First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound

Kazuaki Toyoura,1,∗ Yukinori Koyama,2 Akihide Kuwabara,1 Fumiyasu Oba,1 and Isao Tanaka1,3,†
1Department of Materials Science and Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan
2Innovative Collaboration Center, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan
3Nanostructure Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
(Received 20 February 2008; revised manuscript received 12 November 2008; published 19 December 2008)

We evaluate mean frequencies for atomic jumps in a crystal from first principles based on transition state theory, taking lithium diffusion by the interstitial and vacancy mechanisms in LiC6 as a model case. The mean jump frequencies are quantitatively evaluated from the potential barriers and the phonon frequencies for both initial and saddle-point states of the jumps under the harmonic approximation. The lattice vibrations are treated within quantum statistics, not using the conventional treatment by Vineyard corresponding to the classical limit, and the discrepancy between the two treatments is quantitatively discussed. The apparent activation energies and the vibrational prefactors of the mean jump frequencies essentially depend on temperature, unlike in the case of the classical approximation. The discrepancies of the activation energies correspond to the changes in zero-point vibrational energy at 0 K, and there remains the effect even at 1000 K. With regard to the vibrational prefactors, the classical approximation extremely overestimates the prefactors at low temperatures while the discrepancies rapidly decrease with increasing temperature, e.g., by 30% at room temperature and by 5% at 1000 K. The calculated chemical diffusion coefficients of lithium atoms by the interstitial and vacancy mechanisms are 1 \times 10^{-11} and 1 \times 10^{-10} cm²/s, respectively.

DOI: 10.1103/PhysRevB.78.214303
PACS number(s): 66.30.Ny, 66.30.Dn

I. INTRODUCTION

The diffusion of atoms, molecules, and ions plays a key role in many physical and chemical processes, for instance, crystal and film growth, phase transitions, and ionic conduction. It is well known that diffusion fluxes follow Fick’s first law. The major issue in research on diffusion is the evaluation of diffusion coefficients under conditions of interest. Molecular-dynamics (MD) simulations are often used to theoretically evaluate the diffusion coefficients.2,3 In MD simulations, the diffusion coefficients are evaluated from the migration distance of the species in a certain time. In spite of the successes of MD simulations for modeling fast diffusion, the technique is not effective for slow diffusion in crystals. Diffusion in crystals consists of a series of elementary jumps. The mean frequency of the jumps is empirically expressed as

$$\omega \approx \nu^* \exp \left(- \frac{q}{kT} \right),$$ \hspace{1cm} (1)

where \(k\) is the Boltzmann constant, \(T\) is the temperature, and \(q\) is the apparent activation energy. The pre-exponential factor of \(\nu^*\) and the exponential term are often considered as the jump attempt frequency and the success probability of the jump, respectively. The success probability is very small under the low-temperature condition of \(T \ll q/k\). For example, it is less than \(10^{-8}\) for the activation energy of \(q = 0.5\) eV at room temperature. This means that on average \(10^8\) trials are necessary for every jump in MD simulations, and the calculation costs are infeasibly expensive.

A statistical-mechanical approach based on transition state theory (TST) (Refs. 4 and 5) is an effective method of evaluating the mean jump frequency in crystals. In this approach, the questions are: what types of jumps happen and how often do they occur? The nudged elastic band (NEB) method6 is a useful technique for finding migration paths and evaluating potential barriers on the paths. It, however, gives no information on the vibrational prefactor \(\nu^*\) in Eq. (1). Therefore, the factor \(\nu^*\) has been often approximated by the Debye frequencies or constant values of \(10^{12} - 10^{13}\) s⁻¹ to obtain the mean jump frequency \(\omega\).7-9 Once all jump frequencies for possible jumps in a crystal are obtained, the diffusion behavior can be readily simulated using the kinetic Monte Carlo (KMC) technique, which has been applied even to the non-stoichiometric and disordered systems.8

