Geometric Spanner of Objects Under L_{1} Distance

Yongding Zhu ${ }^{1}$ Jinhui $\mathrm{Xu}^{1 \star}$ Yang Yang ${ }^{1}$ Naoki Katoh ${ }^{2}$ Shin-ichi Tanigawa ${ }^{2}$
${ }^{1}$ Department of Computer Science and Engineering State University of New York at Buffalo Buffalo, NY 14260, USA \{yzhu3, jinhui,yyang6\}@cse.buffalo.edu
${ }^{2}$ Department of Architecture and Architectural Systems
Kyoto University
Japan
\{naoki,is.tanigawa\}@archi.kyoto-u.ac.jp

Abstract

Geometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider the following generalized geometric spanner problem under L_{1} distance: Given a set of disjoint objects S, find a spanning network G with minimum size so that for any pair of points in different objects of S, there exists a path in G with length no more than t times their L_{1} distance, where t is the stretch factor. We specifically focus on three types of objects: rectilinear segments, axis aligned rectangles, and rectilinear polygons. By combining the ideas of t-weekly dominating set and imaginary Steiner points, we develop a 2-approximation algorithm for each type of objects. Our algorithms run in near quadratic time, and can be easily implemented for practical applications.

[^0]
1 Introduction

In this paper, we consider the following generalization of the classical geometric spanner problem: Given a set S of n disjoint objects in L_{1}^{2} space (i.e., 2 -dimensional space with L_{1} norm) and a constant $t>1$, construct a graph G for S of minimum size (i.e. the number of vertices and edges is minimized) so that for any pair of points $p_{i} \in o_{i}$ and $p_{j} \in o_{j}$, there exists a path $P\left(p_{i}, p_{j}\right)$ in G whose total length is at most $t \times d\left(p_{i}, p_{j}\right)$, where o_{i} and o_{j} are objects in S and $d\left(p_{i}, p_{j}\right)$ is the L_{1} (or Manhanttan) distance between p_{i} and p_{j}. The path $P\left(p_{i}, p_{j}\right)$ consists of three parts, P_{1}, P_{2} and P_{3}, where P_{1} and P_{3} are the portions of $P\left(p_{i}, p_{j}\right)$ inside o_{i} and o_{j} respectively. We assume that there implicitly exists an edge (or path) between any pair of points inside each object $o \in S$. Thus, the objective of minimizing the size of G is equivalent to minimizing the total number of vertices, and edges between vertices in different objects. In this paper, we consider the cases where objects are disjoint rectilinear segments, axis aligned rectangles, and rectilinear polygons in L_{1}^{2} space.

Spanner is a fundamental structure in computational geometry and finds applications in many different areas. Extensive researches have been done on this structure and a number of interesting results have been obtained [1-11]. Almost all previous results consider the case in which the objects are points and seek to minimize the spanner's construction time, size, weight, maximum degree of vertex, diameter, or any combination of them.

A common approach for constructing geometric spanner is the use of Θ-graph [1-4]. In [5], Arya et al. showed that a t-spanner with constant degree can be constructed in $O(n \log n)$ time. In $[6,7]$, they gave a randomized construction of a sparse t-spanner with expected spanner diameter $O(\log n)$. In $[9,10]$, Das et al. proposed an $O\left(n \log ^{2} n\right)$-time greedy algorithm for a t-spanner with $O(n)$ edges and $O(1) w t(M S T)$ weight in 3-D space. Gudmundsson et al. showed in [11] that an $O(n)$ edges, and $O(1) w t(M S T)$ weight t-spanner is possible to be constructed in $O(n \log n)$ time.

In graph settings, Chandar et al. [8] showed that for an arbitrary positive edge-weighted graph G and any $t>1, \epsilon>0$, a t-spanner of G with weight $O\left(n^{\frac{2+\epsilon}{t-1}}\right) w t(M S T)$ can be constructed in polynomial time. They also showed that $\left(\log ^{2} n\right)$-spanners of weight $O(1) w t(M S T)$ can be constructed.

For geometric spanners of objects other than points, Asano et al. considered the problem of constructing a spanner graph for a set of axis-aligned rectangles using rectilinear bridges and under L_{1} distance [12]. They showed that in general it is NP-hard to minimize the dilation, and when the spanner graph is restricted to be trees with rectilinear edges, the problem can be solved using a linear program. They also considered other simple graphs such as paths and sorted paths, and presented polynomial time solution for each of them.

In [13], Yang et al. generalized the geometric spanner structure from points to segments and considered the problem of constructing a minimum-sized t-spanner for a set of disjoint segments in Euclidean space. They showed that a constant approximation can be obtained in $O\left(|Q|+n^{2} \log n\right)$ time if the segments are relatively well separated, where Q is the set of vertices (called Steiner points) of G.

The problem considered in this paper is motivated by several applications. First, since the segment spanner in [13] can be viewed as a special case of rectangle (or polygon) spanner, its applications in architecture and wireless mesh networks imply applications for the spanners constructed in this paper. Second, the spanner of rectilinear polygons under L_{1} distance also finds its own application in VLSI layout. In such applications, a set of pre-layouted modules (represented as rectangles or polygons) are to be connected by a set of (mainly rectilinear) wires (or network). To minimize the latency, for each pair of locations in different modules, it is expected that their shortest path in the network has length close to their L_{1} distance, making the network design problem be a polygon spanner problem.

To solve the aforementioned problem, we further extend in this paper the concept of geometric spanner to polygons. Particularly, we consider three types of objects, rectilinear segments, axis-aligned rectangles, and rectilinear polygons. We show that our framework for constructing geometric spanner of segments in [13] can be generalized to polygons and achieves much better performance ratios. Our approach builds the spanner in two steps. First, we identify a set of points, called Steiner points, from each object; Then a t-spanner is constructed for the Steiner points by applying some existing algorithms for point spanners such as the ones in [14]. Thus, our focus will be only on the first step. Furthermore, since most existing spanners are sparse graphs (i.e. consist of $O(n)$ edges), minimizing the size of the spanner for rectilinear polygons is equivalent to minimizing the total number of Steiner points. Our objective is hence to obtain a spanner with a minimum number of Steiner points.

Minimizing the number of Steiner points is in general quite challenging. Part of the reason is that the position of a Steiner point on one object affects not only the positions of the Steiner points on the same object but also on other objects. To overcome this difficulty, we first generalize the concept of weakly dominating set in [13] to lower bound the number of Steiner points on one object. By using some imaginary Steiner points and a few other interesting techniques, we are able to find a set of strongly dominating set for each object. We show that the size of the strongly dominating set is a 2 -approximation of the optimal solution. Our algorithm can be easily implemented and runs in near quadratic time. Our technique can be easily extended to higher dimensional space.

