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Abstract

Humans generate bipedal walking by cooperatively manipulating their complicated and redun-

dant musculoskeletal systems to produce adaptive behaviors in diverse environments. To elucidate

the mechanisms that generate adaptive human bipedal locomotion, we conduct numerical simula-

tions based on a musculoskeletal model and a locomotor controller constructed from anatomical

and physiological findings. In particular, we focus on the adaptive mechanism using phase resetting

based on the foot contact information that modulates the walking behavior. For that purpose, we

first reconstruct walking behavior from the measured kinematic data. Next, we examine the roles of

phase resetting on the generation of stable locomotion by disturbing the walking model. Our results

indicate that phase resetting increases the robustness of the walking behavior against perturbations,

suggesting that this mechanism contributes to the generation of adaptive human bipedal locomotion.

keywords: musculoskeletal model, adaptability, foot-contact information, numerical simulation, central

pattern generator (CPG).

1 Introduction

Humans generate various motions by cooperatively manipulating their complicated and redundant mus-

culoskeletal systems to produce adaptive behaviors in diverse environments. Humans can achieve adap-

tive bipedal walking through the interaction among the body, brain, and environment.

To elucidate the mechanisms for generating human bipedal locomotion, many researchers have con-

ducted numerical simulations using mathematical models of the musculoskeletal and nervous systems

based on anatomical and physiological findings. Taga et al. [26–28] examined the mechanisms to produce

walking behavior through global entrainment among the musculoskeletal and neural systems and the

environment. Ogihara and Yamazaki [23] emulated human bipedal walking using an anatomically and
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physiologically based neuromusculoskeletal model. Hase and Yamazaki [15] simulated the acquisition

process of bipedal walking with a neuromusculoskeletal using genetic algorithms. Tomita and Yano [30]

constructed basal ganglia and brainstem models and investigated the contributions of muscle tone and

rhythm controls. Jo and Massaquoi [19] integrated the feedforward and feedback commands that drive

the musculoskeletal model and incorporated movement and posture controls. Günther and Ruder [14]

verified the λ-model of the muscle control mechanism in the generation of walking behavior.

In this paper, we focused on an adaptive locomotor mechanism using rhythm and phase modulation

based on phase resetting. Phase resetting provides phase modification of rhythmic behaviors, which

is observed in many biological systems and contributes to the entrainment behavior of oscillatory ele-

ments [18]. Yamasaki et al. [36, 37] examined the roles of phase resetting in generating adaptive human

bipedal locomotion against a force perturbation. They prepared joint angles during walking that were

encoded by an oscillator phase and modulated the joint motions by resetting the oscillator phase when

the walking model was disturbed. Their simulation illustrated that such phase reset prevents falling over

against postural disturbances induced by the perturbations. Although they reset the phase when the

walking model was disturbed, we investigated the contribution of phase resetting based on foot contact

information in the following procedure. First, we dynamically reconstructed the walking behavior from

the measured kinematic data by constructing a musculoskeletal model and a locomotor controller. We

compared the simulation results with such measured data of the actual walking motion as the ground

reaction forces and muscular electromyogram (EMG) activities that explain the dynamical contribu-

tions to locomotion and verified the simulation validity. After that, we examined the mechanism for

generating adaptive walking behavior based on the constructed model. In particular, we investigated

the roles of phase resetting using a force perturbation.

This paper is organized as follows: Section 2 introduces the musculoskeletal model, Section 3 explains

the locomotor controller that drives the musculoskeletal model, and Section 4 investigates the walking

behavior by numerical simulations based on the constructed model. Section 5 describes the discussion

and conclusion.

