
An Efficient Algorithm for the Evacuation
Problem in a Certain Class of a Network with

Uniform Path-Lengths

Abstract. In this paper, we consider the evacuation problem for a network
which consists of a directed graph with capacities and transit times on its
arcs. This problem can be solved by the algorithm of Hoppe and Tardos [1]
in polynomial time. However their running time is high-order polynomial,
and hence is not practical in general. Thus it is necessary to devise a faster
algorithm for a tractable and practically useful subclass of this problem. In
this paper, we consider a dynamic network with a single sink s such that
(i) for each vertex v the sum of transit times of arcs on any path from v
to s takes the same value, and (ii) for each vertex v the minimum v-s cut
is determined by the arcs incident to s whose tails are reachable from v.
We propose an efficient algorithm for this network problem. This class of
networks is a generalization of the grid network studied in the paper [2].

1 Introduction

The problem for finding the most effective plan to evacuate people to safe place
has been modelled as an evacuation problem by using dynamic network flow. In
the evacuation problem, we are given a directed graph D = (V,A) which consists
of a vertex set V of n vertices with supply b(v) on every vertex v and an arc set A
of m arcs with capacity c(e) and transit time τ(e) on every arc e and a single sink
s ∈ V . If we consider urban evacuation, vertices model buildings, rooms, exits and
so on, and arcs model pathways or roads. For an arc e, capacity c(e) represents
the number of people which can traverse e per unit time, and transit time τ(e)
represents the time required to traverse e. For any vertex v, supply b(v) represents
the number of people which exist at v. The evacuation problem asks to find the
minimum time required to send all the supplies to a sink.

Given time horizon T , the decision problem of whether we can send all supplies
to a sink within time horizon T can be transformed to the maximum-flow prob-
lem defined on the time-expanded network introduced by Ford and Fulkerson [3].
However the time-expanded network consists of O(T) copies of original vertices
and arcs and hence does not lead to the efficient algorithm.

The first polynomial time algorithm for the evacuation problem was proposed
by Hoppe and Tardos [1]. However it requires to use the submodular function
minimization as a subroutine. Hence the running time is high-order polynomial,
and the algorithm is not practical in general. Therefore it is necessary to devise a
faster algorithm for a tractable and practically useful subclass of this problem.

As a special case, Mamada et al. [4] gave O(n log2 n) time algorithm for the
tree network. Hall et al. [5] studied the case called uniform path-lengths where
there exists a single sink s and for any vertex v the sum of transit times of arcs
on any path from v to s takes the same value. They showed that in this case the
time-expanded network can be condensed to the so-called condensed time-expanded
network whose size is polynomial in the input size. Kamiyama et al. [2] have shown
an O(n log n) time algorithm for a

√
n×√n grid network with uniform arc capacity.

In this paper, we will generalize the class of networks for which the ideas developed
in [2] can be applied, i.e., we consider a dynamic network with a single sink s such
that (i) for each vertex v the sum of transit times of arcs on any path from v to s
takes the same value, and (ii) for each vertex v the minimum v-s cut is determined
by the arcs incident to s whose tails are reachable from v. The algorithm of [2]
reduced the evacuation problem to the min-max resource allocation problem [6],
but in this paper we reduce the evacuation problem to the parametric flow problem
defined on a static network1. Although it is known [5] that the evacuation problem
in the case of uniform path-lengths can be reduced to the parametric flow problem
in which the capacity of a subset of arcs is a linear function of time horizon T , we
prove that in our case the evacuation problem can be reduced to the special case
of the parametric flow problem studied by [7] which can be solved more efficiently
than the general parametric flow problem considered in [5]. Thus in the case where
the input dynamic network satisfies (i) and (ii), our algorithm is faster than using
the condensed time-expanded network. In particular, our algorithm becomes much
faster when the in-degree of a sink is small or considered to be a constant which
is often the case with road networks.