Based on transition state theory, the vibrational prefactors \(\nu^*\) can be derived from the lattice vibrations at the initial and saddle-point states for the jumps. The following equation formulated by Vineyard10 has been conventionally used for evaluating the mean jump frequency:

$$\omega = \prod_{i=1}^{3N} \nu_i^S \exp \left(- \frac{\Delta E^\text{mig}}{kT} \right),$$ \hspace{1cm} (2)

where \(\Delta E^\text{mig}\) is the potential barrier, and \(\nu_i^S\) and \(\nu_i^I\) are the frequencies of the normal vibrational modes at the initial and saddle points, respectively. However, Eq. (2) is not rigorous because this expression corresponds to just a classical limit of quantum statistics (described later in detail). In many reports on the prefactor \(\nu^*\), the eigenfrequencies estimated within the local vibrations around a migrating atom have been applied to Eq. (2).11,12 Though some researchers have evaluated the prefactor beyond the above framework,13,14 there are no reports on the first-principles evaluation of the prefactor \(\nu^*\) based on quantum statistics using the lattice vibrations over the entire cell.

1098-0121/2008/78(21)/214303(12) 214303-1 ©2008 The American Physical Society
the deviation of lithium composition from the stoichiometry was less than 1% up to 433 K.\cite{18} In the present study, the diffusion of lithium atoms in LiC$_6$ is considered to be mediated by the lithium interstitials and vacancies. In this one-component diffusion within a host matrix of graphene sheets, the flux and concentration of lithium atoms are equivalent to those of the defects. The chemical diffusion coefficient of lithium atoms D_{Li} can be, therefore, related to those of the defects D_{defect}. The relation between D_{Li} and D_{defect} is described hereafter.

The chemical diffusion coefficient of lithium atoms D_{Li} is defined by Fick’s first law as

$$J_{Li} = -D_{Li} \nabla C_{Li},$$

(3)

where J_{Li} and C_{Li} are the flux and concentration of lithium atoms, respectively. In the lithium excess case, the lithium diffusion is mediated by the lithium interstitials. The interstitial mechanism is examined in this paper. The flux of lithium atoms can be separated into the two contributions, i.e., $J_{Li} = J_{Reg} + J_{Int}$, where J_{Reg} and J_{Int} are the fluxes of lithium atoms at regular and interstitial sites, respectively. The concentration of lithium atoms is also separated into those of lithium atoms at regular and interstitial sites (C_{Reg} and C_{Int}), i.e., $C_{Li} = C_{Reg} + C_{Int}$. Lithium atoms at the regular sites do not migrate in the interstitial mechanism, leading to $J_{Reg} = 0$ and $\nabla C_{Reg} = 0$. Hence, Eq. (3) can be rewritten as

$$J_{int} = -D_{Li} \nabla C_{Int}.$$

(4)

Equation (4) can be interpreted as the relation between the flux and concentration gradient of interstitials, i.e., Fick’s first law of the interstitials. Consequently, D_{Li} by the interstitial mechanism is equal to the chemical diffusion coefficient of the interstitials D_{Int}. In the lithium deficient case, the lithium vacancies mediate the diffusion of lithium atoms. The regular sites are occupied by either lithium atoms or vacancies, $C_{Li} + C_{V} = const$, where C_{V} is the concentration of vacancies. Since the concentration of the regular sites is constant, the fluxes of lithium atoms and vacancies follow the relation of $J_{Li} + J_{V} = 0$ (J_{V} is the flux of vacancies). Therefore, Eq. (3) can be rewritten as

$$J_{V} = -D_{Li} \nabla C_{V}.$$

(5)

This means that D_{Li} by the vacancy mechanism is equal to that of the vacancies D_{V} because Eq. (5) can be interpreted as Fick’s first law of the vacancies. Consequently, D_{Li} is equal to D_{defect} in both lithium excess and deficient cases.

B. Fluctuation dissipation theorem

The chemical diffusion of the defects can be readily evaluated because of their independent migration, in contrast to the correlative migration of lithium atoms. On the basis of fluctuation dissipation theorem, the chemical diffusion coefficient D in a one-component system within a host matrix is given by a product of the thermodynamic factor Θ and the jump diffusion coefficient, D_j,8,19

$$D = \Theta D_j,$$

(6)
\[\Theta = \frac{\partial (\mu/kT)}{\partial \ln x}, \]
\[D_j = \lim_{t \to \infty} \frac{1}{2dt} \left(\frac{1}{N} \sum_{i=1}^{N} \langle \vec{r}_i(t) \rangle^2 \right), \]
where \(\mu \) is the chemical potential, \(x \) is the ratio of the diffusing atoms to the number of available sites for the atoms in the system, \(d \) is the dimension of diffusion field, \(N \) is the number of the atoms, and \(\vec{r}_i(t) \) is the displacement of the \(i \)th atom at time \(t \). \(D_j \) is divided into two parts: the diagonal and nondiagonal parts,
\[D_j = \lim_{t \to \infty} \frac{1}{2dt} \left(\frac{1}{N} \sum_{i=1}^{N} \langle \vec{r}_i(t) \rangle^2 \right) + \lim_{t \to \infty} \frac{1}{2dt} \left(\frac{1}{N} \sum_{i \neq j} \langle \vec{r}_i(t) \vec{r}_j(t) \rangle \right). \]

