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The nonrelativistic Schrodinger equation and the relativistic four-component Dirac equation of H,"
were solved accurately in an analytical expansion form by the free iterative complement interaction
(ICT) method combined with the variational principle. In the nonrelativistic case, we compared the
free ICI wave function with the so-called “exact” wave function as two different expansions
converging to the unique exact wave function and found that the free ICI method is much more
efficient than the exact method. In the relativistic case, we first used the inverse Hamiltonian to
guarantee Ritz-type variational principle and obtained accurate result. We also showed that the
ordinary variational calculation also gives a nice convergence when the g function is appropriately
chosen, since then the free ICI calculation guarantees a correct relationship between the large and
small components of each adjacent order, which we call ICI balance. This is the first application of
the relativistic free ICI method to molecule. We calculated both ground and excited states in good
convergence, and not only the upper bound but also the lower bound of the ground-state energy. The
error bound analysis has assured that the present result is highly accurate. © 2008 American

Institute of Physics. [DOI: 10.1063/1.2842068]

I. INTRODUCTION

Schrodinger equation (SE) is the most fundamental
equation in the fields of quantum physics and chemistry, but
its solution for general system has long been thought to be
impossible.l However, recently, we have proposed and de-
veloped a general methodology for solving the Schrodinger
equation in an analytical expansion form. The methodology
is based on the study of the structure of the exact wave
function.”™ The iterative complement interaction (ICI)
method was proposed to construct the exact wave function
but it included the integrals of higher powers of Hamiltonian,
which diverge for atoms and molecules for the existence of
singular Coulomb potential. This singularity problem has
been overcome by introducing the scaled Schrodinger equa-
tion (SSE),” which is equivalent to the original SE. The ICI
method and the free ICI (Ref. 3) method based on the SSE
converge to the exact wave function without encountering
the singularity problem. This has enabled us to calculate
highly accurate solutions of the SE of various atoms and
molecules:>™ some were actually the most accurate solutions
of the SE so far obtained. Not only the energy but also the
nuclear and electron cusp values and the local energy were
shown to be highly accurate.* Furthermore, due to its sim-
plicity and generality, the ICI and free ICI methods have
been extended to solve the relativistic Dirac equation and the
Dirac—Coulomb equation, and accurate solutions of the one-
and two-electron atoms have been reported6 but applications
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to molecules have not yet been done. Here, we describe our
ICI formalism for solving the hydrogen molecular ion (H,")
at both nonrelativistic and relativistic levels.

H," is the simplest molecule and recognized important
as an interstellar molecule. Quite accurate descriptions of
this molecule have been necessary for the assignment of as-
tronomical spectroscopy.7 Extensive nonrelativistic studies
have been done for many years and the exact solutions of
H," and other two-center one-electron systems have been
presentedg_lo in analytical expansion form. Relativistic cal-
culations were also made by various methods'' ™7 and the
major emphasis was the accuracy of the calculated energy: in
particular, the finite-element method'"!® (FEM) and the di-
rect perturbation theory12 (DPT) gave accurate results. To
date, the FEM result has been regarded to be most accurate
in energy. However, in these calculations the variational
property was not guaranteed. Further, the FEM does not give
an analytical expression of the wave function covering all
over the coordinate space. Though there exists the calcula-
tions using Gaussian-type orbitals"*  and Slater-type
orbitals,17 their results were not as accurate as those of the
FEM and DPT.

In this paper, we present variational solutions of the non-
relativistic SE and the relativistic Dirac equation of H," in
analytical expansion forms by applying the free ICI method-
ology developed in our laboratory. Further, in addition to the
upper bound energy, we calculate lower bound energy from
the calculated wave function, which guarantees that the
present results are highly accurate.

© 2008 American Institute of Physics
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Il. THEORY
A. Definition of the system
The SE for the nonrelativistic H," is
Hiy=Ey, (1)
where the Hamiltonian is given in the Born—Oppenheimer
(BO) approximation as
1 1 1 1
H=--V -———+—. (2)
2 r, 1, R

a and b denote two protons and R is the internuclear dis-
tance. Owing to the BO approximation, this three-body prob-
lem is converted into a two-center one-particle problem, for
which one favorably uses elliptic coordinate.
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In this coordinate, the kinetic operator is written as
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and the electron-nucleus Coulomb interaction operator by
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The Dirac equation for the relativistic H," is written
similarly to the SE [Eq. (1)] and its Hamiltonian is defined as

v+ A1,

co-p

V-1, | ©)

co-p
where V represents the electron-nuclei attraction potential
given by Eq. (5), p=—iV is the momentum operator, o the
Pauli matrix, and /, the 2 X2 identity matrix. In all relativ-
istic calculations, we used c=1/a=137.035 989 5.18

B. Free ICI method

The SE can be written equivalently in the form of the
SSE (Ref. 3) as

g(Hy—E) =0, (7)

where the function g(r)=0 scales the singularities of the
potential to be finite. The choice of g in the actual calcula-
tions will be described in the next section. The simplest ICI
(SICI) based on the SSE,

l/ln+l = [l + Cng(H_ En)]l/ln (8)

is proved to become exact at convelrgence3 without encoun-
tering the singularity problem for the presence of the scaling
function g. When one uses variation principle, the energy
becomes lower and lower, is bounded from below, and is
guaranteed to become exact at convergence, so that it should
converge to the exact solution. The free ICI method is de-
fined by gathering all the independent analytical functions
from the right-hand side of Eq. (8) as {¢}"), k=1,...,M,,
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and giving independent coefficient to each function as

M)l

Y1 = 2 iy 9)

k=1

Because of the increased freedom, the free ICI method con-
verges faster to the exact wave function than the original
SICI. The variables {c;} of the free ICI wave function are
calculated by applying the variational principle to Eq. (9).