2 Preliminaries
Let R+ and Z+ denote the set of nonnegative reals and nonnegative integers,
respectively. We will not distinguish between a singleton {x} and its element x.
For any finite set X, we define |X| as the number of elements that belong to X.
Directed graph. We denote by D = (V,A) a directed graph which consists of
a vertex set V and an arc set A. A vertex u is said to be reachable to a vertex v
when there is a path from u to v. We denote by e = uv an arc e whose tail is u and
head is v. For any X, Y ⊆ V , we define δ(X,Y) = {e = xy : x ∈ X, y ∈ Y }, and
we write δ+(X) and δ−(X) instead of δ(X, V −X) and δ(V −X,X), respectively.
For any u, v ∈ V , we denote by λD(u, v) the local arc connectivity from u to v in
D. For any W ⊆ V , let D[W] denote the directed subgraph of D induced by W .
Throughout this paper, we assume that D is acyclic.
Dynamic network. We denote byN = (D = (V, A), c, τ, b, s) a dynamic network
N which consists of the directed graph D = (V,A), a capacity function c : A → R+

which represents the upper bound for the rate of flow that enters an arc per unit
time, a transit time function τ : A → Z+ which represents the time required to
traverse an arc, a supply function b : V → R+ which represents the supply of
a vertex, and a single sink s ∈ V . In order to avoid complicated argument, we
assume τ(e) > 0 for any e ∈ A. In this paper, we use the following notations : (i)
c(W1,W2) =

∑
e∈δ(W1,W2)

c(e) for any W1,W2 ⊆ V , and (ii) c(W) = c(W,V −W)
and b(W) =

∑
v∈W b(v) for any W ⊆ V . Since we consider evacuation to s, we

assume that s has no leaving arcs and no supply, and any vertex is reachable to s.
We define a length of a path p in D as

∑
e∈p τ(e). We define a dynamic network

flow f : A × Z+ → R+ in N as follows. For any e ∈ A and θ ∈ Z+, we denote by
f(e, θ) the flow rate entering e at the time step θ which arrives at the head of e at
the time step θ+τ(e). We call f a feasible dynamic network flow in N if it satisfies
1 In order to distinguish classical network from dynamic network, we call classical net-

work static network.

the following three conditions, i.e., capacity constraint CC, flow conservation FC,
and demand constraint DC [4].
CC : For any e ∈ A and θ ∈ Z+, 0 ≤ f(e, θ) ≤ c(e).
FC : For any v ∈ V and Θ ∈ Z+,

∑
e∈δ+(v)

∑Θ
θ=0 f(e, θ)−∑

e∈δ−(v)

∑Θ−τ(e)
θ=0 f(e, θ) ≤ b(v).

DC : There exists Θ ∈ Z+ such that
∑

e∈δ−(s)

∑Θ−τ(e)
θ=0 f(e, θ) =

∑
v∈V b(v). (1)

For a feasible dynamic network flow f , let Θ(f) denote the minimum time step
Θ satisfying (1). The evacuation problem asks to find the minimum value of Θ(f)
among all feasible dynamic network flows f . Given a dynamic network N , the
evacuation problem EP(N) is formally defined as follows:

EP(N) : minimize {Θ(f) : f is a feasible dynamic network flow in N} .

We define Θ(N) as the optimal value of EP(N). Given time horizon T , we define
the decision version of EP(N) with time horizon T as the problem which deter-
mines whether there exists a feasible dynamic network flow f with Θ(f) ≤ T in
N . Throughout this paper, n and m denote |V | and |A|, respectively.
Static network. We denote by N ′ = (D′ = (V ′, A′), c′, b′, s′) a static network N ′

which consists of the directed graph D′ = (V ′, A′), a capacity function c′ : A′ → R+

a supply function b′ : V ′ → R+, and a single sink s′ ∈ V ′. We call f : A′ → R+ a
feasible static network flow in N ′ if it satisfies the following two conditions, i.e.,
capacity constraint CC and flow conservation FC.
CC : For any e ∈ A′, 0 ≤ f(e) ≤ c′(e).
FC : For any v ∈ V ′ − s′,