C. Transition state theory

The self-diffusion coefficient of independent defects can be evaluated from the jump frequency of the single defect as follows:
\[D_{\text{defect}}^* = \frac{1}{2d} \Gamma \alpha^2, \]
where \(d \) is the dimension of the diffusion field (=2 for in-plane diffusions), \(\Gamma \) is the total jump frequency of the defect, and \(\alpha \) is the jump length. This means that the evaluation of \(D_{\text{defect}} \) comes down to the estimation of the jump frequencies of the interstitials and vacancies in the lithium excess and deficient cases, respectively.

D. Computational conditions

The first-principles calculations were performed using the projector augmented wave (PAW) method as implemented in the \textsc{vasp} code.20 A 3 \times 3 \times 2 supercell of LiC\(_6\) was used, containing 18 lithium atoms and 108 carbon atoms. A lithium interstitial or vacancy was introduced into the supercell. The local-density approximation (LDA) (Ref. 21) was used for the exchange-correlation term. The plane-wave cutoff energy was 350 eV. 2s and 2p orbitals were treated as valence states for both lithium and carbon. Integration in the reciprocal space was made using a 3 \times 3 \times 6 \textit{k}-point mesh in the Brillouin zone by the Monkhorst-Pack scheme.22 The \textsc{NEB} method was used for finding the migration paths and evaluating the potential barriers on the paths.9 The migration-path search, atom positions were fully optimized until the residual forces became less than 0.02 eV/Å. The lattice vibrations were evaluated under the harmonic approximation using the frozen phonon method, as implemented in the “\textsc{frophon}” code.23 Each atom in the supercell was displaced by a small amount (0.01 Å in the present work) in the \(x \), \(y \), or \(z \) direction to obtain all the interatomic force constants. Since the vibrational frequencies are sensitive to the residual forces of the structures without the displacement, the structures were precisely optimized with the convergence of 10\(^{-5}\) eV/Å of the residual forces.

PHYSICAL REVIEW B 78, 214303 (2008)

\[F^{\text{vib}} = -kT \ln Z^{\text{vib}} , \]
the mean jump frequency is rewritten by
\[\omega = \frac{kT}{h} \exp \left(-\frac{\Delta E^{\text{mig}} + \Delta E^{\text{vib}}}{kT} \right) , \]
\[\Delta E^{\text{vib}} = F^{\text{vib}}_s - F^{\text{vib}}_{\text{ij}}. \]

Consequently, the evaluation of the mean jump frequency comes down to the estimation of the two changes in potential energy and vibrational free energy from the initial to the saddle point for the jump, \(\Delta E^{\text{mig}} \) and \(\Delta E^{\text{vib}} \).

In the present study, the lattice vibrations are treated under the harmonic approximation. Based on quantum statistics, vibrational free energies are described as
\[F^{\text{vib}} = \sum_i \left\{ \frac{1}{2} h \nu_i + kT \ln \left[1 - \exp \left(-\frac{h \nu_i}{kT} \right) \right] \right\} , \]
where \(\nu_i \) is the vibrational frequency of the \(i \)th normal mode. The classical limit of vibrational free energies is expressed as
\[F^{\text{vib}} = kT \sum_i \ln \left(\frac{h \nu_i}{kT} \right) . \]
III. RESULTS

A. Interstitial mechanism

1. Migration path and potential barrier

Figure 1(b) shows the schematic drawings of lithium migration by the interstitial mechanism. An interstitial is located at an unoccupied site of carbon hexagons, and surrounded by the three lithium atoms at regular sites. It has three neighboring interstitial sites and jumps into one of them. The calculated migration path and energy profile along the path are shown in Fig. 2. The energy profile shows that the interstitial jump goes through a saddle-point state. The saddle point corresponds to just the middle point for the migration when the interstitial is located on the borders of the two carbon hexagons. The mean jump frequency \(\omega_{\text{int}} \) from the initial interstitial site to the neighboring site \(\text{jump Int} \) is needed to evaluate the diffusion coefficient by this mechanism. The calculated potential barrier \(\Delta E_{\text{mig}} \) is 0.48 eV.

