# Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method 

Hiroyuki Nakashima and Hiroshi Nakatsuji ${ }^{\text {a) }}$<br>Quantum Chemistry Research Institute, Kyodai Katsura Venture Plaza 106, Goryo Oohara 1-36,<br>Nishikyo-ku, Kyoto 615-8245, Japan and Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

(Received 31 July 2007; accepted 2 October 2007; published online 11 December 2007)


#### Abstract

The Schrödinger equation was solved very accurately for helium atom and its isoelectronic ions ( $Z=1-10$ ) with the free iterative complement interaction (ICI) method followed by the variational principle. We obtained highly accurate wave functions and energies of helium atom and its isoelectronic ions. For helium, the calculated energy was -2.903 72437703411959831115924519440444669690537 a.u., correct over 40 digit  These results prove numerically that with the free ICI method, we can calculate the solutions of the Schrödinger equation as accurately as one desires. We examined several types of scaling function $g$ and initial function $\psi_{0}$ of the free ICI method. The performance was good when logarithm functions were used in the initial function because the logarithm function is physically essential for three-particle collision area. The best performance was obtained when we introduce a new logarithm function containing not only $r_{1}$ and $r_{2}$ but also $r_{12}$ in the same logarithm function. © 2007 American Institute of Physics. [DOI: 10.1063/1.2801981]


## I. INTRODUCTION

As Dirac noted, the Schrödinger equation (SE) describes accurately the electronic structures of atomic and molecular systems. ${ }^{1}$ Hydrogen atom was a brilliant example of the accurate nature of the SE. Next was helium atom and therefore immediately after the SE was born, Hylleraas ${ }^{2}$ applied it to helium atom and published a very important result, which was very accurate, though it was still far from exact. Since then, many people tried to accurately solve the SE of helium atom, ${ }^{2-15}$ since solving the SE of helium atom might give us a simple but important insight in formulating the exact solutions of the SE for more general systems. This stream of studies may be called an explicitly correlated wave function theory.

Hylleraas considered intuitively that the wave function of helium atom should be expressed to a good approximation as

$$
\begin{equation*}
\sum c_{(l, m, n)} s^{l} t^{m} u^{n} \exp (-\alpha s) \tag{1}
\end{equation*}
$$

where $\{s, t, u\}$ is a coordinate system defined by

$$
\begin{align*}
& s=r_{1}+r_{2}, \\
& t=r_{1}-r_{2}, \tag{2}
\end{align*}
$$

$$
u=r_{12}
$$

which is valid for the $S$ state of helium atom. $\{l, m, n\}$ is a set of integers and $c_{(l, m, n)}$ is a coefficient to be determined by variational principle. This expansion of the wave function

[^0]was called Hylleraas expansion. He introduced interelectron distance $u\left(=r_{12}\right)$ explicitly in the wave function, which was an origin of his remarkably good result in contrast to the results of the orbital-based theory. After Hylleraas's pioneering work, the analytical wave functions including $r_{12}$ explicitly in many different ways have been studied. ${ }^{3-17}$ Table I is a brief summary of the history of accurate calculations of the ground state of helium atom.

In the original Hylleraas expansion, the integer set was limited to be all non-negative. Kinoshita ${ }^{6}$ found that, when $\{l, n\}$ in Eq. (1) were permitted to be negative, significantly improved results could be obtained. Thakkar and $\mathrm{Koga}^{8}$ extended even to half-integers and obtained quite excellent results.

Bartlett, Jr., ${ }^{3}$ Gronwall, ${ }^{4}$ Fock, ${ }^{5}$ and others ${ }^{7,18}$ clarified some insufficiency in the Hylleraas function as compared to the exact wave function. They argued that the Hylleraas function was adequate for the description of two-particle cusp conditions ${ }^{16}$ but insufficient for the three-particle coalescence region. They suggested that including logarithm singularity in the wave function would be important for this region. Frankowski and Pekeris ${ }^{7}$ performed numerical calculations using such logarithm function and showed a remarkable performance. Their wave function is expressed as

$$
\begin{equation*}
\sum c_{(l, m, n, i, j)} l^{l} t^{m} u^{n}\left(s^{2}+t^{2}\right)^{i / 2}(\ln s)^{j} \exp (-\alpha s) \tag{3}
\end{equation*}
$$

where $l$ runs all integers and $\{m, n\},\{i, j\}$ are non-negative integers. The original logarithm form suggested by Bartlett, Gronwall, and Fock contained the $\left(\ln \left[\left(s^{2}+t^{2}\right)^{1 / 2}\right]\right)^{j}$ term, ${ }^{3-5}$ but they modified it to simpler $\ln s$ form for numerically stable calculations. Then, the ground-state energy of the he-

TABLE I. History of the accurate calculations of the ground state of helium atom.

| Year | Ref. | Type | Energy (a.u.) |
| :---: | :---: | :---: | :---: |
| 1929 | Hylleraas (Ref. 2) | Hylleraas (three terms) | -2.902 43 |
| 1957 | Kinoshita (Ref. 6) | Kinoshita type | -2.903 7225 |
| 1966 | Frankowski and Pekeris (Ref. 7) | Logarithm | -2.903 7243770326 |
| 1994 | Thakkar and Koga (Ref. 8) | Half-integer | -2.903 7243770341144 |
| 1998 | Goldman (Ref. 9) | Polynomial | -2.903 724377034119594 |
| 1999 | Drake (Ref. 10) | Double exponent | -2.903 724377034119596 |
| 2002 | Sims and Hagstrom (Ref. 12) | Hylleraas-CI | -2.903 7243770341195982999 |
| 2002 | Drake et al. (Ref. 11) | Triple exponent | -2.903 724377034119598305 |
| 2002 | Korobov (Ref. 13) | Slater geminal | -2.903 7243770341195983111587 |
| 2006 | Schwartz (Ref. 15) | Logarithm $(\ln (s))$ | $\begin{aligned} & -2.903724377034119598311159245 \\ & 1944044400495 \end{aligned}$ |
| 2007 | This work | ICI (new logarithm) | $\begin{aligned} & -2.903724377034119598311159245 \\ & 19440444669690537 \end{aligned}$ |

lium atom was greatly improved, reflecting the improvement in the three-particle coalescence region.

Recently, since computer technology has been much advanced, extensively high-level calculations have become possible. The calculations using a large number of orthogonal polynomial basis functions were reported by Goldman. ${ }^{9}$ Drake et al. ${ }^{10,11}$ performed calculations with double and triple exponent basis functions. Sims and Hagstrom ${ }^{12}$ reported Hylleraas-configuration interaction (CI) results with a large number of basis functions. Korobov ${ }^{13}$ performed extensive calculations using a very large number of Slater-type geminal functions and optimizing their nonlinear exponent parameters, the energy accurate to 25 digits was obtained. In particular, recently, Schwartz ${ }^{15}$ systematically performed computational experiments using several sets of basis functions including logarithm functions and obtained the energy correct up to 36 figures! His wave function is slightly different from that of Frankowski and Pekeris and expressed as

$$
\begin{equation*}
\sum c_{(l, m, n, j)} s^{l}(t / s)^{m}(u / s)^{n}(\ln s)^{j} \exp (-\alpha s) \tag{4}
\end{equation*}
$$

where $j$ is 0 or 1 and $\{l, m, n\}$ run non-negative integers. This form was easier to calculate than that including the $\left(s^{2}+t^{2}\right)$ term introduced by Frankowski and Pekeris. The negativeinteger powers of $s$ are also different from those of Kinoshita, which was $(t / u)^{m}$ instead of $(t / s)^{m}$. His idea was different from Kinoshita's original one and led to an easier calculation. Schwartz had been able to obtain a surprisingly accurate result, which was certainly a milestone in the history of solving the SE of atoms and molecules. Actually, his study has become a very good reference in our present study.

Making a bird's-eye view of the history of solving the SE of helium atom, we noticed that a critical advancement was made when basic physical insight was realized in the calculations. Though these intuitions were incredibly valuable, it was difficult to generalize them for solving the SE of general atoms and molecules. The SE was believed not to be soluble for more than 80 years since its birth, and there was no general theory leading to the exact solution of the SE.

Recently, we have formulated a general theory of solving the SE of atoms and molecules. ${ }^{19-25}$ We started from analyzing the structure of the exact wave function and proposed the iterative complement (or configuration) interaction (ICI)
method that is guaranteed to converge to the exact wave function. ${ }^{19}$ The singularity difficulty that is the problem caused by the divergence of the integrals of higher powers of Hamiltonian was solved by introducing the scaled Schrödinger equation (SSE). ${ }^{20}$ The free ICI method ${ }^{20}$ was also introduced at the same time. It is a flexible method and is more rapidly converging than the original ICI method. We will briefly explain the free ICI method in the next section. We note that the ICI methodology is useful not only for solving the nonrelativistic SE (Refs. 21-23 and 25) but also for solving the relativistic Dirac-Coulomb equation ${ }^{24}$ of atoms and molecules.

The purpose of this article is to give benchmark calculations of helium and its isoelectronic atoms to see how accurately the free ICI method works for solving the SE. Because of the existence of the accumulated history of the accurate calculations of helium atom as overviewed above, we can formulate our free ICI calculations effectively and examine the accuracy of our results in great detail.

Our basic Hamiltonian is a fixed-nucleus BornOppenheimer one, so that the corresponding energy correct up to 36 decimal figures may be unnecessary because other physical effects such as nuclear motion, relativistic effect, fine and hyperfine structural effects, etc., are more important than these decimal figures of the energy. The test we want to pursue in this paper is how accurately and effectively the free ICI method solves the SE whose Hamiltonian is fixed, in this case, to the Born-Oppenheimer nonrelativistic one. When we modify our basic Hamiltonian to include other effects, the free ICI method will give the solution corresponding to that Hamiltonian. In the free ICI methodology, the Hamiltonian paves his own way to generate his own wave function. Of course, we may use the present wave function as an accurate zeroth order wave function when we deal with these effects by perturbation method.

