
Covering Directed Graphs by In-trees

Naoyuki Kamiyama1 Naoki Katoh2

Department of Architecture and Architectural Engineering, Kyoto University,
Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.

E-mail : {is.kamiyama, naoki}@archi.kyoto-u.ac.jp

Abstract

Given a directed graph D = (V, A) with a set of d specified vertices S = {s1, . . . , sd} ⊆ V
and a function f : S → Z+ where Z+ denotes the set of non-negative integers, we consider
the problem which asks whether there exist

∑d
i=1 f(si) in-trees denoted by Ti,1, Ti,2, . . . , Ti,f(si)

for every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si, each Ti,j spans vertices from
which si is reachable and the union of all arc sets of Ti,j for i = 1, . . . , d and j = 1, . . . , f(si)
covers A. In this paper, we prove that such set of in-trees covering A can be found by using an
algorithm for the weighted matroid intersection problem in time bounded by a polynomial in∑d

i=1 f(si) and the size of D. Furthermore, for the case where D is acyclic, we present another
characterization of the existence of in-trees covering A, and then we prove that in-trees covering
A can be computed more efficiently than the general case by finding maximum matchings in a
series of bipartite graphs.

1 Introduction

The problem for covering a graph by subgraphs with specified properties (for example, trees or
paths) is very important from practical and theoretical viewpoints and have been extensively stud-
ied. For example, Nagamochi and Okada [1] studied the problem for covering a set of vertices of
a given undirected tree by subtrees, and Arkin et al. [2] studied the problem for covering a set of
vertices or edges of a given undirected graph by subtrees or paths. These results were motivated
by vehicle routing problems. Moreover, Even et al. [3] studied the covering problem motivated by
nurse station location problems.

This paper studies the problem for covering a directed graph by rooted trees which is moti-
vated by the following evacuation planning problem. Given a directed graph which models a city,
vertices model intersections and buildings, and arcs model roads connecting these intersections and
buildings. People exist not only at vertices but also along arcs. Suppose we have to give several
evacuation instructions for evacuating all people to some safety place. In order to avoid disorderly
confusion, it is desirable that one evacuation instruction gives a single evacuation path for each
person and these paths do not cross each other. Thus, we want each evacuation instruction to be-
come an in-tree rooted at some safety place. Moreover, the number of instructions for each safety
place is bounded in proportion to a size of each safety place.

The above evacuation planning problem is formulated as the following covering problem defined
on a directed graph. We are given a directed graph D = (V, A, S, f) which consists of a vertex
set V , an arc set A, a set of d specified vertices S = {s1, . . . , sd} ⊆ V and a function f : S → Z+

where Z+ denotes the set of non-negative integers. In the above evacuation planning problem,
S corresponds to a set of safety places, and f(si) represents the upper bound of the number of
evacuation instructions for si ∈ S. For each i = 1, . . . , d, we define V i

D ⊆ V as the set of vertices
in V from which si is reachable in D, and we define an in-tree rooted at si which spans V i

D as a
(D, si)-in-tree. We define a set T of

∑d
i=1 f(si) subgraphs of D as a D-canonical set of in-trees if

T contains exactly f(si) (D, si)-in-trees for every i = 1, . . . , d. If every two distinct in-trees of a

1Supported by JSPS Research Fellowships for Young Scientists.
2Supported by the project New Horizons in Computing, Grant-in-Aid for Scientific Research on Priority Areas,

MEXT Japan.

1

D-canonical set T of in-trees are arc-disjoint, we call T a D-canonical set of arc-disjoint in-trees.
Furthermore, if the union of arc sets of all in-trees of a D-canonical set T of in-trees is equal to A,
we say that T covers A.

Four in-trees illustrated in Figure 2 compose a D-canonical set T of in-trees which covers the arc
set of a directed graph D = (V, A, S, f) illustrated in Figure 1(a) where S = {s1, s2, s3}, f(s1) = 2,
f(s2) = 1 and f(s3) = 1. However, T is not a D-canonical set of arc-disjoint in-trees.

s1

s2

s3

f(s1) = 2
f(s2) = 1
f(s3) = 1

u

v

w
x

y

(a)

s1

s2

s3

sã

(b)

Figure 1: (a) Directed graph D. (b) Transformed graph D∗.

s1

u

v

w

(a)

s1

u

v

w

(b)

s1

s2

u

v

w

(c)

s3

u

v

w
x

y

(d)

Figure 2: (a) (D, s1)-in-tree. (b) (D, s1)-in-tree. (c) (D, s2)-in-tree. (d) (D, s3)-in-tree.

We will study the problem for covering directed graphs by in-trees (in short CDGI), and we
will present characterizations for a directed graph D = (V, A, S, f) for which there exists a feasible
solution of CDGI(D), and an algorithm for CDGI(D).

Problem : CDGI(D)
Input : a directed graph D;

Output : a D-canonical set of in-trees which covers the arc set of D, if one exists.