2. Change in vibrational free energy

Figure 3 shows the calculated phonon band structures and vibrational spectra at (a) the initial (equal to the final) and (b) the saddle-point states. The horizontal axes of the band structures stand for the path in the reciprocal space for the supercell (a \(3 \times 3 \times 2 \) cell of primitive LiC\(_6\)). Each band structure has 381 modes for the 127 atoms in the supercell. The major difference between the two band structures is whether an imaginary mode appears or not. At the initial state, all the vibrational modes have real frequencies while an imaginary mode appears at the saddle-point state. The imaginary mode corresponds to the picture that the potential energy at the saddle-point state is the local maximum only to the migration coordinate. The flat imaginary band indicates that the mode corresponding to the migration is sufficiently localized in the supercell.

In the vibrational spectra, the total spectrum (broken line) and the contribution of all the lithium atoms (solid line) and the interstitial (filled region) are shown. The contribution of the lithium atoms are focused hereafter. At the initial state, there are two major peaks (A at 7 THz and B at 15 THz). Investigating the corresponding normal-mode coordinates, peaks A and B are attributed to the in-plane and perpendicular vibrations of the lithium atoms, respectively. The contribution of the interstitial at the initial state has three peaks (peaks \(a_{\text{int}1} \), \(a_{\text{int}2} \), and \(b_{\text{int}} \)) at 6.5, 9.7, and 14.5 THz, respectively. Peaks \(a_{\text{int}1} \) and \(a_{\text{int}2} \) are attributed to the in-plane vibration while peak \(b_{\text{int}} \) is due to the perpendicular. At the saddle-point state, drastic changes appear in the interstitial contribution. First of all, one imaginary mode (peak \(a_{\text{int}1} \)) appears. This mode exactly corresponds to the in-plane vibration in the direction of the interstitial jump. There are three peaks with real frequency at 2.0, 10.5, and 22.9 THz.
peaks $a_{\text{Int} \, 2}^{	ext{vib}}, a_{\text{Int} \, 3}^{	ext{vib}},$ and $b_{\text{Int}}^{	ext{vib}}$). The former two are attributed to the in-plane vibration while the last is to the perpendicular vibration. The details of the vibrational modes will be discussed later.

Figure 4 shows the changes in vibrational free energy ΔF_{vib} based on quantum and classical statistics. The differences between both statistics are also shown in the figure. At 0 K, the quantum ΔF_{vib} has a finite value of the change in zero-point vibrational energy E_{zero} while the classical one is exactly zero. The discrepancy between both statistics is 13 meV at 0 K, and it remains 12 meV at room temperature.

3. Mean jump frequency and diffusion coefficient

It is now possible to evaluate the mean jump frequency from the potential barrier, Γ_{Int}, shown in Fig. 2, and the change in vibrational free energy, ΔF_{vib}, in Fig. 4. Figure 5 shows the calculated mean jump frequency, Γ_{Int}, based on quantum statistics. For example, the frequency is 6×10^4 s$^{-1}$ at room temperature. The total jump frequency of the interstitial mechanism, Γ_{Int}, is $3 \Gamma_{\text{Int}}$ because of three possible migration paths per interstitial. Figure 6 shows the calculated chemical diffusion coefficient of lithium atoms D_{Li} by the interstitial mechanism as a function of (a) temperature and (b) the inverse of temperature. The apparent activation energies Q in the range of 100–1000 K are shown in the figure.

and (b) the inverse of temperature. At room temperature, the diffusion coefficient is 1×10^{-11} cm2/s. The apparent activation energy Q (100–1000 K) is 0.51 eV, which is larger than the potential barrier of jump Int ($\Delta E_{\text{mig}}=0.48$ eV). This results from the major contribution of the change in zero-point vibrational energy ΔE_{vib} at low temperatures, which is unique to quantum statistics beyond the concept of classical statistics.