Since the ICI formalism is guaranteed to reach the exact
solution, this free ICI method gives the best possible wave
function at each iteration cycle. Note that in the free ICI
method, the next iteration cycle does not require the vari-
ables {c,}"” of the former cycles, so that n may be under-
stood as designating the order rather than the iteration cycle.
One can get the nth order free ICI functions {¢}" directly
from the initial function iy, by applying the operator part of
Eq. (8) n times. The accumulation of errors during iterations
does not occur in the free ICI calculations. For the determi-
nation of the variables {c,}", the secular equation should be
solved in high accuracy. For this purpose, we used the GNU
multiple precision arithmetic library19 and the symbolic op-
eration program, MAPLE.”

In the free ICI formalism, we have a freedom in the
choices of the g function and the initial function ¢,. The g
function should be a functional of the inverse of the Cou-
lomb potential, from its purpose to eliminate the singularity
of the Coulomb potential. The initial function should have
the symmetry of the state we want to calculate: because the
Hamiltonian is totally symmetric, the symmetry of the gen-
erated functions is always the same as that of the initial func-
tion.

The Dirac equation can also be written in a scaled form
as

gHYy—E) =0, (10)

where the scaling function g, which is scalar, is defined simi-
larly to the nonrelativistic case. The SICI for the Dirac equa-
tion is defined similarly to Eq. (8) as

¢n+l=[1+cng(H_En)]¢n (11)

and the free ICI by

M

n

v/ =2ck¢k’ (12)

k=1

with C,, and c; here as four-dimensional diagonal matrices
and ¢, as four-component spinor functions.

Unlike the nonrelativistic case, we have to take ‘“varia-
tional collapse” problem into account for the Dirac equation.
Many studies have been explored to overcome this problem21
and various methods have been developed. Generally, the
variational collapse has its origin in an improper limited rep-
resentation of the wave function: if the description is enough
wide and proper, it should not occur.” Actually, however,
such description is not an easy task as stated below. Hill and
Krauthauser” proposed an inverse Hamiltonian method to
guarante the Ritz-type variational property in a rigorous
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sense. Previously, we applied this method to solve the rela-
tivistic Dirac—Coulomb equation of one- and two-electron
atoms.’

In the inverse Hamiltonian method, the Dirac equation is
rewritten as

H'y=E"y. (13)

Just like in our case of the inverse Schrodinger equation,24 it
is easy to show the equivalence between the original Dirac
equation and the inverse one. For the inverse Dirac equation,
the lowest positive energy state (corresponding to the elec-
tronic ground state) is mapped to the top of the spectrum,
i.e., the highest solution against the complete vacuum and,
therefore, the following Ritz-like variational principle holds
for the inverse Hamiltonian operator

.

E_l — <¢|Ij ~|¢> < E _1’
W)

where z,~b is a variational trial function for ¢ and E is the true

energy of the ground electronic state. Here, a difficult prob-

lem arise, that is, how we write H™! explicitly in a closed

form. A clever trick was introduced by Hill and Krauthauser
and enabled us to avoid the explicit use of the inverse Hamil-

(14)

tonian. Namely, we choose our variational function 1Z in the
form of

y=He, (15)

in which ¢ represents a free variation. Then, the variational
equation above is written as

=~ _ (elHlo) o
(glH?|@y ~°

and all the quantities can be calculated without an explicit
use of the inverse Hamiltonian. At the diagonalization step of
the relativistic free ICI, we utilize the above Ritz-like varia-
tional equation to ensure the bound property. However, the

. (16)

choice of the trial function ¢ in the form of Eq. (15) imposes

some restriction on ¢, since ¢ must be square integrable. The
existence of the singular potential in H makes the basis func-
tion form of ¢ to be more limited.

In addition, we calculated the following expectation
value

_{elH|@)

Er= (elo)

(17)
using the eigenvector ¢ calculated by the above inverse
method. We call this energy as inverse-regular (IR) energy.
Since ¢ of Eq. (17) was calculated with the use of the inverse
Hamiltonian method that avoids the variational collapse, the
energy expectation value of this ¢ would be reliable. To dis-
tinguish IR energy from this, we call the energy calculated
by the inverse method given by Eq. (16) as inverse-inverse
(I) energy. Throughout the paper, we call these inverse
Hamiltonian-based methods as “the inverse method.”

On the other hand, we may also use the ordinary varia-
tional method based on the standard regular Hamiltonian. We
call such method “regular method.” The energy calculated
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from the wave function of the regular method has the form of
Eq. (17), so that this energy may be called regular-regular
(RR) energy. The IR and RR energies are not bounded from
below but have the following interesting features character-
ized by the ICI method.

It is well known that the Dirac equation connects the
large and small compono:nts:22 the exact connection is called
“atomic” balance and an approximate one “kinetic” balance.
So, when one imposes such balancing condition between the
basis sets of the large and small components, one can avoid
the variational collapse. Actually, in our free ICI formalism,
the correct relationship between the large and small compo-
nents is imposed between those of the adjacent orders:°
within each order, the relationship is approximate, so that
this balancing does not help much initially at low orders, but
as the order increases, it approaches the correct balancing.
We call this balancing as “ICI” balance. Thus, within the ICI
methodology, even the ordinary variational method based on
the regular Hamiltonian may give correct variational solu-
tions as far as the order n is large enough. On the other hand,
the II method is always guaranteed to have the bound prop-
erty as expressed by Eq. (16).