A special class of the problem CDGI(D) in which S consists of a single vertex was considered by
Vidyasankar [4]. He showed the necessary and sufficient condition in terms of linear inequalities
that there exists a feasible solution of this problem (a weaker version was shown by Frank [5]).
However, to the best of our knowledge, an algorithm for CDGI(D) was not presented.
Our results : We first show that CDGI(D) can be viewed as some type of the connectivity
augmentation problem. After this, we will prove that this connectivity augmentation problem can
be solved by using an algorithm for the weighted matroid intersection problem in time bounded by
a polynomial in

∑d
i=1 f(si) and the size of D (this generalizes the result by Frank [6]). Furthermore,

for the case where D is acyclic, we show another characterization for D that there exists a feasible
solution of CDGI(D). Moreover, we prove that in this case CDGI(D) can be solved more efficiently
than the general case by finding maximum matchings in a series of bipartite graphs instead of using
an algorithm for the weighted matroid intersection problem.
Outline : The rest of this paper is organized as follows. Section 2 gives necessary definitions
and fundamental results. In Section 3, we give an algorithm for the problem CDGI by using an
algorithm for the weighted matroid intersection problem. In Section 4, we consider the acyclic case.

2

2 Preliminaries

Let D = (V, A, S, f) be a connected directed graph which may have multiple arcs. Let S =
{s1, . . . , sd}. For B ⊆ A, let ∂−(B) (resp. ∂+(B)) be a set of tails (resp. heads) of arcs in B. For
e ∈ A, we write ∂−(e) and ∂+(e) instead of ∂−({e}) and ∂+({e}), respectively. For W ⊆ V , we
define δD(W) = {e ∈ A : ∂−(e) ∈ W,∂+(e) /∈ W}. For v ∈ V , we write δD(v) instead of δD({v}).
For two distinct vertices u, v ∈ D, we denote by λ(u, v;D) the local arc connectivity from u to v in
D, i.e., λ(u, v;D) = min{|δD(W)| : u ∈ W, v /∈ W,W ⊆ V }. We call a subgraph T of D forest if T
has no cycle when we ignore the direction of arcs in T . If a forest T is connected, we call T tree.
If every arc of an arc set B is parallel to some arc in A, we say that B is parallel to A. We denote
a directed graph obtained by adding an arc set B to A by D + B, i.e., D + B = (V, A ∪ B,S, f).
For S′ ⊆ S, let f(S′) =

∑
si∈S′ f(si). For v ∈ V , we denote by RD(v) a set of vertices in S which

are reachable from v in D. For W ⊆ V , let RD(W) =
⋃

v∈W RD(v).
For an arc set B which is parallel to A, we clearly have for every v ∈ V

RD(v) = RD+B(v). (1)

From (1), we have for every i = 1, . . . , d

V i
D = V i

D+B. (2)

We define D∗ as a directed graph obtained from D by adding a new vertex s∗ and connecting
si to s∗ with f(si) parallel arcs for every i = 1, . . . , d (see Figure 1). We denote by A∗ the arc set
of D∗. From the definition of D∗,

|A∗| = ∑
v∈V |δD∗(v)| = |A|+ f(S). (3)

We say that D is (S, f)-proper when |δD∗(v)| ≤ f(RD(v)) holds for every v ∈ V .

2.1 Rooted arc-connectivity augmentation by reinforcing arcs

Given a directed graph D = (V, A, S, f), we call an arc set B with A ∩ B = ∅ which is parallel to
A a D∗-rooted connector if λ(v, s∗;D∗ + B) ≥ f(RD(v)) holds for every v ∈ V . Notice that since
a D∗-rooted connector B is parallel to A, B does not contain an arc which is parallel to an arc
entering into s∗ in D∗. Then, the problem rooted arc-connectivity augmentation by reinforcing arcs
(in short RAA-RA) is formally defined as follows.

Problem : RAA-RA(D∗)
Input : D∗ of a directed graph D;

Output : a D∗-rooted connector B whose size is minimum among all D∗-rooted
connectors.

Notice that the problem RAA-RA(D∗) is not equivalent to the local arc-connectivity augmen-
tation problem with minimum number of reinforcing arcs from v ∈ V to si ∈ RD(v). For example,
we consider D∗ illustrated in Figure 3(a) of a directed graph D = (V, A, S, f) where S = {s1, s2},
f(s1) = 2 and f(s2) = 2. The broken lines in Figure 3(b) represent a minimum D∗-rooted con-
nector. For the problem that asks to increase the v-si local arc-connectivity for every v ∈ V and
si ∈ RD(v) to f(si) by adding minimum parallel arcs to A (this problem is called the problem
increasing arc-connectivity by reinforcing arcs in [7], in short IARA(D∗)), an optimal solution is a
set of broken lines in Figure 3(c). While it is known [7] that IARA(D∗) is NP-hard, it is known [6]
that RAA-RA(D∗) in which S consists of a single element can be solved in time bounded by a
polynomial in f(S) and the size of D by using an algorithm for the weighted matroid intersection.

3

sã

s1s2

(a)

s1s2

sã

(b)

s1s2

(c)

Figure 3: (a) Input. (b) Optimal solution for RAA-RA. (c) Optimal solution for IARA.

2.2 Matroids on arc sets of directed graphs

In this subsection, we define two matroids M(D∗) and U(D∗) on A∗ for a directed graph D =
(V, A, S, f), which will be used in the subsequent discussion. We denote by M = (E, I) a matroid
on E whose collection of independent sets is I. Introductory treatment of a matroid is given in [8].