B. Vacancy mechanism

1. Migration path and potential barrier

Figure 1(c) shows the schematic drawing of lithium migration by the vacancy mechanism. A vacancy is surrounded by six lithium atoms at second-nearest-neighbor hexagons and one of them jumps into the vacancy. Figure 7 shows the calculated migration path and the energy profile using the NEB method. A neighboring lithium atom does not migrate
in a straight-line trajectory but by way of a first-nearest-neighbor hexagon. The intermediated state corresponds to the metastable state energetically. There are two saddle-point states along the path, at which the migrating lithium atom is located on the borders of the two carbon hexagons. It is therefore necessary to estimate the two mean frequencies for the two elementary jumps; \(\omega_{V1} \) corresponding to the jump from the initial regular site to the intermediated site and \(\omega_{V2} \) corresponds to the following jump from the intermediated site to the final vacant site. The calculated potential barriers \(\Delta E^{\text{mig}} \) are 0.47 and 0.26 eV, respectively.

2. Change in vibrational free energy

Figure 8 shows the calculated phonon band structures and vibrational spectra at (a) the initial (equal to the final), (b) the saddle-point, and (c) the metastable (i.e., the final for jump \(V1 \) as well as the initial for jump \(V2 \)) states. In the phonon spectra, the total spectrum (broken line) and the contribution of all the lithium atoms (solid line) and the migrating lithium atom (filled region) are shown. At the initial state, there are two major peaks of lithium atoms (peaks A and B), which are attributed to the in-plane and the perpendicular vibrations of lithium atoms, respectively. The contribution of one of the six lithium atoms neighboring to the vacancy has also two peaks (peaks \(a_V \) and \(b_V \)), whose positions and intensities are almost the same as those of peaks A and B. At the metastable state, the vibrational modes do not significantly change from those of the initial state except for broadening of the in-plane peak \(a_V \). At the saddle-point state, one imaginary mode (peak \(a'_{V1} \)) appears, corresponding to the in-plane vibration in the migrating direction. The other in-plane mode is located at 2.6 THz (peak \(a_{V2} \)), and this peak is lower than peak \(a_V \) at the initial state (7.2 THz). The perpendicular mode, in contrast, shows a broad peak at 24.4 THz (peak \(b'_{V} \)) on the higher-frequency side compared with that at the initial state.

The changes in vibrational free energy \(\Delta F^{\text{vib}} \) for jumps \(V1 \) and \(V2 \) are shown in Figs. 9(a) and 9(b), respectively. \(\Delta F^{\text{vib}} \) of the two jumps are equivalent with a difference of less than 2 meV in this temperature range because the vibra-
FIG. 9. Changes in vibrational free energy ΔF^{vib} for (a) jump V1 and (b) jump V2 as a function of temperature, evaluated in (thick lines) quantum and (thin lines) classical statistics. The discrepancies are also shown in the figures by broken lines.

FIG. 10. Calculated mean frequencies of jumps V1 and V2 based on quantum statistics. ω_{V1} is much smaller than ω_{V2}, e.g., 4×10^4 vs 1×10^8 s$^{-1}$ at room temperature.

FIG. 11. (Color online) Possible elementary jumps for lithium atoms from the regular sites to a vacancy in LiC$_6$. The jump consists of two steps: (a) from the regular sites to the middle metastable sites, and (b) from the metastable sites to the vacant site. This is mainly caused by the difference in potential barrier between the two jumps (0.47 vs 0.26 eV). It is found that the first jump is rate determining in the vacancy mechanism.

IV. DISCUSSION

A. Vibrational mode

In this subsection, the vibrational modes at the initial and metastable states have little difference. The discrepancies between quantum and classical statistics are also shown in the figures. They are 12–13 meV at 0 K, and remain 11–12 meV at room temperature.

3. Mean jump frequency and diffusion coefficient

Figure 10 shows the calculated mean jump frequencies for jumps V1 and V2 based on quantum statistics. ω_{V1} is much smaller than ω_{V2}, e.g., 4×10^4 vs 1×10^8 s$^{-1}$ at room temperature. The former jump means a successful jump, while the latter means failure. The mean time of the total jump is the sum of those of the individual steps, $\tau = \tau_1 + \tau_2$, where $\tau_1 = (12\omega_1)^{-1}$ and $\tau_2 = (2\omega_2)^{-1}$. The factors of 12 and 2 are the numbers of possible jumps at the two steps as described above. Hence, the total jump frequency is given by $\Gamma_V = 1/(\tau_1 + \tau_2)$.