Due to space limit, we omit a lot of details in some proofs from this extended abstract.

2 Main Ideas

Let $S=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}$ be a set of n disjoint connected objects in L_{1}^{2} space. A t-spanner G_{S} of S is a network which connects the objects in S and satisfies the following condition. For any two points p_{i} and p_{j} in objects $O_{i} \in S$ and $O_{j} \in S, i \neq j$, respectively, there exists a path (called spanner path) in G_{S} between p_{i} and p_{j} with length no more than $t\left|p_{i} p_{j}\right|$, where t is the stretch factor of the spanner and $\left|p_{i} p_{j}\right|$ is the L_{1} distance between p_{i} and p_{j}. The spanner G_{S} consists of the objects, some sample points (called Steiner points) of the objects, and line segments (called bridges) connecting the Steiner points. We assume that there is an implicit path between p_{i} (or p_{j}) to any Steiner point in O_{i} (or O_{j}). Thus the spanner path between p_{i} and p_{j} includes an implicit path from p_{i} to some Steiner point $q_{i} \in O_{i}$ and and an implicit path from p_{j} to some Steiner point $q_{j} \in O_{j}$ (see Figure 1).

Fig. 1. Spanner Path between p_{1} and $p_{2}: p_{1} \rightarrow q_{1} \rightarrow q_{2} \rightarrow p_{2}$, where q_{1} and q_{2} are the Steiner points.

As mentioned in previous section, our main objective for the spanner G_{S} is to minimize its size. The size of G_{S} is the sum of the complexities of objects in S and the numbers of Steiner points and bridges. Since the total complexity of the objects is fixed, minimizing the size of G_{S} is equivalent to minimize the total number of Steiner points and bridges.

To simplify the optimization task, our main idea is to separate the procedure of minimizing the number of Steiner points from that of minimizing the number of bridges. In following sections, for each type of objects (i.e., rectilinear segments, axis aligned rectangles and rectilinear polygons), we first compute a set Q of Steiner points with small size, and then construct a spanner G_{Q} for Q to minimize the number of bridges. The spanner G_{Q} together with the objects forms the spanner of S (i.e. G_{S}). Since most existing spanner algorithms for points yield spanners with linear number of edges, the difficulty of minimizing the size of G_{S} lies on minimizing the number of Steiner points.

To illustrate our main ideas on minimizing Steiner points, we first briefly discuss the framework for all three types of objects inherited from our algorithm for constructing segment spanners in [13]. We start with selecting Steiner points for a pair of objects.

Let O_{1} and O_{2} be two different objects in S and p_{1} and p_{2} be a pair of arbitrary points in O_{1} and O_{2} respectively. Let $q_{1} \in O_{1}$ and $q_{2} \in O_{2}$ be two Steiner points close enough to p_{1} and p_{2}.

Definition 1 (t-Domination). Steiner points q_{1} and $q_{2} t$-dominate p_{1} and p_{2} if the path $p_{1} \rightarrow q_{1} \rightarrow$ $q_{2} \rightarrow p_{2}$ is a t-spanner path for p_{1} and p_{2} (i.e., the length of the path is no more than $t \times\left|p_{1} p_{2}\right|$, where $\left|p_{1} p_{2}\right|$ is the length of the segment $\left.\overline{p_{1} p_{2}}\right) . q_{1}$ and q_{2} are called the t-dominating pair of p_{1} and p_{2}.

From the definition, it is clear that the positions of q_{1} and q_{2} are constrained by p_{1} and p_{2}. If we fix p_{1}, p_{2}, and one Steiner point q_{1}, then all possible positions of the other Steiner point q_{2} form a (possibly
empty) region denoted as $R\left(p_{1}, p_{2}, q_{1}\right)$ (which is a function of p_{1}, p_{2} and $\left.q_{1}\right)$ in O_{2} (see Figure 2). When q_{1} moves in O_{1}, the region changes accordingly. Similarly, if we fix the two Steiner points q_{2}, q_{1}, together with p_{2}, all points in $O_{1} t$-dominated by q_{2} and q_{1}, with respect to p_{2}, also form an region $R\left(q_{2}, q_{1}, p_{2}\right)$ in O_{1}.

Since the spanner G_{S} needs to guarantee that there exists a spanner path (or equivalently a t-dominating pair of Steiner points) from p_{2} to every point in O_{1}, from p_{2} 's point of view, it expects q_{2} to be in some position such that O_{1} can be covered by a minimum number of q_{1} 's., i.e. the union of $R\left(q_{2}, q_{1}, p_{2}\right)$ covers O_{1}. Thus, to determine Steiner points in O_{1}, we need to (1) identify a minimum set of Steiner points to cover all points in O_{1} and (2) find a way to deal with the influence of the Steiner points (e.g., q_{2}) in O_{2} and other objects.

To overcome these two difficulties, we relax the constraints in the definition of t-domination.
Definition 2 (t-Weak Domination). Steiner point $q_{1} t$-weakly dominates p_{1} and p_{2} if q_{1} and p_{2} are the t-dominating pair of p_{1} and $p_{2} . q_{1} t$-weakly dominates p_{1} if for any $p_{2} \in O_{2}, q_{1} t$-weakly dominates p_{1} and p_{2}.

In the above definition, we assume that q_{2} can be placed at arbitrary position in O_{2} (or equivalently every point in O_{2} is a Steiner point), when placing Steiner points in O_{1}. With this relaxation, we only need to consider the relation between q_{1} and p_{1}, p_{2}. More specifically, we only need to find a minimum number of points in O_{1} so that every point p_{1} in O_{1} is t-weakly dominated by some selected Steiner point. We call such a set of points as a t-weakly dominating set of O_{1}. We will show in following sections how to select t-weakly dominating set for each object (i.e., overcoming difficulty (1)).

Fig. 2. The Region Dominating p_{2} with p_{1} and q_{1} fixed

The concept of weakly dominating sets helps us to avoid the influence of Steiner points from other objects (i.e., difficulty (2)). However, t-weakly dominating sets alone do not guarantee the existence of t-dominating pair for each pair points $p_{1} \in O_{1}$ and $p_{2} \in O_{2}$. To overcome this difficulty, we use the concept of imaginary Steiner points. More specifically, let p_{m} be the median point of the segment $\overline{p_{1} p_{2}}$. When we determine the position of q_{1} for p_{1}, we assume that there is an imaginary Steiner point at p_{m} and find q_{1} so that $q_{1} t$-weakly dominates p_{1} and p_{m}. Similarly we can find q_{2} to t-weakly dominate p_{2} and p_{m}. As shown in [13], such pair of q_{1} and q_{2} is a t-dominating pair for p_{1} and p_{2}. All Steiner points in O_{1} computed using imaginary Steiner points are called the t-dominating set of O_{1} (with respect to O_{2}).