For i = 1, . . . , d and j = 1, . . . , f(si), we define Mi,j(D∗) = (A∗, Ii,j(D∗)) where I ⊆ A∗

belongs to Ii,j(D∗) if and only if both of a tail and a head of every arc in I are contained in
V i

D∪{s∗} and a directed graph (V i
D∪{s∗}, I) is a forest. Mi,j(D∗) is clearly a matroid (i.e. graphic

matroid). Moreover, we denote the union of Mi,j(D∗) for i = 1, . . . , d and j = 1, . . . , f(si) by
M(D∗) = (A∗, I(D∗)) in which I ⊆ A∗ belongs to I(D∗) if and only if I can be partitioned into
{Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that each Ii,j belongs to Ii,j(D∗). M(D∗) is also a matroid (see
Chapter 12.3 in [8]. This matroid is also called matroid sum). When I ∈ I(D∗) can be partitioned
into {Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that a directed graph (V i

D ∪ {s∗}, Ii,j) is a tree for every
i = 1, . . . , d and j = 1, . . . , f(si), we call I a base of M(D∗).

Next we define another matroid. We define U(D∗) = (A∗,J (D∗)) where I ⊆ A∗ belongs to
J (D∗) if and only if I satisfies

|δD∗(v) ∩ I| ≤
{

f(RD(v)), if v ∈ V,
0, if v = s∗. (4)

Since U(D∗) is a direct sum of uniform matroids, U(D∗) is also a matroid (see Exercise 7 of pp.16
and Example 1.2.7 in [8]). We call I ∈ J (D∗) a base of U(D) when (4) holds with equality.

For two matroids M(D∗) and U(D∗), we call an arc set I ⊆ A∗ D∗-intersection when I ∈
I(D∗) ∩ J (D∗). If a D∗-intersection I is a base of both M(D∗) and U(D∗), we call I complete.

When we are given a weight function w : A∗ → R+ where R+ denotes the set of non-negative
reals, we define the weight of I ⊆ A∗ (denoted by w(I)) by the sum of weights of all arcs I. The
weighted matroid intersection problem (in short WMI) is then defined as follows [9].

Problem : WMI(D∗)
Input : D∗ of a directed graph D and a weight function w : A∗ → R+;

Output : a complete D∗-intersection I whose weigh is minimum among all complete
D∗-intersections, if one exists.

Lemma 2.1 We can solve WMI(D∗) in O(M |A∗|6) time where M =
∑

v∈V f(RD(v)).

Proof. See Appendix A.

2.3 Results from [10]

In this section, we introduce results concerning packing of in-trees given by Kamiyama et al. [10]
which plays a crucial role in this paper.

Theorem 2.2 ([10]) Given a directed graph D = (V, A, S, f), the following three statements are
equivalent : (i) For every v ∈ V , λ(v, s∗;D∗) ≥ f(RD(v)) holds. (ii) There exists a D-canonical
set of arc-disjoint in-trees. (iii) There exists a complete D∗-intersection.

4

Although the following theorem is not explicitly proved in [10], we can easily obtain it from the
proof of Theorem 2.2 in [10].

Theorem 2.3 ([10]) Given a directed graph D = (V, A, S, f) which satisfies the condition of
Theorem 2.2, we can find a D-canonical set of arc-disjoint in-trees in O(M2|A|2) time where
M =

∑
v∈V f(RD(v)).

From Theorem 2.2, we obtain the following corollary.

Corollary 2.4 Given a directed graph D = (V, A, S, f) and an arc set B with A ∩ B = ∅ which
is parallel to A, the following three statements are equivalent : (i) B is a D∗-rooted connector.
(ii) There exists a (D + B)-canonical set of arc-disjoint in-trees. (iii) There exists a complete
(D + B)∗-intersection.

Proof. The equivalence of (ii) and (iii) follows from Theorem 2.2.
(i)→(ii) : Since B is parallel to A, we clearly have

(D + B)∗ = D∗ + B. (5)

Since B is a D∗-rooted connector and from (5) and (1), we have for every v ∈ V

λ(v, s∗; (D + B)∗) = λ(v, s∗;D∗ + B) ≥ f(RD(v)) = f(RD+B(v)).

From this inequality and Theorem 2.2, this part follows.
(ii)→(i) : Since there exists a (D + B)-canonical set of arc-disjoint in-trees and from (5), Theo-
rem 2.2 and (1), we have for every v ∈ V

λ(v, s∗;D∗ + B) = λ(v, s∗; (D + B)∗) ≥ f(RD+B(v)) = f(RD(v)).

This proves that B is a D∗-rooted connector.

3 An Algorithm for Covering by In-trees

Given a directed graph D = (V, A, S, f), we present in this section an algorithm for CDGI(D).
The time complexity of the proposed algorithm is bounded by a polynomial in f(S) and the size
of D. We first prove that CDGI(D) can be reduced to RAA-RA(D∗). After this, we show that
RAA-RA(D∗) can be solved by using an algorithm for the weighted matroid intersection problem.

3.1 Reduction from CDGI to RAA-RA

If D = (V, A, S, f) is not (S, f)-proper, i.e., |δD∗(v)| > f(RD(v)) for some v ∈ V , there exists no
feasible solution of CDGI(D) since there can not be a D-canonical set of in-trees that covers δD∗(v)
from the definition of a D-canonical set of in-trees. Thus, we assume in the subsequent discussion
that D is (S, f)-proper.

Proposition 3.1 Given an (S, f)-proper directed graph D = (V, A, S, f), the size of a D∗-rooted
connector is at least

∑
v∈V f(RD(v))− (|A|+ f(S)).

Proof. See Appendix B.

For an (S, f)-proper directed graph D = (V, A, S, f), we define optD by

optD =
∑

v∈V f(RD(v))− (|A|+ f(S)). (6)

From Proposition 3.1, the size of a D∗-rooted connector is at least optD.

5

Lemma 3.2 Given an (S, f)-proper directed graph D = (V, A, S, f), there exists a feasible solution
of CDGI(D) if and only if there exists a D∗-rooted connector whose size is equal to optD.

