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Abstract:

This paper presents a simple spatial model of traffic congestion for a monocentric city to investigate
the effects of cordon pricing on trip-making and congestion level in each location. Optimal cordon
pricing is obtained as a combination of the cordon location (i.e. distance of the cordon from the CBD)
and the amount of toll charged there that maximizes the total social surplus in a city. Under optimal
cordon pricing, trips originating from locations inside the cordon are under-priced, those just outside
the cordon are over-priced and those near the urban fringe are under-priced. Numerical simulations
using the parameter values based on Japanese data suggest that cordon pricing attains an economic

welfare level very close to the first-best optimum.
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1. INTRODUCTION

Cordon pricing is adopted in most practices of road pricing to control area-wide congestion in a city
(e.g. Singapore, Hong Kong, Oslo, etc.)'. A typical cordon pricing system is designed as follows:
each vehicle is charged a fixed toll when it passes through the specified cordon surrounding the
central area of a city where traffic is most congested. Although this scheme is not the first best pricing
rule for congestion management, the system is simple and easy to implement. However, it is not an
easy task for a traffic control authority to rationally determine the toll level and the cordon location,
since it should take into account the distortions in the market that are commonly present in the second
best world. For this reason, it is unclear whether particular toll levels in the actual cases are too high
or low, or whether the sizes of cordoned areas are too large or small.

This paper presents a formal economic analysis dealing with the following issues of cordon pricing:
where the cordon line should be located; at what level the toll should be set. Recently, an increasing
number of researchers have approached this problem using network models. May et al. [8] computed
the effects of alternative road pricing schemes including cordon pricing by applying a network
simulation model to the city of Cambridge, U. K. They merely examined the consequences of
exogenously specified cordon locations and toll levels. Santos, et al. [10] used the same network
simulation model to obtain the optimal cordon tolls for eight English towns. They did not discuss the
optimal locations of cordons. The above studies were chiefly concerned with empirical estimates of
toll levels and social welfare, so theoretical analysis on qualitative properties of traffic pattern and
resource allocation under cordon pricing has not been presented. On the other hand, Verhoef [15],
Zhang and Yang [16] discussed the mathematical problem to obtain the optimal choices of toll levels
and locations of toll collection in a network. They mainly focused on methods to compute the optimal
solutions, and presented the numerical results for hypothetical example networks®. Although
network models are useful for practical applications, they are not suitable for investigating the
general properties of the problem, since the results depend on the network structures specified for
calculations. We need a model that explicitly deals with the spatial patterns of trip making behavior
and traffic congestion in an idealized setting, such as the continuous space model developed in urban
economics literature. Such an approach may provide common insights into the design of cordon
pricing.

Urban economists have developed urban spatial models incorporating congestion effects and

! Small and Gomez-Ibaiez [11] provide an overview of various practices of road pricing across the world.

? Recent paper by de Palma and Lindsey [2] considers the problem of finding the opti.mal. number and locations of
atolled road in the radial network. Although they provide some interesting policy imp}waﬁons, the analysis is based
on artificial setting in that all residents are located on a single circumference (same distance f,rom the center).
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discussed the discrepancy between equilibrium and optimal land use (e.g., Anas and Xu [1], Fujita [3],
Kanemoto [4], Sullivan [12]). They showed that a congestion toll (or location tax) internalizing
congestion externalities should be charged to each resident to achieve the first-best optimal allocation.
Congestion externalities vary depending on locations: the levels of tolls should be differentiated by
residential location. Obviously, the implementation of such a tolling policy is practically infeasible,
so second best policies should be considered instead. In this direction, Kanemoto [4] focused on the
problem of how road capacity at each location should be determined in the absence of a toll. Most of
the earlier works in urban economics, however, consider two extreme pricing schemes, rigorous first
best toll and no toll. In other words, the second-best pricing policies in the context of urban space
have not been sufficiently explored’. Sullivan [13] and Kraué [5] are exceptions. Sullivan examined
a second best policy in which the toll is proportional to the distance traveled (this is ef‘fectivély the
same as fuel tax), based on the general equilibriﬁm simulation model of urban land use. Kraus
numerically calculated the welfare gains from various pricing regimes including cordon pricing. To
our knowledge, Kraus’s paper is the only work that examines the effect of cordon pricing based on the
urban spatial model.  In the present paper, unlike Kraus, we explicitly solve the spatial patterns of
trip generation, and this enables us to describe the situations of resource allocations at different
locations in a city.

Another limitation in the literature on urban economics is that trip demand is assumed to be inelastic.
In this case, tolling policies have no effect in the short-run where land use is unchanged. Instead, we
focus on the roles of tolling policies as instruments to control trip demand generation and its spatial
distribution. So, our model allows elastic trip demand while land use is assumed fixed. Each resident
chooses how often to travel; the choice is affected by trip cost that varies with location of traveller.

This paper discusses the optimal combination of cordon location and toll level in a monocentric city.
We investigate how cordon pricing affects trip demand and resource allocation at each location in a
city, and evaluate the performance of the optimal cordon pricing in terms of social welfare by
comparison with the welfare levels under no-toll equilibrium, or the first-best optimum toll. We

further examine the effects of parameter changes by numerical simulations.
2. THE MODEL

2-1 Trip demand and cost

Suppose a linear city where CBD is located at the center (origin of coordinate) and residential areas

? On the other hand, there exists extensive literature on second best pricing in non-spatial setting (e.g., Liu and
McDonald [6], Marchand [7], Verhoef, et al. [14]).




are developed around the CBD, the land area of the CBD is negligible and the characteristic of each
residential location is represented solely by distance from the CBD. It is assumed that all residents in
the city are homogenous and population density is unity throughout the urban area. Each individual
makes trips for some purpose from his/her residence to the CBD by car; other types of trip are
neglected. Trip demand is elastic; depending on the cost of car trips, each individual chooses the
number of car trips within a certain period (sometimes he/she gives up a trip or uses an alternative

mode of transportation such as public transit). Let x be the distance from the CBD, and ¢(x) the trip

demand of a resident located at x, then the (inverse) trip demand function is given as,
p(q(x))=a-bq(x), (1

where g, b are positive constants. p(q(x)) represents the private marginal benefit of a trip.

