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Abstract

In this paper null controllability with vanishing energy for discrete-time systems is considered. As
in the case of continuous time systems necessary and sufficient conditions in terms of an algebraic
Riccati equation are given. Then necessary and sufficient conditions involving the eigenvalues of the
state matrix are given. Reachability and controllability with vanishing energy are also considered and
necessary and sufficient conditions for them are given. Finally applications to sampled-data systems,
systems with impulse control and periodic systems are discussed.
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1 Introduction

The relative motion of a spacecraft with respect to another in a circular orbit around the Earth is
described by autonomous nonlinear differential equations. The linearized equations are known as Hill’s
equations [7]. The state matrix of their state space representation has all its eigenvalues on the imaginary
axis. The motion in the orbit plane (the in-plane motion) is independent of the out-of-plane motion and
a controlled version has the form

ẋ =




0 0 1 0
0 0 0 1

3ω2 0 0 2ω
0 0 −2ω 0


 x +




0 0
0 0
1 0
0 1


u, (1)

where ω is the orbit rate (angular velocity) of the satellite in a circular motion.
The system (1) is controllable and any state can be steered to the origin with a control of an arbitrarily
small L2-norm. This property is called the null controllability with vanishing energy [5]. If the origin
is replaced by an arbitrary final state, a stronger property, called controllability with vanishing energy,
is obtained. The system (1) also has this property. These notions are introduced originally for infinite
dimensional systems [5]. But they are no less important in finite dimensions and their main results can
be described as follows. Consider the linear system

ẋ = Ax + Bu, (2)

where x ∈ Rn and u ∈ Rm.

Let x(t; x0, u) be the solution of (2) with initial condition x(0) = x0. We denote by | · | the Euclidean
norm of vectors and by σ(A) the the set of all eigenvalues of A.

Definition 1.1 (a) The system (2) is said to be null controllable with vanishing energy (NCVE for short)
if for each initial x(0) = x0 there exists a sequence of pairs (TN , uN ), 0 < TN ↑ ∞, uN ∈ L2(0, TN ; Rm)
such that x(TN ; x0, uN ) = 0 and

lim
N→∞

∫ TN

0

|uN (t)|2dt = 0. (3)
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(b) The system (2) is said to be controllable with vanishing energy (CVE) if for any pair (x0, x1) of initial
and final states there exists a sequence of pairs (TN , uN ), 0 < TN ↑ ∞, uN ∈ L2(0, TN ; Rm) such that
x(TN ; x0, uN ) = x1 and (3) holds.

(A, B) is said to be NCVE (CVE) if the system (2) is NCVE (CVE). Necessary and sufficient conditions
for NCVE and CVE are given as follows [5].

Theorem 1.1 (A, B) is NCVE if and only if
(a) it is controllable, and
(b) X = 0 is the unique solution of the algebraic Riccati equation (ARE)

A′X + XA − XBB′X = 0 (4)

in the class of nonnegative matrices.

Theorem 1.2 (A, B) is NCVE if and only if
(a) (A, B) is controllable, and
(b) Re(λ) ≤ 0 for any λ ∈ σ(A).

Theorem 1.3 (A, B) is CVE if and only if
(a) (A, B) is controllable, and
(b) Re(λ) = 0 for any λ ∈ σ(A).

