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We evaluate mean frequencies for atomic jumps in a crystal from first principles based on transition state
theory, taking lithium diffusion by the interstitial and vacancy mechanisms in LiC6 as a model case. The mean
jump frequencies are quantitatively evaluated from the potential barriers and the phonon frequencies for both
initial and saddle-point states of the jumps under the harmonic approximation. The lattice vibrations are treated
within quantum statistics, not using the conventional treatment by Vineyard corresponding to the classical
limit, and the discrepancy between the two treatments is quantitatively discussed. The apparent activation
energies and the vibrational prefactors of the mean jump frequencies essentially depend on temperature, unlike
in the case of the classical approximation. The discrepancies of the activation energies correspond to the
changes in zero-point vibrational energy at 0 K, and there remains the effect even at 1000 K. With regard to the
vibrational prefactors, the classical approximation extremely overestimates the prefactors at low temperatures
while the discrepancies rapidly decrease with increasing temperature, e.g., by 30% at room temperature and by
5% at 1000 K. The calculated chemical diffusion coefficients of lithium atoms by the interstitial and vacancy
mechanisms are 1�10−11 and 1�10−10 cm2 /s, respectively.
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I. INTRODUCTION

The diffusion of atoms, molecules, and ions plays a key
role in many physical and chemical processes, for instance,
crystal and film growth, phase transitions, and ionic conduc-
tion. It is well known that diffusion fluxes follow Fick’s first
law.1 The major issue in research on diffusion is the evalua-
tion of diffusion coefficients under conditions of interest.
Molecular-dynamics �MD� simulations are often used to
theoretically evaluate the diffusion coefficients.2,3 In MD
simulations, the diffusion coefficients are evaluated from the
migration distance of the species in a certain time. In spite of
the successes of MD simulations for modeling fast diffusion,
the technique is not effective for slow diffusion in crystals.
Diffusion in crystals consists of a series of elementary jumps.
The mean frequency of the jumps is empirically expressed as

� = �� exp�−
q

kT
� , �1�

where k is the Boltzmann constant, T is the temperature, and
q is the apparent activation energy. The pre-exponential fac-
tor of �� and the exponential term are often considered as the
jump attempt frequency and the success probability of the
jump, respectively. The success probability is very small un-
der the low-temperature condition of T�q /k. For example,
it is less than 10−8 for the activation energy of q=0.5 eV at
room temperature. This means that on average 108 trials are
necessary for every jump in MD simulations, and the calcu-
lation costs are infeasibly expensive.

A statistical-mechanical approach based on transition state
theory �TST� �Refs. 4 and 5� is an effective method of evalu-
ating the mean jump frequency in crystals. In this approach,
the questions are: what types of jumps happen and how often
do they occur? The nudged elastic band �NEB� method6 is a

useful technique for finding migration paths and evaluating
potential barriers on the paths. It, however, gives no infor-
mation on the vibrational prefactor �� in Eq. �1�. Therefore,
the factor �� has been often approximated by the Debye fre-
quencies or constant values of 1012–1013 s−1 to obtain the
mean jump frequency �.7–9 Once all jump frequencies for
possible jumps in a crystal are obtained, the diffusion behav-
ior can be readily simulated using the kinetic Monte Carlo
�KMC� technique, which has been applied even to the non-
stoichiometric and disordered systems.8

Based on transition state theory, the vibrational prefactors
�� can be derived from the lattice vibrations at the initial and
saddle-point states for the jumps. The following equation
formulated by Vineyard10 has been conventionally used for
evaluating the mean jump frequency:

� =

�
i=1

3N

�i
I

�
i=1

3N−1

�i
S

exp�−
�Emig

kT
� , �2�

where �Emig is the potential barrier, and �i
I and �i

S are the
frequencies of the normal vibrational modes at the initial and
saddle points, respectively. However, Eq. �2� is not rigorous
because this expression corresponds to just a classical limit
of quantum statistics �described later in detail�. In many re-
ports on the prefactor ��, the eigenfrequencies estimated
within the local vibrations around a migrating atom have
been applied to Eq. �2�.11,12 Though some researchers have
evaluated the prefactor beyond the above framework,13,14

there are no reports on the first-principles evaluation of the
prefactor �� based on quantum statistics using the lattice vi-
brations over the entire cell.
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In the present work, we have focused on the evaluation of
mean jump frequencies from first principles in the rigorous
manner. The lattice vibrations at the initial and saddle-point
states for the jumps are evaluated over the supercell, not
confined to the local vibrations near the migrating atom. The
lattice vibrations are treated based on quantum statistics, and
the validity of the classical approximation �Eq. �2�� is dis-
cussed. The chemical diffusion coefficient is finally esti-
mated from the calculated mean jump frequencies. In this
paper, a first-stage lithium-graphite intercalation compound
�stage-1 Li-GIC� of LiC6 is taken as a model system, which
is widely used for negative electrodes in lithium-ion re-
chargeable batteries. The diffusion mechanism of lithium at-
oms in LiC6 has not been clearly understood in the atomic
level, though there are many reports on electrochemical mea-
surements of the lithium diffusion at room temperature.15