2 Musculoskeletal Model

2.1 Skeletal model

Figure 1 shows the musculoskeletal model constructed as a two-dimensional model. The skeletal system

consists of seven rigid links that represent the head, arms, and torso (HAT), thighs, shanks, and feet, as

shown in Fig. 1A. We used the physical parameters of the skeletal model in [23]. The length of the sole,

i.e., the distance between the heel and the head of the 5th metatarsal, is 0.19 m. Each joint is modeled

as a pin joint and has a linear viscous element, and the coefficients of viscosity for the hip, knee, and

ankle joints are 1.09, 3.17, and 0.943 Nms/rad, respectively [8]. The joint angles become zero when the

model stands straight; that is, the torso, thigh, and shank are in a straight line and perpendicular to
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Figure 1: Schematic diagrams of musculoskeletal model [23]. A shows skeletal model composed of seven

rigid links that represent head, arms, and torso (HAT), thighs, shanks, and feet. B displays muscular

model for one leg composed of nine principal muscles; six muscles (IL, GM, VA, BFS, TA, and SO) are

uniarticular and three (RF, BFL, and GC) are biarticular.

the sole of the foot. When a link rotates in an anticlockwise direction relative to the proximal link,

the joint angle increases. When the foot contacts the ground, it receives the reaction force from the

ground. We employed four contact points on the sole that receive the reaction force: toe, heel, and 4 cm

inside from the toe and heel. The reaction force is modeled by a linear spring and damper system. The

elastic and viscous coefficients are 5.0×103 N/m and 1.0×102 Ns/m horizontally and 2.5×104 N/m and

5.0×102 Ns/m vertically.

2.2 Muscular model

We incorporated nine principal muscles for each leg, as shown in Fig. 1B; six muscles act over single

joints: hip flexion (Iliopsoas (IL))，hip extension (Gluteus Maximus (GM))，knee extension (Vastus

(VA))，knee flexion (Biceps Femoris Short Head (BFS))，ankle flexion (Tibialis Anterior (TA))，and

ankle extension (Soleus (SO))，and three muscles are bifunctional: hip flexion and knee extension

(Rectus Femoris (RF))，hip extension and knee flexion (Biceps Femoris Long Head (BFL))，and knee

flexion and ankle extension (Gastrocnemius (GC)). The moment arms of the muscles around the joints

are assumed to be constant regardless of the joint angles. This yields that muscle length Lm of muscle
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m (m =IL, GM, VA, BFS, TA, SO, RF, BFL, and GC) is derived from

Lm = L̄m +
∑

j={jm}
signmM

j
m(θj − θ̄j) (1)

signm =

⎧⎨
⎩

−1 m = IL, VA, TA, RF

+1 m = GM, BFS, SO, BFL, GC

where L̄m is the muscle optimal length, M j
m is the moment arm for joint j (j =hip, knee, ankle),

θj is the joint angle, θ̄j is the neutral joint angles, and {jm} indicates the corresponding joints, e.g.,

{jGC} = {knee, ankle}. When the joints are at their neutral joint angles, the muscles are at their muscle

optimal lengths. Such neutral joint angles are assumed to be 0.0, -0.52, and 0.0 rad for the hip, knee,

and ankle joints, respectively [23].

A muscle receives a signal from the corresponding α-motoneuron and generates muscle tension de-

pending on the force-length and force-velocity relationships. We used the mathematical model in [23],

composed of contractile element (CE) and passive elastic (PE) and damping (PD) elements parallel to

CE, as follows:

Fm = F̄CEm · k(ξm) · h(ηm) · am + FPDm + FPEm

k(ξm) = 0.32 + 0.71 exp[−1.112(ξm − 1)] sin[3.722(ξm − 0.656)]

h(ηm) = 1 + tanh(3.0ηm) (2)

FPDm = cPDm L̇m

FPEm = kPEm {exp[15(Lm − L̄m)] − 1}

where Fm is the muscle tension, F̄CEm is the maximum muscle tension by CE, k(ξm) is the force-length

relationship, h(ηm) is the force-velocity relationship, ξm and ηm are the normalized muscle length and

contractile velocity divided by the muscle optimal length and maximum muscle contractile velocity ¯̇Lm

