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Abstract. Geometric spanner is a fundamental structure in computational geometry and plays an
important role in many geometric networks design applications. In this paper, we consider the fol-
lowing generalized geometric spanner problem under L1 distance: Given a set of disjoint objects S,
find a spanning network G with minimum size so that for any pair of points in different objects of S,
there exists a path in G with length no more than t times their L1 distance, where t is the stretch
factor. We specifically focus on three types of objects: rectilinear segments, axis aligned rectangles,
and rectilinear polygons. By combining the ideas of t-weekly dominating set and imaginary Steiner

points, we develop a 2-approximation algorithm for each type of objects. Our algorithms run in near
quadratic time, and can be easily implemented for practical applications.
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1 Introduction

In this paper, we consider the following generalization of the classical geometric spanner problem: Given
a set S of n disjoint objects in L2

1 space (i.e., 2-dimensional space with L1 norm) and a constant t > 1,
construct a graph G for S of minimum size (i.e. the number of vertices and edges is minimized) so that
for any pair of points pi ∈ oi and pj ∈ oj , there exists a path P (pi, pj) in G whose total length is at most
t × d(pi, pj), where oi and oj are objects in S and d(pi, pj) is the L1 (or Manhanttan) distance between
pi and pj . The path P (pi, pj) consists of three parts, P1, P2 and P3, where P1 and P3 are the portions of
P (pi, pj) inside oi and oj respectively. We assume that there implicitly exists an edge (or path) between
any pair of points inside each object o ∈ S. Thus, the objective of minimizing the size of G is equivalent to
minimizing the total number of vertices, and edges between vertices in different objects. In this paper, we
consider the cases where objects are disjoint rectilinear segments, axis aligned rectangles, and rectilinear
polygons in L2

1 space.

Spanner is a fundamental structure in computational geometry and finds applications in many different
areas. Extensive researches have been done on this structure and a number of interesting results have been
obtained [1–11]. Almost all previous results consider the case in which the objects are points and seek
to minimize the spanner’s construction time, size, weight, maximum degree of vertex, diameter, or any
combination of them.

A common approach for constructing geometric spanner is the use of Θ-graph [1–4]. In [5], Arya et al.
showed that a t-spanner with constant degree can be constructed in O(n log n) time. In [6, 7], they gave
a randomized construction of a sparse t-spanner with expected spanner diameter O(log n). In [9, 10], Das
et al. proposed an O(n log2 n)-time greedy algorithm for a t-spanner with O(n) edges and O(1)wt(MST )
weight in 3-D space. Gudmundsson et al. showed in [11] that an O(n) edges, and O(1)wt(MST ) weight
t-spanner is possible to be constructed in O(n log n) time.

In graph settings, Chandar et al. [8] showed that for an arbitrary positive edge-weighted graph G and

any t > 1, ǫ > 0, a t-spanner of G with weight O(n
2+ǫ

t−1 )wt(MST ) can be constructed in polynomial time.
They also showed that (log2 n)-spanners of weight O(1)wt(MST ) can be constructed.

For geometric spanners of objects other than points, Asano et al. considered the problem of constructing
a spanner graph for a set of axis-aligned rectangles using rectilinear bridges and under L1 distance [12].
They showed that in general it is NP-hard to minimize the dilation, and when the spanner graph is restricted
to be trees with rectilinear edges, the problem can be solved using a linear program. They also considered
other simple graphs such as paths and sorted paths, and presented polynomial time solution for each of
them.

In [13], Yang et al. generalized the geometric spanner structure from points to segments and considered
the problem of constructing a minimum-sized t-spanner for a set of disjoint segments in Euclidean space.
They showed that a constant approximation can be obtained in O(|Q|+ n2 log n) time if the segments are
relatively well separated, where Q is the set of vertices (called Steiner points) of G.

The problem considered in this paper is motivated by several applications. First, since the segment
spanner in [13] can be viewed as a special case of rectangle (or polygon) spanner, its applications in
architecture and wireless mesh networks imply applications for the spanners constructed in this paper.
Second, the spanner of rectilinear polygons under L1 distance also finds its own application in VLSI
layout. In such applications, a set of pre-layouted modules (represented as rectangles or polygons) are to
be connected by a set of (mainly rectilinear) wires (or network). To minimize the latency, for each pair of
locations in different modules, it is expected that their shortest path in the network has length close to
their L1 distance, making the network design problem be a polygon spanner problem.

To solve the aforementioned problem, we further extend in this paper the concept of geometric spanner
to polygons. Particularly, we consider three types of objects, rectilinear segments, axis-aligned rectangles,
and rectilinear polygons. We show that our framework for constructing geometric spanner of segments in
[13] can be generalized to polygons and achieves much better performance ratios. Our approach builds
the spanner in two steps. First, we identify a set of points, called Steiner points, from each object; Then
a t-spanner is constructed for the Steiner points by applying some existing algorithms for point spanners
such as the ones in [14]. Thus, our focus will be only on the first step. Furthermore, since most existing
spanners are sparse graphs (i.e. consist of O(n) edges), minimizing the size of the spanner for rectilinear
polygons is equivalent to minimizing the total number of Steiner points. Our objective is hence to obtain
a spanner with a minimum number of Steiner points.
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Minimizing the number of Steiner points is in general quite challenging. Part of the reason is that
the position of a Steiner point on one object affects not only the positions of the Steiner points on the
same object but also on other objects. To overcome this difficulty, we first generalize the concept of weakly
dominating set in [13] to lower bound the number of Steiner points on one object. By using some imaginary
Steiner points and a few other interesting techniques, we are able to find a set of strongly dominating set
for each object. We show that the size of the strongly dominating set is a 2-approximation of the optimal
solution. Our algorithm can be easily implemented and runs in near quadratic time. Our technique can be
easily extended to higher dimensional space.