Proof. Only if-part : Suppose there exists a feasible solution of CDGI(D), i.e., there exists a
D-canonical set T of in-trees which covers A. For each i = 1, . . . , d, we denote f(si) (D, si)-in-trees
of T by Ti,1, . . . , Ti,f(si). For each e ∈ A, let Pe = {(i, j) : e is contained in Ti,j}. Since T covers A,
each e ∈ A is contained in at least one in-tree of T . Thus, |Pe| ≥ 1 holds for every e ∈ A. We define
an arc set B by B =

⋃
e∈A{|Pe| − 1 copies of e}. We will prove that B is a D∗-rooted connector

whose size is equal to optD.
We first prove |B| = optD. For this, we show that for every v ∈ V

∑
e∈δD(v)(|Pe| − 1) = f(RD(v))− |δD∗(v)|. (7)

Let us first consider v /∈ S. For si ∈ RD(v), Ti,j contains v since Ti,j spans V i
D and si is reachable

from v. Hence, since Ti,j is an in-tree and v is not a root of Ti,j from v /∈ S, Ti,j contains
exactly one arc e ∈ δD(v), i.e., (i, j) is contained in Pe for exactly one arc e ∈ δD(v). Thus,∑

e∈δD(v)|Pe| =
∑

si∈RD(v) f(si) = f(RD(v)). From this equation and since |δD(v)| = |δD∗(v)|
follows from v /∈ S, (7) holds. In the case of v ∈ S, for si ∈ RD(v) \ {v}, (i, j) is contained in Pe

for exactly one arc e ∈ δD(v) as in the case of v /∈ S. Thus,
∑

e∈δD(v)|Pe| = f(RD(v))− f(v). From
this equation and |δD∗(v)| = |δD(v)|+ f(v),

∑
e∈δD(v)(|Pe| − 1) = f(RD(v))− f(v)− |δD(v)| = f(RD(v))− |δD∗(v)|.

This completes the proof of (7). Since B contains |Pe| − 1 copies of e ∈ A,

|B| = ∑
v∈V

∑
e∈δD(v)(|Pe| − 1) =

∑
v∈V (f(RD(v))− |δD∗(v)|) (from (7))

= optD (from (3) and (6)).

What remains is to prove that B is a D∗-rooted connector. From Corollary 2.4, it is sufficient
to prove that there exists a (D+B)-canonical set of arc-disjoint in-trees. For this, we will construct
from T a set T ′ of arc-disjoint in-trees which consists of T ′i,1, . . . , T

′
i,f(si)

for i = 1, . . . , d, and we
prove that T ′ is a (D + B)-canonical set of in-trees. Each T ′i,j is constructed from Ti,j as follows.
When e ∈ A is contained in more than one in-tree of T , in order to construct T ′ from T , we need
to replace e of Ti,j by an arc in B which is parallel to e for every (i, j) ∈ Pe except one in-tree.
For (imin, jmin) ∈ Pe which is lexicographically smallest in Pe, we allow T ′imin,jmin

to use e, while for
(i, j) ∈ Pe \ (imin, jmin), we replace e of Ti,j by an arc in B which is parallel to e so that for distinct
(i, j), (i′, j′) ∈ Pe \ (imin, jmin), the resulting T ′i,j and T ′i′,j′ contain distinct arcs which are parallel
to e, respectively (see Figure 4).

e
e0

e00

Figure 4: Illustration of the replacing operation. Let e be an arc in A, and let e′, e′′ be arcs in B. Assume
that Pe = {(1, 1), (1, 2), (2, 1)}. In this case, T1,1, T1,2 and T2,1 contain e. Then, T ′1,1 contains e, T ′1,2 contains
e′, and T ′2,1 contains e′′.

We will do this operation for every e ∈ A. Let T ′ be the set of in-trees obtained by performing
the above operation for every e ∈ A. Here we show that T ′ is a (D+B)-canonical set of arc-disjoint
in-trees. Since T ′i,j and T ′i′,j′ are arc-disjoint for (i, j) 6= (i′, j′) from the way of constructing T ′, it
is sufficient to prove that T ′i,j is a (D + B, si)-in-tree. Since T ′i,j is constructed by replacing arcs of
Ti,j by the corresponding parallel arc in B and Ti,j is an in-tree rooted at si, T ′i,j is also an in-tree

6

rooted at si. Since Ti,j spans V i
D and from (2), T ′i,j spans V i

D+B. Hence, T ′i,j is a (D+B, si)-in-tree.
This completes the proof.
If-part : Let B be a D∗-rooted connector with |B| = optD. From Corollary 2.4, there exists a
(D +B)-canonical set T ′ of arc-disjoint in-trees. For each i = 1, . . . , d, we denote f(si) (D +B, si)-
in-trees of T ′ by T ′i,1, . . . , T

′
i,f(si)

. We will prove that we can construct from T ′ a D-canonical set
of in-trees covering A. We first construct from T ′ a set T of in-trees which consists of Ti,j for
i = 1, . . . , d and j = 1, . . . , f(si) by the following procedure Replace.

Procedure Replace : For each i = 1, . . . , d and j = 1, . . . , f(si), set Ti,j to be a directed
graph obtained from T ′i,j by replacing every arc e ∈ B which is contained in T ′i,j by an arc
in A which is parallel to e.