(= 3.0 m/s for all muscles); that is, ξm = Lm/L̄m and ηm = L̇m/
¯̇Lm, am is the muscle activation

induced by the signal from the corresponding α-motoneuron (0 ≤ am ≤ 1), FPDm and FPEm are the forces

generated by the damping and elastic elements, cPDm is the viscous coefficient, and kPEm is the coefficient

of the elastic element. We used the physical parameters of the muscular model in [23]. Muscle torque

τ j of joint j is obtained by summing the contributions from all muscles that act at the joint and given

by

τ j =
∑

m={mj}
−signmM j

mFm (3)

where {mj} indicates the corresponding muscles, e.g., {mknee} = {VA, BFS, RF, BFL, GC}.
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Figure 2: Block diagram of simulation model

3 Locomotor Controller

3.1 Locomotor CPG

Motoneurons that control the activity of muscles receive signals from Central Pattern Generators (CPGs)

as well as signals from various sensory organs. CPGs can produce oscillatory behaviors in the absence

of rhythmic input and proprioceptive feedback. Physiological findings imply that CPGs consist of

hierarchical networks through interneurons: Rhythm Generator (RG) and Pattern Formation (PF)

networks [6,25]. The RG network generates the basic rhythm and alters it by producing phase shift and

rhythm resetting affected by sensory afferents and perturbations. The PF network shapes the rhythm

into spatiotemporal patterns of the activation of motoneurons through interneurons.

3.2 Locomotor controller using phase oscillators

Figure 2 shows the block diagram of our simulation model that consists of Rhythm Generator (RG)

and Pattern Formation (PF) blocks, both of which receive commands descending from higher centers,

joint state information, and foot contact information (ground reaction force (GRF)) to create motor

commands. For the RG block we used two simple phase oscillators, each of which produces the basic

rhythm and phase information for the corresponding leg motion, since the rhythmic behavior of a pair

of flexor and extensor muscles during walking can be represented by one oscillator [25]. Let φ be the

oscillator phase for one leg and ψ be the oscillator phase for the other leg (0 ≤ φ,ψ ≤ 2π), and then the

oscillator phases follow the dynamics

φ̇ = ω −KΔ sin(φ− ψ − π)

ψ̇ = ω −KΔ sin(ψ − φ− π) (4)

where ω is a parameter that produces the basic rhythm and KΔ is the gain parameter. The second term

of the right-hand side indicates a function that maintains the interlimb coordination so that the legs

move out of phase. We assumed that the commands from the higher centers contain the basic rhythm

(ω) of the locomotor behavior and used the same value for ω and KΔ for both legs. We used ω = 2π to

generate the walking motion of a gait cycle of 1.0 s as described below and KΔ = 1.0.
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To dynamically reconstruct walking behavior from the measured kinematic data, we modeled the

PF block using PD feedback control. Specifically, we used the two-dimensional position data of markers

attached to the hip, ankle, toe, and heel during walking in [33], whose gait cycle is about 1.0 s. We

calculated the joint kinematics by adapting the position data to the skeletal model in Sec. 2.1, and from

Eq. (1) we achieved desired length L∗
m of each muscle for one gait cycle. To express periodicity, the

desired length is encoded using the phase of the corresponding oscillator as L∗
m(φ). It is then normalized

by the muscle optimal length and used as nominal length ξ∗m(φ). To establish the desired motion at

individual muscles, we determined muscle activation am by

am = κ(ξm − ξ∗m(φ)) + σηm (5)

where κ and σ are gain parameter using the same value between the muscles. When am < 0 we set

am = 0, and when am > 1 we put am = 1. This model aims to determine the desired joint configuration

and muscle state based on the phase information from the RG block and then to produce the signals

that activate the muscles.