For the case of more than two objects, we first compute weak visibility graph for each object $O_{i} \in S$ and consider the Steiner-point-determination problem for O_{i} and each object weakly visible to O_{i}. The set of Steiner points in O_{i} computed from its weakly visible objects is called the t-strongly dominating set of O_{i}.

3 Constructing t-Spanner for Rectilinear Segments Under L_{1} Distance

In [13], an $O(1)$-approximation algorithm was designed for constructing a spanner of segments under L_{2} distance. In this section, we consider a special case of the segment spanner problem in which the input is a set S of rectilinear segments, and the distance function is the L_{1} norm (i.e., the Manhattan distance). We show that for this special case, a much better performance ratio (i.e., 2) can be achieved.

Let s_{1} and s_{2} be two rectilinear segments in S, and p_{1} and p_{2} be two arbitrary points on s_{1} and s_{2} respectively. Let $q_{1} \in s_{1}$ and $q_{2} \in s_{2}$ be two Steiner points of p_{1} and p_{2}.

It is easy to see that when the two segments have different orientations (i.e., one horizontal and the other vertical, say s_{1} is horizontal and s_{2} is vertical), one Steiner point on each segment (i.e., the point closest to the other segment) is sufficient to t-dominate the corresponding segment. Thus we only focus on the case in which s_{1} and s_{2} have the same orientation. Without loss of generality, we assume that s_{1} and s_{2} are all horizontal segments.

Let q_{1} be a Steiner point in $s_{1} t$-weakly dominating p_{1} and $e_{1 l}$ and $e_{1 r}$ be the two endpoints of the region $R\left(p_{1}, p_{2}, p_{2}\right)$ (i.e., the interval of all possible positions of the Steiner point q_{1} when q_{2} coincides with $\left.p_{2}\right)$. Then we have the following lemma.

Lemma 1. Let s_{1} and s_{2} be defined as above. Then the two endpoints $e_{1 l}$ and $e_{1 r}$ of $R\left(p_{1}, p_{2}, p_{2}\right)$ locate on different sides of p_{1} with one of them equal to $\min \left\{\left|p_{1} a_{1}\right|,\left|p_{1} b_{1}\right|, \frac{t-1}{2}\left|p_{1} p_{2}\right|+\left|p_{1} p_{2}\right| x\right\}$ and the other equal to $\min \left\{\left|p_{1} a_{1}\right|,\left|p_{1} b_{1}\right|, \frac{t-1}{2}\left|p_{1} p_{2}\right|\right\}$, where $\left|p_{1} p_{2}\right|_{x}$ is the distance along x-axis between p_{1} and p_{2} and a_{1} and b_{1} are the two endpoints of s_{1}.

Proof. Assume without loss of generality that p_{2} is to the left of p_{1}, then i) if q_{1} is placed to the left of p_{1}, it is easy to see that q_{1} is also to the left of p_{2}, otherwise there is no need to use q_{1} as the Steiner point for p_{1} due to the property of L_{1} distance, therefore we have $\left|q_{1} p_{2}\right|=\left|p_{1} p_{2}\right|_{y}+\left|p_{1} q_{1}\right|-\left|p_{1} p_{2}\right|_{x}$; ii) if q_{1} is placed to the right of p_{1}, we have $\left|q_{1} p_{2}\right|=\left|p_{1} q_{1}\right|+\left|p_{1} p_{2}\right|$. By the spanner property, we have $\left|p_{1} q_{1}\right|+\left|q_{1} p_{2}\right| \leq t\left|p_{1} p_{2}\right|$. Solving the system of the equations, we get i) if q_{1} is placed to the left of $p_{1},\left|p_{1} q_{1}\right| \leq \frac{t-1}{2}\left|p_{1} p_{2}\right|+\left|p_{1} p_{2}\right|_{x}$; ii) if q_{1} is placed to the right of $p_{1},\left|p_{1} q_{1}\right| \leq \frac{t-1}{2}\left|p_{1} p_{2}\right|$. The lemma follows since q_{1} has to be placed within s_{1}.

Lemma 2. The minimum of both $\left|p_{1} e_{1 l}\right|$ and $\left|p_{1} e_{1 r}\right|$ is $\min \left\{\left|p_{1} a_{1}\right|,\left|p_{1} b_{1}\right|, \frac{t-1}{2}\left|p_{1} p_{2}\right|\right\} .\left|p_{1} e_{1 l}\right|$ (or $\left.\left|p_{1} e_{1 r}\right|\right)$ achieves its minimum either when $e_{1 l}$ coincides with a_{1} (or $e_{1 r}$ coincides with b_{1}), or p_{2} is at the endpoints of s_{2}, or $\left|p_{1} p_{2}\right|$ is a constant that only depends on s_{1} and s_{2}.

Proof. In the proof of Lemma 1, it is clear that $\left|p_{1} e_{1 l}\right|$ (or $\left|p_{1} e_{1 r}\right|$) achieves its minimum when $e_{1 l}$ (or $e_{1 r}$) and p_{2} are on the different sides of p_{1}, and the minimum is $\min \left\{\left|p_{1} a_{1}\right|,\left|p_{1} b_{1}\right|, \frac{t-1}{2}\left|p_{1} p_{2}\right|\right\}$. To minimize the value of $\left|p_{1} p_{2}\right|, p_{2}$ should be picked as the nearest point to p_{1} on s_{2}. Thus, p_{2} is either an endpoint of s_{2}, or the point on s_{2} that has the same x-coordinate or y-coordinate with p_{1}. In the latter case, $\left|p_{1} p_{2}\right|$ is the distance between s_{1} and s_{2}, which is a constant when both segments are given.

Let m be the parameter of p_{1} in its convex combination of the two endpoints of s_{1}, i.e. $p_{1}=(1-m) a_{1}+$ $m b_{1}$, for some $m \in[0,1]$. Let $L_{1,2}(m)$ and $R_{1,2}(m)$ be the functions defining the positions of $e_{1 l}$ and $e_{1 r}$ (respectively) on s_{1}, i.e. $L_{1,2}(m)=m-\left|p_{1} e_{1 l}\right| /\left|a_{1} b_{1}\right|$ and $R_{1,2}(m)=m+\left|p_{1} e_{1 r}\right| /\left|a_{1} b_{1}\right|$.
Lemma 3. $L_{1,2}(m)$ and $R_{1,2}(m)$ are piecewise linear functions of m.
Proof. When p_{2} is an endpoint of $s_{2}, \frac{t-1}{2}\left|p_{1} p_{2}\right|$ is linear in $\left|p_{1} p_{2}\right|_{x}=\left|a_{1} p_{2}\right|_{x} \mp\left|a_{1} p_{1}\right|$. Since $\left|p_{1} p_{2}\right|_{y}$ and $\left|a_{1} p_{2}\right|_{x}$ are both constants when p_{2} is fixed at an endpoint of $s_{2}, \frac{t-1}{2}\left|p_{1} p_{2}\right|$ is linear in m by the definition of m. When p_{2} is the point in s_{2} that has the same x-coordinate or y-coordinate as $p_{1}, \frac{t-1}{2}\left|p_{1} p_{2}\right|$ is a constant. Thus $L_{1,2}(m)$ and $R_{1,2}(m)$ are (piecewise) linear in m.