From now on, we prove that T is a D-canonical set of in-trees which covers A. It is not difficult
to prove that T is a D-canonical set of in-trees from the definition of the procedure Replace in the
same manner as the last part of the proof of the “only if-part”. Thus, it is sufficient to prove that
T covers A. For this, we first show that T ′ covers A ∪B. From A ∩B = ∅, |B| = optD and (6),

|A ∪B| = |A|+ optD =
∑

v∈V f(RD(v))− f(S). (8)

Recall that each v ∈ V is contained in f(RD+B(v)) in-trees of T ′ from the definition of a (D + B)-
canonical set of in-trees. Thus, since in-trees of T ′ are arc-disjoint, it holds for each v ∈ V that
the number of arcs in δD+B(v) which are contained in in-trees of T ′ is equal to (i) f(RD+B(v)) if
v ∈ V \ S, or (ii) f(RD+B(v)) − f(v) if v ∈ S. Hence, the number of arcs in A ∪ B contained in
in-trees of T ′ is equal to

∑
v∈V \Sf(RD+B(v)) +

∑
v∈S(f(RD+B(v))− f(v))

=
∑

v∈V f(RD+B(v))− f(S) =
∑

v∈V f(RD(v))− f(S) (from (1)). (9)

Since any arc of T ′ is in A∪B and the number of arcs in A∪B is equal to that of T ′ from (8) and
(9), T ′ contains all arcs in A. Thus, T covers A from the definition of the procedure Replace.

As seen in the proof of the “if-part” of Lemma 3.2, if we can find a D∗-rooted connector B with
|B| = optD, we can compute a D-canonical set of in-trees which covers A by using the procedure
Replace from a (D + B)-canonical set of arc-disjoint in-trees. Furthermore, we can construct a
(D + B)-canonical set of arc-disjoint in-trees by using the algorithm of Theorem 2.3. Since the
optimal value of RAA-RA(D∗) is at least optD from Proposition 3.1, we can test if there exists a
D∗-rooted connector whose size is equal to optD by solving RAA-RA(D∗). Assuming that we can
solve RAA-RA(D∗), our algorithm for finding a D-canonical set of in-trees which covers A called
Algorithm CR can be illustrated as Algorithm 1 below.

Lemma 3.3 Given a directed graph D = (V, A, f, S), Algorithm CR correctly finds a D-canonical
set of in-trees which covers A in O(γ1+ |V ||A|+M4) time if one exists where γ1 is the time required
to solve RAA-RA(D∗) and M =

∑
v∈V f(R(v)).

Proof. See Appendix C.

3.2 Reduction from RAA-RA to WMI

From the algorithm CR in Section 3.1, in order to present an algorithm for CDGI(D), what remains
is to show how we solve RAA-RA(D∗). In this section, we will prove that we can test whether there
exists a D∗-rooted connector whose size is equal to optD (i.e., Steps 4 and 5 in the algorithm CR)

7

Algorithm 1 Algorithm CR

Input: a directed graph D = (V, A, S, f)
Output: a D-canonical set of in-trees covering A, if one exists
1: if D is not (S, f)-proper then
2: Halt (there exists no D-canonical set of in-trees covering A)
3: end if
4: Find an optimal solution B of RAA-RA(D∗)
5: if |B| > optD then
6: Halt (there exists no D-canonical set of in-trees covering A)
7: else
8: Construct a (D + B)-canonical set T ′ of arc-disjoint in-trees
9: Construct a set T of in-trees from T ′ by using the procedure Replace

10: return T
11: end if

by reducing it to the problem WMI. Our proof is based on the algorithm of [6] for RAA-RA(D∗)
in which S consists of a single vertex. We extend the idea of [6] to the case of |S| > 1 by using
Theorem 2.2. We define a directed graph D+ obtained from D by adding optD parallel arcs to
every e ∈ A. Then, we will compute a D∗-rooted connector whose size is equal to optD by using
an algorithm for WMI(D∗

+) as described below. Since the number of arcs in a D∗-rooted connector
whose size is equal to optD which are parallel to one arc in A is at most optD, it is enough to add
optD parallel arcs to each arc of A in D+ in order to find a D∗-rooted connector whose size is equal
to optD.

We denote by A+ and A∗+ the arc sets of D+ and D∗
+, respectively. If I ⊆ A∗+ is a complete

D∗
+-intersection, since I is a base of U(D∗

+) and from (4) and (1),

|I| = ∑
v∈V f(RD+(v)) =

∑
v∈V f(RD(v)). (10)

We define a weight function w : A∗+ → R+ by

w(e) =
{

0, if e ∈ A∗,
1, otherwise.

(11)

The following lemma shows the relation between RAA-RA(D∗) and WMI(D∗
+).

Lemma 3.4 Given an (S, f)-proper directed graph D = (V, A, S, f), there exists a D∗-rooted con-
nector whose size is equal to optD if and only if there exists a complete D∗

+-intersection whose
weight is equal to optD.

To prove Lemma 3.4, we need to show the following two lemmas.

Lemma 3.5 Given a directed graph D = (V, A, S, f) and an arc set B which is parallel to A, (i) if
there is a complete D∗-intersection I, I is also a complete (D + B)∗-intersection, and (ii) if there
is a complete (D + B)∗-intersection I such that I ⊆ A∗, I is also a complete D∗-intersection.

Proof. See Appendix D.

Lemma 3.6 Given D∗
+ of an (S, f)-proper directed graph D = (V, A, S, f) and a weight function

w : A∗+ → R+ defined by (11), if there exists a complete D∗
+-intersection I ⊆ A∗+, w(I) ≥ optD.