We used gain parameters κ = 190 and σ = 8 with the following physical characteristics. Suppose

that the musculoskeletal model stands straight while both soles contact the ground. The ankle torque

can produce muscle torque to control the balance by muscle contractile activity whose proportional gain

of the ankle joint corresponds to 1.9Mgh for the direction of flection and 7.4Mgh for the direction of

extension, where M is the body weight, g is the acceleration of gravity, and h is the distance between

the ankle and the center of mass. These gains are obtained by summing value κ(Mankle
m )2F̄CEm /L̄m of

the corresponding muscles calculated from Eqs. (1), (2), (3), and (5). When the model is supported by

one leg, the gains become 0.95Mgh and 3.7Mgh for the direction of flection and extension, respectively,

implying that the gain parameters are not so large that the posture is always stabilized by the muscle

activities.

In general, posture control is crucial to modulate walking behavior based on somatosensory infor-

mation. However, since we generate walking motion from the measured kinematic data, the locomotor

controller implicitly contains posture control. Therefore, we don’t explicitly incorporate a posture con-

trol scheme.

3.3 Phase resetting based on foot contact information

In this section, we incorporated the adaptive mechanism to modulate the walking behavior based on

sensory information. As mentioned in Sec. 3.1, the RG network creates the basic rhythm, and the PF

network produces patterns of signals based on the rhythm information from the RG network, which

modulates the basic rhythm by producing phase shift and rhythm resetting affected by sensory afferents

and perturbations. Since the PF network produces signal patterns based on the rhythm information

from the RG network, such modulation of the basic rhythm affects signal generation in the PF network

and seems to play an important role in generating adaptive walking behavior.
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We incorporated the phase and rhythm modulation based on phase resetting using the sensory

information about the phase transition from the swing to stance phase and vice versa. Let φcont be

the oscillator phase when the leg motion changes from the swing to the stance phase and φoff be the

oscillator phase when the leg motion alters from the stance to the swing phase. When the foot lands on

the ground and receives the ground reaction force, we reset the oscillator phase of the leg to φcont. When

the foot leaves the ground and the ground reaction force vanishes, we reset its oscillator phase to φoff.

However, note that the discrete change of the oscillator phase induces discrete changes in the desired

motions, influencing the simulation results since the locomotor controller creates command signals based

on the PD feedback control. To deal with such discrete changes and to adequately incorporate phase

resetting, we modified the oscillator phase dynamics (4) as follows. First, we prepared alternative

oscillator phases φ̂ for one leg and ψ̂ for the other leg (0 ≤ φ̂, ψ̂ ≤ 2π). These oscillator phases basically

follow phase dynamics (4) and are reset based on the foot contact information. The phase dynamics for

these alternative oscillators are written by

˙̂
φ = ω −KΔ sin(φ̂− ψ̂ − π) − (φ̂ − φcont)δ(t− tφcont) − (φ̂− φoff)δ(t − tφoff)

˙̂
ψ = ω −KΔ sin(ψ̂ − φ̂− π) − (ψ̂ − φcont)δ(t− tψcont) − (ψ̂ − φoff)δ(t− tψoff) (6)

where δ(·) is Dirac’s delta function, tjcont (j = φ,ψ) is the time when the foot of the corresponding leg

lands on the ground, and tjoff (j = φ,ψ) is the time when the foot of the corresponding leg leaves the

ground. The third and fourth terms of the right-hand sides are induced by phase resetting, which causes

discrete changes of the alternative oscillator phases. To make oscillator phases φ and ψ continuously

catch up with these alternative oscillator phases φ̂ and ψ̂, we modified phase dynamics (4) into

φ̇ = ω −KΔ sin(φ− ψ − π) −KΔ̂(φ− φ̂)

ψ̇ = ω −KΔ sin(ψ − φ− π) −KΔ̂(ψ − ψ̂) (7)

where KΔ̂ is the gain parameter. We used KΔ̂ = 10.