Due to space limit, we omit a lot of details in some proofs from this extended abstract.

2 Main Ideas

Let S = {O1, O2, ..., On} be a set of n disjoint connected objects in L2
1 space. A t-spanner GS of S is a

network which connects the objects in S and satisfies the following condition. For any two points pi and pj

in objects Oi ∈ S and Oj ∈ S, i 6= j, respectively, there exists a path (called spanner path) in GS between
pi and pj with length no more than t|pipj |, where t is the stretch factor of the spanner and |pipj | is the
L1 distance between pi and pj . The spanner GS consists of the objects, some sample points (called Steiner
points) of the objects, and line segments (called bridges) connecting the Steiner points. We assume that
there is an implicit path between pi (or pj) to any Steiner point in Oi (or Oj). Thus the spanner path
between pi and pj includes an implicit path from pi to some Steiner point qi ∈ Oi and and an implicit path
from pj to some Steiner point qj ∈ Oj (see Figure 1).

O1

O2

O4

O3

pq

p1

2

q1
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Fig. 1. Spanner Path between p1 and p2: p1 → q1 → q2 → p2, where q1 and q2 are the Steiner points.

As mentioned in previous section, our main objective for the spanner GS is to minimize its size. The
size of GS is the sum of the complexities of objects in S and the numbers of Steiner points and bridges.
Since the total complexity of the objects is fixed, minimizing the size of GS is equivalent to minimize the
total number of Steiner points and bridges.

To simplify the optimization task, our main idea is to separate the procedure of minimizing the number
of Steiner points from that of minimizing the number of bridges. In following sections, for each type of
objects (i.e., rectilinear segments, axis aligned rectangles and rectilinear polygons), we first compute a set
Q of Steiner points with small size, and then construct a spanner GQ for Q to minimize the number of
bridges. The spanner GQ together with the objects forms the spanner of S (i.e. GS). Since most existing
spanner algorithms for points yield spanners with linear number of edges, the difficulty of minimizing the
size of GS lies on minimizing the number of Steiner points.

To illustrate our main ideas on minimizing Steiner points, we first briefly discuss the framework for all
three types of objects inherited from our algorithm for constructing segment spanners in [13]. We start
with selecting Steiner points for a pair of objects.

Let O1 and O2 be two different objects in S and p1 and p2 be a pair of arbitrary points in O1 and O2

respectively. Let q1 ∈ O1 and q2 ∈ O2 be two Steiner points close enough to p1 and p2.

Definition 1 (t-Domination). Steiner points q1 and q2 t-dominate p1 and p2 if the path p1 → q1 →
q2 → p2 is a t-spanner path for p1 and p2 (i.e., the length of the path is no more than t × |p1p2|, where
|p1p2| is the length of the segment p1p2). q1 and q2 are called the t-dominating pair of p1 and p2.

From the definition, it is clear that the positions of q1 and q2 are constrained by p1 and p2. If we fix
p1, p2, and one Steiner point q1, then all possible positions of the other Steiner point q2 form a (possibly
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empty) region denoted as R(p1, p2, q1) (which is a function of p1, p2 and q1) in O2 (see Figure 2). When
q1 moves in O1, the region changes accordingly. Similarly, if we fix the two Steiner points q2, q1, together
with p2, all points in O1 t-dominated by q2 and q1, with respect to p2, also form an region R(q2, q1, p2) in
O1.

Since the spanner GS needs to guarantee that there exists a spanner path (or equivalently a t-dominating
pair of Steiner points) from p2 to every point in O1, from p2’s point of view, it expects q2 to be in some
position such that O1 can be covered by a minimum number of q1’s. , i.e. the union of R(q2, q1, p2) covers
O1. Thus, to determine Steiner points in O1, we need to (1) identify a minimum set of Steiner points to
cover all points in O1 and (2) find a way to deal with the influence of the Steiner points (e.g., q2) in O2

and other objects.
To overcome these two difficulties, we relax the constraints in the definition of t-domination.

Definition 2 (t-Weak Domination). Steiner point q1 t-weakly dominates p1 and p2 if q1 and p2 are the
t-dominating pair of p1 and p2. q1 t-weakly dominates p1 if for any p2 ∈ O2, q1 t-weakly dominates p1 and
p2.

In the above definition, we assume that q2 can be placed at arbitrary position in O2 (or equivalently
every point in O2 is a Steiner point), when placing Steiner points in O1. With this relaxation, we only need
to consider the relation between q1 and p1, p2. More specifically, we only need to find a minimum number
of points in O1 so that every point p1 in O1 is t-weakly dominated by some selected Steiner point. We call
such a set of points as a t-weakly dominating set of O1. We will show in following sections how to select
t-weakly dominating set for each object (i.e., overcoming difficulty (1)).