C. Calculation of the lower bound

All types of the energies given in the previous section
correspond to the upper bounds of the exact energy. If we
can calculate accurate lower bound of the exact energy from
the wave function we are at hands, we can estimate correctly
the error bars of the calculated energy. From this point of
view, the calculation of the lower bound is as important as
that of the upper bound and so, many researches for the
lower bound have been made (see, for example, Ref. 25).
Most of them are related to the variance of the energy given
by,

oY) {wleIwT
wler Ll |

In spite of its importance, the calculation of the lower bound
is not as popular as that of the upper bound, because the
calculation of the integral (Y{H?|#) is generally more diffi-
cult than that of ({H|). Additionally, it is known®® that one
cannot obtain a lower bound as accurately as an upper bound
unless we have a quite accurate wave function. Our free ICI
wave function gives quite accurate upper bound of the exact
energy, so that we can expect that it may also give accurate
lower bound to the exact energy. When we use the inverse
method, the integral (y{H?|i)) is necessary also for the upper
bound calculation. This means that we can calculate the up-
per and lower bounds at the same time.”®

Among the various formulas of the lower bound, we
utilized the Temple’s lower bound”’ given by

(18)

Ejoy, = (Y1H| ) - (19)

Eex - <lr/,|H| IJI> |
where E, is the energy of the first excited state having the
same symmetry as the ground state. The calculation of E, is
also easy in the free ICI method because the excited states
are obtained as the higher-energy solutions of the diagonal-
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TABLE I. Nonrelativistic energy for the ground state (1o,) of H," (R=2.0 a.u.).

Order Dimension a Energy (a.u.)
0 1 1.3 —1.079 384 965 831 435079 726 6
1 4 1.1 —-1.101 421 270 731 672 255 605 4
2 13 0.8 —1.102 627 432 357 876 891 750 1
3 26 1.2 —-1.102 634 208 423 548 446 172 2
4 43 1.1 —-1.102 634 214 493 685465 420 5
5 64 1.1 —-1.102 634 214 494 945 584 228 3
6 89 1.3 —1.102 634 214 494 946 461 243 5
7 118 1.2 —1.102 634 214 494 946 461 508 8
Our best result (Order=15,Dim.=494) 1.3 —1.102 634 214 494 946 461 508 968 945

Exact wave function®
Correlated wave function”
235/9p/4d/4f/2g: GTO®
Finite element method®
Finite difference method®

—1.102 634214 494 9
-1.1026237
-1.1026340
-1.1026327

—1.102 634 214 497

“Reference 31.
"Reference 32.
‘Reference 33.
dReference 34.
“Reference 35.

ization for the ground state. Since the lower bound nature is
ensured for the inverse method, the same nature is also en-
sured to the calculated energy of the excited state. So, the
inequality E < E_, is assured. Thus, we can safely apply Tem-
ple’s method even to the relativistic case.

lll. RESULS AND DISCUSSIONS
A. Nonrelativistic case

Here, we performed the free ICI calculations for solving
the SE of H,". The g function was chosen as the inverse of
the electron-nuclear Coulomb potential written in the elliptic
coordinate as

1ROV -y

Vv 4N (20)

§=-
For the lcrg ground state, the initial function was the Slater-
type function
a/
o =exp| — E(r“ + 1) | =exp(—an), (21)
where «a and o' are nonlinear parameters with ¢’'=Ra. In

this choice, the free ICI wave function is generated in the
analytical expansion form of

W= e\ exp(— aN), (22)
i

where ¢; is the variational parameter and m; is positive or
negative integer. Since the 1o, ground state has a gerade
symmetry, n; should be zero or a positive even integer. A
simple function, given by James”

r=exp(— a\) (4’ + ),

where 7y is a variable coefficient, is regarded as a special
example of our form of the exact wave function. We summa-
rize in Table I the calculated energies for the ground state

(23)

lo, at different orders. Alpha values were optimized at each
order. The convergence of the free ICI energy was quite
good. Our best energy is the known best of the exact energy.

The first excited state 1o, (ungerade) was also calcu-
lated, starting from the initial function of the ungerade sym-

metry

thy = pexp(= ah). (24)

The free ICI wave function of the 10, state is also expressed
in the analytical expansion form given by Eq. (22), where n;
should be positive odd integers. The g function was the same
as for the 10, state given by Eq. (21). The results are given
in Table II. Just as for the gerade states, the convergence of
the free ICI was very good and quite accurate energy was
calculated.

For H,*, the exact wave function for the nonrelativistic
SE is known and given by8

YN . ) = ANM (wexp(im ), (25)
where
AN = (1+N)7(\ = 1)|m/2\ exp(— a)\)i (ﬂ)k
P S8\ TN/
(T:B_|m|_1’ (26)

M(p) =2 fiP(w),
=0

m corresponds to the magnetic quantum number, and P;(u)
is associated Legendre function. g, and f; are the coefficients
determined by the differential equations obtained from the
SE by separating the variables. Note that the exact wave
function is given also in the analytical expansion form as our
free ICI wave function given by Eq. (22). They are two dif-
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TABLE II. Nonrelativistic energy for the ungerade excited state (1o,) of H,* (R=2.0 a.u.).

Order Dimension a Energy (a.u.)

0 1 0.9 —0.662 993 039 443 155452 436 195
1 4 0.8 —0.667 236 686 962 501 148 195 507
2 13 1.1 —0.667 534 068 275 070 663 143 593
3 26 1.0 —0.667 534 392 107 704 479 296 447
4 43 1.0 —0.667 534 392 202 280 580 231 750
5 64 1.1 —0.667 534 392 202 382 893 318 000
6 89 1.1 —0.667 534 392 202 382 930 343919
7 118 1.1 —0.667 534 392 202 382 930 361 968

Our best result (Order=14,Dim.=433) 1.2 —0.667 534 392202 382930361 970211 49

Exact wave function® —-0.667 5343922024

Correlated wave function” -0.667 507 8

Finite element method® -0.667 533 1

Finite difference method® —-0.667 534 392 205

“Reference 31.
"Reference 32.
“Reference 34.
dReference 35.

ferent expressions of the analytical expansion of the one
unique exact wave function.