4 Simulation Results

4.1 Dynamical reconstruction of locomotion from measured kinematic data

For the first approach, we reconstructed the walking behavior from the measured kinematic data using

the mathematical models without incorporating the phase resetting mechanism.

Figure 3 shows the simulated walking behavior illustrated by the stick diagram where the display

interval is 0.1 s. Figure 4 compares the simulation results and the measured data of the actual walking

motion. Although it only shows the trajectories for one cycle, the trajectories of the simulation results

are identical over the step cycles after calculation of several seconds, meaning that the model achieved

stable walking behavior. A shows the joint kinematics for one leg, verifying that the numerical simulation

kinematically reconstructed the measured data. HC and TO indicate the heel contact and toe off of
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Figure 3: Stick diagram of simulated bipedal locomotion

the corresponding leg in the simulated walking behavior. The duty factor of the simulated walking

motion is 0.59. B displays the vertical and horizontal ground reaction forces, where the measured

data are used in [33]. As shown in the vertical reaction force of the measured data, the double-peaked

force curve is a characteristic property in human bipedal walking. Although the simulation result has

almost three peaks and possesses discrete responses due to the foot contact, it established a similar

shape to the measured data. Regarding the horizontal reaction force, the simulation result achieved

breaking and propulsive forces at the beginning and end of the stance phase, and its profile resembles

the measured data. C shows the muscle activation patterns of the nine muscles compared with the

measured EMG data in [17], where the solid lines are the simulated results and the filled gray areas are

the measured EMG data. Although the accuracy of the dynamical reconstruction of the muscle activity

is different between the muscles, the simulation results established the characteristic features of the

muscle activation patterns. Muscle IL obtained the peak of the muscle activities at the beginning of the

swing phase. Muscle GM achieved muscle activity from the end of the swing phase to the beginning of

the stance phase. Muscle BFS produced muscle activities at the beginning and end of the swing phase.

Muscle TA obtained muscle activities at the beginning of the stance phase and during the swing phase.

Muscles SO and GC achieved synchronous activity at the end of the stance phase. This comparison

reflects that numerical simulation reconstructed the dynamical walking behavior from kinematical data

with similar characteristics to the measured data.
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Figure 4: Comparisons between simulation results and measured data of actual walking motion. A, B,

and C show joint angles, ground reaction forces, and muscle activation patterns, respectively. Measured

data of joint angles and ground reaction forces are used in [33], and muscle activation patterns were

compared with measured EMG data in [17]. In C, solid lines are simulated results and filled gray areas

are measured EMG data. HC and TO indicate heel contact and toe off of simulation results.
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4.2 Adaptive walking by phase resetting

The resultant duty factor of the simulated walking behavior obtained in the last section was 0.59, as

shown in Fig. 4. Therefore, φcont is set to 0 (2π) and φoff is set to 0.59 × 2π. To examine the roles

of the phase resetting at foot-contact and foot-off, we compared four cases: without phase reset, using

phase reset at foot-contact, using phase reset at foot-off, and using phase reset at both foot-contact and

foot-off. In particular, we investigated the adaptability against force disturbances. Specifically, after the

walking model achieved steady walking behavior, we added a force perturbation for 0.1 s to the center

of mass of HAT in the horizontal direction (forward or backward) and examined whether the model

keeps walking or falls down; we changed the magnitude and timing of the perturbation and determined

that the model keeps walking when it doesn’t fall down over 30 s after being disturbed.