We assume that the cost for driving the unit distance around x is an increasing function of the traffic

volume there, Q(x), which is denoted by #(Q(x)). This implies that the road width is constant at all

locations. Then, the cost for a trip from x, C(x), is given as,

C() = [ 1))y @)
Since all trips are destined for the CBD and population density is unity, traffic volume at x, O(x) is
defined as,
B
0= [ g)dy, 3)

where B is the distance from the CBD to the edge of the urban area.

In this paper, the functional form of #(Q(y)) is specified as follows:
1O = f+c0), 4)

where f and c represent, respectively, the cost for driving the unit distance when the traffic volume is

zero (= at free speed), and the marginal cost with respect to traffic volume.

2-2 No-toll equilibrium
Each individual decides to make a trip as long as the private marginal benefit exceeds the private
cost. In equilibrium, the following relation holds at all locations,
p(g(x)=C(x) forallx, 0<x<B, (%)
together with Egs. (2) and (3).
By substituting Egs. (1) and (2) into Eq. (5), and differentiating both sides of the obtained equation
with respect to x, we have,
—bq'(x)-1(0(x)) =0, (6)

where ¢'(x) is the first derivative of g(x). Next, differentiating both sides of Eq. (3) with respect to




x yields the following,

O'(x) =—q(x). (7
Differentiating Eq. (6) once more and incorporating the relations of Egs. (4) and (7), we obtain the
following differential equation,

=bq"(x)+cq(x)=0, (8)
where ¢"(x) is the second derivative of ¢(x). It turns out that ¢'(x) <0 from (6), and ¢"(x)>0

from (8) . In other words, the number of trips per person at each location decreases with the distance

from the CBD, and the rate of decrease diminishes.
The equilibrium number of trips generated at each location, ¢ (x), is obtained by solving the

differential equation (8), as follows:
q (x)= 4 exp(ax) + A, exp(-ox), €

where o =,/ 7 ,and 4, 4, are unknown constants to be determined by boundary conditions.

We need two boundary conditions: the firstis g* (0) = 7 , which is derived by evaluating Eq. (5) at
x =0 and applying C(0)=0; the second is —bg"'(0) = f +cQ(0) from Eq. (6) at x =0 . With these
two relations, 4,, 4, are determined as follows:

~ aexp(—abB)— %
~ b(exp(aB) +exp(—aB))’

_a exp(aB) + %
* b(exp(aB) +exp(—aB))

2-3 First-best optimum
The first-best optimum is defined as the trip pattern that maximizes total social surplus in a city,

formulated as follows:

s= [ [ ptaydg ~Cooqo i (10)

0

From the optimal conditions, we have the following relation,

Pa(x)=C)+ [ QN0 (11)

where the second term of the RHS represents the congestion externalities that an additional trip from

* As shown later, differential equations of trip rate functions for first-best optimum and equilibrium under cordon
pricing have the same structure as Eq. (8). Thus, ¢'(x) <0 and ¢"(x) > 0 also hold for these schemes.




x imposes on all drivers using the road between x and 0. Therefore Eq. (11) is consistent with the
general rule for social efficiency: The social marginal benefit from an additional trip at location x
should be equalized to the social marginal cost. Such socially efficient allocation can be decentralized
by levying the toll equal to the congestion externality on each trip generated at each location.
Implementing this tolling scheme is not practically feasible since toll levels should be differentiated at
each location. This case does not provide an alternative policy but serves as a reference point for
evaluating the performance of cordon pricing as a second-best policy.

Using the specifications of Egs. (1) and (4), Eq. (11) is rewritten as,

a—bq(x):ﬁ+2chQ(y)dy. (12)
As in the no-toll equilibrium, differentiating twice the above equation with respect to x yields,
—bq"(x)+2cq(x)=0 (13)

and following the same procedure as above, optimal trips at each location, ¢°(x), are obtained as,
q° (x) = 1, exp(p) + 17, exp(=px), (14)

anP(*}B)”J/ anp(}B)+f//
_ ) - L = :
where ¥ \/—% >, b(expUB) + exp(—1B)) m b(exp()B) +exp(—1B))

3. EQUILIBRIUM UNDER CORDON PRICING

Suppose that the cordon is located at distance x, from the CBD, and a toll equal to 7 is levied on

each vehicle passing the cordon. In this situation, trip cost for a resident living outside the cordon

(x>x,) is the sum of the travel time cost and toll, while a resident inside the cordon incurs only

travel time cost. Let g, (x) and ¢, (x) represent the equilibrium number of trips departing at x

inside and outside the cordon, respectively. Equilibrium requires that the following relations hold,
plg"()=C(x)
Cx) = [ 10, (»))dy for 0<x<x, (15)

0.0)=["q" (e[ g, ()
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plg) (0)=C(x)+=
Ce) =[O,y + [ 10,y Jor x,<x<B (16)

0.0)= [ 4 (@)

Qi(xm):Qo(xm)‘ (17)
Eqs. (15) and (16) give two differential equations describing the spatial variation of trips, but these are

connected to each other by Eq. (17), which states that traffic volume function should be continuous at

X, .
As in the previous section, we use specifications t(Q): f+cQ and p(q): a—bq, to solve the
differential equations. Then, the equilibrium trip rate functions under cordon pricing are derived as,

2

g (x)= pe™ +pme™, for 0<x<x,, (18a)
g, (x)= p,e™ +pe™, forx, <x<B, (18b)

where o has been defined in the previous section, and £, 1,, i, 14, are unknown constants to be

determined by boundary conditions as follows.