��
��
��
��
��

��
��
��
��
��

O

O

1

2

q

pq

1

2
2

1
p

1 1
R(p ,p ,q )

2

Fig. 2. The Region Dominating p2 with p1 and q1 fixed

The concept of weakly dominating sets helps us to avoid the influence of Steiner points from other
objects (i.e., difficulty (2)). However, t-weakly dominating sets alone do not guarantee the existence of
t-dominating pair for each pair points p1 ∈ O1 and p2 ∈ O2. To overcome this difficulty, we use the concept
of imaginary Steiner points. More specifically, let pm be the median point of the segment p1p2. When we
determine the position of q1 for p1, we assume that there is an imaginary Steiner point at pm and find q1 so
that q1 t-weakly dominates p1 and pm. Similarly we can find q2 to t-weakly dominate p2 and pm. As shown
in [13], such pair of q1 and q2 is a t-dominating pair for p1 and p2. All Steiner points in O1 computed using
imaginary Steiner points are called the t-dominating set of O1 (with respect to O2).

For the case of more than two objects, we first compute weak visibility graph for each object Oi ∈ S
and consider the Steiner-point-determination problem for Oi and each object weakly visible to Oi. The set
of Steiner points in Oi computed from its weakly visible objects is called the t-strongly dominating set of
Oi.

3 Constructing t-Spanner for Rectilinear Segments Under L1 Distance

In [13], an O(1)-approximation algorithm was designed for constructing a spanner of segments under L2

distance. In this section, we consider a special case of the segment spanner problem in which the input is a
set S of rectilinear segments, and the distance function is the L1 norm (i.e., the Manhattan distance). We
show that for this special case, a much better performance ratio (i.e., 2) can be achieved.

Let s1 and s2 be two rectilinear segments in S, and p1 and p2 be two arbitrary points on s1 and s2

respectively. Let q1 ∈ s1 and q2 ∈ s2 be two Steiner points of p1 and p2.
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It is easy to see that when the two segments have different orientations (i.e., one horizontal and the
other vertical, say s1 is horizontal and s2 is vertical), one Steiner point on each segment (i.e., the point
closest to the other segment) is sufficient to t-dominate the corresponding segment. Thus we only focus on
the case in which s1 and s2 have the same orientation. Without loss of generality, we assume that s1 and
s2 are all horizontal segments.

Let q1 be a Steiner point in s1 t-weakly dominating p1 and e1l and e1r be the two endpoints of the
region R(p1, p2, p2) (i.e., the interval of all possible positions of the Steiner point q1 when q2 coincides with
p2). Then we have the following lemma.

Lemma 1. Let s1 and s2 be defined as above. Then the two endpoints e1l and e1r of R(p1, p2, p2) locate on
different sides of p1 with one of them equal to min{|p1a1|, |p1b1|,

t−1
2 |p1p2| + |p1p2|x} and the other equal

to min{|p1a1|, |p1b1|,
t−1
2 |p1p2|}, where |p1p2|x is the distance along x-axis between p1 and p2 and a1 and

b1 are the two endpoints of s1.

Proof. Assume without loss of generality that p2 is to the left of p1, then i) if q1 is placed to the left of p1, it
is easy to see that q1 is also to the left of p2, otherwise there is no need to use q1 as the Steiner point for p1

due to the property of L1 distance, therefore we have |q1p2| = |p1p2|y + |p1q1|− |p1p2|x; ii) if q1 is placed to
the right of p1, we have |q1p2| = |p1q1|+ |p1p2|. By the spanner property, we have |p1q1|+ |q1p2| ≤ t|p1p2|.
Solving the system of the equations, we get i) if q1 is placed to the left of p1, |p1q1| ≤

t−1
2 |p1p2| + |p1p2|x;

ii) if q1 is placed to the right of p1, |p1q1| ≤
t−1
2 |p1p2|. The lemma follows since q1 has to be placed within

s1. ⊓⊔

Lemma 2. The minimum of both |p1e1l| and |p1e1r| is min{|p1a1|, |p1b1|,
t−1
2 |p1p2|}. |p1e1l| (or |p1e1r|)

achieves its minimum either when e1l coincides with a1 (or e1r coincides with b1), or p2 is at the endpoints
of s2, or |p1p2| is a constant that only depends on s1 and s2.

Proof. In the proof of Lemma 1, it is clear that |p1e1l| (or |p1e1r|) achieves its minimum when e1l (or e1r)
and p2 are on the different sides of p1, and the minimum is min{|p1a1|, |p1b1|,

t−1
2 |p1p2|}. To minimize the

value of |p1p2|, p2 should be picked as the nearest point to p1 on s2. Thus, p2 is either an endpoint of s2,
or the point on s2 that has the same x-coordinate or y-coordinate with p1. In the latter case, |p1p2| is the
distance between s1 and s2, which is a constant when both segments are given. ⊓⊔

Let m be the parameter of p1 in its convex combination of the two endpoints of s1, i.e. p1 = (1−m)a1 +
mb1, for some m ∈ [0, 1]. Let L1,2(m) and R1,2(m) be the functions defining the positions of e1l and e1r

(respectively) on s1, i.e. L1,2(m) = m − |p1e1l|/|a1b1| and R1,2(m) = m + |p1e1r|/|a1b1|.