Figure 5 shows the simulation results, where the upper and lower boundaries indicate the limitations

of the perturbations added in the forward and backward directions, respectively, where the model keeps

walking without falling over. By comparing with the case without phase reset, the model walked

adaptively to the perturbation in the backward direction using phase reset at foot-contact. On the

contrary, it established adaptive walking against perturbation in the forward direction using phase reset

at foot-off. Using phase reset at both foot-contact and foot-off, it walked adaptively to the perturbation

in both directions. Figure 6 shows the response to force perturbation using phase reset at both foot-

contact and foot-off. The upper figures display simulated walking behaviors and the lower figures

illustrate the timings of the foot-contact of the right leg, and the vertical bars indicate the timings. A

shows walking behavior without perturbation. B adds perturbation of -140 N at a 30% gait cycle. When

the translational speed of HAT decreases, it slightly tilts backward. Therefore, foot-contact is delayed

after being disturbed. However, walking behavior recovered soon. C gives the perturbation of 50 N at

a 30% gait cycle. The translational speed of HAT increases and it tilts forward. Therefore, foot-contact

advances just after being disturbed, but after the second foot-contact, it is delayed. However, again,

walking behavior recovered soon.
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figures show simulated walking behaviors and lower figures illustrate timings of foot-contact of right leg

(vertical bars). A: without perturbation. B: −140 N at 30% of gait cycle. C: 60 N at 30% of gait cycle.
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5 Discussion

The contribution of this paper mainly consists of two parts. One is the dynamical reconstruction of

walking behavior from the measured kinematic data of actual human walking motion based on the

musculoskeletal model and locomotor controller. The other is an investigation of phase resetting to

achieve adaptive walking.

5.1 Dynamical reconstruction of walking behavior

In this paper, we produced bipedal walking through numerical simulations from the measured kinematic

data of actual human bipedal walking. Our results established dynamically stable locomotor behavior

that is comparable with such measured data during actual human walking as ground reaction forces

and muscular EMG activities. Such forward dynamic simulation is useful to estimate the internal states

of musculoskeletal systems. In addition, applications to the investigation of animal behaviors, whose

internal states are more difficult to measure than humans and which possess much adaptability, might

offer great insight into the elucidation of the mechanisms inherent in adaptive locomotor behaviors [24].

Many previous studies have investigated human bipedal walking based on inverse dynamics and op-

timization using measured data [1,2,8]. Although these approaches are useful to examine the dynamical

contribution to generate walking behavior, it is difficult to treat walking stability; that is, to examine if

the walker can keep walking or will fall down over time using the calculated results. However, forward

dynamic simulation can deal with walking stability, which enables discussion about such functional roles

as adaptability against disturbances.

In the forward dynamic simulation of locomotor behavior, the determination of the parameters in

the controller is generally crucial. Since we constructed a locomotor controller based on PD feedback

control to reproduce the measured kinematic data, gain parameters κ and σ in Eq. (5) are the most

crucial. When these parameters are small, it is difficult to establish desired joint motions and stable

locomotor behavior. On the other hand, when they are sufficiently large, even though the joint motions

will easily achieve the desired behaviors, they react immoderately to disturbances and the simulation

may yield unrealistic results that are different from the measured data. Therefore, the gain parameters

must be adequately determined for the present simulation of human walking.

5.2 Investigation of roles of phase resetting

We investigated the adaptability of locomotor behavior by focusing on phase resetting that modulates

walking behavior based on sensory information. In particular, we concentrated on such foot contact

information as foot-contact and foot-off, because they represent the dynamical interactions between the

body and environment. We examined the roles of phase resetting by adding a force perturbation during

walking.

The present study demonstrated that phase resetting based on foot contact information does actually

improve the robustness of human bipedal walking. The walking model was better capable of coping with
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larger force perturbation during walking when it incorporated the phase resetting mechanism. Further-

more, our simulation suggests that phase resetting at foot-off and foot-contact was more responsible for

force perturbation in the forward and backward force perturbation, as shown in Fig. 5. We also found

that phase resetting seems more effective against force perturbation in the backward direction. The

intermittent modulation of the walking phase based on foot contact information therefore seems to be

a powerful mechanism for generating robust human locomotion.

Physiological studies to date have indicated that such phase resetting or rhythm modulation based on

foot contact information actually exists in animals and contributes to the successful generation of stable

periodic locomotion. For example, cats are known to use two types of sensory information to change

the phase from stance to swing: force-sensitive afferents [9, 32] and position-sensitive afferents [13, 16].

