
E�B flow shears. An equilibrium velocity field D is intro-

duced in the coordinate transformations, Eqs. �1� and �2�, to
decouple the drift motion and gyration of a charged particle
in the zeroth-order dynamics in Eq. �7�. We investigated the
effects of the velocity D on the zeroth-order equation of
motion, especially on the magnetic moment 
, and obtained
the practically most accurate expression of D, Eq. �18�.

Using the standard procedures of Lie perturbation analy-
sis, we obtained the general expressions of the Lie generator,
Eq. �29�, and the gyrokinetic 1-form, Eq. �32�, up to the first
order. As a limiting case, the electrostatic gyrokinetic equa-
tions of motion, Eqs. �45�–�48�, and the particle density, Eq.
�51�, were derived. It was confirmed that a term proportional
to D ·�D in the gauge function, Eq. �38�, used by Qin was
canceled through the refinement of D in our gauge function,
Eq. �36�. This fact indicates that our modification in D re-
duces the error involved in the zeroth-order dynamics.

The advantages of our formulation were also confirmed
in the numerical verifications in Sec. V. The accuracy of the
equations of motion was estimated through the conservation
of the particle energy calculated from the gyrocenter coordi-

nate variables Z̄= �X̄ ,�̄ , 
̄ , V̄��. When the E�B drift veloc-
ity is comparable to the thermal velocity, the oscillatory be-
havior of the energy due to the truncations at second order
was reduced up to 1 /10 in its standard deviation compared
with the previous formulation by Qin.

From the analytic investigation and the numerical veri-
fications, it has been confirmed that the refinement of the
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FIG. 3. Standard deviations of energy
oscillations for the E�B drift veloc-
ity. �a�, �b�, and �c� correspond to three
kinds of the initial positions of the par-
ticles, r /�t=25, 100, and 400, respec-
tively. The cross, triangle, and circle
marks correspond to the gyrokinetic
equations with D=0, the improved
equations of Qin, and the equations
derived here, respectively.
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FIG. 4. Time evolution of the particle energy. The solid and dashed lines
correspond to the solution of our gyrokinetic equations and those of Qin,
respectively.
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equilibrium velocity D succeeds in obtaining more accurate
equations of motion and gyrocenter coordinate. The general
expressions of the charge and current densities were formu-
lated and the approximate density equation �51� for the elec-
trostatic potential was also obtained. Our formulation is,
however, based on the single-particle 1-form, and thus the
self-consistency for collective dynamics, or a plasma, is not
fully ensured by itself. The self-consistency, e.g., conserva-
tion of the plasma energy, for the gyrokinetics without large
equilibrium E�B flow has been confirmed by the field
theory.26 The self-consistency is essential not only for the
theoretical completeness but for the numerical simulation as
a guarantee of the conservation of energy and momentum.
The application of the field theory to the gyrokinetic theory
with the strong E�B flow will be an important topic of
further studies.
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