We need four boundary conditions. At x = 0, the following relations hold,

plg” ©)=c()=o, (19a)
PO _i(0,0)-0. (19b)

The next condition is derived by incorporating Eq. (17) into Eqgs. (15) and (16) atx = x,,; that is,

pg; (x,)=plg; (x,)-7. (19¢)

Finally, at the edge of the urban area, x =B,
dq” (B
=80, B)=0. (19d)

From the above conditions (19a)-(19d), unknown constants are determined as follows:

f

~27% +2ae" " + T(e”w”‘"’) - e'“(B“’“'"))

o«
#= 2b(e°’B + e""B) ’ (202)
2 / +2ae”® — T(e“(B“"’") — g B ))
_
T v R 0t
oS +2ae™ % — T(e‘“(B"""") + e“”‘(B”'"))
_
. 2607 e ) > (20¢)




2 i +2ae” — r(e“w”’") + % B ))

Zb(e"‘B + e“”B)

fy = (20d)

The effects of exogenous changes in cordon location and toll level on the equilibrium number of trips

in each location are given as follows:

ok _ a(B-

o, (x) _ z'(ae )+ o™ )(e ) <0, for0<x<x,, (21a)
ox, Zb(e +e” )
ok _ ~a(x+x, ){_ 208 2a(B+x,) _ ,20x 20(x+x, )

oq, (x): TQe ( e’ +e _ e +e <0, for x, <x<B, (21b)
o, 261 +*%)
ok ox -0 (B xrn) ( _XM)

og, (x):(e +e Xe ¢ )>O, for0<x<x,, (222)
ot ( )
s ~a(xtx, ){ 208 2o 2006,

dg, (x) _ e (e +e x1+e )<O, for x, <x<B. (22b)

or 2b(1+ %)
(21a) and (21b) state that, as the cordon location moves outward, the equilibrium number of trips
decreases in all locations’. (22a) and (22b) state that, as the toll level rises, the number of trips
increases in locations inside the cordon but decreases outside the cordon. This also implies that in
inner (outer) locations, the numbers of trips under cordon pricing are larger (smaller) than those under
no-toll equilibrium. This is illustrated in Fig. 1. Trip demand decreases in outer locations due to
additional toll burden, causing a reduction in traffic volume (in other words, congestion level) in inner
locations. Trip makers in inner locations enjoy congestion relief with no charge, then respond by
increasing trips. In other words, the cordon pricing induces increase in consumer surplus for residents
in inner locations and decrease in consumer surplus for those in outer locations.

(21a) implies that outward move of the cordon location causes aggravation of traffic congestion in

inner locations, while trip demand decreases in all locations. To see this, we examine the change in |

traffic volume at location x, (0 <x < x, ) caused by an infinitesimal change in the cordon location

from x, to x, +dx,,.

aQ () f 02"y, ,f ___(_y_)dy g () =g () (23)

m

Although the first and second terms of the RHS are negative from (21), the third term is larger than

the fourth term. Trip makers located between x, and x, +dbx, increase trips from ¢, (x,) to

g, (x,) because they are exempt from the toll after the move. This increase in trip demand exceeds

ngorously speaking, there is an exception: as shown later, the equilibrium number of tnps at X increases

because it switches from g, (x,,) to q,(x, ), and q,(x,)< g,(x,, ) as shown by (22) .




the sum of the trip decrease over all locations®. When the cordon location moves outward, those who

are exempt from the toll due to this change are better off, while the others are worse off.

Figure 1

4. THE OPTIMAL CORDON PRICING

Optimal cordon pricing is the combination of the cordon location x,, and toll 7 that maximizes the

social surplus defined as follows:

$= [ I pda—conarco e+ [[| [ pladg - a0 i

0 0

Constraints to this problem are Eqgs. (15)-(17), i.e., the equilibrium conditions under cordon pricing.

Note that the equilibrium number of trips under cordon pricing is solved explicitly as ¢~ (x) in the

last section. Hence, we can treat this problem as optimization without constraints by substituting (18)

and (19) into the objective function above.

The optimal conditions with respect to x, and 7 are given respectively as follows:

0

Lq?(x'")p(q)dq—c(xm Ja: (xm)"U e (g -, ) x, )il

+ [ lptare-c <x>—E<x>]§f’a"—;(ﬁdx+ [ lpa (x))—C(x)—E(x)]ma(g’i ) =0

m m

(24a)

Il en-coo -k (x)]g%;@ e+ [ [p(a; () —C - E(x)]m————aqgfx) de=0,

(24b)

where

J‘:t'(Qi ()’))Qi )dy, for 0<x<x,
E()= (25)

[F om0+ 10,m,0)dy  for x, <x<B

0

E(x) is the sum of the congestion externality that an additional trip from x imposes on all drivers

® This is verified by expanding the RHS of Eq. (23), as follows:
aQi (x) B a(__eoz(ZB—x~xm) +ea(2B+x~xm) _e—a(x-x,,,) +ea(x+x,,,))
ox, 2(1+e*#)

m

>0




using the road between x and 0.
The first line of Eq. (24a) represents the direct effect on social surplus caused by outward move of

the cordon location x,, : Increase in consumers' surplus for those who are exempt from the toll minus

decrease in toll revenue’. It is easily seen that the sum of the terms on the first line has positive value.
Integral terms on the second line of (24a) represent the sum of indirect effects on social surplus
through changes in the number of trips caused by outward move of the cordon location. In other
words, these effects are considered as changes in the amount of dead weight losses present in the
second-best situation. The first integral describes the effects in locations inside the cordon, which has
positive value in view of Eqs. (15) and (212)°. This positive effect on social surplus implies that the
sum of the dead weight losses inside the cordon decreases as the cordon moves outward. Based on the

discussion so far, the second integral term should be negative for Eq. (24a) to hold. Recalling

a—(‘g’x—(—ﬁ <0 from Eq. (21b), [p(q. (x))—C(x)— E(x)] in the second integral should have positive

m

values for, at least, some locations between x,_ and B.

Likewise, the first integral term on the LHS of Eq. (24b) has negative value from (22a) and (15):

Dead weight losses increase in locations inside the cordon as the toll rises. For Eq. (24b) to hold, the
second integral should be positive. Since Q‘%—@ <0 from (22b), [p(q. (x))-C(x) - E(x)] in the
T

second integral must have negative values for, at least, some locations between x,, and 5.
Synthesizing the above discussions, it turns out that, in locations outside the cordon,

p(q. (x)) - C(x) - E(x) has negative values in some locations and positive values in other locations.