We now want to compare the present free ICI wave
function with the exact wave function. However, the exact
wave function is defined in the infinite expansion form and,
practically, we have to truncate this expansion, which was
first introduced by Wind’ and more elaborate and general
cases were studied by Hunter et al."® We followed the
method of Ref. 10 and determined the coefficients g, and f;
of Eq. (26). Then, we compare this “truncated exact” wave
function with the free ICI wave function. For this purpose,
we introduce

02 = f (wt.exact - lpﬂCI)sz’ (27)
which shows the deviation of the ICI wave function from the
truncated exact one. This quantity is zero, when ¢ and
¥, exact are identical everywhere in the coordinate space.

Here, the exact series of Eq. (26) were truncated at the
orders of N and u to be less than 23 and 14, respectively,
which assures E=—1.102 634 214 494 9 a.u. The criteria for
the energy accuracy and the truncation level are essentially
the same as those in Ref. 10. We show in Table III the con-
vergence behavior of o?. We see that as the order increases,
the ICI wave function converges very rapidly to the trun-
cated exact wave function. This is reasonable since the free
ICI wave function is also guaranteed to converge to the exact
wave function as the order n increases, likewise, the exact

TABLE III. The deviations of ICI wave functions from the exact wave
function (R=2.0 a.u., ’s are same as in Table I).

Order Dimension o>
0 1 1.2635% 1072
1 4 1.0723x 1073
2 13 2.4902 X 107°
3 26 7.0255 % 10710
4 43 4.8703 X 10713

series given by Eq. (26). In other words, now, we have two
different series of analytical wave functions that converge to
the exact wave function. So, a question is which is more
efficient? We examine it below.

First, how many basis functions are necessary for obtain-
ing the similar accuracy? Figure 1 shows a comparison be-
tween the truncated exact method and the free ICI method to
get the similar energy accuracy. The abscissa corresponds to
the energy accuracy in the number of correct figures. Appar-
ently, the convergence of the free ICI wave functions is quite
efficient. To calculate the truncated exact wave function, one
must iteratively solve the eigenvalue equations and estimate
the N and u truncation error. They are not an easy task as the
dimension grows.10 Different from the method in Ref. 10, the
calculations based on the variational principle are also pos-
sible for the truncated exact form. This gives, for example,
—1.102 634 214 494 946 461 508 97 a.u. by 110 functions
(the order of N and u is less than 10 and 18, respectively), to
be compared with —1.102 634 214 494 946 461 508 80 a.u.
(with 118 functions) of the free ICI results. Both energies are
much more accurate than the “nonvariational truncated ex-
act” energy of —1.102 634 214494 9 a.u. for the 322 func-
tions. Note that the variational energy of the truncated exact

700
600 -=- Exact y

500 —— Free ICI /
400
300
200
100

0

Dimension

Energy accuracy

FIG. 1. The efficiency comparison between the free ICI wave function and
the exact wave function. The digits in the x axis are defined as the energy
eigenvalue that has 107" (a.u.) accuracy.

Downloaded 29 Jun 2009 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



124103-6 Ishikawa, Nakashima, and Nakatsuji

J. Chem. Phys. 128, 124103 (2008)

TABLE IV. Relativistic energy for the ground state (1o,,) of H," with the g function given by Eq. (21) (R
=2.0 a.u., @=2.0: The numbers of the spinor components are shown in the parentheses).

Order Dimension 11 energy (a.u.)
0 4 (1,1,1,1) -0.659496913 3727
1 11 (1,3,6,1) —1.083 448 433903 8
2 47 (12,10,16,9) —1.101 365364 460 9
3 95 (25,22,29,19) —1.102 433 966 380 5
4 159 (41,37,47,34) —1.102 587 047 480 7
5 239 (62,57,68,52) -1.102 622 1128247
6 335 (86,80,94,75) -1.102 632 893 567 4
7 447 (115,108,123,101) -1.102 636988 619 3
8 575 (147,139,157,132) -1.102 638 809 768 9
9 719 (184,175,194,166) —1.102 639 734980 7
10 879 (224,214,236,205) —1.102 640 256 624 1
11 1055 (269,258,281,247) —1.102 640 5774799
12 1247 (317,305,331,294) —1.102 640 789 0222
13 1455 (370,357,384,344) —1.102 640 936 651 0
14 1679 (426,412,442,399) —1.102 641 044 3317
15 1919 (487,472,503,457) -1.102 641 1254552

Finite element method”

Direct perturbation theoryb

Finite Difference method®

Monte Carlo method®
Four-component Gaussian type spinor®
Minimax theoryf

—1.102 641 581 033 8
—1.102 641 579 453
—-1.102 6415709
—-1.102 565

—1.102 641580 1
—-1.102481

“Reference 11.
"Reference 12.
“Reference 35.

form is lower than that of the free ICI wave function. How-
ever, the variational treatment of the truncated exact wave
functions is quite difficult because the functions involved in
the series are almost linearly dependent on each other and so,
the Hamiltonian and overlap matrices must be calculated
with very high accuracy. Moreover, the integrations are also
difficult because of the existence of the nonlinear terms in
Eq. (26). Therefore, it is not practical to perform variational
calculations with the “exact” wave function series.

In conclusion, we could say that the free ICI procedure
is much more efficient way of solving the nonrelativistic
exact wave function of H," than even the exact treatment of
the SE of H,".