II. METHODOLOGY

A. Diffusion of Li atoms in LiC6

The intercalation of lithium atoms into graphite and the
structural feature have been well investigated so far.15–18

Lithium atoms form a superstructure in interlayers of graph-
ite, and the stacking of graphene and lithium layers has pe-
riodicity, which is called staging. The staging phenomenon is
characterized by a periodic sequence of intercalant layers,
and the stage number n refers to the number of host layers
separating two intercalant layers. In the case of Li-GIC,
lithium atoms are inserted into graphite with staging phase
transitions repeated, ultimately, to reach the stage-1 LiC6.

The crystal structure of LiC6 is shown in Fig. 1�a�.
Lithium atoms are located in all the interlayers, and form a
��3��3�R30° superstructure occupying one third of carbon
hexagonal sites. According to the literature, the ordering of
lithium atoms was reported to be stable up to 715 K,17 and

the deviation of lithium composition from the stoichiometry
was less than 1% up to 433 K.18 In the present study, the
diffusion of lithium atoms in LiC6 is considered to be medi-
ated by the lithium interstitials and vacancies. In this one-
component diffusion within a host matrix of graphene sheets,
the flux and concentration of lithium atoms are equivalent to
those of the defects. The chemical diffusion coefficient of
lithium atoms DLi can be, therefore, related to those of the
defects Ddefect. The relation between DLi and Ddefect is de-
scribed hereafter.

The chemical diffusion coefficient of lithium atoms DLi is
defined by Fick’s first law as

JLi = − DLi � CLi, �3�

where JLi and CLi are the flux and concentration of lithium
atoms, respectively. In the lithium excess case, the lithium
diffusion is mediated by the lithium interstitials. The intersti-
tial mechanism is examined in this paper. The flux of lithium
atoms can be separated into the two contributions, i.e., JLi
=JReg+JInt, where JReg and JInt are the fluxes of lithium at-
oms at regular and interstitial sites, respectively. The concen-
tration of lithium atoms is also separated into those of
lithium atoms at regular and interstitials sites �CReg and CInt�,
i.e., CLi=CReg+CInt. Lithium atoms at the regular sites do not
migrate in the interstitial mechanism, leading to JReg=0 and
�CReg=0. Hence, Eq. �3� can be rewritten as

JInt = − DLi � CInt. �4�

Equation �4� can be interpreted as the relation between the
flux and concentration gradient of interstitials, i.e., Fick’s
first law of the interstitials. Consequently, DLi by the inter-
stitial mechanism is equal to the chemical diffusion coeffi-
cient of the interstitials DInt. In the lithium deficient case, the
lithium vacancies mediate the diffusion of lithium atoms.
The regular sites are occupied by either lithium atoms or
vacancies, CLi+CV=const, where CV is the concentration of
vacancies. Since the concentration of the regular sites is con-
stant, the fluxes of lithium atoms and vacancies follow the
relation of JLi+JV=0 �JV is the flux of vacancies�. Therefore,
Eq. �3� can be rewritten as

JV = − DLi � CV. �5�

This means that DLi by the vacancy mechanism is equal to
that of the vacancies DV because Eq. �5� can be interpreted as
Fick’s first law of the vacancies. Consequently, DLi is equal
to Ddefect in both lithium excess and deficient cases.

B. Fluctuation dissipation theorem

The chemical diffusion of the defects can be readily
evaluated because of their independent migration, in contrast
to the correlative migration of lithium atoms. On the basis of
fluctuation dissipation theorem, the chemical diffusion coef-
ficient D in a one-component system within a host matrix is
given by a product of the thermodynamic factor � and the
jump diffusion coefficient, DJ,

8,19

D = �DJ, �6�

b)

c)

a)
Li
C

FIG. 1. �Color online� �a� Crystal structure of LiC6. Schematic
drawings of lithium migrations by �b� the interstitial and �c� the
vacancy mechanisms.
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� =
���/kT�
� ln x

, �7�

DJ = lim
t→�

1

2dt	 1

N

�

i=1

N

r�i�t�
2� , �8�

where � is the chemical potential, x is the ratio of the dif-
fusing atoms to the number of available sites for the atoms in
the system, d is the dimension of diffusion field, N is the
number of the atoms, and r�i�t� is the displacement of the ith
atom after time t. DJ is divided into two parts: the diagonal
and nondiagonal parts,

DJ = lim
t→�

1

2dt
� 1

N
�
i=1

N

�r�i�t��2�� + lim
t→�

1

2dt� 1

N
�
i�j

r�i�t�r� j�t��� .