Note that p(q. (x)) - C(x) - E(x) = t— E(x) from Eq. (16), and E(x) is monotonously increasing

with x. Thus, only the configuration as illustrated in Figure 2 is possible: There exists some point X

7 . .
Note that outward move of cordon location reduces the private cost for those located at x,, from C(x,)+7 to

C(x,,). The first line of (24a) can be rewritten as follows:
9; ’ (xm ) 0k ‘I: (xm) ok ok
[fo p(@)dg-C(x, )" (x, )J - U, plapg~{C(x, )+ 7iq; (x, )} ~ ) (x,)
Two bracketed terms are consumer surplus for trip makers located just inside and outside of the cordon, respectively.
Thus, they represent increase in consumer surplus for those located at X, . The third term is the amount of toll

charged to a trip maker located just outside the cordon, which is foregone revenue due to move of the cordon
location.

¥ Since p(q"(x))—C(x) =0 from (15), the bracketed term in the first integral on the second line of (24a)
0g, (x)

becomes — F(x), which is negative. And —-———= < 0 from (21a). Therefore, the first inte‘gralyhas positive value.

m
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such that 7 — E(x) is positive between x, and X but negative outside X .

Figure 2

Based on the above discussion, the situations of resource allocation under cordon pricing for three

typical locations are illustrated in Fig. 3. C(x)+ E(x) represents the social marginal cost, i.e.,
increment of social cost due to marginal increase in trips from x. In locations inside the cordon
(x<x,), the social marginal cost exceeds the social marginal benefit, p(g,"(x)), in other words,

trips are under-priced, or the number of trips is larger than the efficient level. Similarly, trips are

over-priced for x, <x <X, and under-priced for X < x < B. The amount of dead weight losses due

to inefficient trip making as discussed above is equal to the shaded areas in the figure. As the cordon
location or toll level is changed, dead weight loss is increased in some locations and decreased in

other locations.
Figure 3

Table 1 summarizes the directions of changes in dead weight losses due to changes in the cordon
location and toll at their optimal levels. In the table, sign + (-) means that dead weight loss is

increased (decreased) by increasing the corresponding control variable (i.e., x, or 7) from their
optimal levels.” For example, at locations within 0 < x < x,,, dead weight loss is decreased as x,,

increases (the cordon location moves outward). Optimal cordon pricing is designed so that the gains

from the decrease in dead weight loss offset the losses from the increase in dead weight loss.

Table 1

5. EVALUATION OF ECONOMIC WELFARE

This section numerically examines the effects of cordon pricing on economic welfare, by comparing
the values of social surplus under optimal cordon pricing, no-toll equilibrium and first-best optimum.

To obtain quantitative insights, we calibrated parameter values of the model using the actual data for

9 . . . . .
Note that increase in dead weight loss means decrease in social surplus.




Osaka Prefecture, Japan, as follows':

B=50, a=130, b=498, c¢=052, f=12

Table 2 summarizes the result for these parameter values (shown as basic case). Optimal cordon
location is 7.54 km from the CBD, and the time-equivalent value of the optimal toll is 29.42 minutes.
The amount of the toll is 980.7 Yen, if we adopt 2000 Yen/hour for the value of travel time, which 1s
the estimate from an empirical study in Japan (Ohta [9]). The table also shows values of social
surplus under three schemes, which are measured in time equivalent units''. From the table, social
surplus for cordon pricing is larger than that for no-toll equilibrium by 12%, and smaller than the
first-best optimum by only 0.7%. Although the cordon pricing is a very simple system, the
performance is almost as good as the first-best optimum that requires prohibitive effort for

information processing.
Table 2

Does the above result depend on the specific parameter values used here? We carried out
simulations for various parameter values to check the robustness of the results against the parameter
changes. Table 2 shows the results for different values of parameters in demand and cost functions.
Larger b implies that trip demand is less elastic. Smaller ¢ means that the congestion level is less
sensitive to an increase in traffic volume, which is interpreted as a situation that road capacities are
larger at all locations. The table shows that, as trip demand is less elastic, the optimal cordon location
becomes farther from the center and the toll level is lower. On the other hand, smaller ¢ causes a
larger-sized cordoned area and lower toll level. Figures 4 and 5 plot the social surpluses under no-toll

equilibrium, optimal cordon pricing and first-best optimum for various values of b and c.
Figure 4
Figure 5
Figures show that the values of social surpluses for optimal cordon pricing are very close to those for

the first-best optimum regardless of parameter values. This suggests that cordon pricing attains an

economic welfare level nearly as good as the first-best optimum for a wide range of parameter values.

19 Sources of data and details of procedure to calibrate parameter values are given in the Appendix.

" Note that parameter values are specified in the context of the model setting: City is monocentric, population
density is unity, etc. Therefore, the values of social surpluses are meaningful only for comparison among different
tolling schemes.




Why does the cordon pricing produce such a good result as shown above? Let us investigate in
more detail the workings of cordon pricing as a device to control congestion externality. Note that, as
seen in Eq. (25), congestion externality depends on traffic volume at each location that is integral of

trips originating in outer locations. Fig. 6 plots traffic volumes Q(x) for no-toll equilibrium,

first-best optimum and cordon pricing. By definition (Eq. (3)), traffic volume at the edge of the urban
area, B, is equal to zero in all cases, and the (negative) slope of each curve is equal to the trip rate

originating at each location, g(x).

Figure 6

The figure shows that the traffic volume curve for the cordon pricing closely matches the curve for the
first-best optimum, and two curves cross twice at intermediate locations. Recall that, under the
optimal cordon pricing, trips are under-priced in locations inside the cordon, over-priced just outside
the cordon and under-priced in the fringe of the urban area. Accordingly, the trip rate under cordon
pricing tends to be larger (smaller) than that for the first-best optimum in locations where congestion
is under-priced (over-priced). This is reflected in the relative steepness of the two curves in the figure;
traffic volume curve for the cordon pricing is steeper inside the cordon, flatter just outside the cordon
and steeper in the fringe of the urban area. Although cordon pricing is such a simple system in which
tolls are collected at only one point, it divides the urban area into three zones and fine-tunes the trip
rate in each zone (=slope of traffic volume curve) to minimize the deviation of traffic volume from the

first-best.