Moreover, w(I) = optD if and only if A∗ ⊆ I.

8

Proof. See Appendix E.

Proof of Lemma 3.4. Only if-part : Assume that there exists a D∗-rooted connector whose
size is equal to optD. Since D+ has optD parallel arcs to every e ∈ A, there exists a D∗-rooted
connector B ⊆ A+ \ A with |B| = optD. Let us fix a D∗-rooted connector B ⊆ A+ \ A with
|B| = optD. From (i) of Lemma 3.5, in order to prove the “only if-part”, it is sufficient to prove
that there exists a complete (D+B)∗-intersection I with w(I) = optD. Since there exists a complete
(D + B)∗-intersection I from Corollary 2.4, we will prove that w(I) = optD. Since the arc set of
(D + B)∗ is equal to A∗ ∪ B and I is a (D + B)∗-intersection, I ⊆ A∗ ∪ B holds. Thus, since
w(A∗ ∪ B) = |B| = optD follows from (11), w(I) ≤ w(A∗ ∪ B) = optD holds. Hence, w(I) = optD
follows from Lemma 3.6. This completes the proof.
If-part : Assume that there exists a complete D∗

+-intersection I with w(I) = optD. Let B be
I \ A∗, and we will prove that B is a D∗-rooted connector with |B| = optD. We first prove B is a
D∗-rooted connector by using (ii) of Lemma 3.5 and Corollary 2.4. We set B and D in Lemma 3.5
to be A+ \ (A ∪B) and D + B, respectively. Notice that (D + B) + (A+ \ (A ∪B)) = D+ follows
from B ⊆ A+ and A+ \ (A ∪ B) is parallel to A ∪ B. From B = I \ A∗, we have I ⊆ A∗ ∪ B.
Thus, I is a complete (D + B)∗-intersection since I is a complete D∗

+-intersection and from (ii) of
Lemma 3.5. Hence, from Corollary 2.4, B is a D∗-rooted connector.

What remains is to prove that |B| = optD. From Lemma 3.6 and w(I) = optD, A∗ ⊆ I holds.
Thus, from B = I \A∗ and (10), |B| = |I \A∗| = |I| − |A∗| = ∑

v∈V f(RD(v))− (|A|+ f(S)). This
equation and (6) complete the proof.

As seen in the proof of the “if-part” of Lemma 3.4, if we can find a complete D∗
+-intersection

I with w(I) = optD, we can find a D∗-rooted connector B with |B| = optD by setting B = I \A∗.
Furthermore, we can obtain a complete D∗

+-intersection whose weight is equal to optD if one exists
by using the algorithm for WMI(D∗

+) since the optimal value of WMI(D∗
+) is at least optD from

Lemma 3.6. The formal description of the algorithm called Algorithm RW for finding a D∗-rooted
connector whose size is equal to optD is illustrated in Algorithm 2.

Algorithm 2 Algorithm RW

Input: D∗ of an (S, f)-proper directed graph D = (V, A, S, f)
Output: a D∗-rooted connector whose size is equal to optD, if one exits
1: Find an optimal solution I of WMI(D∗

+) with a weight function w defined by (11)
2: if there exists no solution of WMI(D∗

+) or w(I) > optD then
3: Halt (There exists no D∗-rooted connector whose size is equal to optD)
4: end if
5: return I \A∗

Lemma 3.7 Given D∗ of an (S, f)-proper directed graph D = (V, A, f, S), Algorithm RW correctly
finds a D∗-rooted connector whose size is equal to optD in O(γ2 + M |A|) time if one exists where
γ2 is the time required to solve WMI(D∗

+) and M =
∑

v∈V f(RD(v)).

Proof. The lemma immediately follows from Lemma 3.4.

3.3 Algorithm for CDGI

We are ready to explain the formal description of our algorithm called Algorithm Covering for
CDGI(D). Algorithm Covering is the same as Algorithm CR such that Steps 4, 5 and 6 are replaced
by Algorithm RW.

9

Theorem 3.8 Given a directed graph D = (V, A, S, f), Algorithm Covering correctly finds a D-
canonical set of in-trees which covers A in O(M7|A|6) time if one exits where M =

∑
v∈V f(RD(v)).

Proof. The correctness of the algorithm follows from Lemmas 3.3 and 3.7. We then consider the
time complexity of this algorithm. From Lemmas 3.3 and 3.7, what remains is to analyze the time
required to solve WMI(D∗

+). If D is (S, f)-proper, |A∗| =
∑

v∈V |δD∗(v)| ≤ ∑
v∈V f(RD(v)) = M .

Thus, since D∗
+ has optD parallel arcs of every e ∈ A, |A∗+| = |A∗| + ∑

e∈AoptD ≤ M + M |A|.
Hence we have |A∗+| = O(M |A|). Thus, from Lemma 2.1, we can solve WMI(D∗) in O(M7|A|6)
time. From this discussion and Lemmas 3.3 and 3.7, we obtain the theorem.

4 Acyclic Case

In this section, we show that in the case where D = (V, A, S, f) is acyclic, a D-canonical set of
in-trees covering A can be computed more efficiently than the general case. For this, we prove the
following theorem.