Lemma 3. L1,2(m) and R1,2(m) are piecewise linear functions of m.

Proof. When p2 is an endpoint of s2,
t−1
2 |p1p2| is linear in |p1p2|x = |a1p2|x ∓ |a1p1|. Since |p1p2|y and

|a1p2|x are both constants when p2 is fixed at an endpoint of s2,
t−1
2 |p1p2| is linear in m by the definition of

m. When p2 is the point in s2 that has the same x-coordinate or y-coordinate as p1,
t−1
2 |p1p2| is a constant.

Thus L1,2(m) and R1,2(m) are (piecewise) linear in m. ⊓⊔

To efficiently compute a set of t-dominating set for each segment in S, we first introduce the concept
of wall. Let s1 and s2 be two weakly visible segments in S, and p1 and p2 be their respective points. p1

and p2 are horizontally (or vertically) visible pair if p1 and p2 have the same y (or x) coordinate and the
horizontal (or vertical) segment p1p2 does not intersect the interior of any other segment in S. The union
of all horizontally (or vertically) visible pairs forms one or more vertical (or horizontal) subsegments on
each of s1 and s2. The corresponding subsegments on s1 and s2 have the same length and are called wall
to each other. The set of such subsegments in each si, i ∈ {1, 2}, is called the wall portion of si. See Figure
3 for an example. We have the following lemmas regarding the positions of the Steiner points.

Lemma 4. Given a set of rectilinear segments S in L1 space, to determine the position of the set Q of
Steiner points, it is sufficient to consider only those wall portions in each segment and the endpoints of S
to guarantee a 2-approximation of Q (with respect to its size).

Proof. We prove the lemma by contradiction. First, by Lemma 13 in [13], we know that to compute a
t-strongly dominating set for an arbitrary segment s1 ∈ S, it is sufficient to only consider those segments
weakly visible to it (this lemma can be easily extended to the L1 distance case). Hence the set of weakly
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Fig. 3. Example spanner of rectilinear segments in L1 space. Solid lines are segments. Dashed lines are spanner.
Different colors represent the wall portions.

visible segments is sufficient to determine the Steiner points in s1. Let OPT be any optimal solution whose
Steiner points are determined by those weakly visible segments. Assume that in OPT there is a Steiner
point q on segment s such that (i) q is not an endpoint of s; (ii) q is not in the wall portion of s. Without
loss of generality, we assume that s is horizontal.

This means that q is visible to some points on other segments. Consider the nearest one of such points
on the left side of q (assuming without loss of generality that there exists one), say p′. Since q is not the
left endpoint, say a, of s, there is a non-empty portion of s to the left of q. Therefore i) if a is to the left
of p′, p′ is within the wall of some subsegment, say ss, of s, and ss is a wall portion of s; ii) if a is not
to the left of p′, p′ is visible to a. Slide q to the left along s until it reaches the endpoint a or enters the
wall portion ss. Let ql be the new position of the original q. If q is also visible to some point on its right
side, we can similarly slide q to the right and select another position qr. It is easy to see that any point of
s that originally use q as its Steiner point can now use either ql or qr as Steiner point to meet the spanner
requirement. Therefore, any Steiner point that is neither within the wall portions nor one of the endpoints
can be replaced by at most two Steiner points without destroying the spanner property. This implies a
2-approximation and hence the lemma follows. ⊓⊔

Lemma 5. Given a set of rectilinear segments S in L1 space, the t-dominating set between two subsegments
that are wall to each other can be computed optimally.

Proof. Let ss1 ∈ s1 and ss2 ∈ s2 be two subsegments that are wall to each other. Notice that they have
the same length. By Lemma 1 and Lemma 2, we know that |p1e1l|, |p1e1r|, |p2e2l| and |p2e2r| all have the
same minimum value t−1

2 |p1p2|. This implies the following two properties: i) L1,2(m) and R1,2(m) of these
wall portions are straight line segments and parallel to each other; ii) they form the same B1,2 and B2,1

bands (i.e., the region bounded by the L1,2(m) and R1,2(m) functions in the coordinate system; see [13]
for more details). Property i) means that the t-weakly dominating points can therefore be determined by
a horizontal interval cover in B1,2 (see [13]). Property ii) means that the t-weakly dominating points are
chosen as pairs on ss1 and ss2, i.e. if ss1 and ss2 are both horizontal, for each t-weakly dominating Steiner
point q1 on ss1, there exists a t-weakly dominating Steiner point q2 on ss2 with the same x-coordinate as
q1. Together with the property of L1 distance (|p1q2| = |p1q1| + |q1q2|), this guarantees that the minimum
set of t-weakly dominating set computed using interval cover is also a minimum set of t-dominating points
(i.e. no imaginary point is needed here). ⊓⊔

Lemma 6. Given a set of rectilinear segments S in L1 space, the t-strongly dominating set for a subsegment
that is the wall portion of an input segment can be computed optimally.