As we can see from theorems above, controllable mass-spring systems are CVE and hence NCVE and
electric circuits are NCVE if they are controllable. The proof of Theorem 1.1 is based on the theory of
optimal quadratic control. For the proof of necessity of Theorem 1.2 the relation between the Riccati
equation and the controllability gramian of the pair (−A, B) is used, while for sufficiency the Riccati
equation is used. Theorem 1.3 is a consequence of Theorem 1.2 and the fact that (−A,−B) is also
NCVE.
In this paper we shall consider the discrete-time versions of these theorems. It is important in its own
right but also useful when we consider sampled-data systems with zero-order hold, systems with impulse
control and periodic systems as discussed in Section 5. In fact this paper is motivated by the extension
of NCVE to the generalized Hill’s equations where the target’s orbit is elliptic and the system (1) is
replaced by a periodic system [6]. In the discrete-time case some new features arise in the developments.
For example the proof of necessity of Theorem 1.2 becomes more involved since the Riccati equation
is more complicated for discrete-time systems. Lemma 2.5 in Section 2 fills this gap and enables us to
extend the theorem. The extension of Theorem 1.3 requires the invertibility of A which is not used for
continuous time systems.
This paper is organized as follows. In Section 2 we give preliminaries concerning necessary notions of
discrete-time systems. In Section 3 we consider necessary and sufficient conditions for NCVE and extend
Theorem 1.1 and Theorem 1.2. In Section 4 we introduce reachability with vanishing energy and extend
Theorem 1.3. Finally in Section 5 we apply NCVE and CVE results to sampled-data systems, systems
with impulse control and periodic systems. In particular, we show that sampled-data systems are NCVE
if and only if the underlining continuous time systems are NCVE, provided the sampling periods are
nonpathological. NCVE and CVE of the generalized Hill’s equation are shown in [6].

2 Preliminaries

Consider the discrete-time system

x(k + 1) = Ax(k) + Bu(k), (5)

where x ∈ Rn and u ∈ Rm. We recall from [1] basic definitions and some useful results for (5).

Definition 2.1 (a) The state x0 is controllable to zero on [0, n0] if there exists a sequence of control
inputs u = {u(0), u(1), ..., u(n0 − 1)} such that x(n0; x0, u) = 0.

(b) The state x1 is reachable (from zero) on [0, n1] if there exists a sequence of control inputs
u = {u(0), u(1), ..., u(n1 − 1)} such that x(n1; 0, u) = x1.

(c) (A, B) is null controllable on [0, n0] if every state is controllable to zero on [0, n0].
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(d) (A, B) is reachable [0, n1] if every state is reachable on [0, n1].
(e) (A, B) is controllable on [0, n2] if for every pair (x0, x1) there is a a sequence of control inputs

u = {u(0), u(1), ..., u(n2 − 1)} such that x(n2; x0, u) = x1.

Lemma 2.1 (a) The state x0 is controllable to zero on [0, n0], for some n0 > 0 if and only if it is
controllable to zero on [0, n], where n is the dimension of the system (5). In this case x0 is controllable
to zero on [0, N ] for any N ≥ n0.

(b) The state x1 is reachable on [0, n1], for some n1 > 0 if and only if it is reachable on [0, n]. In this
case x1 is reachable on [0, N ] for any N ≥ n1.

Definition 2.2 (A, B) is null controllable, reachable and controllable respectively if it is null controllable,
reachable and controllable on [0, n] respectively.

Lemma 2.2 (a) (A, B) is reachable if and only if it is controllable. In this case it is null controllable.
(b) Suppose A is nonsingular. Then (A, B) is null controllable if and only if it is controllable.

Lemma 2.3 The following statements are equivalent.
(a) (A, B) is null controllable.
(b) For any x0, Anx0 ∈ R(Mc), where Mc = [B AB... An−1B] is the reachability matrix.
(c) rank[λI − A B] = n for any 0 �= λ ∈ σ(A).

Lemma 2.4 Suppose A is stable i.e., |λ| < 1 for any λ ∈ σ(A) and that (A, B) is controllable. Then
there exists a positive definite matrix Y satisfying

Y = AY A′ + BB′.

Y is called the controllability gramian of (A, B).

Lemma 2.5 Suppose A is antistable i.e., |λ| > 1 for any λ ∈ σ(A) and that (A, B) is controllable. Then
A−1 is stable and (A−1, A−1B) is controllable. The inverse of its controllability gramian Y satisfies the
following algebraic Riccati equation

X = A′XA − A′XB(I + B′XB)−1B′XA. (6)

Proof. Since A is antistable, it is nonsingular. Since (A, B) is controllable, so is (A−1, A−1B). Now by
definition

Y = A−1Y (A−1)′ + A−1BB′(A−1)′,

which implies

AY A′ = Y + BB′.