## II. FORMULATION

We want to solve the SE for the ground state of helium and its isoelectronic atoms by using the free ICI method. The nucleus is treated as fixed at the origin of the coordinate and we consider the motions of two electrons attracted by the

Coulomb forces from the nucleus. The ground state of the helium atom has a zero spatial angular momentum, i.e., $S$ state. Therefore, only interparticle coordinates $\left\{r_{1}, r_{2}, r_{12}\right\}$ are enough to describe the wave function for the ground state. The Hamiltonian for the states of $S$ symmetry in the $\left\{r_{1}, r_{2}, r_{12}\right\}$ coordinates is written as

$$
\begin{align*}
H= & -\frac{1}{2} \sum_{i=1}^{2}\left(\frac{\partial^{2}}{\partial r_{i}^{2}}+\frac{2}{r_{i}} \frac{\partial}{\partial r_{i}}\right)-\left(\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{2}{r_{12}} \frac{\partial}{\partial r_{12}}\right) \\
& -\frac{r_{1}^{2}+r_{12}^{2}-r_{2}^{2}}{2 r_{1} r_{12}} \frac{\partial^{2}}{\partial r_{1} \partial r_{12}}-\frac{r_{2}^{2}+r_{12}^{2}-r_{1}^{2}}{2 r_{2} r_{12}} \frac{\partial^{2}}{\partial r_{2} \partial r_{12}} \\
& -\sum_{i=1}^{2} \frac{Z}{r_{i}}+\frac{1}{r_{12}} \tag{5}
\end{align*}
$$

The volume element of this coordinate is $8 \pi^{2} r_{1} r_{2} r_{12}$. We also adopted the $\{s, t, u\}$ coordinate system defined by Eq. (2) originally used by Hylleraas, whose volume element is $8 \pi^{2}\left(s^{2}-t^{2}\right) u$. The Hamiltonian in this coordinate is written as

$$
\begin{align*}
H= & -\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial u^{2}}\right)-2 \frac{s\left(u^{2}-t^{2}\right)}{u\left(s^{2}-t^{2}\right)} \frac{\partial^{2}}{\partial s \partial u} \\
& -2 \frac{t\left(s^{2}-u^{2}\right)}{u\left(s^{2}-t^{2}\right)} \frac{\partial^{2}}{\partial u \partial t}-\frac{4 s}{s^{2}-t^{2}} \frac{\partial}{\partial s}-\frac{2}{u} \frac{\partial}{\partial u}+\frac{4 t}{s^{2}-t^{2}} \frac{\partial}{\partial t} \\
& -\frac{4 s Z}{s^{2}-t^{2}}+\frac{1}{u} . \tag{6}
\end{align*}
$$

In Eqs. (5) and (6), the Coulomb potential is

$$
\begin{equation*}
V=V_{N e}+V_{e e}=-\sum_{i=1}^{2} \frac{Z}{r_{i}}+\frac{1}{r_{12}}=-\frac{4 s Z}{s^{2}-t^{2}}+\frac{1}{u} \tag{7}
\end{equation*}
$$

where $V_{N e}$ and $V_{e e}$ represent the nuclear attraction potential and electron repulsion term, respectively, and $Z$ is the nuclear charge. The other terms in Eqs. (5) and (6) are from the kinetic operator.

Next, we briefly explain the ICI methodology. ${ }^{19-21}$ As seen from Eq. (7), the Hamiltonian of atoms and molecules includes Coulomb singularities at two-particle coalescence. For this singularity, the integrals of higher powers of Hamiltonian diverge. ${ }^{20}$ The ICI theory based on the normal SE includes such higher powers of the Hamiltonian, and therefore has a difficulty. To avoid such difficulty, we introduced the SSE given by ${ }^{20}$

$$
\begin{equation*}
g(H-E) \psi=0 \tag{8}
\end{equation*}
$$

where $g$ is a scaling function that is totally symmetric and positive everywhere except at the singular points $r_{0}$, but even there, it should satisfy

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}} g V=a \tag{9}
\end{equation*}
$$

with $a$ being a nonzero constant to not eliminate the information of the Hamiltonian at the singular points. The ICI wave function based on the SSE is defined by

$$
\begin{equation*}
\psi_{n+1}=\left[1+C_{n} g\left(H-E_{n}\right)\right] \psi_{n}, \tag{10}
\end{equation*}
$$

which is guaranteed to converge to the exact solution as
iteration proceeds without encountering the singularity problem for the existence of the $g$ function. The above function includes only one variational parameter $C_{n}$ for each iteration cycle, so we call it the simplest ICI (SICI) wave function.

We introduce here the free ICI method. ${ }^{20}$ We collect all linearly independent functions $\left\{\phi_{i}^{(n)}\right\}, i=1,2, \ldots, M_{n}$ from the right-hand side of Eq. (10) and give an independent coefficient to each as

$$
\begin{equation*}
\psi_{n}=\sum_{i=1}^{M_{n}} c_{i}^{(n)} \phi_{i}^{(n)} \tag{11}
\end{equation*}
$$

In the above formulation, all the functions $\left\{\phi_{i}^{(n)}\right\}$ were generated by the SICI operators of Eq. (10) and assigned free variational coefficients, so that the free ICI converges faster that the original SICI. In the present calculations, the coefficients $\left\{c_{i}^{(n)}\right\}$ are determined with the variational principle. In the free ICI method, the calculations at $n+1$ do not refer to the coefficients $\left\{c_{i}^{(n)}\right\}$ at $n$, so that we may call $n$ as order instead of iteration number.

The exact electronic wave function must satisfy the antisymmetric condition and spin and spatial symmetries. When we start from some initial function $\psi_{0}$ that satisfies these symmetry conditions, the ICI and free ICI methods retain their symmetry throughout the calculations since the Hamiltonian and $g$ function are totally symmetric. For the present two-electron atoms, the spatial and spin parts are completely separable. Since the ground state of helium atom is singlet, the spatial part must be symmetric to the permutation of two electrons.

## III. DETAILS OF CALCULATIONS

In the free ICI method, we have two freedoms: one is the $g$ function and the other is the initial function $\psi_{0}$. We have examined several sets of $g$ and $\psi_{0}$ to investigate the nature of the functions the free ICI method generates and the convergent behavior to the exact solution.

First, let us discuss on the choice of the $g$ function. Since the role of the $g$ function is to eliminate the singularities due to the Coulomb potential, it should have an inverse order of the Coulomb potential at the singular points. So, the first choice may be

$$
\begin{equation*}
g=\frac{1}{V_{e e}-V_{N e}} \tag{12}
\end{equation*}
$$

where the sign of $V_{N e}$ was inverted to make the $g$ function positive everywhere except at the singular points. However, this $g$ function generates complicated functions and the integrations may become difficult.

In the next choice, we first separate $V$ into $V_{N e}$ and $V_{e e}$, take the inverse of each, and then take a product or a sum as

$$
\begin{equation*}
g_{P}^{1}=\frac{1}{V_{N e}} \frac{1}{V_{e e}} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
g_{S}^{1}=-\frac{1}{V_{N e}}+\frac{1}{V_{e e}} \tag{14}
\end{equation*}
$$

The sum formula $g_{S}^{1}$ generates more flexible complement functions than the product formula $g_{P}^{1}$ since the product formula $g_{P}^{1}$ does not strictly satisfy the condition of Eq. (9) for the individual singular point ( $a$ can become zero). We have further examined the following $g$ function:

$$
\begin{equation*}
g_{S}^{1+}=1-\frac{1}{V_{N e}}+\frac{1}{V_{e e}} \tag{15}
\end{equation*}
$$

which includes a nonscaling factor of unity. Since generally the Hamiltonian includes singular and nonsingular parts, it is recommended to take the form of Eq. (15) rather than that of Eq. (14). When we include unity in the $g$ function, the free ICI generates not only regular but also singular functions as bases for the wave function, but the singular one must be eliminated since the wave function must be integrable finite. When we did so, we found that both Eqs. (14) and (15) give almost the same results in the present calculations and, therefore, we did not use Eq. (15) in the present nonrelativistic calculations. However, we note that the unity in the $g$ function is important for solving the relativistic Dirac-Coulomb equation because this term works to keep the balancing condition (ICI balance) between the large and small components. ${ }^{24}$

Another simple choice in the line of the argument above would be

$$
\begin{align*}
& g_{P}^{2}=r_{1} r_{2} r_{12}  \tag{16}\\
& g_{S}^{2}=r_{1}+r_{2}+r_{12}  \tag{17}\\
& g_{S}^{2+}=1+r_{1}+r_{2}+r_{12} \tag{18}
\end{align*}
$$

Again, the product form $g_{P}^{2}$ is not recommended because it does not strictly satisfy the requirement given by Eq. (9). The unity in Eq. (18) was also not important and so we did not use Eq. (18). When these $g$ functions are used, the generated complement functions generally have a simpler form than those obtained using Eqs. (14) and (15), so that this choice would be suitable for many-electron systems. However, in the $\{s, t, u\}$ coordinate system of the helium atom, the generated functions using Eqs. (13)-(15) are also simple and do not cause any difficulty at all. In the next section, we will see the different performance of the $g$ functions given above.