FIG. 12 shows D_{Li} by the vacancy mechanism as a function of (a) temperature and (b) the inverse of temperature. For instance, D_{Li} is 1×10^{-10} cm2/s at room temperature, which is larger than that by the interstitial mechanism (1×10^{-11} cm2/s). The apparent activation energy Q in the range of 100 and 1000 K is 0.49 eV, which is larger than the potential barrier of the first jump (0.47 eV) due to the change in zero-point vibrational energy.

FIG. 13. Schematic representation of the lithium migration process in LiC$_6$. The possible elementary jumps consist of two steps: (a) from the regular sites to the middle metastable sites, and (b) from the metastable sites to the vacant site. This is mainly caused by the difference in potential barrier between the two jumps (0.47 vs 0.26 eV). It is found that the first jump is rate determining in the vacancy mechanism.

It takes the total jump frequency of a vacancy, Γ_V, to estimate the chemical diffusion coefficient of lithium atoms in the lithium deficient case. The possible elementary jumps are schematically shown in Fig. 11. At the first step, there are 12 possible migration paths [Fig. 11(a)]. The migrating lithium atom at a metastable site can jump to either the vacant or the initial site [Fig. 11(b)]. The former jump means a successful jump, while the latter means failure. The mean time of the total jump is the sum of those of the individual steps, $\tau = \tau_1 + \tau_2$, where $\tau_1 = (12\omega_1)^{-1}$ and $\tau_2 = (2\omega_2)^{-1}$. The factors of 12 and 2 are the numbers of possible jumps at the two steps as described above. Hence, the total jump frequency is given by $\Gamma_V = 1/(\tau_1 + \tau_2)$.

FIG. 14. Calculated mean frequencies of jumps V1 (ω_{V1}) and V2 (ω_{V2}) as a function of temperature using quantum statistics.
layer. All the initial and saddle-point states for the jumps also have the two major peaks of lithium atoms at 7 and 15 THz (see Figs. 3 and 8). However, the vibrational modes of lithium atoms show some differences depending on the states for the jumps. Hereafter, the differences are discussed, particularly in the modes of the migrating lithium atom.

In the vacancy mechanism, all the lithium atoms at the initial state are not coupled with one another because they are separately positioned like in the perfect crystal. Therefore, the lithium contribution to the vibrational spectrum has little difference from that in the perfect crystal. At the metastable state, the migrating lithium atom occupies the intermediate site with one neighboring lithium atom at the first-nearest-neighbor hexagon. The peak corresponding to the in-plane vibration of the migrating lithium atom broadens due to coupling with the neighboring lithium atom [Fig. 13(b)]. The lower-frequency side of the peak is attributed to the translational vibration of the interstitial and the neighboring lithium atom while the higher side is to the breathing vibration of the two lithium atoms (shown in the figure). At the saddle-point state, the migrating lithium atom is located on the borders of the two hexagons between the two C-C bonds. Hence, the vibrational modes of the migrating lithium atom drastically change. First, one imaginary mode appears corresponding to the in-plane vibration along the migration path. Moreover, the other in-plane mode has lower frequency while the perpendicular mode has higher frequency, compared with those at the initial states. Considering that the migrating lithium atom at the saddle point is weakly coupled with the other lithium atoms, this tendency is the characteristic of a lithium atom on the borders of the hexagons.

In the interstitial mechanism, the migrating lithium atom, i.e., the interstitial, is strongly coupled with the lithium atoms at the neighboring hexagons. At the initial state, the
lithium contribution to the vibrational spectrum has a shoulder on the high-frequency side at peak A, which does not appear in the cases of the perfect crystal and the vacancy mechanism. The closeup around peak A is shown in Fig. 13(c). The solid line, filled region, and broken line show the contributions of all the lithium atoms, the interstitial, and the three neighboring lithium atoms, respectively. The figure shows that the shoulder is mainly attributed to the lithium interstitial and also to the neighboring lithium atoms. The schematic drawings of the normal vibrational modes corresponding to peaks $a_{\text{Int 1}}$ and $a_{\text{Int 2}}$ are shown in the figure. In the vibration corresponding to peak $a_{\text{Int 1}}$, the three neighboring lithium atoms are displaced in the direction away from the interstitial. Peak $a_{\text{Int 1}}$ has the same frequency as the in-plane vibration of lithium atoms in the perfect crystal because the displacements of the neighboring lithium atoms reduce the electrostatic repulsion with the interstitial. On the contrary, peak $a_{\text{Int 2}}$ has higher frequency because the neighboring lithium atoms are displaced close to the interstitial with more repulsive interaction. At the saddle-point state, the in-plane mode of the migrating interstitial shows different trend from that in the case of vacancy mechanism because the interstitial is strongly coupled with the two neighboring lithium atoms [Fig. 13(d)]. The in-plane mode in the real frequency region is divided into the two peaks ($a_{\text{Int 2}}$ and $a_{\text{Int 3}}$). The lower-frequency peak (peak $a_{\text{Int 2}}$) corresponds to the translation of the three lithium atoms along the in-plane direction. It has almost the same frequency as that at the saddle-point state outweighs the decrease in number of the modes.