To efficiently compute a set of t-dominating set for each segment in S, we first introduce the concept of wall. Let s_{1} and s_{2} be two weakly visible segments in S, and p_{1} and p_{2} be their respective points. p_{1} and p_{2} are horizontally (or vertically) visible pair if p_{1} and p_{2} have the same y (or x) coordinate and the horizontal (or vertical) segment $\overline{p_{1} p_{2}}$ does not intersect the interior of any other segment in S. The union of all horizontally (or vertically) visible pairs forms one or more vertical (or horizontal) subsegments on each of s_{1} and s_{2}. The corresponding subsegments on s_{1} and s_{2} have the same length and are called wall to each other. The set of such subsegments in each $s_{i}, i \in\{1,2\}$, is called the wall portion of s_{i}. See Figure 3 for an example. We have the following lemmas regarding the positions of the Steiner points.

Lemma 4. Given a set of rectilinear segments S in L_{1} space, to determine the position of the set Q of Steiner points, it is sufficient to consider only those wall portions in each segment and the endpoints of S to guarantee a 2-approximation of Q (with respect to its size).

Proof. We prove the lemma by contradiction. First, by Lemma 13 in [13], we know that to compute a t-strongly dominating set for an arbitrary segment $s_{1} \in S$, it is sufficient to only consider those segments weakly visible to it (this lemma can be easily extended to the L_{1} distance case). Hence the set of weakly

Fig. 3. Example spanner of rectilinear segments in L_{1} space. Solid lines are segments. Dashed lines are spanner. Different colors represent the wall portions.
visible segments is sufficient to determine the Steiner points in s_{1}. Let OPT be any optimal solution whose Steiner points are determined by those weakly visible segments. Assume that in OPT there is a Steiner point q on segment s such that (i) q is not an endpoint of s; (ii) q is not in the wall portion of s. Without loss of generality, we assume that s is horizontal.

This means that q is visible to some points on other segments. Consider the nearest one of such points on the left side of q (assuming without loss of generality that there exists one), say p^{\prime}. Since q is not the left endpoint, say a, of s, there is a non-empty portion of s to the left of q. Therefore i) if a is to the left of p^{\prime}, p^{\prime} is within the wall of some subsegment, say $s s$, of s, and $s s$ is a wall portion of s; ii) if a is not to the left of p^{\prime}, p^{\prime} is visible to a. Slide q to the left along s until it reaches the endpoint a or enters the wall portion $s s$. Let q_{l} be the new position of the original q. If q is also visible to some point on its right side, we can similarly slide q to the right and select another position q_{r}. It is easy to see that any point of s that originally use q as its Steiner point can now use either q_{l} or q_{r} as Steiner point to meet the spanner requirement. Therefore, any Steiner point that is neither within the wall portions nor one of the endpoints can be replaced by at most two Steiner points without destroying the spanner property. This implies a 2-approximation and hence the lemma follows.

Lemma 5. Given a set of rectilinear segments S in L_{1} space, the t-dominating set between two subsegments that are wall to each other can be computed optimally.

Proof. Let $s s_{1} \in s_{1}$ and $s s_{2} \in s_{2}$ be two subsegments that are wall to each other. Notice that they have the same length. By Lemma 1 and Lemma 2, we know that $\left|p_{1} e_{1 l}\right|,\left|p_{1} e_{1 r}\right|,\left|p_{2} e_{2 l}\right|$ and $\left|p_{2} e_{2 r}\right|$ all have the same minimum value $\frac{t-1}{2}\left|p_{1} p_{2}\right|$. This implies the following two properties: i) $L_{1,2}(m)$ and $R_{1,2}(m)$ of these wall portions are straight line segments and parallel to each other; ii) they form the same $B_{1,2}$ and $B_{2,1}$ bands (i.e., the region bounded by the $L_{1,2}(m)$ and $R_{1,2}(m)$ functions in the coordinate system; see [13] for more details). Property i) means that the t-weakly dominating points can therefore be determined by a horizontal interval cover in $B_{1,2}$ (see [13]). Property ii) means that the t-weakly dominating points are chosen as pairs on $s s_{1}$ and $s s_{2}$, i.e. if $s s_{1}$ and $s s_{2}$ are both horizontal, for each t-weakly dominating Steiner point q_{1} on $s s_{1}$, there exists a t-weakly dominating Steiner point q_{2} on $s s_{2}$ with the same x-coordinate as q_{1}. Together with the property of L_{1} distance $\left(\left|p_{1} q_{2}\right|=\left|p_{1} q_{1}\right|+\left|q_{1} q_{2}\right|\right)$, this guarantees that the minimum set of t-weakly dominating set computed using interval cover is also a minimum set of t-dominating points (i.e. no imaginary point is needed here).

Lemma 6. Given a set of rectilinear segments S in L_{1} space, the t-strongly dominating set for a subsegment that is the wall portion of an input segment can be computed optimally.

Proof. Let $s s_{i}$ be such a subsegment that is the wall portion of $s_{i} \in S$. Assume without loss of generality that s_{i} is horizontal. First, there are at most two walls of $s s_{i}$, say $s s_{j}$ and $s s_{k}$, that are parallel to $s s_{i}$, one above and the other under $s s_{1}$. Assume without loss of generality that $s s_{i}$ is closer to $s s_{j}$ than to $s s_{k}$. Then the upper envelope function $L_{i}(m)$ of all $L_{i, r}(m), r \neq i$, and the lower envelope function $R_{i}(m)$ of all $R_{i, r}(m), r \neq i$, are determined by $L_{i, j}(m)$ and $R_{i, j}(m)$ because of the smaller value of $\frac{t-1}{2}\left|p_{1} p_{2}\right|$ introduced by $s s_{j}$. Together with the property of L_{1} distance, this guarantees that the minimum set of t-dominating set for $s s_{i}$ computed from $s s_{j}$ is also a minimum set of t-strongly dominating set (i.e. no imaginary point is needed). Note that if $s s_{i}$ is not a "proper" subsegment of s_{i}, there could be at most two other walls (actually degenerated as points) to the left and right of $s s_{i}$. One t-strongly dominating Steiner point (i.e., the endpoint of s_{i}) is sufficient for each of them.