Next is the choice of the initial function $\psi_{0}$, which is very important since the functional form of the ICI complement functions is mostly determined by that of $\psi_{0}$. We can generally expect that the $\psi_{0}$ chosen cleverly on the physical grounds shows good performance in convergence. ${ }^{25}$ For helium, the simplest choice of $\psi_{0}$ would be a product of the atomic orbitals of two electrons,

$$
\begin{equation*}
\psi_{0}^{\text {nor }}=\exp \left[-\alpha\left(r_{1}+r_{2}\right)\right]=\exp (-\alpha s) \tag{19}
\end{equation*}
$$

We call this initial function "normal type." The orbital exponent $\alpha$ may be treated as a nonlinear variational parameter, though this is not strictly necessary. The variational groundstate energy for this initial function is well known to be
-2.847656245 a.u., and the optimized $\alpha$ is $27 / 16=1.6875$.
Let us consider some necessary conditions that the exact wave function must satisfy. A major concern would be nuclear-electron and electron-electron cusp conditions since the electronic structure near the nucleus sensitively affects the energy of the atom. Though these properties are already taken into account in Eq. (19) in a variational sense as the iteration proceeds, we may introduce a more flexible form. A choice would be half-integer functions of $s$ and $u$. When we do not include a half-integer at the beginning in $\psi_{0}$, such functions are never generated in the ICI formalism. If such types of functions are important, they are expressed in the free ICI formalism by the sum of the integer-type functions. For rapid convergence, it is clever to introduce such functions in the initial function. An inclusion of the half-integer functions, together with the integer ones, would obviously make the descriptions more flexible especially in the particle-coalescence region. Recently, Thakkar and Koga ${ }^{14}$ reported such calculations and even introduced the functions of real number powers of $s$ and $u$ coordinates, showing an excellent convergence. We examine here the following two "half-integer-type" initial functions:

$$
\begin{align*}
& \psi_{0}^{\text {half } 1}=\left(1+s^{1 / 2}\right) \exp (-\alpha s)  \tag{20}\\
& \psi_{0}^{\text {half } 2}=\left(1+s^{1 / 2}+u^{1 / 2}\right) \exp (-\alpha s) \tag{21}
\end{align*}
$$

As discussed by Bartlett, Gronwall, and Fock, ${ }^{3-5}$ the three-particle collision effects may become important for very high-precision calculations aimed in this study. This effect is brought about effectively with the logarithmic mild singularity. Among the several logarithm functions proposed. ${ }^{3-5,7,15}$ Frankowski and Pekeris ${ }^{7}$ introduced $\ln s$ as a numerically stable form. Schwartz ${ }^{15}$ also reported extensive numerical calculations using $\ln s$. So, we first use this logarithm function as

$$
\begin{equation*}
\psi_{0}^{\log 1}=(1+\ln s) \exp (-\alpha s) \tag{22}
\end{equation*}
$$

In the three-particle collision area, all of the interparticle distances $\left\{r_{1}, r_{2}, r_{12}\right\}$ become 0 . However, the above logarithm function does not explicitly contain the electronelectron distance $r_{12}=u$. Certainly, the Coulomb potential between electron and nucleus is attractive, while the electronelectron potential is repulsive, so that the coordinates, $\left\{r_{1}, r_{2}\right\}$ and $r_{12}$ may have different effects. The logarithm functions related to $\left\{r_{1}, r_{2}\right\}$ had been suggested by several authors ${ }^{3-5,7,15}$ but there had been no calculations with the logarithm functions explicitly including $r_{12}$. In the present paper, we examine for the first time the logarithm functions containing the $r_{12}$ coordinate. So, our second logarithm initial function includes $\ln u$ in addition to $\ln s$ as

$$
\begin{equation*}
\psi_{0}^{\log 2}=(1+\ln s+\ln u) \exp (-\alpha s) \tag{23}
\end{equation*}
$$

However, unfortunately, this function has a very weak point of unsatisfying the electron-electron cusp condition. The $\ln u$ term diverges as $u$ approaches 0 , though the other integrals remain finite because the logarithm singularity is milder than $1 / u$.

To improve this problem, we propose the following "new logarithm" function for the initial function:

$$
\begin{equation*}
\psi_{0}^{\text {new } \log }=[1+\ln (s+\beta u)] \exp (-\alpha s) \tag{24}
\end{equation*}
$$

where the parameter $\beta$ was introduced as another nonlinear parameter, reflecting the difference between the electron nuclear potential and the electron-electron potential. This function includes both $\left\{r_{1}, r_{2}\right\}$ and $r_{12}$ in the same logarithm. In the Hamiltonian, the Coulomb potentials of all interparticle coordinates $\left\{r_{1}, r_{2}, r_{12}\right\}$ are proportional to $1 / r$ in the same manner, so that these three distances should be treated in the same way in the logarithm functions, which suggests $\beta=1$. Further, when $\beta>-1$, this function never becomes singular at any configuration except for the three-particle collision point where $s=0$ and $u=0$. It never conflicts with the two-electron cusp condition. If necessary, we can make $r_{12}$ scaled to be suitable for the system by the parameter $\beta$, but $\beta \neq 0$ since it leads to $\psi_{0}^{\log 1}$ with $\beta=0$.

We performed calculations with some combinations of $g$ and $\psi_{0}$. There, the functions having negative integers on the $u$ coordinate were eliminated because they never satisfy the two-electron cusp condition. The analytical formulations for calculating the integrals over the complement functions are given in the Appendix, especially for the logarithm functions.

The calculations have been performed with our original program, which consists of three steps. In the first step, we generate the free ICI complement functions by using Eqs. (10) and (11) the second step creates the Hamiltonian and overlap matrices by doing analytical integrations over the complement functions, and the final step is the diagonalization. The first and second steps were formulated with the mathematical arithmetic software MAPLE. ${ }^{26}$ For the final step, we formulated our own original eigenvalue solver for arbitrary precision with the GNU multiple precision ${ }^{27}$ (GMP) arithmetic library. Since the calculations must be performed in very high accuracy, we used MAPLE and GMP with 120-decimal-figure accuracy for the calculations less than 10000 dimensions and with 160-decimal-figure accuracy for more than 10000 dimensions.

## IV. RESULTS

## A. Comparison of $g$ functions with normal-type initial function

First, we examined the convergence behavior using different types of $g$ functions combined with the simplest normal-type initial function given by Eq. (19). In the calculations with $g_{P}^{1}$ and $g_{S}^{1}$, the $\{s, t, u\}$ coordinate was used and the free ICI wave functions generated have the common form as given by

$$
\begin{equation*}
\psi=\sum_{i} c_{i} s^{l_{i} t^{m_{i}}} u^{n_{i}} \exp (-\alpha s) \tag{25}
\end{equation*}
$$

where $c_{i}$ is the variational parameter. For singlet state, $m_{i}$ must be even integers. The integer sets $\left\{l_{i}, m_{i}, n_{i}\right\}$ are different for $g_{P}^{1}$ and $g_{S}^{1}$. With $g_{S}^{1}$, the complement functions with
negative powers of $s$ are generated. $l_{i}$ runs all integers while $\left\{m_{i}, n_{i}\right\}$ run non-negative integers. On the other hand, with $g_{P}^{1}$, these negative powers were not generated. The importance of the negative powers of $s$ was first shown by Kinoshita, ${ }^{6}$ who reported that, by inclusion of negative powers of $s$ into the basis functions, the calculated energies were considerably improved. In the present ICI method, such functions are automatically generated if $g_{S}^{1}$ is used.

In the calculations with $g_{P}^{2}$ and $g_{S}^{2}$, the $\left\{r_{1}, r_{2}, r_{12}\right\}$ coordinates were used. The free ICI wave functions are written commonly to $g_{P}^{2}$ and $g_{S}^{2}$ as

$$
\begin{equation*}
\psi=\sum_{i} c_{i} r_{1}^{l_{i} r_{2}^{m_{i}} r_{12}^{n_{i}} \exp \left(-\alpha r_{1}\right) \exp \left(-\alpha r_{2}\right), ~, ~ . ~} \tag{26}
\end{equation*}
$$

where $\left\{l_{i}, m_{i}, n_{i}\right\}$ run non-negative integers. The index sets of $\left\{l_{i}, m_{i}, n_{i}\right\}$ are also different for $g_{P}^{2}$ and $g_{S}^{2}$.

Table II shows the calculated energies obtained with these four $g$ functions at different iterations or orders $n, M_{n}$ being the number of complement functions at $n$. The nonlinear parameter $\alpha$ was variationally optimized at each iteration and given in the table, where the value in parentheses is a guess optimal value, which was not strictly optimized. The calculations were stopped when $M_{n}$ exceeds 1000 . In all cases, the energy approaches the best value from above and the so-called chemical accuracy, i.e., millihartree accuracy, is achieved quite quickly already at the second iteration with $M_{n}=10-30$. With about $M_{n}=70$, the energies are correct to microhartees (six or seven decimal figures) except for $g_{P}^{2}$. We can obtain chemical and spectroscopic accuracies in energy at a few iteration or order with the free ICI method.

Between the product-type and sum-type $g$ functions, the latter gives slightly better convergent behavior. The complement functions with sum type contain all the complement functions with product type if $n$ is large enough. As stated in Sec. III, the sum type is theoretically better than the product type. Comparing the energies with $g_{S}^{1}$ and $g_{S}^{2}$ (both are sum type), the former showed slightly better convergence than the latter, but the difference is small. For the present system, the $\{s, t, u\}$ coordinate is convenient to treat both differentiations and integrations and the symmetry of electron permutation is contained from their definition. So, we hereafter use the $\{s, t, u\}$ coordinate.