�9�

DJ consists of the first diagonal part corresponding to the
self-diffusion coefficient, D�, and the second nondiagonal
part of the cross-correlation functions between different at-
oms i and j. Generally, the nondiagonal part is not negligible,
including the lithium migration in LiC6. In contrast, the non-
diagonal part is negligible for the migration of the point de-
fects because the small deviation of lithium composition
from the stoichiometry leads to the independent migration.
According to Henry’s law, the thermodynamic factors of the
defects, �, are unity due to the low concentration, finally
leading to Ddefect=Ddefect

� �Ddefect
� : self-diffusion coefficient of

the defects�. DLi is equal to the self-diffusion coefficients of
the interstitials and vacancies in the lithium excess and defi-
cient cases, respectively.

C. Transition state theory

The self-diffusion coefficient of independent defects can
be evaluated from the jump frequency of the single defect as
follows:

Ddefect
� =

1

2d
	
2, �10�

where d is the dimension of the diffusion field �=2 for in-
plane diffusions�, 	 is the total jump frequency of the defect,
and 
 is the jump length. This means that the evaluation of
DLi comes down to the estimation of the jump frequencies of
the single interstitial and vacancy.

TST has contributed to evaluation of mean frequencies of
atomic jumps in solids.4,19 On the basis of TST, mean fre-
quencies � of atomic jumps in solids are given by

� =
kT

h

ZS
vib

ZI
vibexp�−

�Emig

kT
� , �11�

where h is Planck’s constant, and ZI
vib and ZS

vib are the vibra-
tional partition functions at the initial and saddle-point states,
respectively. Note that the vibrational partition function at
the initial is evaluated with 3N degrees of freedom while that
at the saddle point is with 3N−1 degrees; the migration co-
ordinate is excluded. Using the relation between partition
functions and free energies,

Fvib = − kT ln Zvib, �12�

the mean jump frequency is rewritten by

� =
kT

h
exp�−

�Emig + �Fvib

kT
� , �13�

�Fvib = FS
vib − FI

vib. �14�

Consequently, the evaluation of the mean jump frequency
comes down to the estimation of the two changes in potential
energy and vibrational free energy from the initial to the
saddle point for the jump, �Emig and �Fvib.

In the present study, the lattice vibrations are treated un-
der the harmonic approximation. Based on quantum statis-
tics, vibrational free energies are described as

Fvib = �
i
�1

2
h�i + kT ln�1 − exp�−

h�i

kT
��� , �15�

where �i is the vibrational frequency of the ith normal mode.
The classical limit of vibrational free energies is expressed as

Fvib = kT�
i

ln�h�i

kT
� . �16�

Using the classical vibrational free energy of Eq. �16�, the
mean jump frequency is approximated as the conventional
expression formulated by Vineyard10 �Eq. �2��. In this paper,
the discrepancy between the quantum and classical treat-
ments is quantitatively evaluated, and the validity of the clas-
sical approximation is discussed.

D. Computational conditions

The first-principles calculations were performed using the
projector augmented wave �PAW� method as implemented in
the VASP code.20 A 3�3�2 supercell of LiC6 was used,
containing 18 lithium atoms and 108 carbon atoms. A lithium
interstitial or vacancy was introduced into the supercell. The
local-density approximation �LDA� �Ref. 21� was used for
the exchange-correlation term. The plane-wave cutoff energy
was 350 eV. 2s and 2p orbitals were treated as valence states
for both lithium and carbon. Integration in the reciprocal
space was made using a 3�3�6 k-point mesh in the Bril-
louin zone by the Monkhorst-Pack scheme.22 The NEB
method was used for finding the migration paths and evalu-
ating the potential barriers on the paths.6 For the migration-
path search, atom positions were fully optimized until the
residual forces became less than 0.02 eV /Å. The lattice vi-
brations were evaluated under the harmonic approximation
using the frozen phonon method, as implemented in the
“FROPHO” code.23 Each atom in the supercell was displaced
by a small amount �0.01 Å in the present work� in the x, y,
or z direction to obtain all the interatomic force constants.
Since the vibrational frequencies are sensitive to the residual
forces of the structures without the displacement, the struc-
tures were precisely optimized with the convergence of
10−5 eV /Å of the residual forces.