\[\Delta E_{\text{vib}} = \Delta E_{\text{vib}}^{\text{zero}} + \Delta E_{\text{vib}}^{T} + \text{rest term} \]

The vibrational prefactor ν can be expressed as

\[\nu = \frac{\omega}{\exp \left(- \frac{q}{kT} \right)} = \frac{kT}{h} \exp \left(1 + \frac{\Delta E_{\text{vib}}}{k} \right). \]

C. Mean jump frequency

In this subsection, the difference in mean jump frequency between quantum and classical statistics is discussed. Mean jump frequencies under quantum statistics essentially deviate from the Arrhenius form, unlike in the case of the classical approximation [Eq. (2)]. How should the jump frequencies ω be related to the parameters in the Arrhenius equation, the vibrational prefactor ν, and the apparent activation energy q?

The activation energy q can be defined from the gradient of the Arrhenius plot as

\[q = -\frac{\partial (\ln \omega)}{\partial (1/kT)} = \Delta E_{\text{vib}}^{\text{zero}} + \Delta E_{\text{vib}}^{T} + kT. \]

ΔE_{vib} can be separated into $\Delta E_{\text{vib}}^{\text{zero}}$ and the rest term depending on temperature, $\Delta E_{\text{vib}}^{T}(T)$,

\[\Delta E_{\text{vib}} = \Delta E_{\text{vib}}^{\text{zero}} + \Delta E_{\text{vib}}^{T}, \]

\[\Delta E_{\text{vib}}^{T} = \sum_{i=1}^{3N-1} \frac{\hbar \nu_{i}^{T}}{\exp(h\nu_{i}^{T}/kT) - 1} - \sum_{i=1}^{3N} \frac{\hbar \nu_{i}^{\text{zero}}}{\exp(h\nu_{i}/kT) - 1}. \]

The vibrational prefactor ν can be expressed as

\[\nu = \frac{\omega}{\exp \left(- \frac{q}{kT} \right)} = \frac{kT}{h} \exp \left(1 + \frac{\Delta E_{\text{vib}}}{k} \right). \]
oscillator can be expressed by the following classical approximation:
\[E^{\text{vib}}(\nu) \rightarrow kT \quad (T \rightarrow \infty), \]
\[S^{\text{vib}}(\nu) \rightarrow k \ln \left(\frac{kT}{\hbar \nu} \right) + k \quad (T \rightarrow \infty). \]
Taking the difference in number of the vibrational modes between the initial and saddle-point states into account, \(\Delta E^{\text{vib}} \) converges to \(-kT\) at high temperatures and cancels the term of \(+kT\) in Eq. (17). Therefore, \(q \) is equal to \(\Delta E^{\text{mg}} \) at the high-temperature limit. This means that the expression of Vineyard \(^{10}\) is equal to the high-temperature limit. The convergence of \(\Delta S^{\text{vib}} \) depends on the frequencies of the normal vibrational modes at the initial and saddle-point states as follows:
\[\Delta S^{\text{vib}}(\nu) \rightarrow k \ln \left(\frac{\hbar}{kT} \prod_{i=1}^{3N} v_i^{\nu} \right) - k \quad (T \rightarrow \infty). \]
By comparison between Eqs. (20) and (23), the vibrational prefactor \(\nu^{*} \) converges to the classical expression by Vineyard \(^{10}\) at high temperatures.