This in turn yields see Lemma 3.18 [4]

(A−1)′Y −1A−1 = (Y + BB′)−1

= Y −1(I + BB′Y −1)−1

= Y −1[I − (I + BB′Y −1)−1BB′Y −1]
= Y −1[I − B(I + B′Y −1B)−1B′Y −1]
= Y −1 − Y −1B(I + B′Y −1B)−1B′Y −1,

where for the fourth equality we have used the familiar identity M(I +NM)−1 = (I +MN)−1M . Hence
we obtain

Y −1 = A′Y −1A − A′Y −1B(I + B′Y −1B)−1B′Y −1A

and Y −1 is a positive solution of the ARE (6).
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3 Null controllability with vanishing energy

Consider the system (5)

x(k + 1) = Ax(k) + Bu(k).

We shall define NCVE for this system.

Definition 3.1 (A, B) is null controllable with vanishing energy if for each x0 there exists a sequence of
pairs (kN , uN ), kN a positive integer ↑ ∞, uN ∈ l2(0, kN − 1; Rm) such that x(kN ; x0, uN ) = 0 and

lim
N→∞

‖ uN ‖2= 0,

where l2(0, kN − 1; Rm) is the set of vectors u = {u(0), u(1), ..., u(kN − 1)}, u(k) ∈ Rm with norm

‖ u ‖2= (
kN−1∑
k=0

|u(k)|2) 1
2 .

We shall prove the following.

Theorem 3.1 (A, B) is NCVE if and only if
(a) (A, B) is null controllable, and
(b) X = 0 is the unique solution of the ARE (6)

X = A′XA − A′XB(I + B′XB)−1B′XA

in the class of nonnegative matrices.

Theorem 3.2 (A, B) is NCVE if and only if
(a) (A, B) is null controllable, and
(b) |λ| ≤ 1 for any λ ∈ σ(A).

Proof of Theorem 3.1.
We first show necessity. Consider the quadratic cost associated with (5) on [0, kN − 1]

J(u; x0, kN , Q) =
kN−1∑
k=0

|u(k)|2 + x(kN )′Qx(kN ), (7)

where Q ≥ 0. It is known [1], [4] that the optimal control minimizing the cost function is given by the
feedback law

ū(k) = −[I + B′X(k + 1)B]−1B′X(k + 1)Ax(k), (8)

where X(k) = X(k; kN , Q) is the sequence of nonnegative matrices defined by the Riccati equation

X(k) = A′X(k + 1)A − A′X(k + 1)B[I + B′X(k + 1)B]−1B′X(k + 1)A, (9)
X(kN ) = Q.

Moreover,

J(ū; x0, kN , Q) = x′
0X(0; kN , Q)x0.

Now we consider the case Q = qI, q > 0 and let q → ∞. Since (A, B) is null controllable, for each x0 and
kN ≥ n there exists a control u ∈ l2(0, kN − 1; Rm) such that x(kN ; x0, u) = 0. Let uN be the control
with minimum norm among them. Then it is given by uN = −M+

N AkN x0 where M+
N = M ′

N (MNM ′
N )−1

and MN = [AkN−1B ... AB B]. Since (A, B) is NCVE, limN→∞ ‖ uN ‖2
2= limN→∞ |M+

NAkN x0|2 = 0 for
each x0. Hence there exists a constant a > 0 such that ‖ uN ‖2

2≤ a|x0|2. Notice that

J(ū; x0, kN , qI) = x′
0X(0; kN , qI)x0 ≤ J(uN ; x0, kN , qI) =‖ uN ‖2

2≤ a|x0|2,
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which yields X(0; kN , qI) ≤ aI. Since X(0; kN , qI) is monotone increasing in q, there exists a limit as
q → ∞, denoted by X(0; kN ), i.e., X(0; kN ) = limq→∞ X(0; kN , qI). Let ūq be the optimal control
for J(u; x0, kN , qI). Then it is uniformly bounded in q. Hence there exists a subsequence qj such that
ūqj

converges to some limit ū∞. Then x(kN ; x0, ū∞) = 0 and ‖ u∞ ‖2
2= x′

0X(0; kN )x0 ≤‖ uN ‖2
2.