FIRST-PRINCIPLES APPROACH TO CHEMICAL… PHYSICAL REVIEW B 78, 214303 �2008�

214303-3



III. RESULTS

A. Interstitial mechanism

1. Migration path and potential barrier

Figure 1�b� shows the schematic drawings of lithium mi-
gration by the interstitial mechanism. An interstitial is lo-
cated at an unoccupied site of carbon hexagons, and sur-
rounded by the three lithium atoms at regular sites. It has
three neighboring interstitial sites and jumps into one of
them. The calculated migration path and energy profile along
the path are shown in Fig. 2. The energy profile shows that
the interstitial jump goes through a saddle-point state. The
saddle point corresponds to just the middle point for the
migration when the interstitial is located on the borders of
the two carbon hexagons. The mean jump frequency �Int
from the initial interstitial site to the neighboring site �jump
Int� is needed to evaluate the diffusion coefficient by
this mechanism. The calculated potential barrier �Emig is
0.48 eV.

2. Change in vibrational free energy

Figure 3 shows the calculated phonon band structures and
vibrational spectra at �a� the initial �equal to the final� and �b�
the saddle-point states. The horizontal axes of the band struc-
tures stand for the path in the reciprocal space for the super-
cell �a 3�3�2 cell of primitive LiC6�. Each band structure
has 381 modes for the 127 atoms in the supercell. The major
difference between the two band structures is whether an
imaginary mode appears or not. At the initial state, all the
vibrational modes have real frequencies while an imaginary
mode appears at the saddle-point state. The imaginary mode
corresponds to the picture that the potential energy at the
saddle-point state is the local maximum only to the migration
coordinate. The flat imaginary band indicates that the mode

corresponding to the migration is sufficiently localized in the
supercell.

In the vibrational spectra, the total spectrum �broken line�
and the contribution of all the lithium atoms �solid line� and
the interstitial �filled region� are shown. The contribution of
the lithium atoms are focused hereafter. At the initial state,
there are two major peaks �A at 7 THz and B at 15 THz�.
Investigating the corresponding normal-mode coordinates,
peaks A and B are attributed to the in-plane and perpendicu-
lar vibrations of the lithium atoms, respectively. The contri-
bution of the interstitial at the initial state has three peaks
�peaks aInt 1, aInt 2, and bInt� at 6.5, 9.7, and 14.5 THz, respec-
tively. Peaks aInt 1 and aInt 2 are attributed to the in-plane
vibration while peak bInt is due to the perpendicular. At the
saddle-point state, drastic changes appear in the interstitial
contribution. First of all, one imaginary mode �peak aInt 1� �
appears. This mode exactly corresponds to the in-plane vi-
bration in the direction of the interstitial jump. There are
three peaks with real frequency at 2.0, 10.5, and 22.9 THz
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FIG. 2. �Bottom� Migration path and �top� energy profile along
the path by the interstitial mechanism. The schematic drawings of
the migration path are inserted in the figure. The hexagons denote
the hexagonal network of carbon atoms �see also Fig. 1�b��.

FIG. 3. �Color online� Calculated phonon band structures and
vibrational spectra at �a� the initial and �b� the saddle-point states in
the interstitial mechanism. The total spectrum, the contribution of
all lithium atoms, and that of the migrating lithium atom are ex-
pressed by broken line, solid line, and red filled region �indicated by
arrows�, respectively. Imaginary frequencies are expressed as nega-
tive values.
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�peaks aInt 2� , aInt 3� , and bInt� �. The former two are attributed to
the in-plane vibration while the last is to the perpendicular
vibration. The details of the vibrational modes will be dis-
cussed later.

Figure 4 shows the changes in vibrational free energy
�Fvib based on quantum and classical statistics. The differ-
ences between both statistics are also shown in the figure. At
0 K, the quantum �Fvib has a finite value of the change in
zero-point vibrational energy �Ezero

vib while the classical one
is exactly zero. The discrepancy between both statistics is 13
meV at 0 K, and it remains 12 meV at room temperature.

3. Mean jump frequency and diffusion coefficient

It is now possible to evaluate the mean jump frequency
from the potential barrier, �Emig, shown in Fig. 2, and the
change in vibrational free energy, �Fvib, in Fig. 4. Figure 5
shows the calculated mean jump frequency, �Int, based on
quantum statistics. For example, the frequency is 6
�104 s−1 at room temperature. The total jump frequency of
the interstitial mechanism, 	Int, is 3�Int because of three pos-
sible migration paths per interstitial. Figure 6 shows the cal-
culated chemical diffusion coefficient of lithium atoms DLi
by the interstitial mechanism as a function of �a� temperature

and �b� the inverse of temperature. At room temperature, the
diffusion coefficient is 1�10−11 cm2 /s. The apparent acti-
vation energy Q �100–1000 K� is 0.51 eV, which is larger
than the potential barrier of jump Int ��Emig=0.48 eV�. This
results from the major contribution of the change in zero-
point vibrational energy �Ezero

vib at low temperatures, which is
unique to quantum statistics beyond the concept of classical
statistics.