6. CONCLUSION

This paper presents a simple spatial model of traffic congestion for a monocentric city to investigate
the effects of cordon pricing on trip-making and congestion level in each location. Optimal cordon
pricing is obtained as a combination of the cordon location (i.e. distance of the cordon from the CBD)
and the amount of toll charged there that maximizes the total social surplus in a city. Under the
optimal cordon pricing, trips from locations inside the cordon are under-priced, those just outside the
cordon are over-priced and those in the fringe of the urban area are under-priced. Numerical
simulations using the parameter values based on Japanese data suggest that the cordon pricing attains
an economic welfare level very close to the first-best optimum.

This paper introduces a number of assumptions to simplify the analysis. The most restrictive one is

that the city is monocentric: All trips are destined to the CBD. If this assumption is relaxed, the result




that cordon pricing attains good performance may be modified significantly. In this case, it might be
necessary to introduce multiple cordons. We should also consider the land use change to see the
long-run effects. Since trips departing at locations inside the cordon are exempt from tolls, central
locations become more attractive under cordon pricing. This induces land use structure with higher
density in central locations, which is likely to have positive impacts on efficiency. As shown in the
literature of monocentric city models with congestion, efficiency is improved when the physical size
of the city becomes more compact (e. g., Fujita [3], Kanemoto [4]). This implies that the
centralization of land use caused by cordon pricing improves the efficiency of spatial distribution in a
city. When we relax the assumption of monocenter, however, different forms of land use changes
may occur. Firms and households may move to locations outside the cordon, thereby completing
trips without crossing the cordon, i.e., avoiding tolls. In other words, introducing cordon pricing
induces the dispersion of spatial structure unlike centralization in the monocentric case. And such
changes may weaken the effectiveness of the policy. This problem is worth investigating in future
works. Anas and Xu [1] provide a useful prototype framework for the analysis of this problem,
although they do not consider the second-best pricing policies. We have also neglected the costs of
setting up the cordon pricing system'2. Tt is natural that the set-up costs tend to increase as the cordon
moves outward, since the number of road links crossing the cordon increases. Therefore, optimal
location of the cordon becomes closer to the CBD than that obtained in this paper. Other important
issues to be addressed by future study include investment for road capacity; as Kanemoto [4]
discussed, naive benefit-cost criterion is not applicable to the second-best situations. Since all these

extensions will make the model structure too complicated, we need to rely on numerical methods.
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APPENDIX: Parameters for numerical analysis

We used the data from “Person Trip Survey for the Keihanshin Area” in 1990, which include




information of origin, destination and travel time for each individual trip on a given day. The data are
aggregated by 67 jurisdictions in Osaka prefecture, and then the number of trips from each
jurisdiction to the CBD (defined as Kita-ku and Chu-o-ku of Osaka City) is extracted. Aggregated
numbers of trips are divided by populations of jurisdictions to obtain the number of trips per person.
Distances from the centers of jurisdictions to the CBD are measured on the map.

Parameters to be calibrated are B, a, b, ¢, and f.

First, we assume that the distance from the CBD to the edge of the urban area, B, is 50 km,
considering that the southern edge of the Osaka area (Misaki Cho) is located 59 km from the CBD
while the northern edge (Nose Cho) is 39 km away.

Parameter a in the demand function is interpreted as the travel time at which one gives up making
trips. We set a = 130, in reference to the fact that the longest travel time among trips to the CBD
reported in the trip survey is equal to 120 minutes. Since the demand function is linear, & is obtained
by drawing a line connecting two points: One is the intercept (0,a) on the number of trips - travel time
plane, the other one is the observation at the zone where the number of trips per person is largest in the
study area. Then, we have b =498. Parameter setting in the above manner implies that the trip cost is
measured in time units (minutes). Thus, the amount of toll is also computed in time units. The
amount of toll in monetary units is obtained by multiplying the value of time.

Parameter fin the cost function represents the time to drive the unit distance in free-flow traffic, i.e.,
when traffic volume is equal to zero. Assuming that speed in free-flow is equal to 50 km/h, it follows
that /= 1.2. Parameter c is determined so that the trip pattern computed by the model best fits the
actual pattern, although the model is built on a number of assumptions that are not necessarily
compatible with the situation of an actual city, such as monocentricity, unit density, constant road
capacity, etc. By substituting already determined parameter values, B, @, b and f, to Eq. (9), we have
g (x) as a function of x and c. And substituting this into Eq. (3), O(x) is obtained as a function of x

and c. Let x; be the distance from zone 7 to the CBD, then in the context of the model, the travel time

from zone i to the CBD, T(x,,c), is computed by the following formula,

T(x,,¢) = fi, +c[ 00y .

2

67 _
Finally, c is determined so that the sum of square errors is Z [T (x,,¢)— T,.] , where 7 is the observed

i=1

?

travel time from 7. It follows that ¢ = 0.52.
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Table 2 Numerical results

Basic case Larger & Smaller ¢
b in demand function 498 748 498
¢ in cost function 0.52 0.52 0.26
Optimal cordon location 7.54 km 8.32 km 8.78 km
Optimal toll 29.42 min 25.63 min 22.65 min

Social surplus:
No-toll equilibrium;
First-best optimum;

Cordon pricing;

233.5 min (0.887)
263.4 min (1.000)
261.6 min (0.993)

184.6 min (0.918)
201.0 min (1.000)
200.0 min (0.995)

309.0 min (0.939)
329.2 min (1.000)
327.9 min (0.996)




Figure 1 Spatial variations of trip rates under no-toll equilibrium
and cordon pricing
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Figure 2 External cost and toll under the optimal cordon pricing
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Abstract:

This paper examines the effect of cordon pricing based on urban spatial model of non-monocentric
city where trips may occur between any pairs of locations in a city. The model describes spatial
distribution of trip demand and traffic congestion under alternative pricing schemes. We evaluate
the efficiency of resource allocation by comparing three schemes: no-toll equilibrium, first-best
optimum, and optimal cordon pricing. Optimal cordon pricing is defined as combination of
cordon location and toll level that maximizes the social surplus in a city. Simulations show that
cordon pricing is not always effective for congestion management: the cordon pricing tends to be

effective as urban structure is closer to mono-centric.
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1. Introduction