B. Relativistic case

Next, we solved the relativistic Dirac equation of H," by
the free ICI method. The initial function we used for the 1o,
state was given by3 0

exp(— aN)expli(j. - 1/2) @]
(N = D)2(1 = )" exp(= aNexpli(j, + 1/2) $]
i exp(— aN)expli(j. - 1/2) @] ’
i = 1DY2(1 = u®)"? exp(— aN)expli(j, + 1/2) ]
(28)

\I’0=

where j, describes the projection of the total angular momen-
tum on the internuclear axis and is equal to 1/2 for o sym-
metry. We examined two sets of g functions and the first one
is the same as that given in Eq. (20). Utilizing this set of

dReference 13.
“Reference 14.
Reference 15.

initial and g functions, the free ICI procedure generates the
analytical wave function given by

c} 0
0 - Ci2 2 12
= 0 N"igi exp(— a\) + 0 (\2=1)
0 0
X (1= p?)"N"u exp(— aX)exp(ie)
0 0
0 2 12
+| 5 |iN"iwexp(— an) + 0 iz -1V
Ci
o
X (1= u?) PN"iu" exp(— aN)exp(ie) (. (29)

Obviously, the first element of the large component has the
same form as the nonrelativistic wave function and this
means that the wave functions generated by the g function of
Eq. (20) have the same structure as the nonrelativistic case.
Table IV shows the results of II energy calculations. The II
energy converges from above as the order increases and we
did not encounter any variational collapse difficulty. How-
ever, the speed of the convergence was very slow.
So, we next chose the g function given by
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TABLE V. Relativistic energy for the ground state (1o,) of H," with the g function given by Eq. (31) (R=2.0 a.u., @=2.0: The numbers of the spinor
components are shown in parenthesis and the energy overshooting are noted by bold italic).

Energy (a.u.)

Order Dimension I IR RR
0 4 (1,1,1,1) -0.659496913 37272 -1.275910 162 355 89 -1.275910 162 224 65
1 20 (8,4,4,4) —1.099 461 794 474 25 -1.103 615 579 600 33 —1.104 924 761 609 26
2 93 (26,19,25,23) —1.102 640 840 072 85 -1.102 641 023 119 06 —1.102 642 558 451 92
3 196 (56,45,49,46) —1.102 641 577 748 44 -1.102 641 578 407 21 —1.102 641 585 966 62
4 336 (90,76,88,82) —1.102 641 580 984 89 —1.102 641 581 018 02 —-1.102 641 581 034 77
5 512 (141,122,126,123) —1.102 641 581 009 4 —1.102 641 581 032 10 —-1.102 641 581 033 70
6 724 (191,167,186,180) -1.102 6415810159 —1.102 641 581 032 56 —-1.102 641 581 033 49
7 975 (262,234,242,237) -1.102 641 581 0200 -1.102 641581033 11 -1.102 641 581 033 58
8 1262 (330,297,321,314) —1.102 641 581 022 8 -1.102 641581033 11 —-1.102 641 581 033 56
9 1585 (418,383,395,389) —1.102 641 581 024 9 —1.102 641 581 033 36 —1.102 641 581 033 595 2
10 1944 (506,464,491,483) —1.102 641 581 026 3 —1.102 641 581 033 38 —-1.102 641 581 033 591 2
11 2341 (611,567,585,578) -1.102 641 581 027 5 —1.102 641 581 033 44 —-1.102 641 581 033 598 0
12 2774 (719,668,698,689) —-1.102 641 581 028 4 —1.102 641 581 033 50 —1.102 641 581 033 598 1

Finite element method"

Direct perturbation theoryb
Finite Difference method*
Monte Carlo method*
Minimax theory®
Four-component Gaussian type
spinorf

—1.102 641581 033 8
—1.102 641 579 453
—-1.102 6415709
—1.102 565

-1.102 481

—1.102 641580 1

“Reference 11.
"Reference 12.
‘Reference 36.

; (30)

c} Nl exp(— ak)/ (N2 — p?)li

V=2

i N exp(— aN)/(N? = uP)i

dReference 13.
“Reference 15.
Reference 14.

where we added the factor unity on the right-hand side of Eq.
(20). With the use of the same initial wave function as above,
the free ICI method generated the analytical wave function
written as

;N = D)V = ) Nmi exp(— aN)exp(ig)/(N? — u?)'i

(31)

i = 1)"2(1 = w22\ exp(= aN)/expli@) (N> - u?)h

The above function includes the function given by Eq. (29)
when [;=0, and so it is more general than that of Eq. (29).
Note that the g function of Eq. (30) produces also the func-
tions that are not square integrable, so that they have to be
eliminated because the wave function must be square inte-
grable. Table V shows the results of the II, IR, and RR en-
ergies when we use the g function of Eq. (30). It is remark-
able that the energy convergence in Table V is considerably
faster than that in Table IV, which shows the importance of
the g function given by Eq. (30). The wave function of the
form of Eq. (31) was firstly obtained by the present free ICI
method. Actually, this type of functions has not been used in
the previous studies of H,".

Here, a remark on the numbers of the complement func-
tions between the inverse and regular methods given in Table
V. Generally speaking, the inverse and regular methods have
different dimensions because the inverse method involves
(¢i|H?| $;) integration. The functional form of ¢; in the in-
verse method are more limited because there are some func-
tions ¢, that (¢|H|;) is finite but (¢|H?|¢;) is infinite.
However, in the present case, the denominator of Eq. (31)
includes only integer indices and, therefore, the dimensions
of the inverse and regular methods are the same.