Proof. Let ssi be such a subsegment that is the wall portion of si ∈ S. Assume without loss of generality
that si is horizontal. First, there are at most two walls of ssi, say ssj and ssk, that are parallel to ssi,
one above and the other under ss1. Assume without loss of generality that ssi is closer to ssj than to ssk.
Then the upper envelope function Li(m) of all Li,r(m), r 6= i, and the lower envelope function Ri(m) of all
Ri,r(m), r 6= i, are determined by Li,j(m) and Ri,j(m) because of the smaller value of t−1

2 |p1p2| introduced
by ssj . Together with the property of L1 distance, this guarantees that the minimum set of t-dominating
set for ssi computed from ssj is also a minimum set of t-strongly dominating set (i.e. no imaginary point
is needed). Note that if ssi is not a “proper” subsegment of si, there could be at most two other walls
(actually degenerated as points) to the left and right of ssi. One t-strongly dominating Steiner point (i.e.,
the endpoint of si) is sufficient for each of them. ⊓⊔
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Once the t-dominating sets are determined, the bridges can be built in a way similar to the construction
of segment spanner in [13]. As discussed in the proof of Lemma 5, the pairs of t-strongly dominating Steiner
points are determined in such a way that the bridge connecting each pair is rectilinear. Figure 3 shows
examples on the wall portions and the bridges built between them.

Lemma 4 tells us that besides the wall portions, we also need to consider the endpoints as candidates for
possible Steiner points. This happens when two input segments are weakly visible to each other, but they
do not have subsegments that are walls of each other. The last part in the proof of Lemma 6 also shows
one case where the endpoint is selected. At least one of the endpoints of such bridges is at an endpoint
of an input segment. Some of them could also be non-rectilinear if both endpoints are at the endpoints of
input segments. See Figure 3 for examples.

Putting everything together we have the following theorem.

Theorem 1. Given a set of n rectilinear segments in L2
1 space, a set of Steiner points with size no more

than 2 × |OPT | can be computed in O(|Q| + n2 log n) time.

Proof. By Lemma 6, the set of t-strongly dominating points calculated by considering only wall portions
and endpoints is optimal. Hence the approximation ratio is 2 by Lemma 4. The running time is mainly
spent on finding wall portions, which can be achieved after computing all pairs of weakly visible segments.
This takes O(|Q| + n2 log n) time according to [13]. ⊓⊔

4 Constructing t-Spanner for Axis Aligned Rectangles Under L1 Distance

In this section, we consider the problem of constructing a t-spanner for a set of rectangles in L2
1 space. Let

S = {R1, R2, · · · , Rn} be a set of disjoint axis aligned rectangles, and t > 1 be the stretch factor.

Definition 3. Two rectangles Ri and Rj in S are doubly separated if their orthogonal projections on the
x and y-axes do not overlap (see Figure 4).

q

p2

p1
R

R

1

2

Fig. 4. Doubly Separated Rectangles

Lemma 7. Let R1 and R2 be two doubly separated axis aligned rectangles, and q be the closest point of R2

to R1. Then for any point p2 in R2, q t-weakly dominates p2

Proof. Without loss of generality, we assume that R2 is at the southeast corner of R1 (see Figure 4). Let
(x1, y1), (x2, y2) and (xq, yq) be the coordinates of p1,p2 and q respectively. Then we have x2 ≥ xq ≥ x1 and
y2 ≤ yq ≤ y1. Since |p1q| = |xq−x1|+|yq−y1| = (xq−x1)+(y1−yq), |qp2| = |x2−xq|+|y2−yq| = (x2−xq)+
(yq − y2) and |p1p2| = |x2 −x1|+ |y2 − y1| = (x2 −x1)+ (y1 − y2), we have |p1q|+ |qp2| = |p1p2| ≤ t ∗ |p1p2|
for t > 1. This means that q t-weakly dominates p2. ⊓⊔

Definition 4. Let R1 and R2 be two disjoint axis aligned rectangles. R1 is totally below R2 if R1 is below
R2 and between the leftmost and rightmost points of R2 (see Figure 5); R1 is totally above R2 if R1 is
above R2 and between the leftmost and rightmost points of R2; R1 is totally to the left side of R2 if R1 is
at the left side of R2 and between the highest and lowest t points of R2; R1 is totally to the right side of
R2 if R1 is at the right side of R2 and between the highest and lowest points of R2; if R1 and R2 have one
of the above four relationships, R1 is totally on one side of R2.
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Fig. 5. R2 is totally below R1

Lemma 8. Let R1 and R2 be two disjoint axis aligned rectangles with R2 being totally below R1, and p2

be an arbitrary point in R2 with coordinate (x2, y2). Let l be the L1 distance from p2 to R1 and y be the
y-coordinate of the top edge of R2. Then the region t-weakly dominating p2 is the intersection of R2 and a
pentagon ABCDE with coordinates (x2−

t−1
2 ∗ l, y),(x2−

t−1
2 ∗ l, y2),(x2, y2−

t−1
2 ∗ l),(x2 + t−1

2 ∗ l, y2),(x2 +
t−1
2 ∗ l, y) respectively.