In recent years there has been increasing interest in cordon pricing as a measure to control
traffic congestion in an urban area. It was reported that implementations in some cities such as
Singapore and three Norwegian cities (Oslo, Bergen, Tronheim) were successful'. Policy makers
in cities suffering heavy traffic congestion now consider the cordon pricing as a promising policy
alternative. This situation induced many research works aiming to evaluate the effects of cordon
pricing, or develop methods to obtain the optimal design of the pricing system (e.g., May and Milne
(2000), Santos, Newbery, Rojey (2000), Verhoef (2002), Zhang and Yang (2002)). These works
are mainly based on network models, with which results depend on network structure specified for
simulations. Furthermore, they did not discuss the effect of land use structure of cities. Santos,
Newbery, Rojey (2000) calculate the optimal cordon tolls for eight English towns, and report that
the effects of cordon pricing are considerably different among eight towns. These differences in
the effectiveness should be attributed to differences in network structures and land use patterns
among cities. It is worth examining the effects of these factors on the effectiveness of pricing
policies in idealized setting, such as continuous space models in urban economics literature (e.g.,
Kanemoto (1980), Sullivan (1983), Fujita (1989), Kraus (1989), Anas and Xu (1999)).

Mun, Konishi and Yoshikawa (2003) investigate the effect of cordon pricing based on urban
spatial model of monocentric city, and show that the cordon pricing attains an economic welfare
level very close to the first-best optimum?. The system works as follows: under the optimal cordon
pricing, the urban area is divided into three zones with respect to the distance from the center, and
trips from locations inside the cordon are under-priced, those just outside the cordon are over-priced
and those in the fringe of the urban area are under-priced. Cordon location and toll fine-tune the
trip rate in each zone to minimize the deviation of traffic volume from the first-best. This model is
based on a number of assumptions to obtain analytical solution: linear demand, uniform density,
uniform road capacity, etc. It is unclear how relaxing these assumptions affect the results.

This paper extends the analysis to deal with the situation in a non-monocentric city. Unlike
monocentric city where all trips are destined to CBD, trips may occur between any pairs of

locations in a non-monocentric city. We develop a model to describe spatial distribution of trip

! London started congestion charge in the central area in 2003.  The system is “Area pricing”, which is similar
but different to cordon pricing.

2 Ho, Wong, Yang, Loo (2003) obtained the similar result in the setting of two-dimensional continuum traffic
network.




demand and traffic congestion under alternative pricing schemes. The model also allows variable
density of land use and road capacity across space. We evaluate the economic welfare under three
schemes: no-toll equilibrium, first-best optimum, and optimal cordon pricing. Optimal cordon
pricing is defined as combination of cordon location and toll level that maximizes the social surplus
in a city. We examine the effects of urban spatial structures and various parameters on traffic
patterns and effectiveness of cordon pricing. Such information may provide useful insights for

policy makers.
2. The model

2-1 No-toll equilibrium

We assume a city developed on a one-dimensional space such as the long-narrow city in Solow
and Vickrey (1971), in which only trips in the lengthwide direction are concerned. Each location
is represented by coordinate value on the one-dimensional space, with the center specified as origin
(see Figure 1). Homogenous individuals are located according to a given density function such
that the density is highest at the center. Each individual makes trips to various locations. Trip
demand is elastic; frequency of trips depends on trip cost that consists of time cost and toll. Time

cost is affected by congestion levels along the course of trip.
Figure 1

Let g(x,y) denote the number of trips an individual in location x makes to location y.

No-toll equilibrium of trip distribution is characterized as the situation that private marginal benefit
equal trip time cost for every O-D pair.

P(g(x,y))=C(x,y) forallx, y ¢))
where P(q)is inverse demand function that represents private marginél benefit of trips, and

C(x,y) 1stime cost for atrip fromxtoy. C(x,y) is formulated as follows

9z) dz

C(x,y)= L t 1)

@)

where t(Q(z)/ L(z)) is time required to drive unit distance around location z, O(z) and L(z)

are respectively traffic volume and road capacity at z. The function #(s) is increasing with

respect to traffic volume - capacity ratio. Traffic volume is the sum of trips passing location z

along the route of trips.




z B B ez
0@ = [ n(x)qCe, y)dyee + [ [ n(x)gCx, y)dyetx (3)
where n(x) is population at x, B and —B are the right and left fringes of the city measured by

distance from the center. The first term of RHS represents the sum of trips passing z from left to

right, while the second term represents that from right to left.

2-2  First-best optimum
The first-best optimum is attained when the marginal social benefit equals to social marginal

cost for each O-D pair, as follows

P(q(x, y)) =C(x,y)+E(x,y), forall x,y 4)
E(x,y) = j:t’(—%g—)z]—%(%dz . (5)

where E(x,y) represents the congestion externality that an additional trip from x imposes on all

drivers using the road between x and y. Although the first best solution is achieved by levying
tolls equal to congestion externalities, implementing such tolling scheme is not practically feasible
since toll levels should be differentiated by O-D pairs. This case does not provide an alternative
policy but serves as a reference point for evaluating the performance of cordon pricing as a

second-best policy.