A reason of the accelerated convergence brought about
by this new type of functions lies in the balance condition
between the large and small components, which is a neces-
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sary condition for the exact solution of the Dirac equation.
The g function of Eq. (30) is desirable for satisfying this
balancing condition between the large and small compo-
nents. From the large ¢/, and small ¢/ components of ,, the
ICI generates the functions cg(o-p)¢/, into the small com-
ponent of #,,; and the functions cg(o-p)y;, into the large
component of ,,,. The factor unity in Eq. (30) assures that
Y, contains c(a-p)tﬂn in its small component and
c(o-p)¢), in the large component. They are the kinetic-
balancing functions which are of zeroth order of the true
balancing. However, with the g function of Eq. (20) that does
not contain unity; the ICI cannot generate the zeroth order
kinetic-balancing functions in the next order. This is the main
reason of the very slow convergence in Table IV. Thus, it is
quite significant for the relativistic calculations to contain the
factor unity into the g function. The g function of Eq. (30)
includes not only unity but also the first order function (1/V)
and, therefore, the higher-order exact balancing functions are
automatically generated into the wave function of the next
order. This is the ICI balance and is very close to the true
balancing (atomic balance):37 a difference is only that it is
between neighboring order, not within the same order, which
is really necessary. This is one of the most beneficial points
of the present free ICI method for solving the relativistic DE.

In Table V, all the energies (IT, IR, and RR) show good
convergence. The II method is safer than the others since the
upper bound nature of the energy is guaranteed. The II en-
ergy, however, seems to be less rapidly convergent than the
IR and RR energies. The IR and RR energies at n=12
and M=2774 are -1.10264158103350 a.u. and
—1.102 641 581 033 598 1 a.u., respectively. In comparison
with the best energy of —1.102 641 581 033 8 a.u. in the lit-
erature obtained with the finite element method, these ener-
gies show very good agreement with each other except for
the final digit of 107! (note we used the same c
=137.035989 5 for all). The converged value of the RR en-
ergy showed the same value to the digit of 1074,
—1.102 641 581 033 59 a.u. from n=9 to n=12, which indi-
cates that the correct energy of the relativistic H," with ¢
=137.035989 5 is —1.102 641 581 033 60 a.u. and the en-
ergy from the finite element method might be slightly over-
shooting at the 107" digit.

We must note that the IR and RR energies overshoot the
true energy (as shown by bold italic) at the earlier stage of
free ICI because the balancing between the neighboring or-
der is particularly insufficient in the earlier stages. The over-
shooting is seen for the IR energies of n=0 and 1 and for the
RR energies of n=0 to 5. As the order n increases, almost
variational results are achieved. The IR energy is slightly
more stable and safer than the RR energy because the wave
function was determined in the constrained variational space
by the inverse method. In the RR case, its energy steadily
converges to the exact one as the order increases, since the
exact balancing is almost attained by the ICI balance at
higher orders.

Further, we must note in the table that the convergence
becomes slow in the higher-order steps of the calculations.
We think that the reason lies in the limited description of the
mild singularity with the present g and initial functions. The

J. Chem. Phys. 128, 124103 (2008)

exact solution of the DE should have a mild (noninteger
close to zero) singularity at the position of the nucleus. Our
wave function of Eq. (31) has the denominator (\*—u?)"i
(/;=0: integer), which causes a singular behavior of the
wave function at the position of the nucleus. However, since
[; is integer, it may be difficult to describe effectively the
noninteger mild singularity. Previously, we introduced “mild
singular” g function such as g=r""1% in the calculations of
the relativistic hydrogen atom, obtaining good convergence.(’
However, a straightforward application of this idea to the
present H,* molecule would cause difficult integrations. So,
we postpone such calculations in the future.

Further, we applied the present method to the excited
state of o, symmetry. We used the g function given by Eq.
(30) and, in order to represent the ungerade symmetry, the
initial function is

Hexp(= ah)

2 V201 12 —w
v, = A" =1) .(1 u)V*uexp(= al) ‘ (32)
ipexp(— a\)

i()\2 _ ])1/2(] _ MZ)I/ZM exp(— a)\)

As in the nonrelativistic calculations, just switching the sym-
metry of the initial function is sufficient to satisfy the sym-
metry of the wave function. The convergence behaviors of
the II and IR energies are shown in Table VI. As in the
gerade symmetry case, quite accurate relativistic energy of
the 10, state was calculated. Again, the II energy converges
more slowly than the IR energy, though a overshooting of the
energy was seen in the IR energy of the initial function. The
excited state having the same symmetry as the ground state
was calculated at the same time and the result will be shown
below.

As stated above, the calculations of the energy lower
bounds, in addition to the upper bounds, are important. For
using the Temple’s method, we also have to calculate the
energy upper bound for the first excited state with the o,
symmetry. For this purpose, it is necessary to include in i,
the functions appropriate to the ground and first excited
states. Then, the 20'8 state is calculated at the same time as
the ground lo, state as the second lowest state. For this
reason, we introduced the double-exponent initial function
given by

exp(— a\) + exp(— an\)
v - (N = 1)"2(1 = ) "*{exp(— a)\) + exp(— an\)}
o i{exp(— ay\) +exp(— a,\)} ’
i = 1)"2(1 = u?)"exp(= a;\) +exp(— N}

(33)

where a; and «, correspond to the exponents of the ground
and excited states, respectively. Here, we simply assumed «,
to be one-half of a from the analogy to the hydrogen atom
where an orbital exponent is proportional to the reciprocal of
its principal quantum number.

Table VII shows the result of the lower bound calcula-
tion at each order. Clearly, the lower bound converged to the
exact energy from below as contrasted with the usual varia-
tional energy (upper bound) converging from above. As the
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TABLE VI. Relativistic energy for the ungerade excited state (1o,) of H,* with the g function given by Eq. (31)
(R=2.0 a.u., @=2.0: The numbers of the spinor components are shown in parentheses and the energy over-

shooting are noted by bold italic).