Once the t-dominating sets are determined, the bridges can be built in a way similar to the construction of segment spanner in [13]. As discussed in the proof of Lemma 5 , the pairs of t-strongly dominating Steiner points are determined in such a way that the bridge connecting each pair is rectilinear. Figure 3 shows examples on the wall portions and the bridges built between them.

Lemma 4 tells us that besides the wall portions, we also need to consider the endpoints as candidates for possible Steiner points. This happens when two input segments are weakly visible to each other, but they do not have subsegments that are walls of each other. The last part in the proof of Lemma 6 also shows one case where the endpoint is selected. At least one of the endpoints of such bridges is at an endpoint of an input segment. Some of them could also be non-rectilinear if both endpoints are at the endpoints of input segments. See Figure 3 for examples.

Putting everything together we have the following theorem.
Theorem 1. Given a set of n rectilinear segments in L_{1}^{2} space, a set of Steiner points with size no more than $2 \times|O P T|$ can be computed in $O\left(|Q|+n^{2} \log n\right)$ time.

Proof. By Lemma 6, the set of t-strongly dominating points calculated by considering only wall portions and endpoints is optimal. Hence the approximation ratio is 2 by Lemma 4. The running time is mainly spent on finding wall portions, which can be achieved after computing all pairs of weakly visible segments. This takes $O\left(|Q|+n^{2} \log n\right)$ time according to [13].

4 Constructing t-Spanner for Axis Aligned Rectangles Under L_{1} Distance

In this section, we consider the problem of constructing a t-spanner for a set of rectangles in L_{1}^{2} space. Let $S=\left\{R_{1}, R_{2}, \cdots, R_{n}\right\}$ be a set of disjoint axis aligned rectangles, and $t>1$ be the stretch factor.

Definition 3. Two rectangles R_{i} and R_{j} in S are doubly separated if their orthogonal projections on the x and y-axes do not overlap (see Figure 4).

Fig. 4. Doubly Separated Rectangles

Lemma 7. Let R_{1} and R_{2} be two doubly separated axis aligned rectangles, and q be the closest point of R_{2} to R_{1}. Then for any point p_{2} in $R_{2}, q t$-weakly dominates p_{2}

Proof. Without loss of generality, we assume that R_{2} is at the southeast corner of R_{1} (see Figure 4). Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{q}, y_{q}\right)$ be the coordinates of p_{1}, p_{2} and q respectively. Then we have $x_{2} \geq x_{q} \geq x 1$ and $y_{2} \leq y_{q} \leq y_{1}$. Since $\left|p_{1} q\right|=\left|x_{q}-x_{1}\right|+\left|y_{q}-y_{1}\right|=\left(x_{q}-x_{1}\right)+\left(y_{1}-y_{q}\right),\left|q p_{2}\right|=\left|x_{2}-x_{q}\right|+\left|y_{2}-y_{q}\right|=\left(x_{2}-x_{q}\right)+$ $\left(y_{q}-y_{2}\right)$ and $\left|p_{1} p_{2}\right|=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|=\left(x_{2}-x_{1}\right)+\left(y_{1}-y_{2}\right)$, we have $\left|p_{1} q\right|+\left|q p_{2}\right|=\left|p_{1} p_{2}\right| \leq t *\left|p_{1} p_{2}\right|$ for $t>1$. This means that $q t$-weakly dominates p_{2}.

Definition 4. Let R_{1} and R_{2} be two disjoint axis aligned rectangles. R_{1} is totally below R_{2} if R_{1} is below R_{2} and between the leftmost and rightmost points of R_{2} (see Figure 5); R_{1} is totally above R_{2} if R_{1} is above R_{2} and between the leftmost and rightmost points of R_{2}; R_{1} is totally to the left side of R_{2} if R_{1} is at the left side of R_{2} and between the highest and lowest t points of $R_{2} ; R_{1}$ is totally to the right side of R_{2} if R_{1} is at the right side of R_{2} and between the highest and lowest points of R_{2}; if R_{1} and R_{2} have one of the above four relationships, R_{1} is totally on one side of R_{2}.

Fig. 5. R_{2} is totally below R_{1}

Lemma 8. Let R_{1} and R_{2} be two disjoint axis aligned rectangles with R_{2} being totally below R_{1}, and p_{2} be an arbitrary point in R_{2} with coordinate $\left(x_{2}, y_{2}\right)$. Let l be the L_{1} distance from p_{2} to R_{1} and y be the y-coordinate of the top edge of R_{2}. Then the region t-weakly dominating p_{2} is the intersection of R_{2} and a pentagon $A B C D E$ with coordinates $\left(x_{2}-\frac{t-1}{2} * l, y\right),\left(x_{2}-\frac{t-1}{2} * l, y_{2}\right),\left(x_{2}, y_{2}-\frac{t-1}{2} * l\right),\left(x_{2}+\frac{t-1}{2} * l, y_{2}\right),\left(x_{2}+\right.$ $\left.\frac{t-1}{2} * l, y\right)$ respectively.

Proof. To simplify our proof, we assume that p_{2} coincides with the origin of the coordinate system. Let p_{1} be an arbitrary point in R_{1}, q be a point in R_{2} that t-weakly dominates p_{2}, and p be the point in R_{1} that is the closest to p_{2}. Then the coordinate of p is $(0, l)$ (see Figure 5). Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{q}, y_{q}\right)$ be the coordinates of p_{1}, p_{2} and q respectively. Since $\left|p_{1} q\right|+\left|q p_{2}\right| \leq t \times\left|p_{1} p_{2}\right|$ with $\left|p_{1} q\right|=\left|x_{1}-x_{q}\right|+\left|y_{1}-y_{q}\right|$, $\left|q p_{2}\right|=\left|x_{2}-x_{q}\right|+\left|y_{2}-y_{q}\right|$ and $\left|p_{1} p_{2}\right|=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$, we have $\left|x_{1}-x_{q}\right|+\left|y_{1}-y_{q}\right|+\left|x_{2}-x_{q}\right|+\left|y_{2}-y_{q}\right| \leq$ $t \times\left(\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|\right)$, i.e.,

$$
\begin{equation*}
\left(\left|x_{1}-x_{q}\right|+\left|x_{2}-x_{q}\right|-\left|x_{2}-x_{1}\right|\right)+\left(\left|y_{1}-y_{q}\right|+\left|y_{2}-y_{q}\right|-\left|y_{2}-y_{1}\right|\right) \leq(t-1) \times\left|p_{1} p_{2}\right| . \tag{1}
\end{equation*}
$$

Based on the position of q, we have the following cases.