3. Optimal cordon pricing in a non-monocentric city

Suppose that the cordon is located at distance x, from the center, and a toll equal to 7 is

levied on each vehicle passing the cordon. Equilibrium under cordon pricing is characterized by
the following condition

P(g(x,y)=Cx,y)+J(x,y)T, forall x, y ‘ 6)
where J(x,y) is number of times crossing the cordon along the route of trip from x to y, which is

defined as follows

J(x,y) = |h(x) = h(y)| (7
where  A(x) =-1 for -B<x<-x,
h(x)=0 for —-x <x<ux,
h(x)=1 for x,<x<B

For some O-D pairs, such as trips from the left hand side of —x, to the right hand side of x,,




drivers have to pay the toll two times®.
The optimal cordon pricing is obtained by solving the problem to maximize total social surplus

with respect to toll level and cordon location,

0

Max ["neof”| [ P(q)dg - Clx,y)aCx, ) v ®)

subject to equilibrium conditions (6) (7).
Considering that there are only two control variables, we obtain the optimal solution by grid

search.
4. Simulations

4-1 Specifications of functional forms and parameters

Demand function is specified as follows
q(x,y) =am(y)exp(~bP(x,y)) ©)
where a,b are positive constants, m(y) is intensity of economic activities (e.g., population,

employments) at location y that represents attractiveness of destination. P(x,y) is the full price

(generalized cost) of a trip from x to y that consists of time cost and toll. Aggregated number of

trips from x to y is obtained as an(x)m(y) exp(—bP (x, y)), which is equivalent to exponential type

gravity model. By inverting the demand function (9) we have the marginal benefit of trips, as

follows*

3 Since we assume a one-dimensional space, it is impossible to choose the routes avoiding the toll
payment, such as detour around the cordon line.
* The (inverse) demand function (10) is derived from the following utility function,

U=X +-§J_BB j'omm{S(x,y,j)“(s(x’;’ J ))In(s(x’; ./ )dedy )

where X is consumption of composite good that does not involve trips, s(x,, j) is the number of trips that an

individual located in x makes to j-th destination located in y. The above utility function implies that individual
enjoys higher utility as he/she visit various destinations. Utility maximization subject to the budget condition,

I=X+ fB IOM(y)P(x, y)s(x, y, j)djdy , yields the following relation,

a
Since the specification (i) implies that the destinations in y are equally attractive, we have

s(x,y,j)= q(x, % ) Inserting this relation into (i1), we have (10).




b am(y)

P(q(x,y))= RS (M] (10)

We estimate the parameter values using the trip survey data in Osaka prefecture, Japan. Then we
have a=148*107, b=00312.
Population density function n(x) is specified as negative exponential form, widely applied in
the literature (e. g., McDonald (1989)).
n(x) = d exp(-gx) (1D
where d =24500, g=0.0854.
Road capacity L(x) is also specified as exponential function,
L(x) =k exp(-vx) (12)
We used the data of (road area / land area) ratio as a proxy of road capacity, and obtained the
estimates of parameters as k£ =0.24, v =0.0446.

Travel time for unit distance is assumed to be linear with respect to volume-capacity ratio,

[20)_ ., (20

L(x) L(x)
where f =1.2,¢=0.00000552. We estimated these values applying the similar method to that in
Mun, Konishi, Yoshikawa (2003). f is interpreted as time required to drive 1 km under zero

flow condition; f =1.2 implies that free-flow speed is 50 km/h.

Finally, the distance from the center to city fringe, B, is assumed to equal 50 km.

4-2 Results for base case
We conduct numerical simulations to evaluate the relative performances of three schemes. For

the base case, it is assumed that m(y)=mn(y). The result for the base case is summarized as

follows

x, =13 km 7 =19 min

S8 o =7.731E+08 min S8,

Cordon

=8.008E+08 min SS =8.397E+08 min

Firstbest

SS -SS
Gain from cordon pricing = —2dr “"rewll _ g 036
SSNO toll

SS.. -SS
Maximal gain = —= > forl —0.086
SSNO toll




SS
SS

Cordon SSNO toll

First best S S
and SS

Firstbest

=0.415

Relative gain=
No toll

where SS,,., 59

Cordon > are the time equivalent values of social surpluses for no-toll
equilibrium, optimal cordon pricing, and first-best optimum, respectively. The optimal cordon
location is 13km from the center and the toll in time equivalent unit is 19 minutes. The amount of
the toll is 633.3 Yen (or $5.81), if we adopt 2000 Yen,/hour for the value of travel time, which is the
estimate from an empirical study in Japan. The effectiveness of cordon pricing is evaluated by
two indexes: one is the “Gain from cordon pricing” representing improvement from no-toll
equilibrium, another is “Relative gain” representing the ratio of gain from cordon pricing to
maximal gain achievable in the first-best optimum. In the base case, cordon pricing improves the
social surplus by 3.6% compared with the no-toll equilibrium, which accounts for 41.5% of
maximal gain. Relative gain of the cordon pricing is much lower than that reported in Mun,
Konishi and Yoshikawa (2003) that assumes monocentric city, uniform desnsity, linear demand, etc.

Figure 2 shows the spatial variation of congestion levels that are represented by traffic
volume-capacity ratio. The figure shows that cordon pricing lowers the congestion levels around
the cordon location (x =13 and x=-13). In other locations congestion levels under cordon
pricing are not very different from those under no-toll equilibrium. This suggests that trip-makers
substitute among the destinations of trips. To see this, we take a closer look at changes in O-D

trips.
Figure 2

Figure 3 describes deviations of trips under cordon pricing from the no-toll equilibrium and the
first-best optimum for representative O-D pairs. In the figure, signs indicated in the

parentheses, (d1,d2), describe the deviations of trips as follows

dl=sgn(q" (x,y)-4°(x,))

d2=sgn(q” (%)~ 4 (x,7))
where ¢"(x,y), ¢°(x,y), q (x,y) are O-D trips under no-toll equilibrium, first-best optimum,
optimal cordon pricing, respectively. Positive d1 means that trips are under-priced for the O-D
pairs, and positive d2 means that number of trips under cordon pricing is larger than those under
no-toll case. The figure shows that short trips crossing the cordon are over-priced while other trips
are under-priced. This property is consistent with that obtained in monocentric case (Mun,

Konishi, Yoshikawa (2003)). It is also observed that, by introduction of cordon pricing, all O-D




trips crossing the cordon are reduced, while those without crossing the cordon are increased. This
implies that trip makers switch the destinations to avoid paying the toll. As the sum of these
individual responses, traffic volume around the cordon are reduced, even smaller than the first-best

optimum.

Figure 3

Below we investigate the effects of urban structure and various parameters to find out when the

cordon pricing does better job and when it does not.