Order Dimension 11 energy (a.u.) IR energy (a.u.)
0 4 (1,1,1,1) 0.985 169938972 8 —1.472 694 131 8426
1 30 (10,7,7,6) —0.657 454 163925 1 —0.665 299 061 590 3
2 112 (29,26,33,24) —-0.667 3614750319 —0.667 3806927312
3 222 (58,55,60,49) —0.667 546 275 5479 —0.667 546 629970 5
4 369 (92,89,102,86) —0.667 552540111 1 —-0.667 552 559478 0
5 555 (145,138,146,126) —0.667 5527655176 —0.667 552766 253 4
6 778 (193,189,211,185) —-0.667 5527717710 —-0.667 552771 800 0
7 1038 (268,261,269,240) —-0.667 552771976 6 —-0.667 552771 988 9
8 1336 (332,326,357,321) —0.667 5527719857 —0.667 552771 995 0
9 1672 (428,421,431,392) —0.667 552771987 6 —0.667 552771995 5

Finite element method®
Direct perturbation theoryh
Finite Difference method*
Minimax theoryd

—0.667 552771 996
—-0.667 552771 493
—-0.667 552764 0
—0.669 175

“Reference 16.
"Reference 12.
“Reference 36.
dReference 15.

order increases, the width between the lower and upper
bounds becomes narrower and narrower. Considering the
fact that the lower bound corresponds to the variance of the
energy, the present results indicate that a quite accurate wave
function is obtained by the free ICI procedure. From the
result of Table VII, we can show the absolute error of the
calculated energy by the difference between the upper and
lower bounds. For the order 8 result in Table VII, this is
1.97 X 1077 a.u. which is in cm™ unit, 4.3 X 1072 cm™!: this
may be compared to the uncertainty of the recent experimen-
tal result, 2 X 1072 em~L® Actually, from the theoretical rea-
son, the true value should be much closer to the calculated
upper bound energy.

The energy of the 20, state, an excited state belonging to
the same symmetry as the ground state, is shown in Table
VIIL It corresponds to E,, of Eq. (19). It was calculated as
the second lowest energy of the same eigenvalue problem,

together with the energy of the 1o, state. The present result
seems to be better than the DPT result and would be the best
one so far obtained.

IV. CONCLUSION

We have already shown in the previous papers3’_6 that the
free ICI method provides a general method of solving not
only the nonrelativistic SE but also the relativistic Dirac and
Dirac—Coulomb equations in analytical expansion forms. In
this paper, we have shown that the free ICI method combined
with the variational principle gives very accurate analytic
wave functions of H," efficiently in both nonrelativistic and
relativistic cases. For the nonrelativistic case, we compared
two analytical expansions conversing to the exact wave func-
tion: the so-called exact wave function and the present free

TABLE VII. Calculated energy upper and lower bounds (a.u.) for the ground state (10,) of H," with the g
function given by Eq. (31) and the ¢, given by Eq. (36) (R=2.0 a.u.,, @=2.0: The numbers of the spinor
components are shown in parentheses and the energy overshooting are noted by bold italic).

Upper bounds
Order Dimension II energy IR energy Lower bounds

0 8(2,2,2,2) —0.943 1648434369 —-1.172887 1833155 —-4924.5198453773

1 40 (16,8.8,8) -1.1025907422496 -1.102 624 375451 3 -1.953 8232743650
2 186 (52,38,50,46) -1.102 6415784587 —1.102 6415789757 —-1.102 654 667 3817
3 392 (112,90,98,92) -1.102 6415809895 —1.102 641 581 028 1 —1.102 642 557 368 8
4 672 (180,152,176,162)  -1.1026415810067 -1.102 641581031 1 -1.102 642 197 6327
5 1024 (282,244,252,246) -1.1026415810152 -1.102 6415810323 —-1.102 642 014 003 6
6 1448 (382,334,372,360) —1.1026415810201 —1.102 6415810327 —-1.102 641 881 501 1
7 1950 (524,468,484,474) -1.102 6415810234 -1.102 641581033 1 —1.102 641 8271952

8 2524 (660,594,642,628)
Finite element method®

—-1.102 641 581 025 5

-1.102 641 581 0332

—1.102641 581 033 8

—-1.102 641 777 580 0

“Reference 11.
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TABLE VIII. Relativistic energy for the gerade excited state (20,,) of H," calculated together with the energies
shown in Table VII (R=2.0 a.u., @=2.0: The numbers of the spinor components are shown in parentheses and

the energy overshooting are noted by bold italic).

Order Dimension 11 energy (a.u.) IR energy (a.u.)
0 8(2,2,2,2) -0.296 724 115139 101 —0.555710 865 686 313
1 40 (16,8,8,8) —0.360 663 614 737 441 —0.360 880 554 712 831
2 186 (52,38,50,46) —-0.360 871 070 331 333 —0.360 871 070 582 946
3 392 (112,90,98,92) —-0.360 871 070 572 738 —-0.360 871 070 577 867
4 672 (180,152,176,162) —-0.360 871 070 574 860 —-0.360 871 070 578 133
5 1024 (282,244,252,246) -0.360 871 070 575 986 —-0.360 871 070 578 286
6 1448 (382,334,372,360) —-0.360 871 070 576 652 —-0.360 871 070 578 374
7 1950 (524,468,484,474) —-0.360 871 070 577 086 —-0.360 871 070 578 394
8 2524 (660,594,642,628) —-0.360 871 070 577 369 —-0.360 871 070 578 415
Direct perturbation method® —-0.360 871 053 244
Exact (nonrelativistic)® —0.360 864 875338 3

“Reference 12.
PReference 31.

ICI wave function. It was shown that the free ICI method
was even more efficient than solving the exact wave function
of H,".

For the relativistic case, this study represents the first
application of the free ICI method to molecule. An appropri-
ate choice of the g function was shown important for de-
scribing the correct ICI balance between the large and small
components of the neighboring ICI wave functions. By using
the inverse Hamiltonian method, we could avoid the varia-
tional collapse problem and the calculated II energy was an
upper bound of the ground state energy. For the ICI balance,
even the variational calculations with the regular Hamil-
tonian were stable giving rapidly converging result. We com-
pared the converging behaviors of the II, IR, and RR ener-
gies. The II energy was rather slow in convergence, though it
always satisfied upper bound nature. The present relativistic
free ICI calculations showed reasonably fast convergences
for both the ground and excited states.