∑
e∈δ+(v) f(e)−∑

e∈δ−(v) f(e) = b′(v).
If there exists a feasible flow in N ′, N ′ is called feasible.
Time-expanded network. To solve the decision version of EP(N) with time
horizon T , Ford and Fulkerson [3] introduced the time-expanded network which is
a static network such that for any v ∈ V and i = 0, 1, . . . , T , there is a vertex vi,
and for any e = uv ∈ A, i = 0, 1, . . . , T − τ(e), there is an arc ei = uivi+τ(e) whose
capacity is c(e), and for any v ∈ V and i = 0, 1, . . . , T − 1, there is a holdover arc
vivi+1 with infinite capacity. For any v ∈ V the supply of v0 is set to b(v) and the
supplies of all the other vertices vi for i = 1, . . . , T are set to zero. Let sT be a sink
in the time-expanded network (Fig. 1). Though we can decide whether the time-
expanded network is feasible or not by solving the maximum-flow problem, the
running time is pseudo-polynomial because the size of the time-expanded network
is pseudo-polynomial in the input size.

2.1 Dynamic Networks with Uniform Path-Lengths

From here, we assume that any dynamic network satisfies uniform path-length
condition. First we review the result due to Hall et al. [5]. They proved that
EP(N) can be reduced to the parametric flow problem defined on the condensed
time-expanded network whose size is polynomial in the input size.

u

v

(4,5) (7,1)

(2,3)(6,3)

s

w

(a)

77 7

4
2

7

2

7

2

7

2

6

7

4
2

6

4

6 6 6

1s 2s 3
s

4s 5
s

6s 7s

1w 2w 3
w

4w 5
w 6w 7w

1u 2u 3
u

4u 5
u

6u 7u

1v 2v 3
v

4v 5
v

6v 7v

0
s

0
u

0
v

0
w

(b)
Fig. 1. (a) Dynamic network N . (The pair of numbers attached to the arc indicates the
capacity and the transit time.) (b) Time-expanded network with T = 7. (The number
attached to the arc indicates the capacity.)

We introduce necessary notations for N = (D = (V,A), c, τ, b, s). For v ∈ V ,
we define lv as the length of a path from v to s. Let us arrange the distinct
values in {lv : v ∈ V } as L1 < · · · < Lk where L1 = 0 and k is the number of the
distinct path-lengths inN . Without loss of generality we assume that for any i with
2 ≤ i ≤ k b(v) > 0 for at least one vertex v ∈ V with lv = Li. Let Lk+1 = T + 1.
We say a vertex v is at level i when lv = Li, which is denoted by lev(v) = i.
We partition interval [0, T] into I1, I2, . . . , Ik such that Ii = [Li, Li+1 − 1] holds
for i = 1, . . . , k. Moreover, let Ps = {v ∈ V : e = vs ∈ A} and Rv = {w ∈
Ps : w is reachable from v in D} for v ∈ V . For example, for N in Fig. 1(a) with
T = 7, we obtain (ls, lw, lu, lv) = (0, 1, 3, 6). Thus, we have k = 4 and I1 = {0},
I2 = {1, 2}, I3 = {3, 4, 5}, I4 = {6, 7}.

The condensed time-expanded network N c = (Dc = (V c, Ac), cc, bc, sc) for
N with time horizon T is defined as follows. V c is defined as {vi : v ∈ V, i =
lev(v), . . . , k}. Ac consists of two types, i.e., Ac = Ac

1 ∪ Ac
2. Ac

1 = {ei = uivi : e =
uv ∈ A, i = lev(u), . . . , k} and Ac

2 = {vivi+1 : v ∈ V, i = lev(v), . . . , k − 1}. Arc
ei ∈ Ac

1 has the capacity |Ii|c(e) where |Ii| denotes the number of elements in Ii. An
arc in Ac

2 is a holdover arc whose capacity is infinity. For v ∈ V the supply of vlev(v)

is set to b(v) and the supplies of all the other vertices vi for i = lev(v) + 1, . . . , k
are set to zero. sc = sk holds (Fig. 2(a)).