Hence x′
0X(0; kN )x0 =‖ uN ‖2

2. Now suppose that (A, B) is null controllable on [0, n0], n0 ≤ n. Since
X(k; kN , qI) = X(0; kN − k, qI), the following limit exists:

lim
q→∞X(k; kN , qI) = lim

q→∞X(0; kN − k, qI) ≡ X(k; kN ) for k ≤ kN − n0.

Moreover, from equation (9) X(k; kN ), k ≤ kN − n0 satisfies the Riccati equation

X(k) = A′X(k + 1)A − A′X(k + 1)B[I + B′X(k + 1)B]−1B′X(k + 1)A,

X(kN − n0) = X(kN − n0; kN ).

Since x′
0X(0; kN )x0 =‖ uN ‖2

2, X(0; kN ) is decreasing in N and has a nonnegative limit

X∞ = lim
N→∞

X(0; kN ).

For k ≤ N −n0 we know X(k; kN ) = X(0; kN − k) and hence limN→∞ X(k; kN ) = X∞. Letting N → ∞
in the Riccati equation above we see that X∞ satisfies the ARE (6). Recall that (A, B) is NCVE and
hence

x′
0X∞x0 ≤ x′

0X(0; kN )x0 =‖ uN ‖2
2→ 0

and X∞ = 0. Now let X be any nonnegative solution of the ARE (6). We shall show that X ≤ X∞
to conclude X = 0. For this purpose consider the Riccati difference equation (9) with Q = X. Then
X(k) = X is a solution. Thus

J(ū; x0, kN , X) = x′
0Xx0 ≤ J(ū; x0, kN , qI) = x′

0X(0; kN , qI)x0

for large q, where ū denotes the optimal control for each cost function. Now passing to the limit q → ∞
and to the limit N → ∞ we obtain x′

0Xx0 ≤ x′
0X(0; kN )x0 and x′

0Xx0 ≤ x′
0X∞x0 respectively. Thus

we have shown X = 0, which completes the proof of necessity.
To show sufficiency we recall that ‖ uN ‖2

2= x′
0X(0; kN )x0 → x′

0X∞x0. But by condition (b) X∞ = 0
and hence ‖ uN ‖2→ 0 and (A, B) is NCVE.

Proof of Theorem 3.2
To show necessity we suppose that there exists an eigenvalue λ with |λ| > 1. Considering the eigenspaces
of A we can find a nonsingular matrix T such that x̃ = Tx yields

x̃(k + 1) =
[

Ã1 0
0 Ã2

]
x̃(k) +

[
B̃1

B̃2

]
u(k) ≡ Ãx̃(k) + B̃u(k),

where |λ| > 1 for any λ ∈ σ(Ã1) and |λ| ≤ 1 for any λ ∈ σ(Ã2). Notice that (Ã1, B̃1) and (Ã2, B̃2) are
NCVE. Since Ã1 is antistable, it is nonsingular and (Ã1, B̃1) is controllable by Lemma 2.2. Moreover,
(Ã−1

1 , Ã−1
1 B̃1) is controllable. Hence by Lemma 2.4 it possesses a positive controllability gramian Y

Y = Ã−1
1 Y (Ã−1

1 )′ + Ã−1
1 B̃1B̃

′
1(Ã

−1
1 )′.

By Lemma 2.5 X1 = Y −1 is a positive solution of the ARE

X = Ã′
1XÃ1 − Ã′

1XB̃1(I + B̃′
1XB̃1)−1B̃′

1XÃ1.