Theorem 4.1 Given an acyclic directed graph D = (V, A, S, f), there exists a D-canonical set of
in-trees which covers A if and only if

|B| ≤ f(RD(∂+(B))) for every v ∈ V and B ⊆ δD(v). (12)

Sketch of Proof. For each v ∈ V , we define an undirected bipartite graph Gv = (Xv ∪Yv, Ev) which
is necessary to prove the theorem. Let Xv = {xe : e ∈ δD(v)} and Yv = {yi,j : si ∈ RD(v), j =
1, . . . , f(si)}. xe ∈ Xv and yi,j ∈ Yv are connected by an edge in Ev if and only if si is reachable
from ∂+(e) (see Figure 5).

f(s2) = 2
f(s1) = 2

f(s3) = 1

e1

e2

e3

e4

e5

s1

s2

s3u

v

(a)

y1;1 y1;2 y2;1 y2;2 y3;1

xe1 xe2 xe3 xe4 xe5

Xu

Yu

(b)

Figure 5: (a) Input acyclic directed graph D. (b) Bipartite graph Gu for u in (a).

It is well-known that (12) is equivalent to the necessary and sufficient condition that for any v ∈
V , there exists a matching in Gv which saturates vertices in Xv (e.g., Theorem 16.7 in Chapter 16
of [12]). Thus it is sufficient to prove that there exists a D-canonical set of in-trees which covers
A if and only if for any v ∈ V , there exists a matching in Gv which saturates vertices in Xv. The
proof is in Appendix F.

From Theorem 4.1, instead of the algorithm presented in Section 3, we can more efficiently find a
D-canonical set of in-trees covering A by finding a maximum matching in a bipartite graph O(|V |)
times. In regard to algorithms for finding a maximum matching in a bipartite graph, see e.g. [13].

Corollary 4.2 Given an acyclic directed graph D = (V, A, S, f), we can find a D-canonical set of
in-trees which covers A in O(match(M+|A|,M |A|)) time if one exists where match(n,m) represents
the time required to find maximum matching in a bipartite graph with n vertices and m arcs and
M =

∑
v∈V f(RD(v)).

Acknowledgement : We thank Prof. Tibor Jordán, who informed us of the paper [6].

10

References

[1] Nagamochi, H., Okada, K.: Approximating the minmax rooted-tree cover in a tree. Inf.
Process. Lett. 104(5) (2007) 173–178

[2] Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing
problems. J. Algorithms 59(1) (2006) 1–18

[3] Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper.
Res. Lett. 32(4) (2004) 309–315

[4] Vidyasankar, K.: Covering the edge set of a directed graph with trees. Discrete Mathmatics
24 (1978) 79–85

[5] Frank, A.: Covering branchings. Acta Scientiarum Mathematicarum [Szeged] 41 (1979) 77–81

[6] Frank, A.: Rooted k-connections in digraphs. Discrete Applied Mathmatics (to appear).

[7] Jordan, T.: Two NP-complete augmentation problems. Technical Report 8, Department of
Mathematics and Computer Science, Odense University (1997)

[8] Oxley, J.G.: Matroid theory. Oxford University Press (1992)

[9] Frank, A.: A weighted matroid intersection algorithm. J. Algorithms 2(4) (1981) 328–336

[10] Kamiyama, N., Katoh, N., Takizawa, A.: Arc-disjoint in-trees in directed graphs. In: Proc.
the nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2008). (2008)
518–526

[11] Knuth, D.: Matroid partitioning. Technical Report STAN-CS-73-342, Computer Science
Department, Stanford University (1974)

[12] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (Algorithms and Com-
binatorics). Springer-Verlag (2003)

[13] Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2(4) (1973) 225–231

11

A Proof of Lemma 2.1

To prove the lemma, we use the following theorem concerning a matroid.

Theorem A.1 ([11]) Given a matroid M = (E, I) which is a union of t (≤ |E|) matroids M1 =
(E, I1), . . . ,Mt = (E, It), we can test if a given set belongs to I in O(|E|3γ) time where γ is the
time required to test if a given set belongs to I1, . . . , It.

Theorem A.2 ([9]) Given two matroids M1 = (E, I1) and M2 = (E, I2) with a weight function
w : E → R+ and a non-negative integer k ∈ Z+, we can find I ∈ I1 ∩ I2 with |I| = k whose weight
is minimum among all I ′ ∈ I1 ∩ I2 with |I ′| = k in O(k|E|3 + k|E|2γ) time if one exists where γ
is the time required to test if a given set belongs to both I1 and I2.

We consider the time required to test if a given set belongs to both I(D∗) and J (D∗). Since
it is not difficult to see that we can test is a given set belongs to each Ii,j(D∗) in O(|A∗|) time, we
can test if a given set belongs to I(D∗) in O(|A∗|4) time from Theorem A.1. For J (D∗), the time
complexity is clearly O(|A∗|) time. The size of every complete D∗-intersection is equal to M from
(4). Thus, the total time required for solving WMI(D∗) is O(M |A∗|6) from Theorem A.2.

B Proof of Proposition 3.1

Let B be a D∗-rooted connector. From the definition of a D∗-rooted connector, |δD∗+B(v)| ≥
f(RD(v)) holds for every v ∈ V . Thus, the number of arcs of D∗ + B is at least

∑
v∈V f(RD(v)).

Since the number of arcs of D∗ is equal to |A|+ f(S) from (3), the proposition holds.

C Proof of Lemma 3.3

The correctness of the algorithm follows from Lemma 3.2. Thus, we consider the time complexity.
In Step 1, we have to compute RD(v) for every v ∈ V . This can be done in O(|V ||A|) time
by applying depth-first search from every si ∈ S. After this, the time required to test whether
|δD∗(v)| ≤ f(RD(v)) for all v ∈ V is O(|A|). Thus, the time required for Step 1 is O(|V ||A|). Since
the number of arcs of D + B is at most M for a D∗-rooted connector B with |B| = optD from (6),
the time required for Step 8 is O(M4) from Theorem 2.3. Moreover, since the number of arcs of
D+B is at most M , the time required for Step 9 is O(M) from the definition of Procedure Replace.
Hence, since the time required for Step 4 is γ1, the lemma follows.