B. Vacancy mechanism

1. Migration path and potential barrier

Figure 1�c� shows the schematic drawing of lithium mi-
gration by the vacancy mechanism. A vacancy is surrounded
by six lithium atoms at second-nearest-neighbor hexagons
and one of them jumps into the vacancy. Figure 7 shows the
calculated migration path and the energy profile using the
NEB method. A neighboring lithium atom does not migrate

-20

0

20

40

60

80

100

0 200 400 600 800 1000

C
ha
ng
e
in
vi
br
at
io
na
lf
re
e
en
er
gy
(m
eV
)

Temperature (K)

Quantum

Classical

Quantum - Classical

Jump Int

FIG. 4. Changes in vibrational free energy �Fvib for jump Int as
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FIG. 6. Chemical diffusion coefficients of lithium atoms by the
interstitial mechanism as a function of �a� temperature and �b� the
inverse of temperature. The apparent activation energies Q in the
range of 100–1000 K are shown in the figure.
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in a straight-line trajectory but by way of a first-nearest-
neighbor hexagon. The intermediated state corresponds to
the metastable state energetically. There are two saddle-point
states along the path, at which the migrating lithium atom is
located on the borders of the two carbon hexagons. It is
therefore necessary to estimate the two mean frequencies for
the two elementary jumps; �V1 corresponding to the jump
from the initial regular site to the intermediated site �jump
V1�, and �V2 corresponds to the following jump from the
intermediated site to the final vacant site �jump V2�. The
calculated potential barriers �Emig are 0.47 and 0.26 eV, re-
spectively.

2. Change in vibrational free energy

Figure 8 shows the calculated phonon band structures and
vibrational spectra at �a� the initial �equal to the final�, �b� the
saddle-point, and �c� the metastable �i.e., the final for jump
V1 as well as the initial for jump V2� states. In the phonon
spectra, the total spectrum �broken line� and the contribution
of all the lithium atoms �solid line� and the migrating lithium
atom �filled region� are shown. At the initial state, there are
two major peaks of lithium atoms �peaks A and B�, which are
attributed to the in-plane and the perpendicular vibrations of
lithium atoms, respectively. The contribution of one of the
six lithium atoms neighboring to the vacancy has also two
peaks �peaks aV and bV�, whose positions and intensities are
almost the same as those of peaks A and B. At the metastable
state, the vibrational modes do not significantly change from
those of the initial state except for broadening of the in-plane
peak aV. At the saddle-point state, one imaginary mode �peak
aV1� � appears, corresponding to the in-plane vibration in the
migrating direction. The other in-plane mode is located at 2.6
THz �peak aV2� �, and this peak is lower than peak aV at the
initial state �7.2 THz�. The perpendicular mode, in contrast,
shows a broad peak at 24.4 THz �peak bV�� on the higher-
frequency side compared with that at the initial state.

The changes in vibrational free energy �Fvib for jumps
V1 and V2 are shown in Figs. 9�a� and 9�b�, respectively.
�Fvib of the two jumps are equivalent with a difference of
less than 2 meV in this temperature range because the vibra-

0

0.2

0.4

0.6

x

R
el
at
iv
e
en
er
gy
(e
V
)

Initial FinalMiddle

Saddle point Saddle point
0.8

= 4.3 Åα

FIG. 7. �Bottom� Migration path and �top� energy profile along
the path by the vacancy mechanism. The schematic drawings of the
migration path are inserted in the figure. The hexagons denote the
hexagonal network of carbon atoms �see also Fig. 1�c��.

FIG. 8. �Color online� Calculated phonon band structures and
vibrational spectra of �a� the initial, �b� the saddle-point, and �c�
metastable states in the vacancy mechanism. The total spectrum, the
contribution of all the lithium atoms, and that of the migrating
lithium atom are expressed by broken line, solid line, and red filled
region �indicated by arrows�, respectively. Imaginary frequencies
are expressed as negative values.

TOYOURA et al. PHYSICAL REVIEW B 78, 214303 �2008�

214303-6



tional spectra at the initial and metastable states have little
difference. The discrepancies between quantum and classical
statistics are also shown in the figures. They are 12–13 meV
at 0 K, and remain 11–12 meV at room temperature.

3. Mean jump frequency and diffusion coefficient

Figure 10 shows the calculated mean jump frequencies for
jumps V1 and V2 based on quantum statistics. �V1 is much
smaller than �V2, e.g., 4�104 vs 1�108 s−1 at room tem-

perature. This is mainly caused by the difference in potential
barrier between the two jumps �0.47 vs 0.26 eV�. It is found
that the first jump is rate determining in the vacancy mecha-
nism.