## B. Comparison of the initial functions: Half-integer and logarithm types

Next we examine different initial functions using $g_{S}^{1}$ commonly in the $\{s, t, u\}$ coordinate. As shown above, the normal-type initial function $\psi_{0}^{\text {nor }}$ showed good performance for getting chemical and even spectroscopic accuracies for any $g$ function. The speed of convergence, however, became slow from beyond approximately ten-decimal-figure accuracy, indicating that the functions generated from $\psi_{0}^{\text {nor }}$ alone could not efficiently describe the three-particle coalescence region, though with much iteration, such mild singularities should also be described. To overcome such problem, we

TABLE II. Ground-state energy of helium atom calculated with the different scaling functions $g_{P}^{1}, g_{S}^{1}, g_{P}^{2}$, and $g_{S}^{2}$ given by Eqs. (13), (14), (16), and (17) combined with the normal-type initial function $\psi_{0}^{\text {nor }}$ given by Eq. (19).

| $n^{\text {a }}$ | $M_{n}{ }^{\text {b }}$ | Optimal $\alpha$ | Energy (a.u.) | $M_{n}{ }^{\text {b }}$ | Optimal $\alpha$ | Energy (a.u.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $g_{P}^{1}$ |  |  | $g_{P}^{2}$ |  |  |
| 0 | 1 | 1.688 | -2.847 65624500 | 1 | 1.688 | -2.847 65624500 |
| 1 | 6 | 1.673 | -2.901 57701247 | 4 | 1.846 | -2.894 78997144 |
| 2 | 26 | 1.880 | -2.903 70867501 | 19 | 2.096 | -2.903 33006932 |
| 3 | 74 | 2.033 | -2.903 72390061 | 49 | 2.189 | -2.903 66432516 |
| 4 | 159 | 2.200 | -2.903 72434707 | 105 | 2.233 | -2.903 70982510 |
| 5 | 291 | 2.331 | -2.903 72437274 | 185 | 2.258 | -2.903 71969576 |
| 6 | 481 | 2.450 | -2.903 72437636 | 304 | 2.279 | -2.903 72257276 |
| 7 | 738 | 2.680 | -2.903 72437683 | 457 | 2.294 | -2.903 72358157 |
| 8 | 1074 | 2.753 | -2.903 72437699 | 663 | 2.306 | -2.903 72399022 |
| 9 |  |  |  | 913 | 2.315 | -2.903 72417359 |
| 10 |  |  |  | 1229 | 2.321 | -2.903 72426326 |
|  | $g_{S}^{1}$ |  |  | $g_{S}^{2}$ |  |  |
| 0 | 1 | 1.688 | -2.847 65625000 | 1 | 1.687 | -2.847 65625000 |
| 1 | 4 | 1.689 | -2.901 33795694 | 3 | 1.813 | -2.89123235194 |
| 2 | 16 | 1.736 | -2.903 64298426 | 7 | 1.814 | -2.903 42585480 |
| 3 | 37 | 1.779 | -2.903 72026420 | 13 | 1.906 | -2.903 64047050 |
| 4 | 71 | 1.837 | -2.903 72401870 | 22 | 2.038 | -2.903 71394501 |
| 5 | 121 | 1.920 | -2.903 72432345 | 34 | 2.113 | -2.903 72096780 |
| 6 | 190 | 1.995 | -2.903 72436400 | 50 | 2.236 | -2.903 72370190 |
| 7 | 281 | 2.083 | -2.903 72437359 | 70 | 2.309 | -2.903 72410501 |
| 8 | 397 | 2.161 | -2.903 72437590 | 95 | 2.427 | -2.903 72430538 |
| 9 | 541 | 2.251 | -2.903 72437666 | 125 | 2.503 | -2.903 72434387 |
| 10 | 716 | 2.327 | -2.903 72437688 | 161 | 2.615 | -2.903 72436643 |
| 11 | 925 | 2.416 | -2.903 72437697 | 203 | 2.689 | -2.903 72437161 |
| 12 | 1171 | 2.495 | -2.903 72437700 | 252 | 2.802 | -2.903 72437503 |
| 13 |  |  |  | 308 | 2.861 | -2.903 72437592 |
| 14 |  |  |  | 372 | 2.942 | -2.903 72437656 |
| 15 |  |  |  | 444 | 3.058 | -2.903 72437676 |
| 16 |  |  |  | 525 | 3.166 | -2.903 72437691 |
| 17 |  |  |  | 615 | 3.239 | -2.903 72437696 |
| 18 |  |  |  | 715 | 3.346 | -2.903 72437699 |
| 19 |  |  |  | 825 | 3.416 | -2.903 72437701 |
| 20 |  |  |  | 946 | 3.520 | -2.903 72437702 |
| 21 |  |  |  | 1078 | 3.591 | -2.903 72437702 |
| Ref. 15 |  |  | -2.903 72437703 |  |  | -2.903 72437703 |

${ }^{7}$ Number of iteration or order.
${ }^{\mathrm{b}}$ Number of basis functions at order $n$.
may add in $\psi_{0}$ some functions that generate more flexible complement functions.

We examined then the initial functions including halfinteger functions $\psi_{0}^{\text {half } 1}$ and $\psi_{0}^{\text {half } 2}$ of Eqs. (20) and (21). The free ICI wave functions generated from these initial functions are

$$
\begin{equation*}
\psi^{\text {half }}=\sum_{i} c_{i} s^{l_{i}} t^{m_{i}} u^{n_{i}} \exp (-\alpha s) \tag{27}
\end{equation*}
$$

where $m_{i}$ runs even integers for singlet. From $\psi_{0}^{\text {half } 1}, n_{i}$ is non-negative integers and $l_{i}$ runs all integers and halfintegers. From $\psi_{0}^{\text {half } 2}$, both $l_{i}$ and $n_{i}$ run integers and halfintegers and $n_{i}$ is non-negative. Table III shows the energies calculated from the half-integer-type initial functions. We stopped the calculations when $M_{n}$ exceeded 4000 . The convergent behavior to the exact solution was greatly improved over the case of $\psi_{0}^{\text {nor }}$ shown in Table II. For example,
compared to the energy with $g_{S}^{1}$ at $n=12\left(M_{n}=1171\right)$ in Table II ( -2.90372437700 a.u., ten-decimal-figure accuracy), the energy with $\psi_{0}^{\text {half } 1}$ in Table III already exceeds this accuracy ( -2.90372437701 a.u.) at $n=6\left(M_{n}=386\right)$, and with $\psi_{0}^{\text {half } 2}$, the energy is $\mathbf{- 2 . 9 0 3 7 2 4 3 7 7 0 3}$ a.u. already at $n=4\left(M_{n}=217\right)$. The function $\psi_{0}^{\text {half } 2}$, showed better perfor-
 down even when exceeding $M_{n}=1000$, but it slowed down around $M_{n}=3000-4000$. As shown by Thakkar and Koga, ${ }^{14}$ the functions with the powers of other fractional numbers and even of real numbers may greatly improve the convergence. These kinds of functions may be understood as introducing mild negative-power terms of $s$ and $u$, like $s^{1 / 2}$ $=s \cdot s^{-1 / 2}$, where the power of $s^{-1 / 2}$ is median between those of $s^{-1}$ and $\ln s$ around $s=0$.

In contrast to the half-integer types, the logarithm function has a definite physics of adequately describing three-

TABLE III. Ground-state energy of helium atom calculated with the half-integer-type initial functions $\psi_{0}^{\text {half } 1}$ and $\psi_{0}^{\text {half } 2}$ given by Eqs. (20) and (21). The $g$ function was commonly $g_{S}^{1}$ given by Eq. (14).

| $n^{\text {a }}$ | $M_{n}{ }^{\text {b }}$ | Optimal $\alpha$ | Energy (a.u.) |
| :---: | :---: | :---: | :---: |
| $\psi_{0}^{\text {half } 1}$ |  |  |  |
| 0 | 2 | 1.687 | -2.847656248 08485 |
| 1 | 10 | 1.603 | -2.902 96341705617 |
| 2 | 34 | 1.616 | -2.903702732922 11 |
| 3 | 77 | 1.584 | -2.90372374978076 |
| 4 | 146 | 1.640 | -2.903 72435839605 |
| 5 | 247 | 1.679 | -2.903 72437647631 |
| 6 | 386 | 1.710 | -2.903 72437701738 |
| 7 | 569 | 1.751 | -2.903 72437703361 |
| 8 | 802 | 1.793 | -2.903 72437703410454919 |
| 9 | 1091 | 1.837 | -2.903 72437703411914720 |
| 10 | 1442 | 1.885 | -2.903 72437703411958478 |
| 11 | 1861 | 1.935 | -2.903 72437703411959790 |
| 12 | 2354 | 1.982 | -2.903 72437703411959829893330 |
| 13 | 2927 | 2.031 | -2.903 72437703411959831078554 |
| 14 | 3586 | 2.082 | -2.903 72437703411959831114693 |
| 15 | 4337 | 2.132 | -2.903 72437703411959831115866 |
| $\psi_{0}^{\text {half } 2}$ |  |  |  |
| 0 | 3 | 1.653 | -2.890 46871962722 |
| 1 | 14 | 1.660 | -2.903 70154975699 |
| 2 | 50 | 1.634 | -2.90372431710260 |
| 3 | 114 | 1.601 | -2.90372437685493 |
| 4 | 217 | 1.655 | -2.90372437703207 |
| 5 | 368 | 1.682 | -2.90372437703409 |
| 6 | 576 | 1.709 | -2.903 72437703411922987 |
| 7 | 850 | 1.749 | -2.903 72437703411958762 |
| 8 | 1199 | 1.793 | -2.903 72437703411959782 |
| 9 | 1632 | 1.837 | -2.903 72437703411959827 |
| 10 | 2158 | 1.885 | -2.903 72437703411959830819472 |
| 11 | 2786 | 1.935 | -2.903 72437703411959831082206 |
| 12 | 3525 | 1.982 | -2.903 72437703411959831111365 |
| 13 | 4384 | 2.031 | -2.903 72437703411959831115214 |
| Ref. 15 |  |  | -2.903 72437703411959831115924 |

${ }^{\text {a }}$ Number of iteration or order.
${ }^{\mathrm{b}}$ Number of basis functions at order $n$.
particle collision area. ${ }^{3-5,7,18}$ We examined first the initial functions $\psi_{0}^{\log 1}$ and $\psi_{0}^{\log 2}$ given by Eqs. (22) and (23). The generated free ICI wave function has the form given by

$$
\begin{equation*}
\psi^{\log 1,2}=\sum_{i} c_{i} s^{l_{i} t^{m_{i}} u^{n_{i}}(\ln s)^{j_{i}}(\ln u)^{k_{i}} \exp (-\alpha s), ~} \tag{28}
\end{equation*}
$$

where $l_{i}$ runs all integers and $\left\{m_{i}, n_{i}\right\}$ run non-negative integers ( $m_{i}$ only even integers). From $\psi_{0}^{\log 1}, j_{i}$ is 0 or 1 and $k_{i}$ is 0 . From $\psi_{0}^{\log 2}$, both $j_{i}$ and $k_{i}$ are 0 or 1 . Table IV shows the results (the calculations were stopped at $M_{n}$ of around 10000 ). The convergent behavior was further improved in both cases of $\psi_{0}^{\log 1}$ and $\psi_{0}^{\log 2}$, compared with the halfinteger types. Moreover, the speed of convergence did not slow down even at $M_{n}$ beyond 5000. When we compare $\psi_{0}^{\log 1}$ with $\psi_{0}^{\log 2}$, the results with $\psi_{0}^{\log 2}$ always show better performance than those with $\psi_{0}^{\log 1}$ until $M_{n}=\sim 10000$. However, the speed of convergence with $\psi_{0}^{\log 2}$ became slightly slower near $M_{n}=\sim 10000$. On the other hand, it was not so with $\psi_{0}^{\log 1}$. The free ICI complement functions
generated from $\psi_{0}^{\log 1}$ resemble the basis functions of Schwartz ${ }^{15}$ but different in higher-order terms. Schwartz reported the variational energy of -2.903 724377034119598311159245194404440 a.u. (36 digit accuracy) with 10259 basis. ${ }^{15}$ The free ICI energy with $\psi_{0}^{\log 2}$ at order 18 (dimension 10794 ) was -2.903 72437703411959831115924519440434 a.u. (34 digit accuracy), which is slightly less accurate than the result of Schwartz.