1. q is in the second quadrant, i.e., $x_{q} \leq x_{2}$ and $y_{q} \geq y_{2}$. For this case, we have three subcases, depending on the position of p_{1}.
(a) p_{1} is to the left of q (i.e., $y_{2} \leq y_{q} \leq y_{1}$ and $x_{1} \leq x_{q} \leq x_{2}$). For this case, Inequality (1) can be rewritten as $\left[\left(x_{q}-x_{1}\right)+\left(x_{2}-x_{q}\right)-\left(x_{2}-x_{1}\right)\right]+\left[\left(y_{1}-y_{q}\right)+\left(y_{q}-y_{2}\right)-\left(y_{1}-y_{2}\right)\right] \leq(t-1) \times\left|p_{1} p_{2}\right|$ and $0 \leq(t-1) \times\left|p_{1} p_{2}\right|$. This means that for such p_{1}, Inequality (1) is trivially true and does not define the boundary for q.
(b) p_{1} is between q and p_{2} in the x dimension (i.e., $y_{2} \leq y_{q} \leq y_{1}$ and $x_{q} \leq x_{1} \leq x_{2}$). Then Inequality (1) can be rewritten as $2\left(x_{1}-x_{q}\right) \leq(t-1) \times\left|p_{1} p_{2}\right|$. Thus $\left(x_{1}-x_{q}\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$, i.e. $\left|x_{q}\right| \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}-x_{1}$, since x_{q} is negative. $\frac{(t-1)\left|p_{1} p_{2}\right|}{2}-x_{1}$ achieves its minimum $\frac{(t-1) l}{2}$ when $p_{1}=p$.
(c) p_{1} is to the right of p_{2} in the x dimension (i.e., $y_{2} \leq y_{q} \leq y_{1}$ and $x_{q} \leq x_{2} \leq x_{1}$). For this case, Inequality (1) can be rewritten as $\left(x_{2}-x_{q}\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$ and $x_{q} \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$, since x_{q} is negative and $x_{2}=0 . \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$ achieves its minimum $\frac{(t-1) l}{2}$ when $\left|p_{1} p_{2}\right|=l$ (i.e., $p_{1}=p$).
Combine case (a), (b) and (c), we know that the t-weakly dominating region in the second quadrant of p_{2} is $\left\{\left(x_{q}, y_{q}\right):\left|x_{q}\right| \leq \frac{(t-1) l}{2}, q\right.$ in the second quadrant $\}$.
2. q is in the first quadrant. Similar to case 1 , we have the t-weakly dominating region in the first quadrant of p_{2} to be $\left\{\left(x_{q}, y_{q}\right):\left|x_{q}\right| \leq \frac{(t-1) l}{2}, q\right.$ in the first quadrant $\}$.
3. q is in the third quadrant (i.e., $x_{q} \leq x_{2}$ and $y_{q} \leq y_{2}$). For this case we have three subcases based on the position of p_{1}.
(a) p_{1} is to the left of q (i.e., $y_{q} \leq y_{2} \leq y_{1}$ and $x_{1} \leq x_{q} \leq x_{2}$). For this case, Inequality (1) can be rewritten as $\left[\left(x_{q}-x_{1}\right)+\left(x_{2}-x_{q}\right)-\left(x_{2}-x_{1}\right)\right]+\left[\left(y_{1}-y_{q}\right)+\left(y_{2}-y_{q}\right)-\left(y_{1}-y_{2}\right)\right] \leq(t-1) \times\left|p_{1} p_{2}\right|$ and $y_{2}-y_{q} \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$. Thus $\left|y_{q}\right| \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}-y_{2} \cdot \frac{(t-1)\left|p_{1} p_{2}\right|}{2}-y_{2}$ achieves its minimum $\frac{(t-1) l}{2}$ when $p_{1}=p$.
(b) p_{1} is between q and p_{2} (i.e, $y_{q} \leq y_{2} \leq y_{1}$ and $x_{q} \leq x_{1} \leq x_{2}$). For this case, Inequality (1) has the following form. $\left[\left(x_{1}-x_{q}\right)+\left(x_{2}-x_{q}\right)-\left(x_{2}-x_{1}\right)\right]+\left[\left(y_{1}-y_{q}\right)+\left(y_{2}-y_{q}\right)-\left(y_{1}-y_{2}\right)\right] \leq(t-1) \times\left|p_{1} p_{2}\right|$ or $\left(x_{1}-x_{q}\right)+\left(0-y_{q}\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$. Thus $\left(\left|x_{q}\right|+\left|y_{q}\right|\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}-x_{1} \cdot \frac{(t-1)\left|p_{1} p_{2}\right|}{2}-x_{1}$ achieves its minimum $\frac{(t-1) l}{2}$ at $p_{1}=p$.
(c) p_{1} is to the right of p_{2} (i.e., $y_{q} \leq y_{2} \leq y_{1}$ and $x_{q} \leq x_{2} \leq x_{1}$). For this case, Inequality (1) can be simplified to $\left[\left(x_{1}-x_{q}\right)+\left(x_{2}-x_{q}\right)-\left(x_{2}-x_{1}\right)\right]+\left[\left(y_{1}-y_{q}\right)+\left(y_{2}-y_{q}\right)-\left(y_{1}-y_{2}\right)\right] \leq(t-1) \times\left|p_{1} p_{2}\right|$,
and $\left(0-x_{q}\right)+\left(0-y_{q}\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$. This is equivalent to $\left(\left|x_{q}\right|+\left|y_{q}\right|\right) \leq \frac{(t-1)\left|p_{1} p_{2}\right|}{2} \cdot \frac{(t-1)\left|p_{1} p_{2}\right|}{2}$ achieves its minimum $\frac{(t-1) l}{2}$ at $p_{1}=p$.
Combine case (a) (b) and (c), we know the t-weakly dominating region in the third quadrant is $\left\{\left(x_{q}, y_{q}\right)\right.$: $\left|x_{q}\right|+\left|y_{q}\right| \leq \frac{(t-1) l}{2}, q$ in the third quadrant $\}$.
4. q is in the fourth quadrant. Similar to cases 2 and 3 , we have the t-weakly dominating region in the fourth quadrant to be $\left\{\left(x_{q}, y_{q}\right):\left|x_{q}\right|+\left|y_{q}\right| \leq \frac{(t-1) l}{2}, q\right.$ in the fourth quadrant $\}$.

Combining cases $1,2,3$, and 4 , we know that the whole t-weakly dominating region is actually the region bounded by the pentagon $A B C D E$ with coordinates $\left(-\frac{t-1}{2} * l, y\right),\left(-\frac{t-1}{2} * l, 0\right),\left(0,0-\frac{t-1}{2} * l\right),\left(\frac{t-1}{2} * l, 0\right),\left(\frac{t-1}{2} *\right.$ $l, y)$ respectively.