Figure 15 shows the activation energies \(q \) and the vibrational prefactors \(\nu^{*} \) for each jump defined as the above equations. The broken lines show the classical limits (high-temperature limits). With respect to the activation energies \(q \), each of them at 0 K corresponds to the sum of the potential barrier and the change in zero-point vibrational energy. With increasing temperature, \(q \) increases with the gradient of \(k \) in the vicinity of 0 K, derived from the \(kT \) term in Eq. (17). The lattice vibrations are not excited and \(\Delta E^{\text{vib}} \) has little temperature dependence at the low temperatures. The upward trend of the \(kT \) term is canceled out around 150 K by the downward trend of \(\Delta E^{\text{vib}} \) approximated to be \(-kT\) at high temperatures. With further increase in temperature, \(q \) gradually converges to the classical limit of \(\Delta E^{\text{mg}} \) (not \(\Delta E^{\text{mg}} + \Delta E^{\text{vib}} \)). In this temperature range (0–1000 K), the activation energies \(q \) do not converge to the classical limits and the discrepancies remain comparable to the changes in zero-point vibrational energy \(\Delta E^{\text{vib}}_{\text{zero}} \). With regard to the vibrational prefactors \(\nu^{*} \), the same tendency can be seen as the activation energies \(q \). At 0 K, each of them starts at 0 s\(^{-1}\) due to the term of \(kT / \hbar \) in Eq. (20), and rapidly increases with the gradient of \(kT / \hbar \) in the vicinity of 0 K. Over 150 K, \(kT / \hbar \) is canceled out by the inverse temperature dependence of \(\Delta S^{\text{vib}} \). With increasing temperature, \(\nu^{*} \) gradually converges to the classical-limit values. The classical approximation underestimates \(\nu^{*} \) by 30% at room temperature and by 5% at 1000 K.

V. CONCLUSIONS

In summary, we have investigated the lithium diffusion by the interstitial and vacancy mechanisms in LiC\(_6\) from first principles. Based on transition state theory, the mean frequencies of the possible jumps in LiC\(_6\) have been rigorously evaluated from the corresponding potential barriers and lattice vibrations. The potential barriers in the interstitial and vacancy mechanisms are almost the same: 0.48 eV for the interstitial jump vs 0.47 eV for the rate determining jump in the vacancy mechanism. The mean jump frequencies per path are almost the same between the two mechanisms. The calculated chemical diffusion coefficients of lithium atoms at room temperature are \(1 \times 10^{-11} \text{ cm}^2/\text{s}\) by the interstitial mechanism and \(1 \times 10^{-10} \text{ cm}^2/\text{s}\) by the vacancy mechanism. There are many reports on the measurements of the lithium chemical diffusion at room temperature using electrochemical techniques, such as alternating-current (ac) impedance measurements and potentiostatic and galvanostatic intermittent titration techniques (PITT and GITT).\(^{15}\) Our calculated values are in the wide range of these reported values from \(10^{-7}\) to \(10^{-12} \text{ cm}^2/\text{s}\).

With regard to the vibrational modes, all the lithium atoms in the perfect crystal are independent and not coupled with one another in terms of vibration due to their separated positions. The lithium atoms are weakly coupled with one another during the migration in the vacancy mechanism while the migrating lithium atom in the interstitial mechanism is strongly coupled with the neighboring lithium atoms. The apparent activation energies for the mean jump frequencies under quantum statistics are larger than the potential barriers (corresponding to the classical approximation) by the changes in zero-point vibrational energy at low temperatures. The discrepancies between quantum and classical sta-
tistics remain comparable to the changes in zero-point vibrational energy even at 1000 K. The vibrational prefactors under quantum statistics also deviate from the values using the classical approximation. The factors under quantum statistics are much smaller than the classical values at low temperatures while they rapidly converge to the classical limits with increasing temperatures. The classical approximation underestimates v^* by 30% at room temperature and by 5% at 1000 K.

ACKNOWLEDGMENTS

The authors would like to thank H. Numakura and A. Togo for helpful discussions. This work was supported by three programs from the Ministry of Education, Culture, Sports, Science, and Technology of Japan: the Grant-in-Aids for Scientific Research and Priority Area on “atomic scale modification” (Contract No. 474), and the global COE program. K.T. also thanks the Japan Society for the Promotion of Science.

*kt@umedia.aa.u.ac.jp
†tanaka@umedia.aa.u.ac.jp