Proof. To simplify our proof, we assume that p2 coincides with the origin of the coordinate system. Let p1

be an arbitrary point in R1, q be a point in R2 that t-weakly dominates p2, and p be the point in R1 that
is the closest to p2. Then the coordinate of p is (0, l) (see Figure 5). Let (x1, y1), (x2, y2) and (xq, yq) be
the coordinates of p1,p2 and q respectively. Since |p1q|+ |qp2| ≤ t× |p1p2| with |p1q| = |x1 −xq|+ |y1 − yq|,
|qp2| = |x2−xq|+|y2−yq| and |p1p2| = |x2−x1|+|y2−y1|, we have |x1−xq|+|y1−yq|+|x2−xq|+|y2−yq| ≤
t × (|x2 − x1| + |y2 − y1|), i.e.,

(|x1 − xq| + |x2 − xq| − |x2 − x1|) + (|y1 − yq| + |y2 − yq| − |y2 − y1|) ≤ (t − 1) × |p1p2|. (1)

Based on the position of q, we have the following cases.

1. q is in the second quadrant, i.e., xq ≤ x2 and yq ≥ y2. For this case, we have three subcases, depending
on the position of p1.
(a) p1 is to the left of q (i.e., y2 ≤ yq ≤ y1 and x1 ≤ xq ≤ x2). For this case, Inequality (1) can be

rewritten as [(xq −x1)+ (x2 −xq)− (x2 −x1)]+ [(y1 − yq)+ (yq − y2)− (y1 − y2)] ≤ (t− 1)× |p1p2|
and 0 ≤ (t − 1) × |p1p2|. This means that for such p1, Inequality (1) is trivially true and does not
define the boundary for q.

(b) p1 is between q and p2 in the x dimension (i.e., y2 ≤ yq ≤ y1 and xq ≤ x1 ≤ x2). Then Inequality (1)

can be rewritten as 2(x1−xq) ≤ (t−1)×|p1p2|. Thus (x1−xq) ≤
(t−1)|p1p2|

2 , i.e. |xq| ≤
(t−1)|p1p2|

2 −x1,

since xq is negative. (t−1)|p1p2|
2 − x1 achieves its minimum (t−1)l

2 when p1 = p.
(c) p1 is to the right of p2 in the x dimension (i.e., y2 ≤ yq ≤ y1 and xq ≤ x2 ≤ x1). For this case,

Inequality (1) can be rewritten as (x2 − xq) ≤
(t−1)|p1p2|

2 and xq ≤ (t−1)|p1p2|
2 , since xq is negative

and x2 = 0. (t−1)|p1p2|
2 achieves its minimum (t−1)l

2 when |p1p2| = l (i.e., p1 = p).
Combine case (a), (b) and (c), we know that the t-weakly dominating region in the second quadrant

of p2 is {(xq, yq) : |xq| ≤
(t−1)l

2 , q in the second quadrant }.
2. q is in the first quadrant. Similar to case 1, we have the t-weakly dominating region in the first quadrant

of p2 to be {(xq, yq) : |xq| ≤
(t−1)l

2 , q in the first quadrant }.
3. q is in the third quadrant (i.e., xq ≤ x2 and yq ≤ y2). For this case we have three subcases based on

the position of p1.
(a) p1 is to the left of q (i.e., yq ≤ y2 ≤ y1 and x1 ≤ xq ≤ x2). For this case, Inequality (1) can be

rewritten as [(xq −x1)+ (x2 −xq)− (x2 −x1)]+ [(y1 − yq)+ (y2 − yq)− (y1 − y2)] ≤ (t− 1)× |p1p2|

and y2 − yq ≤ (t−1)|p1p2|
2 . Thus |yq| ≤

(t−1)|p1p2|
2 − y2.

(t−1)|p1p2|
2 − y2 achieves its minimum (t−1)l

2
when p1 = p.

(b) p1 is between q and p2 (i.e, yq ≤ y2 ≤ y1 and xq ≤ x1 ≤ x2). For this case, Inequality (1) has the
following form. [(x1−xq)+(x2−xq)− (x2−x1)]+[(y1−yq)+(y2−yq)− (y1−y2)] ≤ (t−1)×|p1p2|

or (x1 − xq) + (0 − yq) ≤
(t−1)|p1p2|

2 . Thus (|xq| + |yq|) ≤
(t−1)|p1p2|

2 − x1.
(t−1)|p1p2|

2 − x1 achieves

its minimum (t−1)l
2 at p1 = p.

(c) p1 is to the right of p2 (i.e., yq ≤ y2 ≤ y1 and xq ≤ x2 ≤ x1). For this case, Inequality (1) can be
simplified to [(x1 −xq)+ (x2 −xq)− (x2 −x1)]+ [(y1 − yq)+ (y2 − yq)− (y1 − y2)] ≤ (t−1)×|p1p2|,
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and (0 − xq) + (0 − yq) ≤ (t−1)|p1p2|
2 . This is equivalent to (|xq| + |yq|) ≤ (t−1)|p1p2|

2 . (t−1)|p1p2|
2

achieves its minimum (t−1)l
2 at p1 = p.

Combine case (a) (b) and (c), we know the t-weakly dominating region in the third quadrant is {(xq, yq) :

|xq| + |yq| ≤
(t−1)l

2 , q in the third quadrant }.

4. q is in the fourth quadrant. Similar to cases 2 and 3, we have the t-weakly dominating region in the

fourth quadrant to be {(xq, yq) : |xq| + |yq| ≤
(t−1)l

2 , q in the fourth quadrant }.