## C. New logarithm-type initial function

Finally, we examine our new logarithm initial function $\psi_{0}^{\text {new } \log }$ given by Eq. (24), which was introduced to improve a flaw of $\psi_{0}^{\log 2}$. The free ICI wave function generated from $\psi_{0}^{\text {new }}{ }^{\log }$ is expressed as

$$
\begin{equation*}
\psi^{\text {new } \log }=\sum_{i} c_{i} s^{l_{i}} t^{m_{i}} u^{n_{i}}[\ln (s+\beta u)]^{j_{i}} \exp (-\alpha s) \tag{29}
\end{equation*}
$$

where $l_{i}$ runs all integers, $\left\{m_{i}, n_{i}\right\}$ run non-negative integers

TABLE IV. Ground-state energies of helium atom calculated with the logarithm-type initial functions $\psi_{0}^{\log 1}$ and $\psi_{0}^{\log 2}$ given by Eqs. (22) and (23). The $g$ function was commonly $g_{S}^{1}$ given by Eq. (14).

| $n^{\text {a }}$ | $M_{n}{ }^{\mathrm{b}}$ | Optimal $\alpha$ | Energy (a.u.) |
| :---: | :---: | :---: | :---: |
| $\psi_{0}^{\log 1}$ |  |  |  |
| 0 | 2 | 1.687 | -2.84765624212824 |
| 1 | 10 | 1.550 | -2.902 96417286810 |
| 2 | 34 | 1.561 | -2.903 70273467568 |
| 3 | 77 | 1.619 | -2.903 72374960190 |
| 4 | 146 | 1.638 | -2.903 72435839541 |
| 5 | 247 | 1.641 | -2.903 72437647631 |
| 6 | 386 | 1.651 | -2.903 72437701739 |
| 7 | 569 | 1.670 | -2.903 72437703361 |
| 8 | 802 | 1.683 | -2.903 72437703410454962 |
| 9 | 1091 | 1.696 | -2.903 72437703411914723 |
| 10 | 1442 | 1.711 | -2.903 72437703411958479 |
| 11 | 1861 | 1.729 | -2.903 72437703411959790 |
| 12 | 2354 | 1.753 | -2.903 72437703411959829 |
| 13 | 2927 | 1.779 | -2.903 72437703411959831079263 |
| 14 | 3586 | 1.807 | -2.903 72437703411959831114817 |
| 15 | 4337 | 1.837 | -2.903 72437703411959831115890 |
| 16 | 5186 | 1.868 | -2.903 72437703411959831115923499660 |
| 17 | 6139 | (1.90) | -2.903 72437703411959831115924488273 |
| 18 | 7202 | (1.93) | -2.903 72437703411959831115924518483 |
| 19 | 8381 | (1.96) | -2.903 72437703411959831115924519410 |
| 20 | 9682 | (1.99) | -2.903 72437703411959831115924519439527770 |
| $\psi_{0}^{\log 2}$ |  |  |  |
| 0 | 3 | 1.657 | -2.878141 10503923 |
| 1 | 14 | 1.580 | -2.903 70949959537 |
| 2 | 50 | 1.595 | -2.903 72428214540 |
| 3 | 114 | 1.637 | -2.903 72437653555 |
| 4 | 217 | 1.646 | -2.903 72437703163 |
| 5 | 368 | 1.656 | -2.903 72437703410 |
| 6 | 576 | 1.653 | -2.903 72437703411937818 |
| 7 | 850 | 1.672 | -2.903 72437703411959508 |
| 8 | 1199 | 1.683 | -2.903 72437703411959825 |
| 9 | 1632 | 1.697 | -2.903 72437703411959831012079 |
| 10 | 2158 | 1.711 | -2.903 72437703411959831113779 |
| 11 | 2786 | 1.729 | -2.903 72437703411959831115877 |
| 12 | 3525 | 1.753 | -2.903 72437703411959831115923457825 |
| 13 | 4384 | 1.778 | -2.903 72437703411959831115924494121 |
| 14 | 5372 | 1.807 | -2.903 72437703411959831115924518775 |
| 15 | 6498 | (1.83) | -2.903 72437703411959831115924519418 |
| 16 | 7771 | (1.86) | -2.90372437703411959831115924519439 |
| 17 | 9200 | (1.89) | -2.903 72437703411959831115924519440351765 |
| 18 | 10794 | (1.92) | -2.903 72437703411959831115924519440434480 |
| Ref. 15 | 10259 |  | -2.903724 37703411959831115924519440444004 |

${ }^{\text {N }}$ Number of iteration or order.
${ }^{\mathrm{b}}$ Number of basis functions at order $n$.
( $m_{i}$ is even integers), and $j_{i}$ is 0 or 1 . Table V shows the calculated energies with the initial function $\psi_{0}^{\text {new } \log }$ up to $n$ $=27\left(M_{n}=22709\right)$. In the calculations summarized in Table V , the parameter $\beta$ was fixed to $\beta=1$. Although $\beta$ may be one of the variational parameters, its optimal value became small as iteration proceeded and moreover, $\beta$ did not influence much the accuracy at large iteration numbers, except for the special case of $\beta=0$, in which case, i.e., $\psi_{0}^{\log 1}$, the results are already shown in Table IV.

As shown in Table V, the energy of Schwartz with 10259 basis functions ${ }^{15}$ was already exceeded by our
calculations with $\psi_{0}^{\text {new } \log }$ at order 20 with 9682 functions and at $n=27 \quad\left(M_{n}=22709\right)$. The free ICI energy was -2.903 72437703411959831115924519440444669690 537 a.u., which is correct over 40 digits and is now the best variational energy among in published literature. ${ }^{28}$

The ICI wave function starting from the new initial function including logarithm function $\ln (s+\beta u)$ is adapted to satisfy both the two- and three-particle cusp conditions that the exact SE demands. Schwartz also adopted the logarithm function and improved Kinoshita's wave function by introducing $(t / s)^{m}$ instead of $(t / u)^{m}$ (original Kinoshita type).

| $n^{\text {a }}$ | $M_{n}{ }^{\text {b }}$ | Optimal $\alpha$ | Energy (a.u.) |
| :---: | :---: | :---: | :---: |
| 0 | 2 | 1.827 | -2.865 37081902671 |
| 1 | 10 | 1.475 | -2.903 53681228153 |
| 2 | 34 | 1.627 | -2.903 72400732145 |
| 3 | 77 | 1.679 | -2.903 72437509416 |
| 4 | 146 | 1.683 | -2.903 72437702234 |
| 5 | 247 | 1.679 | -2.903 72437703405 |
| 6 | 386 | 1.693 | -2.903 72437703411901125 |
| 7 | 569 | 1.704 | -2.903 72437703411959284 |
| 8 | 802 | 1.707 | -2.903 72437703411959824 |
| 9 | 1091 | 1.713 | -2.903 72437703411959830997348 |
| 10 | 1442 | 1.724 | -2.903 72437703411959831113632 |
| 11 | 1861 | 1.738 | -2.903 72437703411959831115876 |
| 12 | 2354 | 1.757 | -2.903 72437703411959831115923 |
| 13 | 2927 | 1.779 | -2.90372437703411959831115924493853 |
| 14 | 3586 | 1.806 | -2.90372437703411959831115924518771 |
| 15 | 4337 | 1.837 | -2.90372437703411959831115924519418 |
| 16 | 5186 | 1.866 | -2.90372437703411959831115924519439 |
| 17 | 6139 | 1.899 | -2.903 72437703411959831115924519440352660 |
| 18 | 7202 | (1.93) | -2.903 72437703411959831115924519440434636 |
| 19 | 8381 | (1.96) | -2.903 72437703411959831115924519440443380 |
| 20 | 9682 | (1.99) | -2.903 72437703411959831115924519440444483 |
| 21 | 11111 | (2.02) | -2.903 72437703411959831115924519440444640 |
| 22 | 12674 | (2.05) | -2.903 72437703411959831115924519440444664683961 |
| 23 | 14377 | (2.08) | -2.903 72437703411959831115924519440444668768592 |
| 24 | 16226 | (2.11) | -2.903 72437703411959831115924519440444669510179 |
| 25 | 18227 | (2.14) | -2.903 72437703411959831115924519440444669654244 |
| 26 | 20386 | (2.17) | -2.903 72437703411959831115924519440444669684021 |
| 27 | 22709 | (2.20) | -2.903 72437703411959831115924519440444669690534 |
| Ref. 15 | 10259 |  | -2.903 7243770341195983111592451944044400495 |

${ }^{a}$ Number of iteration or order.
${ }^{\mathrm{b}}$ Number of basis functions at order $n$.
$(t / u)^{m}$ brought a discontinuity (singularity) of the twoelectron collision area into the wave function but $(t / s)^{m}$ did not. Schwartz's wave function also has good natures for the two- and three-particle cusp conditions, but is limited to the logarithm function of the form of $\ln s$. This is why the most rapid convergence was realized by using the new logarithm initial function $\psi_{0}^{\text {new } \log }$.