It takes the total jump frequency of a vacancy, 	V, to
estimate the chemical diffusion coefficient of lithium atoms
in the lithium deficient case. The possible elementary jumps
are schematically shown in Fig. 11. At the first step, there are
12 possible migration paths �Fig. 11�a��. The migrating
lithium atom at a metastable site can jump to either the va-
cant or the initial site �Fig. 11�b��. The former jump means a
successful jump, while the latter means failure. The mean
time of the total jump is the sum of those of the individual
steps, �=�1+�2, where �1= �12�1�−1 and �2= �2�2�−1. The
factors of 12 and 2 are the numbers of possible jumps at the
two steps as described above. Hence, the total jump fre-
quency is given by 	V=1 /2�= �6�1�2� / �6�1+�2�, where
the factor of 1/2 is due to the success probability of the jump.
If �1��2, the total jump frequency 	V can be approximated
to 6�1. For example, the approximation �6�1� is equivalent
to the total frequency �	V� within an error of 0.2% at room
temperature while it overestimates 	V by more than 50% at
1000 K. Figure 12 shows DLi by the vacancy mechanism as
a function of �a� temperature and �b� the inverse of tempera-
ture. For instance, DLi is 1�10−10 cm2 /s at room tempera-
ture, which is larger than that by the interstitial mechanism
�1�10−11 cm2 /s�. The apparent activation energy Q in the
range of 100 and 1000 K is 0.49 eV, which is larger than the
potential barrier of the first jump �0.47 eV� due to the change
in zero-point vibrational energy.

IV. DISCUSSION

A. Vibrational mode

In this subsection, the vibrational modes at the initial and
saddle-point states for each jump in the interstitial and va-
cancy mechanisms are discussed. First, the lattice vibration
of the perfect crystal is explained for reference. The phonon
spectrum of the perfect crystal is shown in Fig. 13�a�. The
broken and solid lines show the total spectrum and the con-
tribution of lithium atoms, respectively. The contribution of
lithium atoms has two peaks at 7 and 15 THz �peaks A and
B� corresponding to the in-plane and perpendicular vibra-
tions, respectively. These localized modes mean that all the
lithium atoms in the perfect crystal are independent and not
coupled with one another in terms of vibration. This is be-
cause each lithium atom is separately positioned in a lithium
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FIG. 11. �Color online� Possible elementary jumps for lithium
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sists of two steps: �a� from the regular sites to the middle metastable
sites, and �b� from the metastable sites to the vacant site.
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layer. All the initial and saddle-point states for the jumps also
have the two major peaks of lithium atoms at 7 and 15 THz
�see Figs. 3 and 8�. However, the vibrational modes of
lithium atoms show some differences depending on the states
for the jumps. Hereafter, the differences are discussed, par-
ticularly in the modes of the migrating lithium atom.

In the vacancy mechanism, all the lithium atoms at the
initial state are not coupled with one another because they
are separately positioned like in the perfect crystal. There-
fore, the lithium contribution to the vibrational spectrum has
little difference from that in the perfect crystal. At the meta-
stable state, the migrating lithium atom occupies the interme-
diated site with one neighboring lithium atom at the first-
nearest-neighbor hexagon. The peak corresponding to the in-
plane vibration of the migrating lithium atom �peak aV�
broadens due to coupling with the neighboring lithium atom
�Fig. 13�b��. The lower-frequency side of the peak is attrib-
uted to the translational vibration of the interstitial and the
neighboring lithium atom while the higher side is to the

breathing vibration of the two lithium atoms �shown in the
figure�. At the saddle-point state, the migrating lithium atom
is located on the borders of the two hexagons between the
two C-C bonds. Hence, the vibrational modes of the migrat-
ing lithium atom drastically changes. First, one imaginary
mode appears corresponding to the in-plane vibration along
the migration path. Moreover, the other in-plane mode has
lower frequency while the perpendicular mode has higher
frequency, compared with those at the initial states. Consid-
ering that the migrating lithium atom at the saddle point is
weakly coupled with the other lithium atoms, this tendency
is the characteristic of a lithium atom on the borders of the
hexagons.