Combining cases 1,2,3, and 4, we know that the whole t-weakly dominating region is actually the region
bounded by the pentagon ABCDE with coordinates (− t−1

2 ∗l, y),(− t−1
2 ∗l, 0),(0, 0− t−1

2 ∗l),( t−1
2 ∗l, 0),( t−1

2 ∗
l, y) respectively. ⊓⊔

Let R1 and R2 be two disjoint axis aligned rectangles with R2 being totally below R1, and d be the
minimum distance between R1 and R2. By lemma 8, we know the t-weakly dominating set of R2 can be
selected only from the upper edge of R2. This is because for any point p2 in R2, the region that t-weakly
dominates p2 intersects the upper edge of R2 at segment AE.

Let p′2 be another point in R2 and (x2, y2) and (x′
2, y

′
2) be the coordinates of p2 and p′2 respectively

with y2 ≥ y′
2 and x2 = x′

2. Let the regions that t-weakly dominate p2 and p′2 be the intersections of R2 and
pentagons ABCDE and A′B′C ′D′E′ respectively. Since the distance from p′2 to R1 (say l′) is larger than
that from p2 to R1 (say l). Thus, by lemma 8, AE ⊂ A′E′. This implies that to obtain a size-minimized
t-weakly dominating set for R2, we just need to pick the t-weakly dominating Steiner points from the upper
edge of R2. Below is an algorithm for determining the t-weakly dominating set.

Input: Two disjoint axis aligned rectangles R1 and R2 with R2 being totally below R1, d being the
minimum distance between R1 and R2, and (x0, y0) and (x′

0, y0) being the coordinates of the
leftmost and rightmost points of the upper edge of R2

Output: A t-weakly dominating set Q of R2 with respect to R1

Q=φ;
i=1;
if x0 + t−1

2 ∗ d < x′
0 then

put (x0 + t−1
2 ∗ d, y0) in Q;

while x0 + t−1
2 ∗ d ∗ (2i + 1) < x′

0 do
put (x0 + t−1

2 ∗ d ∗ (2i + 1), y0) in Q;
i++;

end

if x0 + t−1
2 ∗ d ∗ (2i) < x′

0 then
Put(x′

0, y0) in Q;
end

end
if Q ={} then

Q = {(x0, y
′
0)};

end
return Q;

Lemma 9. The set of t-weakly dominating Steiner points selected by the above algorithm has the minimum
size among all sets of points t-weakly dominating R2.

Proof. We prove by contradiction. Let Q be the set of t-weakly dominating set chosen by the above
algorithm. Suppose that there exists another set Q′ of smaller size. Let Q = {g1, g2, ..., gm} and Q′ =
{g′1, g

′
2, ..., g

′
k}, k < m, be the two sets sorted by their x-coordinates in increasing order. The x-coordinate

of g′1, say xg′

1
, must be less or equal to that of g1, say xg1

, since if xg′

1
> xg1

, g′1 can’t t-weakly dominate
(x0, y0) by Lemma 8 and the above algorithm. Similarly, for any i, we have xg′

i

≤ xgi
. Thus k ≥ m. A

contradiction. ⊓⊔

Lemma 10. Let R1 and R2 be two disjoint axis aligned rectangles with R2 being totally below R1, d be the
minimum distance between R1 and R2, and w be the width of R2. Then the total number of points in the
t-weakly dominating set of R2 is at most ⌊ w

(t−1)d⌋ + 1.
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Proof. By the above algorithm, we know that (1) if w ≤ (t−1)
2 ∗d, then there is only one t-weakly dominating

Steiner point. Thus 1 ≤ ⌊ w
(t−1)d⌋ + 1 (i.e., the lemma holds). (2) If x′

0 − x0 > w > (t−1)
2 ∗ d, then the total

number m of t-weakly dominating Steiner points satisfies t−1
2 ∗ d ∗ (2m + 1) < w or t−1

2 ∗ d ∗ 2(m− 1) < w.
Thus, m ≤ ⌊ w

(t−1)d⌋ + 1. ⊓⊔

It is easy to see that when R1 and R2 have one of the other three relations in Definition 4, similar
results can be proved as in Lemmas 8, 9, and 10.

For any pair of disjoint axis aligned rectangles R1 and R2, one of the following three cases holds.

1. R1 and R2 are doubly separated.

2. R1 (or R2) is totally on one side of R2 (or R1).

3. Neither 1 or 2 is true (see Figure 6).

R1

R2

R22R21

Fig. 6. R2 is partitioned into two subrectangles.

For case 3, R2 (or R1) can be partitioned into two axis aligned rectangles R21 and R22 with one of
them being doubly separated with R1 and the other being totally on one side of R1 (see Figure 6). The
t-weakly dominating sets for R21 and R22 can be selected by using Lemma 7 and Algorithm 1, and the
t-weakly dominating set for R2 is just the union of the two t-weakly dominating sets.

From the above discussion, we know that for any pair of axis aligned rectangles R1 and R2, the t-weakly
dominating set of R2 can be selected from one edge e of R2 and its total number is no more than ⌊ w

(t−1)d⌋+2,

where d is the distance between R1 and R2 and w is the length of e or the edge in the subrectangle of R2

which is totally on one side of R1.