## D. Convergence behaviors with different functions

Here, we summarize the convergence behaviors of the different functions given above. Figure 1 shows the energy convergence behaviors of the ICI wave functions calculated from several different initial functions, i.e., normal type, half-integer type, logarithm type, and new logarithm type, given by Eqs. (19)-(24). The $g$ function used was commonly $g_{S}^{1}$ of Eq. (14). Figure 1 is the plots of the following $\Delta$ :

$$
\begin{equation*}
\Delta=-\log _{10}\left(E-E_{0}\right), \tag{30}
\end{equation*}
$$

against the number of the complement functions at different orders (iterations) of the different free ICI calculations. In the above equation, $E$ is the energy at that stage and $E_{0}$ is the best energy correct at least to 40 digits obtained with the initial function $\psi_{0}^{\text {new }} \log$ at iteration 27 (dimension of 22 709).

So, $\Delta$ represents the number of the correct digits of the calculated energy.

As Fig. 1 shows, all calculations monotonically converge to the exact energy from above. For getting chemical and spectroscopic accuracies $(\Delta=3-6)$, any choice of $\psi_{0}$ is okay. The convergence of the free ICI is quite nice. However, when one desires much higher accuracy, the speed of the convergence is quite different, depending on the choice of $\psi_{0}$. The performance with the normal type $\psi_{0}$ is good until 1000 dimensions but becomes very slow after then. The halfinteger type is successful in improving the convergence behavior. However, it also slows down after 3000 or 4000 dimensions, indicating that the half-integer-type initial function is also unsatisfactory for quite accurate calculations. The performance of the free ICI in this highly accurate region is greatly improved by using the logarithm-type initial function. This is clearly due to the effective correct description of the wave function in the three-particle coalescence region.

In the present article, we introduced the logarithm initial functions $\psi_{0}^{\log 2}$ and $\psi_{0}^{\text {new } \log }$ including both $s=r_{1}+r_{2}$ and $u$ $=r_{12}$. Both calculations with $\psi_{0}^{\log 2}$ and $\psi_{0}^{\text {new }} \log$ showed quite good performance but the convergence speed with $\psi_{0}^{\log 2}$ slowed down after 8000 dimensions, indicating that the $\ln u$


FIG. 1. Convergence behavior of the free ICI calculations with several initial functions given by Eqs. (19)-(21), (23), and (24). The $g$ function was commonly $g_{S}^{1}$ given by Eq. (14).
term is not so important for the energy beyond 35 digit accuracy. In contrast, the calculations with the initial function $\psi_{0}^{\text {new }} \log$ continued to show very good performance even beyond 10000 dimensions ( 35 digit accuracy). Figure 1 also shows the plot of the energies Schwartz reported in his paper. ${ }^{15}$ Since he also used the logarithm function in his basis set, the convergence behavior was so good until 10000 dimensions. The fastest convergence (at least until 10000 dimensions) was seen in Fig. 1 for the calculations with $\psi_{0}^{\text {new }}{ }^{\log }$. For example, comparing our result at iteration 17 (dimensions of 6139) with Schwartz's one at dimension of 6255, our result is about three digits better than his. However, in the range exceeding 10000 dimensions, both of our calculations with $\psi_{0}^{\text {new }} \log$ and $\psi_{0}^{\log 1}$ and Schwartz's calculations show slightly slower convergence. One possible reason would be the usage of only first-order logarithm function in the initial function. Actually, the originally proposed logarithm function included all orders of the logarithm term, ${ }^{3-5}$ $\left(\ln \left[\left(s^{2}+t^{2}\right)^{1 / 2}\right]\right)^{j} \quad(j=0,1,2, \ldots)$, but we included only the first-order term. Another reason may be the usage of only a single exponent function. Although the logarithm singularity improves very short-range correlation, our wave function does not include the functions adequate for describing the
very outer region of the atom. To improve this region, we might have to include more flexible multiple- $\zeta$ functions.

In the free ICI method, the choice of the initial function $\psi_{0}$ is very important since it determines the functional form of the complement functions of the free ICI wave function. The experience accumulated in the present calculations of the accurate wave functions of helium atom seems to show that the inclusion of the functions that reflect the physics of the system in the initial function $\psi_{0}$ greatly improves the convergence speed to the exact solution of the SE.

## E. Helium isoelectronic ions

Finally, we apply the best free ICI scheme established above to the calculations of accurate wave functions and energies of the helium isoelectronic ions from $Z=1\left(\mathrm{H}^{-}\right)$to $Z$ $=10\left(\mathrm{Ne}^{8+}\right)$. We use $g_{S}^{1}$ and $\psi_{0}^{\text {new log }}$ given by Eqs. (14) and (24), respectively, as the best combination. The calculations were stopped at $n=20$ (dimension of 9682) except for the neutral helium atom explained above ( $n=27$ and dimension of 22709 ). We note that at the same order (iteration), the free ICI wave functions of all isoelectronic atoms have the same functional form. All the complement functions are the same. After variational optimizations of the parameters contained, each wave function gains each unique character as each atom. The nonlinear parameter $\alpha$ in the initial function $\psi_{0}^{\text {new } \log }$ was fixed to the guess optimal value, $\alpha=0.4$ for $Z$ $=1, \alpha=2.2$ for $Z=2$, and $\alpha=1.3 Z-0.7$ for $Z=3-10$. The parameter $\beta$ was fixed to unity.

Table VI shows the summary of the calculated energies. For helium, the result is for $n=27$ and the result for $n=20$ is seen in Table V. Recently, Frolov ${ }^{29}$ reported highly accurate variational calculations for $\mathrm{H}^{-}(Z=1)$ using a large number of Slater geminal functions and reported the most accurate energy of -0.527 $\mathbf{7 5 1} \mathbf{0 1 6 5 4 4 3 7 7 1 9 6 5 8 9 7 5 9}$ a.u. with 3700 basis functions including so many nonlinear parameters. In the present ICI calculations, we obtained the variational energy of -0.527 751016544377196590813 a.u. at order 14 with 3586 functions, which already exceeded Frolov's energy with a smaller number of functions than that of Frolov. We continued the calculations until $n=20$ and obtained the energy of

TABLE VI. Energies of the helium atom and its isoelectronic ions $(Z=1-10)$ calculated with $\psi_{0}^{\text {new log }}$ given by Eq. (24) with $\beta=1$ and $g_{S}^{1}$ given by Eq. (14). All calculations were stopped at $n=20$ (dimension 9682) except for the helium atom for which $n=27$ (dimension of 22709 ).

| Z | Atom | Optimal $\alpha$ | Energy (a.u.) |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{H}^{-}$ | (0.4) | -0.527 75101654437719659081456674751138304502 |
| 2 | He | (2.20) | -2.903 72437703411959831115924519440444669690537 |
| 3 | $\mathrm{Li}^{+}$ | (3.2) | -7.27991341266930596491945922100661168257235 |
| 4 | $\mathrm{Be}^{2+}$ | (4.5) | -13.65556623842358670208173019461215939136060 |
| 5 | $\mathrm{B}^{3+}$ | (5.8) | -22.030 97158024278154165570204356687037977599 |
| 6 | $\mathrm{C}^{4+}$ | (7.1) | -32.406246601898530310557357969530254566 01697 |
| 7 | $\mathrm{N}^{5+}$ | (8.4) | -44.78144514877270464518576084895405677602812 |
| 8 | $\mathrm{O}^{6+}$ | (9.7) | -59.156595122757925558549892445559527 70090785 |
| 9 | $\mathrm{F}^{7+}$ | (11.0) | -75.531712363959491104878 01557953357656090977 |
| 10 | $\mathrm{Ne}^{8+}$ | (12.3) | -93.906 80651503754942146918418000024106665170 |

- 0.527751016544377196590814566747511383045 02 a.u., which is the world's best variational energy of $\mathrm{H}^{-}$at this moment. For the other isoelectronic ions $(Z=3-10)$, we were also able to obtain the best variational energies.

Sims and Hagstrom ${ }^{12}$ calculated $\mathrm{Li}^{+}, \mathrm{Be}^{2+}$, and $\mathrm{B}^{3+}$ with the Hylleraas-CI method and obtained the energies of -7.279913 412669305964899 , -13.655566238423586702 06, and -22.030 97158024278154163 a.u. with 4284, 4648, and 4648 functions, respectively. In comparison, we obtained the energies of $\mathrm{Li}^{+}, \mathrm{Be}^{2+}$ and $\mathrm{B}^{3+}$ as
-7.279913 412669305964918 , -13.655566238 423586702080 , and -22.030 971580242781541653 a.u., respectively, at order 9 with 1091 functions. The free ICI results seem to be better than those of Sims and Hagstrom with a smaller number of functions.

The new logarithm-type initial functions are proven to show very good performance for ions $(Z=3-10)$ as well as for the neutral helium atom $(Z=2)$. For $\mathrm{H}^{-}(Z=1)$, however, the logarithm function did not so drastically improve the convergent behavior, because $\mathrm{H}^{-}$is an anion and physically, the three-particle collision is not so important.

Finally, a rough technical note on a computer time is given, though our program is far from being tuned up on the computational speed. The timing was done for the results given in Table VI at $n=20$ and $M_{n}=9682$ starting with $g_{S}^{1}$ and $\psi_{0}^{\text {new }} \log$. As described in the last paragraph of Sec. III, our program consists of the three steps and the first step (generating the complement functions of free ICI), second step (integrations), and final step (diagonalization) took about 3 h , 2 days, and 1.5 days, respectively, with a single $\operatorname{Intel}(\mathrm{R})$ Core 2 Duo 2.8 GHz workstation. We used MAPLE in the second step, which means that this step can be substantially accelerated. Anyway, roughly 4 days are enough to get the world's best energy and analytical wave function of the helium isoelectronic ions.