D Proof of Lemma 3.5

(i) : We first prove that I is a base of M((D + B)∗). Since I is a base of M(D∗), I can be
partitioned into {Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that a directed graph (V i

D ∪ {s∗}, Ii,j) is a tree
for every i = 1, . . . , d and j = 1, . . . , f(si). Thus, since each (V i

D+B ∪ {s∗}, Ii,j) is a tree from (2),
I is a base of M((D + B)∗).

Next we prove that I is a base of U((D + B)∗). Since I is a base of U(D∗), |δD∗(v) ∩ I| is
equal to (i) f(RD(v)) if v ∈ V , or (ii) 0 if v = s∗. Furthermore, since I ∩ B = ∅ follows from
I ⊆ A∗, |δD∗(v) ∩ I| is equal to |δ(D+B)∗(v) ∩ I| for every v ∈ V . Thus, |δ(D+B)∗(v) ∩ I| is equal to
(i) f(RD(v)) = f(RD+B(v)) from (1) if v ∈ V , or (ii) 0 if v = s∗. This proves that I is a base of
U((D + B)∗).
(ii) : This part can be proved in the same manner as in the proof of (i).

12

E Proof of Lemma 3.6

From (11), we have w(I) = |I|−|I∩A∗|. Furthermore, from (3) and (10), |I|−|I∩A∗| ≥ |I|−|A∗| =∑
v∈V f(RD(v)) − (|A| + f(S)). Thus, w(I) ≥ optD follows from (6). From the above equation,

w(I) = optD if and only if |I ∩A∗| = |A∗|. This proves the rest of the lemma.

F Proof of Theorem 4.1

If-part : Since D has no cycle, we can label vertices in V as follows, based on topological ordering:
(i) A label of each vertex is an integer between 1 and |V |. (ii) For any e ∈ A, a label of ∂+(e) is
smaller than that of ∂−(e). For W ⊆ V , we denote by D[W] a subgraph of D = (V, A, S, f) induced
by W with a set of specified vertices S ∩W and a restriction of f on S ∩W . Let Vt be the set of all
vertices whose label is at most t. We prove by induction on t. For t = 1, it is clear that there exists
a D[V1]-canonical set of in-trees covering the arc set of D[V1]. Assume that in the case of t ≥ 1,
there exists a D[Vt]-canonical set T of in-trees covering the arc set of D[Vt]. For si ∈ S ∩ Vt and
j = 1, . . . , f(si), let Ti,j be an in-tree of T which is rooted at si and spans vertices in Vt from which
si is reachable. Let v be a vertex whose label is equal to t + 1. We assume that v /∈ S. The case of
v ∈ S can be proved in the same manner. In this case, from S ∩ Vt = S ∩ Vt+1, we will construct a
set T ′ of in-trees which consists of T ′i,1, . . . , T

′
i,f(si)

for si ∈ S ∩ Vt (= S ∩ Vt+1) such that each T ′i,j
is obtained from Ti,j . We first consider T ′i,j for si ∈ (S ∩ Vt) \ RD(v). For si ∈ (S ∩ Vt) \ RD(v),
from V i

D[Vt]
= V i

D[Vt+1] holds, Ti,j is also a (D[Vt+1], si)-in-tree. Thus, we set T ′i,j = Ti,j . Next we
consider T ′i,j for si ∈ RD(v). For si ∈ RD(v), since V i

D[Vt+1] = V i
D[Vt]

∪{v} holds, we need to add an
arc in δD(v) to Ti,j . Here we use a matching M in Gv which saturates vertices in Xv. For each edge
xeyi,j ∈ M, we set T ′i,j be an in-tree obtained by adding an arc e to Ti,j . If there exists yi′,j′ ∈ Yv

which is not contained in any edge in M, we arbitrarily choose an arc e′ ∈ δD(v) such that xe′ is a
neighbour of yi′,j′ in Gv and we set T ′i′,j′ to be an in-tree obtained by adding e′ to T ′i′,j′ . From the
way of construction, T ′ is clearly a D[Vt+1]-canonical set of in-trees. Since M saturates vertices in
Xv, T ′i,1, . . . , T

′
i,f(si)

with si ∈ RD(v) contain all arcs in δD(v). Thus, since T covers the arc set of
D[Vt] from the induction hypothesis, T ′ covers the arc set of D[Vt+1].
Only if-part : Assume that there exists a D-canonical set T of in-trees covering A. For i = 1, . . . , d,
we denote f(si) (D, si)-in-trees of T by Ti,1, . . . , Ti,f(si). Let us fix v ∈ V , and for Xv and Yv we
define a set E′ in which an edge xeyi,j is contained in E′ if and only if e ∈ δD(v) is contained in
Ti,j . If e ∈ δD(v) is contained in Ti,j , si is reachable from ∂+(e). Thus, E′ is a subset of Ev. Since
T covers A, each e ∈ δD(v) is contained in at least one in-tree in T . That is, E′ saturates Xv.
Since Ti,j is an in-tree, each yi,j is contained in exactly one edge in E′. Thus, it is not difficult to
see that a matching in Gv which saturates vertices in Xv can be obtained from E′. This completes
the proof.

13