4-3 Effects of urban spatial structure ’

In our model, spatial distributions of trip generation and destination are represented by the
density functions n(x) and m(x) respectively. We examine the effects of urban spatial structure
via differences in the gradient of the density function. The gradient of density function is
represented by parameter g in (11).  Suppose that the gradient of m(x) becomes steeper holding

the gradient of n(x) unchanged. This change can be interpreted that urban spatial structure
becomes closer to monocentric (see Figure 4). At the extreme, the city is completely monocentric
when all trips are destined to CBD, as in Mun, Konishi, Yoshikawa (2003). This is expressed by

the situation that g is extremely large.
Figure 4

We compute the solutions for various values of g in m(x)holding the parameters in 7(x)

fixed at the level in base case. When g in m(x) is changed, another parameter value, d, is

adjusted so that the value of fB m(x)dx is unchanged. This is to avoid scale effect and focus on

pure effects of spatial distribution. Table 1 and Figure 5 shows the results of simulations.
Table 1
Figure 5
It is observed that the cordon pricing does better j‘ob as destinations of trips are more concentrated

around the center. This suggests that the cordon pricing is effective in such cities where urban

structure is close to mono-centric. While people can adjust their choices of trip destinations so as

s R

T ——_——




to avoid crossing cordon in a non-monocentric city, such responses are infeasible in monocentric
city where all trips are destined to the center.

Next we look at overall gradient of population density. Gradients of n(x) and m(x) are
changed in parallel. Both of gain from cordon pricing and relative gain are increasing with density
gradient. Optimal cordon location is closer to the center as density gradient is higher. This is to

capture more vehicles crossing the cordon.
Table 2

4-4 Effects of parameters

Table 3 shows the effects of demand elasticity. Demand elasticity is represented by parameter
a in Eq. (10). As a is increased, the demand curve is rotated in anticlockwise direction. Thus
larger value of a implies that trip demand is more elastic. It is observed from the table that both
maximal gain and gain from cordon pricing increase with a. In other words, pricing policies are
more effective as demand is more elastic. This is consistent with intuition, and the result obtained
by Santos, Newbery, Rojey (2000). However, increments in the values of gain from cordon
pricing are very small. As a consequence, index of relative gain is decreasing with a; cordon

pricing is relatively ineffective in the case of elastic demand.
Table 3

Table 4 shows the effects of road capacity. We examine the uniform expansion of road
capacity across the city area, which is represented by increasing the value of parameter k£ in Eq.
(12)°  Gains from pricing policies, represented by maximal gain and gain from cordon pricing, are
smaller as road capacity is larger. Values of gain from cordon pricing are not very different among

cases. On the other hand, relative gain of cordon pricing is increasing with road capacity.

Table 4

5. Conclusion

> Note that changes of k have the same effect as changes of ¢ in Eq. (13).




This paper presents a spatial model of traffic congestion in a non-monocentric city, where trips
occur between any pair of locations in a city. We evaluate the economic welfare for three
schemes; no-toll equilibrium, first-best optimum, and optimal cordon pricing. Numerical
simulations demonstrated that effectiveness of the cordon pricing depends on various factors
including spatial structure of the city and other parameters. The results of the simulations are
summarized as follows.

Welfare improvement by introducing the cordon pricing tends to be large, when

- the urban spatial structure is close to monocentric;
- density gradient is steeper;

- trip demand is less elastic;

- road capacity is larger.

Cordon pricing is not always effective. The above results suggest that the cordon pricing is
effective in small size cities. According to the urban economics literature, spatial structure is
likely to be monocentric, and density gradient is steeper, as city size is smaller. Furthermore, trip
elasticity tends to be higher as availability of alternative travel modes is higher, of which large cities
have the advantage. We have not sufficient empirical evidences on the relation between city size
and road capacity. Policy makers should consider the suitability of the environments in choosing

whether to adopt cordon pricing for congestion management.
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Figure 2 Spatial variation of congestion levels for three schemes
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Figure 3 Effects on the number of trips for selected O-D pairs
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Table 1 Effects of urban spatial structure (1): gradient of m (x)

Basic case 10g 50g
Cordon location 13 3 0
Toll 19 28 25
S8y 7.731E+08 3.985E+08 1.621E+08
SSeordon 8.008E-+08 4.603E+08 1.917E+08
SSkiratbest 8.397E+08 | 4.864E+08 1.939E+08
Maximal gain 0.086 0.220 0.196
Gain from cordon pricing 0.036 0.155 0.182
Relative gain 0.415 0.703 0.931
1 Bl R e i o S
0.703
£
&
z
=
o
0

Base case

30g

50g

Figure 5 Monocentricity and relative gain of cordon pricing




Table 2 Effects of urban spatial structure (2): overall desnsity gradient

0.5g Basic case 1.5¢
Cordon location 23 13 8
Toll 18 19 19
SS votol 7.505E+08 7.731E+08 8.119E+08
SSeorion 7.743E+08 8.008E+08 8.452E+08
SIS Birstpest 8.093E+08 8.397E+08 8.878E+08
Maximal gain 0.078 0.086 0.093
Gain from cordon pricing 0.032 0.036 0.041
Relative gain 0.405 0.415 0.438
Table 3 Effects of demand elasticity
0.5a Basic case 1.5a
Cordon location 8 13 14
Toll 17 19 20
SS voron 4.643E+08 7.731E+08 1.032E+09
SSeordon 4.798E+08 8.008E+08 1.070E+09
SS et best 4.964E+08 8.397E+08 1.131E+09
Maximal gain 0.069 0.086 0.096
Gain from cordon pricing 0.034 0.036 0.037
Relative gain 0.485 0.415 0.384




Table 4 Effects of road capacity

0.5k Basic case 1.5k
Cordon location 14 13 11
Toll 21 19 17
S oton 6.313E+08 | 7.731E+08 | 8.627E+08
SS cordon 6.547E+08 8.008E+08 8.923E+08
SSirstest 6.964E+08 | 8.397E+08 | 9.284E+08
Maximal gain 0.103 0.086 0.076
Gain from cordon pricing 0.037 0.036 0.034
Relative gain 0.360 0.415 0.451
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