## V. CONCLUSION

In the history of accurate calculations of He atom, starting from the pioneering work of Hylleraas just three years after the birth of quantum mechanics, a lot of effort has been done to describe the wave function of this atom as accurately as possible. These were done mostly with intuition, using, for example, the necessary conditions that the exact wave function must satisfy, such as the two-particle and three-particle cusp conditions, etc., since there was no general theory for constructing the exact wave function of the SE. This approach was quite successful as proven from the monumental work of Schwartz. However, their experiences were difficult to generalize for solving the SE of general atoms and molecules.

In contrast to these studies, we performed the calculations based on the general theory of solving the SE in an analytical expansion form recently developed in our laboratory. Starting from the cleverly chosen $\psi_{0}$ and using the effective $g$ function, we can automatically generate, by free ICI method, a series of functions (called complement functions)
that are guaranteed to construct the exact wave function when the order $n$ is enough. By determining the parameters involved by the variational method, we could obtain the world's best results of helium and its isoelectronic ions. The present results indicate that by continuing the free ICI calculations systematically, we would be able to solve the SE to any desired accuracy.

We examined several different types of $g$ and initial function $\psi_{0}$. The chemical and spectroscopic accuracies were easily achieved at a few iterations with the use of any set of these functions. However, to achieve extremely high accuracy, it was important to select these sets cleverly based on the physical insight. The sum-type $g$ function showed better performance than the product-type one because the former generates more flexible functions than the latter. It was also very important to select $\psi_{0}$ cleverly because it is the zeroth order wave function from which the Hamiltonian of the system constructs its own complement functions following the principle of the free ICI theory. The logarithm initial functions, in particular, the new logarithm function $\ln (s+\beta u)$, showed quite good performance, admitting some necessary conditions of the SE such as two-particle and three-particle cusp conditions. Actually, compared with the other calculations, the most rapid convergence was obtained by the free ICI method with the new logarithmic initial function at least until 10000 . Using this initial function, we calculated the free ICI wave functions of helium and its isoelectronic ions and obtained the world's best results in the published literature. It is interesting to note that the free ICI wave functions of helium and its isoelectronic ions consisted of the same complement functions when the order $n$ is the same, except for the values of the parameters, $\alpha$, etc., involved. This is generally true for the wave functions of a series of atoms having the same number of electrons as long as the initial function and the scaling function are the same.

The experience obtained here for accurate calculations of helium and its isoelectronic ions may be generalized in the free ICI calculations of more general atoms and molecules. The free ICI method itself and the algorithm of the calculations are not limited to the helium atom alone but they are applicable and extendable to general atoms and molecules. Actually, we used the same method for calculations of accurate wave functions of hydrogen molecule ${ }^{23}$ and three to five electron atoms. ${ }^{30}$ For more general atoms and molecules, however, analytic integrations over the free ICI complement functions would become difficult. For such cases, we have developed a method, called local Schrödinger equation method and applied it successfully to several atoms and molecules. These results will be published elsewhere in the literature. ${ }^{25}$

## ACKNOWLEDGMENTS

This study has been supported financially by a Grant for Creative Scientific Research from the Ministry of Education, Science, Culture, and Sports of Japan.

## APPENDIX: FORMULATIONS FOR THE INTEGRALS INCLUDING LOGARITHM FUNCTIONS

We briefly summarize the analytical calculations of several integrals for variational calculations of the ICI wave function starting from the new logarithm function including $\ln (s+\beta u)$ and $\ln u$. The formulations are quite simple. The integrals we want to calculate are written as

$$
\begin{align*}
I_{p, q}(a, b, c, d ; \alpha, \beta)= & \int_{0}^{\infty} d s \cdot s^{a}(\ln s)^{p} \exp (-\alpha s) \\
& \times \int_{0}^{s} d u \cdot u^{b} \frac{(\ln (s+\beta u))^{q}}{(s+\beta u)^{d}} \int_{0}^{u} d t \cdot t^{c},  \tag{A1}\\
J_{p, q}(a, b, c ; \alpha)= & \int_{0}^{\infty} d s \cdot s^{a}(\ln s)^{p} \exp (-\alpha s) \\
& \times \int_{0}^{s} d u \cdot u^{b}(\ln u)^{q} \int_{0}^{u} d t \cdot t^{c}, \tag{A2}
\end{align*}
$$

where the indices $a, b, c, d, p$, and $q$ run integer values; $p$ and $q$ of the logarithm terms were limited to 0,1 , and 2 in the present paper. $\alpha$ and $\beta$ are nonlinear parameters, whose ranges are $\alpha>0$ and $\beta>-1$, respectively.

First, we define basic one-dimensional integral of the $s$ coordinate as

$$
\begin{equation*}
F_{p}(n ; \alpha)=\int_{0}^{\infty} d s \cdot s^{n}(\ln s)^{p} \exp (-\alpha s) \tag{A3}
\end{equation*}
$$

The general formula of this integral is well known and can be found in some mathematical books.

We want to calculate the integral $I_{p, q}$ defined in Eq. (A1). The basic strategy is to reduce the integral $I_{p, q}$ to the onedimensional basic integral $F_{p}$ defined in Eq. (A3) by performing partial integrations on the $u$ coordinate. Considering the numerical estimation of the integral by programming, we group the cases by the indices as follows.
(i) $q=0, d=0$. In this case, since the integral $I_{p, q}$ does not include any $s+\beta u$ term, the integration is simplified as

$$
\begin{align*}
I_{p, 0}(a, b, c, 0 ; \alpha, \beta)= & \frac{1}{(c+1)(b+c+2)} \\
& \times F_{p}(a+b+c+2 ; \alpha) . \tag{A4}
\end{align*}
$$

(ii) $q=1, d=0$. In this case, the integral $I_{p, q}$ includes the $\ln (s+\beta u)$ term. The integration by parts is successively performed on the $u$ coordinate and we can reduce $I_{p, q}$ to the one-dimensional integral of the $s$ coordinate expressed as

$$
\begin{align*}
I_{p, 1}(a, b, c, 0 ; \alpha, \beta)= & \frac{1}{c+1}\left\{a_{1}^{\beta}(b+c+1)\right. \\
& \cdot F_{p+1}(a+b+c+2 ; \alpha) \\
& +a_{0}^{\beta}(b+c+1) \cdot F_{p}(a+b+c \\
& +2 ; \alpha)\} \tag{A5}
\end{align*}
$$

where $a_{1}^{\beta}(n)$ and $a_{0}^{\beta}(n)$ are the coefficients depending on $n$ and $\beta$, written as

$$
\begin{align*}
& a_{1}^{\beta}(n)=\frac{1}{n+1}  \tag{A6}\\
& a_{0}^{\beta}(n)=\frac{\ln (\beta+1)}{n+1}\left(1-\frac{(-1)^{n+1}}{\beta^{n+1}}\right)+\frac{1}{n+1} \sum_{k=1}^{n+1} \frac{(-1)^{n-k+2}}{\beta^{n+1-k}} \frac{1}{k} \tag{A7}
\end{align*}
$$

(iii) $q=2, d=0$. Similarly to the above case, after successively performing partial integrations on the $u$ coordinate, we get

$$
\begin{align*}
I_{p, 2}(a, b, c, 0 ; \alpha, \beta)= & \frac{1}{c+1}\left\{b_{2}^{\beta}(b+c+1)\right. \\
& \cdot F_{p+2}(a+b+c+2 ; \alpha) \\
& +b_{1}^{\beta}(b+c+1) \\
& \cdot F_{p+1}(a+b+c+2 ; \alpha) \\
& +b_{0}^{\beta}(b+c+1) \cdot F_{p}(a+b+c \\
& +2 ; \alpha)\} \tag{A8}
\end{align*}
$$

where $b_{2}^{\beta}(n), b_{1}^{\beta}(n)$, and $b_{0}^{\beta}(n)$ are the coefficients expressed as

$$
\begin{align*}
b_{2}^{\beta}(n)= & \frac{1}{n+1}=a_{1}^{\beta}(n)  \tag{A9}\\
b_{1}^{\beta}(n)= & \frac{2 \ln (\beta+1)}{n+1}\left(1-\frac{(-1)^{n+1}}{\beta^{n+1}}\right) \\
& +\frac{2}{n+1} \sum_{k=1}^{n+1} \frac{(-1)^{n-k+2}}{\beta^{n+1-k}} \frac{1}{k}=2 a_{0}^{\beta}(n),  \tag{A10}\\
b_{0}^{\beta}(n)= & \frac{(\ln (\beta+1))^{2}}{n+1}\left(1-\frac{(-1)^{n+1}}{\beta^{n+1}}\right)-2 a_{0}^{\beta}(n) \\
& +\frac{2}{n+1} \sum_{k=1}^{n}\left\{\frac{(-1)^{n-k} k}{\beta^{n-k}}\left(a_{0}^{\beta}(k)+\frac{a_{0}^{\beta}(k-1)}{\beta}\right)\right\} . \tag{A11}
\end{align*}
$$