14 1421

6

12
8

4

+∞ +∞ +∞

+∞

+∞ +∞

1s 2s 3s 4s

2w 3w 4w

3u 4u

4v

(a)

1s 2
s

3
s

4
s

2
w

3
w

4
w

3
u

4
u

4
v

14 1421

6

12
8

4

+∞ +∞ +∞

+∞ +∞

(1)V (2)V (3)V (4)V

(b)
Fig. 2. (a) N c for N in Fig. 1(a) with T = 7. (b) V (i) for N c. (The number attached to
the arc indicates the capacity, and holdover arcs are illustrated by dotted lines.)

For i = 1, . . . , k, let V (i) = {vi ∈ V c : v ∈ V } and A(i) = {ei ∈ Ac
1 : e ∈ A}.

Notice that V (i) for i = 1, . . . , k partitions V c. It is easy to see that A(i) is the
arc set of Dc[V (i)], i.e., the subgraph of Dc induced by V (i) (Fig. 2(b)). From the
definition of N c, we have the following fact.

Fact 1 For any i, j =1, . . . , k with j − i 6=1, there is no arc connecting from V (i)
to V (j). For any i = 1, . . . , k − 1, δ(V (i), V (i + 1)) = {vivi+1 : vi ∈ V (i)} holds.

From Fact 1, we can see that (i) N c consists of k components such that for any
i = 1, . . . , k, the i-th component is a directed graph Dc[V (i)] such that capacity of
ei ∈ A(i) is |Ii|c(e) (Fig. 2(b)), and (ii) consecutive components are connected by
holdover arcs. Let V≤i = {v ∈ V : lev(v) ≤ i} for i = 1, . . . , k.

Lemma 1. (i) For any i = 1, . . . , k, Dc[V (i)] is isomorphic to D[V≤i]. (ii) For
any i = 1, . . . , k and u, v ∈ V≤i, λDc[V (i)](ui, vi) = λD(u, v).

Proof. (i) follows from the definition of Dc[V (i)]. (ii) follows from λD[V≤i](u, v) =
λD(u, v) for i = 1, . . . , k and u, v ∈ V≤i and from (i). ut

Hall et al. showed that a feasible dynamic flow f with Θ(f) ≤ T exists in
N if and only if N c is feasible for time horizon T . Thus EP(N) can be solved
by computing the minimum T such that N c is feasible. By regarding T as the
parameter we can reduce EP(N) to the parametric flow problem defined as follows.
Parametric flow problem. Given a static networkN ′ = (D′ = (V ′, A′), c′, b′, s′)
such that the capacity of e ∈ A′ is represented by ae + ξge where ae is a real
constant, ge is a nonnegative constant, and ξ is a nonnegative parameter, the
parametric flow problem asks to find the minimum value of ξ such that N ′ is
feasible. This problem can be solved in O(|A′|2|V ′| log(|V ′|2/|A′|)) time by using
the algorithm of [8].

Notice that from Lk+1 = T + 1 cc(ek) = |Ik|c(e) = (T − Lk + 1)c(e). The
following theorem follows from |V c| = O(kn) and |Ac| = O(km).

Lemma 2 ([5]). EP(N) can be solved in O(k3m2n log(kn2/m)) time.