In the interstitial mechanism, the migrating lithium atom,
i.e., the interstitial, is strongly coupled with the lithium at-
oms at the neighboring hexagons. At the initial state, the
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lithium contribution to the vibrational spectrum has a shoul-
der on the high-frequency side at peak A, which does not
appear in the cases of the perfect crystal and the vacancy
mechanism. The closeup around peak A is shown in Fig.
13�c�. The solid line, filled region, and broken line show the
contributions of all the lithium atoms, the interstitial, and the
three neighboring lithium atoms, respectively. The figure
shows that the shoulder is mainly attributed to the lithium
interstitial and also to the neighboring lithium atoms. The
schematic drawings of the normal vibrational modes corre-
sponding to peaks aInt 1 and aInt 2 are shown in the figure. In
the vibration corresponding to peak aInt 1, the three neighbor-
ing lithium atoms are displaced in the direction away from
the interstitial. Peak aInt 1 has the same frequency as the in-
plane vibration of lithium atoms in the perfect crystal be-
cause the displacements of the neighboring lithium atoms
reduce the electrostatic repulsion with the interstitial. On the
contrary, peak aInt 2 has higher frequency because the neigh-
boring lithium atoms are displaced close to the interstitial
with more repulsive interaction. At the saddle-point state, the
in-plane mode of the migrating interstitial shows different
trend from that in the case of vacancy mechanism because
the interstitial is strongly coupled with the two neighboring
lithium atoms �Fig. 13�d��. The in-plane mode in the real
frequency region is divided into the two peaks �peaks aInt 2�
and aInt 3� �. The lower-frequency peak �peak aInt 2� � corre-
sponds to the translation of the three lithium atoms along the
inline direction. It has almost the same frequency as that at
the saddle-point state in the vacancy mechanism. This is be-
cause the two neighboring lithium atoms are displaced to
reduce their repulsive interaction. The higher peak �peak
aInt 3� � is due to the asymmetric stretching with strong repul-
sion between the interstitial and the neighboring lithium
atoms.

B. Change in vibrational free energy

The change in vibrational free energy �Fvib can be evalu-
ated using Eq. �15� based on quantum statistics or the clas-
sical approximation of Eq. �16�. �Fvib for jumps Int, V1, and
V2 are shown in Fig. 4 and Figs. 9�a� and 9�b�, respectively.
The changes in vibrational free energy for the three jumps
show the same tendency. Therefore the interstitial jump
�jump Int� is focused hereafter.

At 0 K, the quantum �Fvib is a positive finite value �13
meV� corresponding to the change in zero-point vibrational
energy �Ezero

vib from the initial to the saddle point. Note that
the vibrational free energy at the initial is evaluated with 3N
degrees of freedom while that at the saddle point is with
3N−1 degrees. The positive �Ezero

vib means that the increase in
the frequencies of the 3N−1 vibrational modes at the saddle-
point state outweighs the decrease in number of the modes.
The classical �Fvib is exactly zero, and the difference from
the quantum one is equal to the change in zero-point vibra-
tional energy. With increasing temperature, the quantum
�Fvib decreases in the low-temperature range. In this range,
high-frequency vibrational modes are not thermally excited,
and only low-frequency modes make a major contribution to
the temperature dependence of vibrational free energy. This

downward tendency means that the saddle-point state has
many low-frequency modes compared with the initial. Actu-
ally, the in-plane vibration of the migrating lithium atom at
the saddle point has lower frequency �peak aInt 2� � than that at
the initial �peaks aInt 1 and aInt 2�. With further increase in
temperature, �Fvib show the upward tendency in the high-
temperature range. This is derived from the difference in
number of the vibration modes of the migrating lithium
atom; three at the initial versus two at the saddle point. This
difference influences �Fvib only at enough high temperatures
to excite the in-plane vibration of the migrating lithium atom
at the initial state �7 THz; around 300 K in temperature
equivalent�. The discrepancy between quantum and classical
statistics is large in the low-temperature range mainly due to
the zero-point vibrational energy and the low-frequency
modes, while the classical value gradually converges to the
quantum one at temperatures higher than room temperature.

C. Mean jump frequency

In this subsection, the difference in mean jump frequency
between quantum and classical statistics is discussed. Mean
jump frequencies under quantum statistics essentially deviate
from the Arrhenius form, unlike in the case of the classical
approximation �Eq. �2��. How should the jump frequencies �
be related to the parameters in the Arrhenius equation, the
vibrational prefactor ��, and the apparent activation energy
q?

The activation energy q can be defined from the gradient
of the Arrhenius plot as

q = −
��ln ��
��1/kT�

= �Emig + �Evib + kT . �17�

�Evib can be separated into �Ezero
vib and the rest term depend-

ing on temperature, �ET
vib�T�,

�Evib = �Ezero
vib + �ET

vib, �18�

�ET
vib = �

i=1

3N−1
h�i

S

exp�h�i
S/kT� − 1

− �
i=1

3N
h�i

I

exp�h�i
I/kT� − 1

.