(iv) $q=0, d \geqslant 1$. Similarly to the above, we can get

$$
\begin{align*}
I_{p, 0}(a, b, c, d ; \alpha, \beta)= & \frac{1}{c+1}\left\{c_{0}^{\beta}(d, b+c+1)\right. \\
& \left.\cdot F_{p}(a+b+c-d+2 ; \alpha)\right\} \tag{A12}
\end{align*}
$$

where the coefficient $c_{0}^{\beta}(d, n)$ is written case by case. For $n$ $<d, d=n+1, c_{0}^{\beta}(d, n)$ is written as

$$
\begin{equation*}
c_{0}^{\beta}(n+1, n)=\frac{-1}{(\beta+1)^{n+1}} \sum_{k=1}^{n} \frac{(\beta+1)^{k}}{\beta^{k}(n-k+1)}+\frac{\ln (\beta+1)}{\beta^{n+1}} \tag{A13}
\end{equation*}
$$

and for $n<d, d \neq n+1, c_{0}^{\beta}(d, n)$ is written as

$$
\begin{align*}
c_{0}^{\beta}(d, n)= & \sum_{k=1}^{n+1} \frac{(-1)^{k+1}}{\beta^{k}(\beta+1)^{d-k}} \frac{\prod_{i=0}^{k-2}(n-i)}{\prod_{i=0}^{k-1}(1-d+i)} \\
& +\frac{(-1)^{n+1} \prod_{i=0}^{n-1}(n-i)}{\beta^{n+1} \prod_{i=0}^{n}(1-d+i)}, \tag{A14}
\end{align*}
$$

and for $n \geqslant d$,

$$
\begin{align*}
c_{0}^{\beta}(d, n)= & \sum_{k=1}^{d-1} \frac{(-1)^{k+1}}{\beta^{k}(\beta+1)^{d-k}} \frac{\prod_{i=0}^{k-2}(n-i)}{\prod_{i=0}^{k-1}(1-d+i)} \\
& +\frac{(-1)^{d-1} \Pi_{i=0}^{d-2}(n-i)}{\beta^{d-1} \Pi_{i=0}^{d-2}(1-d+i)}\left\{\frac{\ln (\beta+1)}{\beta}\right. \\
& \left.-\frac{n-d+1}{\beta} a_{0}^{\beta}(n-d)\right\} . \tag{A15}
\end{align*}
$$

(v) $q=1, d \geqslant 1$. Similarly, we get

$$
\begin{align*}
I_{p, 1}(a, b, c, d ; \alpha, \beta)= & \frac{1}{c+1}\left\{d_{1}^{\beta}(d, b+c+1) \cdot F_{p+1}(a+b+c-d\right. \\
& +2 ; \alpha)+d_{0}^{\beta}(d, b+c+1) \cdot F_{p}(a+b+c \\
& -d+2 ; \alpha)\}, \tag{A16}
\end{align*}
$$

where the coefficient $d_{1}^{\beta}(d, n)$ and $d_{0}^{\beta}(d, n)$ are also written case by case as follows. For $n<d, d=n+1$,

$$
\begin{align*}
d_{1}^{\beta}(n+1, n)= & -\sum_{k=1}^{n} \frac{(\beta+1)^{k-n-1}}{\beta^{k}(n-k+1)}+\frac{\ln (\beta+1)}{\beta^{n+1}},  \tag{A17}\\
d_{0}^{\beta}(n+1, n)= & -\sum_{k=1}^{n} \frac{(\beta+1)^{k-n-1}}{\beta^{k}(n-k+1)}\left\{\frac{1}{n-k+1}+\ln (\beta+1)\right\} \\
& +\frac{(\ln (\beta+1))^{2}}{2 \beta^{n+1}}+\sum_{k=1}^{n} \frac{c_{0}^{\beta}(n-k+1, n-k)}{\beta^{k}(n-k+1)}, \tag{A18}
\end{align*}
$$

for $n<d, d \neq n+1$,

$$
\begin{align*}
d_{1}^{\beta}(d, n)= & -\sum_{k=1}^{n} \frac{(\beta+1)^{k-d}}{\beta^{k}} \frac{\prod_{i=1}^{k-1}(n-i+1)}{\prod_{i=1}^{k}(d-i)} \\
& +\frac{\prod_{i=1}^{n}(n-i+1)}{\beta^{n+1} \prod_{i=1}^{n+1}(d-i)}\left\{1-(\beta+1)^{n-d+1}\right\},  \tag{A19}\\
d_{0}^{\beta}(d, n)= & -\sum_{k=1}^{n} \frac{(\beta+1)^{k-d}}{\beta^{k}} \frac{\Pi_{i=1}^{k-1}(n-i+1)}{\prod_{i=1}^{k}(d-i)}\left\{\frac{1}{d-k}\right. \\
& \left.+\ln (\beta+1)-\frac{n-k+1}{d-k} c_{0}^{\beta}(d-k, n-k)\right\} \\
& +\frac{\prod_{i=1}^{n}(n-i+1)}{\beta^{n+1} \prod_{i=1}^{n+1}(d-i)}\left[\frac{1}{d-n-1}\left\{1-(\beta+1)^{n-d+1}\right\}\right. \\
& \left.-(\beta+1)^{n-d+1} \ln (\beta+1)\right], \tag{A20}
\end{align*}
$$

and for $n \geqslant d$,

$$
\begin{align*}
d_{1}^{\beta}(d, n)= & -\sum_{k=1}^{d-1} \frac{(\beta+1)^{k-d}}{\beta^{k}} \frac{\prod_{i=1}^{k-1}(n-i+1)}{\prod_{i=1}^{k}(d-i)} \\
& +\frac{\prod_{i=1}^{d-1}(n-i+1)}{\beta^{d} \prod_{i=1}^{d-1}(d-i)}\{\ln (\beta+1) \\
& \left.-\frac{n-d+1}{2} b_{1}^{\beta}(n-d)\right\},  \tag{A21}\\
d_{0}^{\beta}(d, n)= & -\sum_{k=1}^{d-1} \frac{(\beta+1)^{k-d}}{\beta^{k}} \frac{\Pi_{i=1}^{k-1}(n-i+1)}{\Pi_{i=1}^{k}(d-i)}\left\{\frac{1}{d-k}\right. \\
& \left.+\ln (\beta+1)-\frac{n-k+1}{d-k} c_{0}^{\beta}(d-k, n-k)\right\} \\
& +\frac{\Pi_{i=1}^{d-1}(n-i+1)}{2 \beta^{d} \Pi_{i=1}^{d-1}(d-i)}\left\{(\ln (\beta+1))^{2}\right. \\
& \left.-(n-d+1) b_{0}^{\beta}(n-d)\right\} . \tag{A22}
\end{align*}
$$

Finally, we have to calculate the integral $J_{p, q}$ defined by Eq. (A2). We again perform successive partial integrations on the $u$ coordinate, we can get

$$
\begin{align*}
J_{p, q}(a, b, c ; \alpha)= & \frac{1}{c+1} \sum_{k=0}^{q} \frac{(-1)^{q-k} \prod_{i=0}^{q-k-1}(q-i)}{(b+c+2)^{q-k+1}} F_{p+k}(a+b \\
& +c+2 ; \alpha) \tag{A23}
\end{align*}
$$

${ }^{1}$ P. A. M. Dirac, Proc. R. Soc. London, Ser. A 123, 714 (1929).
${ }^{2}$ E. A. Hylleraas, Z. Phys. 54, 347 (1929).
${ }^{3}$ J. H. Bartlett, Jr., Phys. Rev. 51, 661 (1937).
${ }^{4}$ T. H. Gronwall, Phys. Rev. 51, 655 (1937).
${ }^{5}$ V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161 (1954).
${ }^{6}$ T. Kinoshita, Phys. Rev. 105, 1490 (1957).
${ }_{8}^{7}$ K. Frankowski and C. L. Pekeris, Phys. Rev. 146, 46 (1966).
${ }^{8}$ A. J. Thakkar and T. Koga, Phys. Rev. A 50, 854 (1994).
${ }^{9}$ S. P. Goldman, Phys. Rev. A 57, R677 (1998).
${ }^{10}$ G. W. F. Drake, Phys. Scr., T T83, 83 (1999).
${ }^{11}$ G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys. Rev. A 65, 054501 (2002).
${ }^{12}$ J. S. Sims and S. A. Hagstrom, Int. J. Quantum Chem. 90, 1600 (2002).
${ }^{13}$ V. I. Korobov, Phys. Rev. A 66, 024501 (2002).
${ }_{15}^{14}$ A. J. Thakkar and T. Koga, Theor. Chem. Acc. 109, 36 (2003).
${ }^{15}$ C. Schwartz, Int. J. Mod. Phys. E 15, 877 (2006).
${ }^{16}$ T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
${ }^{17}$ J. Rychlewski and J. Komasa, in Explicitly Correlated Wave Functions in Chemistry and Physics—Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), pp. 91-147.
${ }^{18}$ C. R. Myers, C. J. Umrigar, J. P. Sethna, and J. D. Morgan III, Phys. Rev. A 44, 5537 (1991).
${ }^{19}$ H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000); H. Nakatsuji and E. R. Davidson, ibid. 115, 2000 (2001); H. Nakatsuji, ibid. 115, 2465 (2001); Phys. Rev. A 65, 052122 (2002); J. Chem. Phys. 116, 1811 (2002); H. Nakatsuji and M. Ehara, ibid. 117, 9 (2002); 122, 194108 (2005).
${ }^{20}$ H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).
${ }^{21}$ H. Nakatsuji, Phys. Rev. A 65, 062110 (2005).
${ }^{22}$ H. Nakatsuji, Bull. Chem. Soc. Jpn. 78, 1705 (2005).
${ }^{23}$ Y. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Rev. A 72, 062502 (2005).
${ }^{24}$ H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95, 050407 (2005).
${ }^{25}$ H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa, "Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function,"Phys. Rev. Lett.(in press).
${ }^{26}$ Computer code maple, Waterloo Maple Inc., Waterloo, Ontario, Canada (see http://www.maplesoft.com/).
${ }^{27}$ About the GMP library, see http://swox.com/gmp/ and http:// www.cs.nyu.edu/exact/core/gmp/
${ }^{28}$ After submitting this manuscript, the referee noted the existence of an e-print at http://arxiv.org/pdf/math-ph/0605018 (2006), in which

Schwartz reported an extended calculations of helium atom correct over 44 digits with 24099 functions.
${ }^{29}$ A. M. Frolov, Phys. Rev. E 74, 027702 (2006).
${ }^{30}$ H. Nakashima and H. Nakatsuji (unpublished).


[^0]:    ${ }^{\text {a) }}$ Author to whom correspondence should be addressed. Electronic mail: h.nakatsuji@qcri.or.jp