Then X̃ =
[

X̃1 0
0 0

]
is a nontrivial nonnegative solution of the ARE for (Ã, B̃)

X̃ = Ã′X̃Ã − Ã′X̃B̃(I + B̃′X̃B̃)−1B̃′X̃Ã,

which contradicts to Theorem 3.1. Hence |λ| ≤ 1 for any λ ∈ σ(A).
To show sufficiency let X be any nonnegative solution of the ARE (6). Let λ ∈ σ(A) with a corresponding
eigenvector p i.e., |λ| ≤ 1, Ap = λp. Then

p∗Xp = p∗A′XAp − p∗A′XB(I + B′XB)−1B′XAp

= |λ|2[p∗Xp − p∗XB(I + B′XB)−1B′Xp], (10)
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where p∗ is the Hermitian transpose of p. If |λ| < 1, then from (10) we conclude Xp = 0. Now suppose
|λ| = 1. Then (10) yields B′Xp = 0. Again from the ARE (6) we obtain Xp = λA′Xp. Hence
p∗X[ 1

λI −A B] = 0. By Lemma 2.3 we conclude Xp = 0. Hence for any eigenvector of A we have shown
Xp = 0. We shall show that Xq = 0 for any generalized eigenvector of A, which concludes X = 0. Now
let q ∈ N((λI − A)2) i.e., (λI − A)2q = 0. Then q1 = (λI − A)q satisfies (λI − A)q1 = 0. Repeating the
arguments above we conclude Xq1 = 0. Hence XAq = λXq and from the ARE (6) we obtain

q∗Xq = q∗A′XAq − q∗A′XB(I + B′XB)−1B′XAq

= |λ|2[q∗Xq − q∗XB(I + B′XB)−1B′Xq].

This is the same with (10) and hence Xq = 0. Repeating this process we conclude Xq = 0 for any
generalized eigenvector of A satisfying (λI − A)kq = 0. Hence X = 0 and by Theorem 3.1 (A, B) is
NCVE.

4 Controllability with vanishing energy

First we introduce reachability with vanishing energy (RVE), which is useful when we study CVE.

Definition 4.1 (A, B) is reachable with vanishing energy if for each x1 there exists a sequence of pairs
(kN , uN ), kN ↑ ∞, uN ∈ l2(0, kN − 1; Rm) such that x(kN ; 0, uN ) = x1 and

lim
N→∞

‖ uN ‖2= 0,

Lemma 4.1 Suppose (A, B) is RVE. Then A is nonsingular. Moreover, (A, B) is RVE if and only if
(A−1, A−1B) is NCVE.

Proof. Suppose A is nilpotent so that Aj = 0 for any j ≥ n. Let x1 be arbitrary. Then for any N ≥ n
there is a control uN such that

N−1∑
k=0

AN−1−kBuN (k) =
N−1∑

k=N−n

AN−1−kBuN (k) =
n−1∑
j=0

AjBuN (N − 1 − j) = x1.

Since the last equation is independent of N and involves only n-unknown input vectors, ‖ uN ‖2 cannot
converge to zero and RVE of (A, B) is impossible. Now suppose A is singular. Then (A, B) can be
transformed to an equivalent (Ã, B̃) with

Ã =
[

A0 0
0 A1

]
, B̃ =

[
B0

B1

]

such that A0 is nilpotent, A1 nonsingular and (A0, B0) is RVE. However the last property contradicts
what we have shown above. Hence A is nonsingular. Now when A is nonsingular, the system (5) can be
written as

x(k) = A−1x(k + 1) − A−1Bu(k).

Thus if (A, B) is RVE, then redefining u and x we can easily see that

x̃(k + 1) = A−1x̃(k) + A−1Bũ(k).

is NCVE. The converse is also true since we can reverse the arguments.

Remark 4.1 Consider the pair

A =
[

0 1
0 0

]
, B =

[
0
1

]
.

Then (A, B) is controllable and A is nilpotent. We can directly obtain ‖ uN ‖2= |x1|, where uN is the
control with minimum norm such that x(kN ; 0, uN ) = x1. Hence (A, B) is not RVE.

From Lemma 4.1 we immediately obtain the following.
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Theorem 4.1 (A, B) is RVE if and only if
(a) (A, B) is controllable, and
(b) |λ| ≥ 1 for any λ ∈ σ(A).