�19�

The vibrational prefactor �� can be expressed as

�� = �/exp�−
q

kT
� =

kT

h
exp�1 +

�Svib

k
� , �20�

Figures 14�a� and 14�b� show the changes in vibrational en-
ergy, �Evib, and in vibrational entropy, �Svib, for the intersti-
tial jump �jump Int�. �Evib is a finite value at 0 K corre-
sponding to the zero-point vibrational energy. With
increasing temperature, it slightly increases up to 100 K and
decreases at higher temperatures. �Svib has almost the same
tendency as �Evib except for the difference in value at 0 K.
This temperature dependence is derived from the difference
in number of the excited modes between the initial and
saddle-point states, as already discussed in Sec. IV B. At
high temperature, the energy and entropy of a harmonic
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oscillator can be expressed by the following classical ap-
proximation:

Evib��� → kT �T → �� , �21�

Svib��� → k ln� kT

h�
� + k �T → �� . �22�

Taking the difference in number of the vibrational modes
between the initial and saddle-point states into account,
�Evib converges to −kT at high temperatures and cancels the
term of +kT in Eq. �17�. Therefore, q is equal to �Emig at the
high-temperature limit. This means that the expression of
Vineyard10 is equal to the high-temperature limit. The con-
vergence of �Svib depends on the frequencies of the normal
vibrational modes at the initial and saddle-point states as
follows:

�Svib��� → k ln� h

kT

�
i=1

3N

�i
I

�
i=1

3N−1

�i
S� − k �T → �� . �23�

By comparison between Eqs. �20� and �23�, the vibrational
prefactor �� converges to the classical expression by
Vineyard10 at high temperatures.

Figure 15 shows the activation energies q and the vibra-
tional prefactors �� for each jump defined as the above equa-

tions. The broken lines show the classical limits �high-
temperature limits�. With respect to the activation energies q,
each of them at 0 K corresponds to the sum of the potential
barrier and the change in zero-point vibrational energy. With
increasing temperature, q increases with the gradient of k in
the vicinity of 0 K, derived from the kT term in Eq. �17�. The
lattice vibrations are not excited and �Evib has little tempera-
ture dependence at the low temperatures. The upward trend
of the kT term is canceled out around 150 K by the down-
ward trend of �Evib approximated to be −kT at high tempera-
tures. With further increase in temperature, q gradually con-
verges to the classical limit of �Emig �not �Emig+�Ezero

vib �. In
this temperature range �0–1000 K�, the activation energies q
do not converge to the classical limits and the discrepancies
remain comparable to the changes in zero-point vibrational
energy �Ezero

vib . With regard to the vibrational prefactors ��,
the same tendency can be seen as the activation energies q.
At 0 K, each of them starts at 0 s−1 due to the term of kT /h
in Eq. �20�, and rapidly increases with the gradient of k /h in
the vicinity of 0 K. Over 150 K, kT /h is canceled out by the
inverse temperature dependence of �Svib. With increasing
temperature, �� gradually converge to the classical-limit val-
ues. The classical approximation underestimates �� by 30%
at room temperature and by 5% at 1000 K.

V. CONCLUSIONS

In summary, we have investigated the lithium diffusion by
the interstitial and vacancy mechanisms in LiC6 from first
principles. Based on transition state theory, the mean fre-
quencies of the possible jumps in LiC6 have been rigorously
evaluated from the corresponding potential barriers and lat-
tice vibrations. The potential barriers in the interstitial and
vacancy mechanisms are almost the same: 0.48 eV for the
interstitial jump vs 0.47 eV for the rate determining jump in
the vacancy mechanism. The mean jump frequencies per
path are almost the same between the two mechanisms. The
calculated chemical diffusion coefficients of lithium atoms at
room temperature are 1�10−11 cm2 /s by the interstitial
mechanism and 1�10−10 cm2 /s by the vacancy mechanism.
There are many reports on the measurements of the lithium
chemical diffusion at room temperature using electrochemi-
cal techniques, such as alternating-current �ac� impedance
measurements and potentiostatic and galvanostatic intermit-
tent titration techniques �PITT and GITT�.15 Our calculated
values are in the wide range of these reported values from
10−7 to 10−12 cm2 /s.

With regard to the vibrational modes, all the lithium at-
oms in the perfect crystal are independent and not coupled
with one another in terms of vibration due to their separated
positions. The lithium atoms are weakly coupled with one
another during the migration in the vacancy mechanism
while the migrating lithium atom in the interstitial mecha-
nism is strongly coupled with the neighboring lithium atoms.
The apparent activation energies for the mean jump frequen-
cies under quantum statistics are larger than the potential
barriers �corresponding to the classical approximation� by
the changes in zero-point vibrational energy at low tempera-
tures. The discrepancies between quantum and classical sta-
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tistics remain comparable to the changes in zero-point vibra-
tional energy even at 1000 K. The vibrational prefactors
under quantum statistics also deviate from the values using
the classical approximation. The factors under quantum sta-
tistics are much smaller than the classical values at low tem-
peratures while they rapidly converge to the classical limits
with increasing temperatures. The classical approximation
underestimates �� by 30% at room temperature and by 5% at
1000 K.
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