Let R_{1} and R_{2} be two disjoint axis aligned rectangles with R_{2} being totally below R_{1}, and d be the minimum distance between R_{1} and R_{2}. By lemma 8 , we know the t-weakly dominating set of R_{2} can be selected only from the upper edge of R_{2}. This is because for any point p_{2} in R_{2}, the region that t-weakly dominates p_{2} intersects the upper edge of R_{2} at segment $\overline{A E}$.

Let p_{2}^{\prime} be another point in R_{2} and $\left(x_{2}, y_{2}\right)$ and $\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$ be the coordinates of p_{2} and p_{2}^{\prime} respectively with $y_{2} \geq y_{2}^{\prime}$ and $x_{2}=x_{2}^{\prime}$. Let the regions that t-weakly dominate p_{2} and p_{2}^{\prime} be the intersections of R_{2} and pentagons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ respectively. Since the distance from p_{2}^{\prime} to R_{1} (say l^{\prime}) is larger than that from p_{2} to R_{1} (say l). Thus, by lemma $8, \overline{A E} \subset \overline{A^{\prime} E^{\prime}}$. This implies that to obtain a size-minimized t-weakly dominating set for R_{2}, we just need to pick the t-weakly dominating Steiner points from the upper edge of R_{2}. Below is an algorithm for determining the t-weakly dominating set.

Input: Two disjoint axis aligned rectangles R_{1} and R_{2} with R_{2} being totally below R_{1}, d being the minimum distance between R_{1} and R_{2}, and $\left(x_{0}, y_{0}\right)$ and (x_{0}^{\prime}, y_{0}) being the coordinates of the leftmost and rightmost points of the upper edge of R_{2}
Output: A t-weakly dominating set Q of R_{2} with respect to R_{1}
$\mathrm{Q}=\phi$;
$\mathrm{i}=1$;
if $x_{0}+\frac{t-1}{2} * d<x_{0}^{\prime}$ then

$$
\operatorname{put}\left(x_{0}+\frac{t-1}{2} * d, y_{0}\right) \text { in } Q
$$

while $x_{0}+\frac{t-1}{2} * d *(2 i+1)<x_{0}^{\prime}$ do put $\left(x_{0}+\frac{t-1}{2} * d *(2 i+1), y_{0}\right)$ in Q;
i++;
end
if $x_{0}+\frac{t-1}{2} * d *(2 i)<x_{0}^{\prime}$ then $\operatorname{Put}\left(x_{0}^{2}, y_{0}\right)$ in Q;
end
end
if $Q=\{ \}$ then
$Q=\left\{\left(x_{0}, y_{0}^{\prime}\right)\right\} ;$
end
return Q;

Lemma 9. The set oft-weakly dominating Steiner points selected by the above algorithm has the minimum size among all sets of points t-weakly dominating R_{2}.

Proof. We prove by contradiction. Let Q be the set of t-weakly dominating set chosen by the above algorithm. Suppose that there exists another set Q^{\prime} of smaller size. Let $Q=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ and $Q^{\prime}=$ $\left\{g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{k}^{\prime}\right\}, k<m$, be the two sets sorted by their x-coordinates in increasing order. The x-coordinate of g_{1}^{\prime}, say $x_{g_{1}^{\prime}}$, must be less or equal to that of g_{1}, say $x_{g_{1}}$, since if $x_{g_{1}^{\prime}}>x_{g_{1}}, g_{1}^{\prime}$ can't t-weakly dominate $\left(x_{0}, y_{0}\right)$ by Lemma 8 and the above algorithm. Similarly, for any i, we have $x_{g_{i}^{\prime}} \leq x_{g_{i}}$. Thus $k \geq m$. A contradiction.

Lemma 10. Let R_{1} and R_{2} be two disjoint axis aligned rectangles with R_{2} being totally below R_{1}, d be the minimum distance between R_{1} and R_{2}, and w be the width of R_{2}. Then the total number of points in the t-weakly dominating set of R_{2} is at most $\left\lfloor\frac{w}{(t-1) d}\right\rfloor+1$.

Proof. By the above algorithm, we know that (1) if $w \leq \frac{(t-1)}{2} * d$, then there is only one t-weakly dominating Steiner point. Thus $1 \leq\left\lfloor\frac{w}{(t-1) d}\right\rfloor+1$ (i.e., the lemma holds). (2) If $x_{0}^{\prime}-x_{0}>w>\frac{(t-1)}{2} * d$, then the total number m of t-weakly dominating Steiner points satisfies $\frac{t-1}{2} * d *(2 m+1)<w$ or $\frac{t-1}{2} * d * 2(m-1)<w$. Thus, $m \leq\left\lfloor\frac{w}{(t-1) d}\right\rfloor+1$.

It is easy to see that when R_{1} and R_{2} have one of the other three relations in Definition 4 , similar results can be proved as in Lemmas 8, 9, and 10.

For any pair of disjoint axis aligned rectangles R_{1} and R_{2}, one of the following three cases holds.

1. R_{1} and R_{2} are doubly separated.
2. R_{1} (or R_{2}) is totally on one side of R_{2} (or R_{1}).
3. Neither 1 or 2 is true (see Figure 6).

Fig. 6. R_{2} is partitioned into two subrectangles.

For case $3, R_{2}$ (or R_{1}) can be partitioned into two axis aligned rectangles R_{21} and R_{22} with one of them being doubly separated with R_{1} and the other being totally on one side of R_{1} (see Figure 6). The t-weakly dominating sets for R_{21} and R_{22} can be selected by using Lemma 7 and Algorithm 1, and the t-weakly dominating set for R_{2} is just the union of the two t-weakly dominating sets.

From the above discussion, we know that for any pair of axis aligned rectangles R_{1} and R_{2}, the t-weakly dominating set of R_{2} can be selected from one edge e of R_{2} and its total number is no more than $\left\lfloor\frac{w}{(t-1) d}\right\rfloor+2$, where d is the distance between R_{1} and R_{2} and w is the length of e or the edge in the subrectangle of R_{2} which is totally on one side of R_{1}.

In the two-rectangle case, the t-weakly dominating sets for each rectangle is determined by using one of its edges. For a set S of axis aligned rectangles $S=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$, we consider the set S^{\prime} of all boundary edges of S, i.e., $S^{\prime}=\left\{E_{11}, E_{12}, E_{13}, E_{14}, E_{21}, E_{22}, E_{23}, E_{24}, \cdots, E_{n 1}, E_{n 2}, E_{n 3}, E_{n 4}\right\}$, where $E_{i 1}, E_{i 2}, E_{i 3}, E_{i 4}$ are the four edges of rectangle R_{i}. To compute t-weakly dominating sets (or t-dominating sets) of S, we reduce it to the problem of constructing spanners for rectilinear segments under L_{1} distance. Below is the main idea of the reduction.