We have further calculated the lower bounds of the rela-
tivistic energy. The knowledge of both the upper and lower
bounds of the relativistic energy showed that the present
relativistic wave function and energy are very accurate with
the energy error being less than 4.3X 1072 cm™!. Actually,
the true value should be much closer to the calculated upper
bound energy. Generally speaking, the lower bound calcula-
tions will become more and more important in future for
both the nonrelativistic and relativistic calculations, since we
cannot assure the accuracy of the calculated results if the
system includes more than five electrons, since there are no
highly accurate calculations for the solutions of the SE equa-
tion for such systems. For the relativistic case, the calcula-
tions of both upper and lower bounds give us further a clear
criterion on the occurrence of the variational collapse prob-
lem.

Thus, we have shown that the free ICI methodology can
give quite accurate solutions for both the Schrodinger equa-
tion and the Dirac equation of H," molecule. In principle,
this method can be applicable to any systems if the Hamil-
tonian is well defined in an analytical form. When analytical
integrations over the free ICI complement functions are pos-
sible, the wave functions and energies are calculated by the

variational method, and if such integrations are impossible,
they are calculated by the local Schrodinger equation method
developed in our laboratory,39 both in high accuracy.
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APPENDIX: NECESSARY INTEGRALS AND
OPERATORS FOR THE HAMILTONIAN AND OVERLAP
MATRIX ELEMENTS

In this appendix, we explain some necessary operations
and integrals appearing in the nonrelativistic and relativistic
cases. Commonly, m stands for integers and n for zero and
positive integers.

1. Nonrelativistic case

For the ground state, the overlap and Hamiltonian inte-
grals of H," molecule are easily done when the wave func-
tion is given by Eq. (22), i.e.,

v=> Nl exp(— al). (A1)

The index n; for w is related to the symmetry of the state:
even index for gerade states, odd for ungerade states. The
Jacobian and the integration area is d\dudp=R3*(\>—u?)/8
and N:1~o%, u:—1~1, ¢:0~2, respectively. The result-
ing integrals are written generally as

2 % 1
I= J deo f d\ f duN" " exp(— a\). (A2)
0 1 -1

The integration for u is readily done. For positive integer m,
the integration for N\ is done with the incomplete gamma
function as
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f N exp(—aN)dh=a™ 'T(m+1,0) (m=0,1,2...) (A3)
1

and for negative m, we use the formula for m=|m|

m-1 ke D! (= a)™ 1 (= g)m!
fw exp()\—ma)\) = exp(— a)g ( 1(31(_ ]C)? - ((n f)l)! exp(a)Ei[—a] m=2
1

- Ei[- a], m=1.

(Ad)

2. Relativistic case

In this paper, both the nonrelativistic case and the relativistic case are written by the elliptic coordinate with \, u for
clarity. However, in the relativistic case, it is convenient to use the transformed elliptic coordinate defined by

N =cosh(s), u=cos(z). (A5)
We performed actual calculations in this transformed coordinate. The momentum operators are written as

v ,_ gcosh(s)sin(t)cos(go) J ]2 sinh(s)cos(#)sin(¢) J ]2 sin(¢) K }
Pe=mt x__l_ R cosh(s)>=cos()? | ds | R cosh(s)2=cos(r)* | g | Rsinh(s)sin(z) | d¢ |’

iV o——i [ 2 cosh(s)sin(#)sin(¢) J ]2 sinh(s)cos(#)sin(¢) J ]2 cos(¢) i]
Py==i¥y==t || R cosh(s)®=cos()? | ds | R cosh(s)*—cos(t)? | ot & sinh(s)sin(¢) | de |’
oo |2 sinh(s)cos(?) a9 2 cosh(s)sin(7) a
pe==iVe== lH R cosh(s)* — cos(t)z} Js { R cosh(s)? = cos(7)? } ﬂt} ’ (A6)

The Jacobian is dsdtd¢$=R> sinh(s)sin(¢)(cosh(s)>—cos(f)?)/8 and the integration area is s:0~o, t:—7~0, ¢:0~ 2. Then,
the integral has a general form given by

2 * 0 m i n "2 sin(t)"3 exp(—
I:f d@f dsf dtcosh(s) sinh(s)" cos(#)"2 sin(¢)"3 exp(— a cosh(s)) explilj. - 112)e]. (A7)
0 0 -

(cosh(s)? — cos(z)?)"

When n,=0, the above integral is the same as Eq. (A2). In n,=1 cases, the denominator causes a singularity at the nuclear
position, i.e., s=0, t=—7 or 0. However, some of these integrations are not singular when sinh(s) and sin(¢) exist in the
numerator since they also go to zero at singular points. When ny=1, the integrals of Eq. (A7) are calculated by using the
relation

ki2—1

0 . k —k+2r+1

. cosh(s)* - cos(7)? o k=-2r-1 cosh(s) + 1

and, consequently, the one-dimensional (s coordinate) integrals reduce to

f”’ ds sinh(s)" cosh(s)™ In(cosh(s) = 1)exp(— a cosh(s)). (A9)
0

Most of these integrals were calculated analytically and the others numerically by using the mathematical program MAPLE. "
In the case of ny=2, we used the following formula for the integration over ¢

f“ 0 cos(r)'sin() 1 B<j+l i+l> F<i+l k.iLj_H 1 ) (A10)
— (cosh(s)? = cos(?)*  cosh(s)* 272 )N 27 2 “cosh(s) /)’

where F is the hypergeometric function. After the conversion of F, the resulting s integrants have the form similar to Eq. (A9).
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