Now we are ready to extend Theorem 1.3.

Theorem 4.2 (A, B) is CVE if and only if
(a) (A, B) is controllable, and
(b) |λ| = 1 for any λ ∈ σ(A).

Proof. Note that (A, B) is CVE if and only if it is NCVE and RVE. Hence the proof follows from Theorem
3.2 and Theorem 4.2.

5 Applications

In this section we apply our theorems to sampled-data systems, systems with impulse control and periodic
systems. First we consider a sampled-data system with zero-order hold

ẋ = Ax + Bu,

where

u(t) = u(kτ), kτ ≤ t < (k + 1)τ.

Then at times kτ we have the following.

x((k + 1)τ ) = exp[τA]x(kτ) +
∫ τ

0

exp[rA]Bdru(kτ)

≡ Adx(kτ) + Bdu(kτ).

The sampled-data system above is said to be NCVE (CVE) if it is NCVE (CVE) in the sense of Definition
1.1 with TN = Nτ . Obviously the sampled-data system is NCVE (CVE) if and only if (Ad, Bd) is NCVE
(CVE). But by Theorems 3.2 and 4.2 (Ad, Bd) is NCVE (CVE) if and only if
(a) (Ad, Bd) is controllable, and
(b) |λ| ≤ 1 (|λ| = 1) for any λ ∈ σ(Ad).
If the sampling period τ is nonpathological [2], i.e., there is no pair (λ1, λ2) of distinct eigenvalues of A
such that |Im(λ1)− Im(λ2)| = k 2π

τ for some positive integer k, then the controllability of (A, B) implies
(a). The condition (b) holds if and only if Re(λ) ≤ 0 (Re(λ) = 0) for any λ ∈ σ(A). Hence we obtain
the following.

Theorem 5.1 Suppose that the sampling period τ is nonpathological. Then the sampled-data system is
NCVE (CVE) if and only if (A, B) is NCVE (CVE).

Next we consider the system (2) with impulse control u(k−1)δ(t−kτ) at time kτ , k ≥ 1. Then the state
x(kτ) after the impulse u(k − 1)δ(t − kτ) satisfies

x((k + 1)τ ) = exp[τA]x(kτ) + Bu(k).

Moreover, the system with impulse control is NCVE (CVE) if and only if (if) (exp[kτA], B) is NCVE
(CVE). Hence we have the following.

Theorem 5.2 The the system (2) with impulse control is NCVE (CVE) if (A, B) is NCVE (CVE) and
(exp[kτA], B) is controllable.

Finally consider the T -periodic system

ẋ = A(t)x + B(t)u,

where A(t) and B(t) are T -periodic continuous matrices. Let S(t, s) be the transition matrix associated
with A(t). Then

x((k + 1)T ) = S(T, 0)x(kT ) +
∫ T

0

S(T, r)B(r)u(k, r)dr

≡ S(T, 0)x(kT ) + Bdu(k),

7



where u(k, r) = u(kT + r), for 0 ≤ r < T , u(k) = u(k, ·) ∈ L2(0, T ; Rm) and Bd is a bounded linear
operator in L(L2(0, T ; Rm), Rn). Notice that the periodic system is NCVE (CVE) if and only if (if)
(S(T, 0), Bd) is NCVE (CVE). Recall that (S(T, 0), Bd) is controllable if

MT =
∫ T

0

S(T, r)B(r)B′(r)S′(T, r)dr > 0.

Now by a modification of Theorem 3.2 and Theorem 4.2 we obtain the following.

Theorem 5.3 The periodic system is NCVE (CVE) if |λ| ≤ 1 (|λ| = 1) for any λ ∈ σ(S(T, 0)) and
MT > 0.

Using this theorem NCVE and CVE of the generalized Hill’s equation are shown in [6]. The control space
for the discrete-time system above is infinite dimensional and Bd is an operator rather than a matrix.
Full treatment of NCVE for discrete-time systems in infinite dimensions will be given elsewhere. NCVE
of infinite dimensional periodic systems is considered in [3].
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