Ekeberg and Pearson [10] carried out numerical simulations of the locomotor behavior of cats with a

musculoskeletal model of the hind limbs to investigate the roles of sensory information, suggesting that

the phase transition induced by force information makes a larger contribution to generate adaptive

behavior. Yakovenko et al. [35] conducted numerical simulations of cat locomotor behavior, where they

prepared the patterns of signals for the swing and stance phases delivered to motoneurons from the

measured EMG data and switched the phases based on joint configuration and ground reaction forces.

Their simulation suggests that such phase switch between the swing and stance, and phase shift and

resetting, depending on afferent feedback modulate the signal generation and the walking period, which

plays important roles in establishing adaptive walking. Our simulation suggests that similar mechanisms

might exist in human locomotor control and contribute to the generation of adaptive locomotor behavior.

Although in our simulation the oscillator phase values to be reset based on foot-contact information

are predetermined, the amount of phase resetting depends on the states of the walking model. Since

phase resetting occurs every gait cycle, perturbation in one direction doesn’t mean that the phase is

reset in one direction (gait cycle is lengthened or shortened), as shown in Fig. 6C. When the foot lands

on the ground or it leaves the ground, only the phase of the corresponding leg is reset, which fluctuates

the interlimb coordination. However, the interactions in the phase dynamics between the oscillator

phases maintain them out of phase.

The rhythm and phase modulation due to phase resetting and interactions seems to contribute to

posture control, although our model doesn’t explicitly incorporate it. Such dynamical contributions

must be investigated in detail to clarify the adaptive mechanism. Although we used motor commands

and proprioceptive and sensory information, we didn’t incorporate signal transmission delay. Since

we determined muscle activations using PD feedback control, such delay might easily destabilize the

walking behavior and limit the feedback gains. Furthermore, we basically prescribed the desired motions,

although they were modulated through the phase resetting. Humans produce more skillful motions by

cooperatively manipulating many degrees of freedom to establish adaptive walking. To create a more

plausible model of human bipedal walking, we must take them into account.
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5.3 Comparisons with biped robots

In robotics research, many studies have concentrated on the generation, stabilization, and improvement

of the efficiency of the walking behavior of biped robots. Many sophisticated biped robots have been

developed that have successfully achieved walking behaviors. Most researchers have focused on model-

based approaches using motion planning based on zero moment point (ZMP) criterion [31]. To keep the

robot from tumbling, they design joint desired trajectories so that ZMP remains within the convex hull

of all contact points between the feet and ground. To easily design the controller under such dynamic

constraints, the robot soles are basically flat on the ground while the feet contact the ground, which is

different from human bipedal walking that has such dynamic foot actions as heel strike and toe off. The

desired motion of our walking model was generated from the measured kinematic data, and we didn’t

consider whether the ZMP meets the dynamic condition. However, here the oscillator phases, which

determine the desired motions, were modulated by phase resetting; hence adaptive walking behavior

was established through the dynamical interactions between the musculoskeletal system, the locomotor

controller, and the environment [26–28].

Inspired by humans and animals, many studies have constructed locomotion controllers by modeling

the neural system, and simple biped robots established their walking behaviors [11,12,20,21]. However,

it is not altogether clear how to create adaptive walking behavior through complicated musculoskeletal

systems and various environments. The findings from simulation studies will contribute to designing

controller and mechanical systems. Actually, many robotic studies have demonstrated the advantage

of a phase resetting mechanism to achieve adaptive walking behavior [3–5, 21, 22]. In addition, as in

phase resetting, biped robots inspired by passive dynamic walking were actuated by triggers based on

foot-contact information and established energy efficient walking [7, 29, 34]. A common principle in the

generation of walking behavior might exist in such phase resetting mechanisms among robots, humans,

and animals.
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