In the two-rectangle case, the t-weakly dominating sets for each rectangle is determined by using
one of its edges. For a set S of axis aligned rectangles S = {R1, R2, ..., Rn}, we consider the set S′ of
all boundary edges of S, i.e., S′ = {E11, E12, E13, E14, E21, E22, E23, E24, · · · , En1, En2, En3, En4}, where
Ei1, Ei2, Ei3, Ei4 are the four edges of rectangle Ri. To compute t-weakly dominating sets (or t-dominating
sets) of S, we reduce it to the problem of constructing spanners for rectilinear segments under L1 distance.
Below is the main idea of the reduction.

Let s1 and s2 be two segments in S′ and ss1 and ss2 be subsegments of them respectively. ss1 and
ss2 are wall to each other if they are weakly visible to each other, have the same vertical (or horizontal)
projection, and are from the same rectangle. ss1 is called a wall portion of s1. Note that the definition of
wall is slightly different from that in Section 3. Here we require that the two subsegments should not be
part of the same rectangle.

Since Lemma 4, Lemma 5 and Lemma 6 can be easily extended to S′ (details are left for the full paper)
and the strongly dominating set of a rectangle is the union of the four strongly dominating sets of its four
edges, we have the following theorem.

Theorem 2. Given a set of n disjoint axis aligned rectangles in L2
1 space, a set Q of Steiner points with

size no more than 2 × |OPT | can be computed in O(|Q| + n2 log n) time.

Proof. By Lemma 6, the t-strongly dominating set of each edge in S′ calculated by considering only its
wall portion and its endpoints in S′ is optimal. Hence the approximation ratio is bounded by 2 according
to Lemma 4. The running time is mainly spent on finding wall portions, which can be obtained after
computing the weakly visible segments. This takes O(|Q| + n2 log n) time by [13]. ⊓⊔
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5 Constructing t-Spanner for Rectilinear Polygons Under L1 Distance

In this section, we consider the problem of constructing spanner for a set S = {P1, P2, · · · , Pn} of rectilinear
polygons in L2

1 space.
Let P1 and P2 be two rectilinear polygons in S, and R1 and R2 be two axis aligned rectangles in P1

and P2 respectively. R1 and R2 are wall to each other if they are weakly visible to each other, and have
the same vertical (or horizontal) projection. Ri, i ∈ {1, 2}, is called a wall portion of Pi.

To determine the set of Steiner points for S, our main idea is to partition each rectilinear polygon Pi

into a set of axis aligned rectangles. Each such rectangle has at least one edge which is part of a boundary
edge of Pi. It is easy to see that the partition can be done in linear time by using a plane sweeping algorithm
on Pi. With this partition, we can compute the weak visibility of each rectangle and determine the wall
portions of its edges.

Lemma 11. For a set of rectilinear polygons S in L2
1 space, to determine the set of Steiner points Q it

is sufficient to consider only the wall portions and the vertices of S to guarantee a 2-approximation (with
respect to the size of Q).

Proof. We prove the lemma by contradiction. Assume in an optimal solution there is a Steiner point q in a
polygon P1, which is neither in some wall portion of P1 nor a vertex. Then q must be in a rectangle, say R,
which is doubly separated from all the weakly visible portions of some other polygons. By Lemma 7, the
two closest points on the boundary of neighboring rectangles partitioned from the same polygon as R are
sufficient to dominate the whole rectangle R and the region that q dominates. If both neighboring rectangles
are wall portions of P1, then we can replace q by the two points on the boundary of the polygon. Otherwise,
we continue considering the neighboring rectangles along the boundary of P1 until the rectangles have wall
portions. Since all the non-wall portions are doubly separated from those weakly visible rectangles. It’s
sufficient to consider the two adjacent points on the boundary with the two wall portions. Since q can be
replaced by two points on the boundary, a 2-approximation is guaranteed. The lemma follows. ⊓⊔

Lemma 12. For a set of rectilinear polygons S in L2
1 space, the t-dominating set between two axis aligned

rectangles R1 and R2 that are wall to each other can be computed optimally.

Proof. By Lemma 8 and the analysis in Section 4, we know that R1 and R2 have the relations that R1 is
totally on one side of R2, and R2 is totally on one side of R1. So the dominating set can be selected from
the boundaries of the corresponding polygons and computed optimally. ⊓⊔

Lemma 13. For a set of rectilinear polygons S in L2
1 space, the t-strongly dominating set of a rectangle

R that is a wall portion of an input rectilinear polygon Pi can be computed optimally.

Proof. For the portion of S that is weakly visible to R but not a wall to R, it’s sufficient to t-strongly
dominate R by two points on the boundary of R. Combining Lemma 12, the lemma follows. ⊓⊔

R

R

R

2

3

1

Fig. 7. Two disjoint rectilinear polygons and their rectangular partitions.

Theorem 3. For a set S of n disjoint rectilinear polygons in L2
1 space, a set of t-strongly dominating

Steiner points with size no more than 2 × |OPT | can be computed in O(|Q| + N2 log N) time, where N is
the total number of vertices in S.

Proof. By Lemma 13, the set of t-strongly dominating Steiner points calculated by considering only wall
portions and the vertices is optimal. Hence the approximation ratio is bounded by 2 according to Lemma
11. The running time is mainly spent on finding wall portions, which can be achieved after the partitioning
process and computing the weak visibility of the rectangles. This takes O(|Q| + N2 log N) time according
to [13]. ⊓⊔
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