Let s_{1} and s_{2} be two segments in S^{\prime} and $s s_{1}$ and $s s_{2}$ be subsegments of them respectively. $s s_{1}$ and $s s_{2}$ are wall to each other if they are weakly visible to each other, have the same vertical (or horizontal) projection, and are from the same rectangle. $s s_{1}$ is called a wall portion of s_{1}. Note that the definition of wall is slightly different from that in Section 3. Here we require that the two subsegments should not be part of the same rectangle.

Since Lemma 4, Lemma 5 and Lemma 6 can be easily extended to S^{\prime} (details are left for the full paper) and the strongly dominating set of a rectangle is the union of the four strongly dominating sets of its four edges, we have the following theorem.

Theorem 2. Given a set of n disjoint axis aligned rectangles in L_{1}^{2} space, a set Q of Steiner points with size no more than $2 \times|O P T|$ can be computed in $O\left(|Q|+n^{2} \log n\right)$ time.

Proof. By Lemma 6, the t-strongly dominating set of each edge in S^{\prime} calculated by considering only its wall portion and its endpoints in S^{\prime} is optimal. Hence the approximation ratio is bounded by 2 according to Lemma 4. The running time is mainly spent on finding wall portions, which can be obtained after computing the weakly visible segments. This takes $O\left(|Q|+n^{2} \log n\right)$ time by [13].

5 Constructing t-Spanner for Rectilinear Polygons Under L_{1} Distance

In this section, we consider the problem of constructing spanner for a set $S=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ of rectilinear polygons in L_{1}^{2} space.

Let P_{1} and P_{2} be two rectilinear polygons in S, and R_{1} and R_{2} be two axis aligned rectangles in P_{1} and P_{2} respectively. R_{1} and R_{2} are wall to each other if they are weakly visible to each other, and have the same vertical (or horizontal) projection. $R_{i}, i \in\{1,2\}$, is called a wall portion of P_{i}.

To determine the set of Steiner points for S, our main idea is to partition each rectilinear polygon P_{i} into a set of axis aligned rectangles. Each such rectangle has at least one edge which is part of a boundary edge of P_{i}. It is easy to see that the partition can be done in linear time by using a plane sweeping algorithm on P_{i}. With this partition, we can compute the weak visibility of each rectangle and determine the wall portions of its edges.
Lemma 11. For a set of rectilinear polygons S in L_{1}^{2} space, to determine the set of Steiner points Q it is sufficient to consider only the wall portions and the vertices of S to guarantee a 2-approximation (with respect to the size of Q).

Proof. We prove the lemma by contradiction. Assume in an optimal solution there is a Steiner point q in a polygon P_{1}, which is neither in some wall portion of P_{1} nor a vertex. Then q must be in a rectangle, say R, which is doubly separated from all the weakly visible portions of some other polygons. By Lemma 7, the two closest points on the boundary of neighboring rectangles partitioned from the same polygon as R are sufficient to dominate the whole rectangle R and the region that q dominates. If both neighboring rectangles are wall portions of P_{1}, then we can replace q by the two points on the boundary of the polygon. Otherwise, we continue considering the neighboring rectangles along the boundary of P_{1} until the rectangles have wall portions. Since all the non-wall portions are doubly separated from those weakly visible rectangles. It's sufficient to consider the two adjacent points on the boundary with the two wall portions. Since q can be replaced by two points on the boundary, a 2-approximation is guaranteed. The lemma follows.
Lemma 12. For a set of rectilinear polygons S in L_{1}^{2} space, the t-dominating set between two axis aligned rectangles R_{1} and R_{2} that are wall to each other can be computed optimally.
Proof. By Lemma 8 and the analysis in Section 4, we know that R_{1} and R_{2} have the relations that R_{1} is totally on one side of R_{2}, and R_{2} is totally on one side of R_{1}. So the dominating set can be selected from the boundaries of the corresponding polygons and computed optimally.
Lemma 13. For a set of rectilinear polygons S in L_{1}^{2} space, the t-strongly dominating set of a rectangle R that is a wall portion of an input rectilinear polygon P_{i} can be computed optimally.
Proof. For the portion of S that is weakly visible to R but not a wall to R, it's sufficient to t-strongly dominate R by two points on the boundary of R. Combining Lemma 12, the lemma follows.

Fig. 7. Two disjoint rectilinear polygons and their rectangular partitions.
Theorem 3. For a set S of n disjoint rectilinear polygons in L_{1}^{2} space, a set of t-strongly dominating Steiner points with size no more than $2 \times|O P T|$ can be computed in $O\left(|Q|+N^{2} \log N\right)$ time, where N is the total number of vertices in S.
Proof. By Lemma 13, the set of t-strongly dominating Steiner points calculated by considering only wall portions and the vertices is optimal. Hence the approximation ratio is bounded by 2 according to Lemma 11. The running time is mainly spent on finding wall portions, which can be achieved after the partitioning process and computing the weak visibility of the rectangles. This takes $O\left(|Q|+N^{2} \log N\right)$ time according to [13].

References

1. Keil, J.M.: Approximating the complete euclidean graph. In: 1st Scandinavian Workshop on Algorithm Theory. (1988) 208-213
2. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Discrete and Computational Geometry 7 (1992) 13-28
3. Rupper, J., Seidel, R.: Approximating the d-dimensional complete euclidean graph. In: 3rd Canadian Conference on Computational Geometry. (1991) 207-210
4. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proceedings of the nineteenth annual ACM conference on Theory of computing. (1987) 56-65
5. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing. (1995) 489-498
6. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: randomized solutions. Technical report, Max-Planck-Institut für Informatik (1994)
7. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: 35th IEEE Symposium on Foundtions of Computer Science. (1994) 703-712
8. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New spareness results on graph spanners. In: Proceedings of the eighth annual symposium on Computational geometry. (1992) 192-201
9. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional euclidean space. In: Proceedings of the ninth annual symposium on Computational geometry. (1993) 53-62
10. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean spanners. In: Proceedings of the tenth annual symposium on Computational geometry. (1994) 132-139
11. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM - Journal on Computing 31(5) (2002) 1479-1500
12. Asano, T., de Berg, M., Cheong, O., Everett, H., Haverkort, H., Katoh, N., Wolff, A.: Optimal spanners for axis-aligned rectangles. Comput. Geom. Theory Appl. 30(1) (2005) 59-77
13. Yang, Y., Zhu, Y., Xu, J., Katoh, N.: Geometric spanner of segments. In: Proc. 18th International Symposium on Algorithms and Computation (ISAAC'07). (2007) 75-87
14. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse geometric graphs with small dilation. In: Proceedings of the 12 th Computing: The Australasian Theroy Symposium. Volume 51. (2006)

[^0]: * Corresponding author.