3 Evacuation Problem for a Fully Connected Network
A dynamic network N = (D = (V, A), c, τ, b, s) is called fully connected if for each
vertex v ∈ V − s the minimum v-s cut is determined by the arcs incident to s
whose tails are reachable from v. That is, the value of the minimum v-s cut is
equal to

∑
e∈δ(Rv,s) c(e). In the subsequent discussion, we concentrate on the unit

capacity case, i.e., the capacity of every arc is equal to one. In this case, N is fully
connected if and only if λD(v, s) = |δ(Rv, s)| holds for any v ∈ V − s. The general
capacity case can be treated similarly, and we will consider the general capacity
case at the end of this section. In this section, we prove that EP(N) for a fully
connected network can be solved efficiently. This is a generalization of the result of
[2]. We will prove that the problem can be reduced to to the restricted parametric
flow problem defined in Section 3.2.

For the subsequent discussion, we will define contraction in a static network
N ′ = (D′ = (V ′, A′), c′, b′, s′) and show the sufficient condition such that we can
contract some vertex set in N c. The contraction of X ⊆ V ′ − s′ in N ′ is defined
as the operation which consists of shrinking the vertices in X into a single vertex,
eliminating loops, and combining multiple arcs by adding their capacities. For
X ⊆ V ′ − s′, we call X contractible when N ′

/X is feasible if and only if N ′ is
feasible. We then give the sufficient condition such that X is contractible in N ′.

Lemma 3. For X ⊆ V ′ − s′, if there exists Y ⊆ V ′ − s′ with X ⊆ Y such that
c′(Z) ≥ c′(Y ∪ Z) holds for any Z ⊆ V ′ − s′ with X ∩ Z 6= ∅ and X * Z, X is
contractible. (See the appendix for the proof of the lemma.)
3.1 Contraction in the condensed time-expanded network
For N = (D = (V, A), c, τ, b, s) and Q ⊆ Ps, let PQ = {v ∈ V : Rv ⊆ Q} and
P∗Q = {v ∈ V : Rv = Q,λD(v, s) = |δ(Q, s)|} (Fig. 3(a)). If N is fully connected,
V − s =

⋃
Q⊆Ps

P∗Q holds. For any W ⊆ V and i = 1, . . . , k, let W (i) = {vi ∈
V c : v ∈ W}. The following theorem will be used in the subsequent discussion.

Theorem 1. For any Q ⊆ Ps and i = 1, 2, . . . , k, P∗Q(i) is contractible in N c.

s

u

v

P
*

Q

P
Q

(a) 1s 2
s

3
s

4
s 5s

2
v

3
v

4
v 5v

2
u

3
u

4
u 5u

* (4)PQ
* (5)PQ

(4)PQ

(5)PQ

(b)
Fig. 3. (a) PQ and P∗Q with Q = {u, v}. (b) PQ(i) and P∗Q(i) with Q = {u, v} and
i = 4, 5. (The transit time in Fig 3(a) takes the same value.)

The following lemma will be used in the proof of Theorem 1. The proof is given
in appendix.

Lemma 4. δ+(
⋃

i≤j≤k PQ(j)) =
⋃

i≤j≤k δ(Q(j), sj) holds.

Proof. (Theorem 1) Let us fix Q ⊆ Ps and i. We will use Lemma 3 to prove that
P∗Q(i) is contractible by setting X = P∗Q(i) and Y =

⋃
i≤j≤k PQ(j). Thus, it is

sufficient to prove cc(Z) ≥ cc(Y ∪Z) for any Z ⊆ V c−sc with X∩Z 6= ∅ and X *
Z. In order to prove cc(Z) ≥ cc(Y ∪Z), it is sufficient to prove cc(Y) ≤ cc(Y ∩Z)
since cc is a submodular function. Recalling that every arc capacity is assumed to
be one, cc(ej) = |Ij | holds. Thus from Lemma 4, we have

cc(Y) =
∑k

j=i |δ(Q(j), sj)||Ij |. (2)

Now we evaluate cc(Y ∩Z). From X ∩Z 6= ∅, let v∗i ∈ X ∩Z. Since the capacity of
holdover arc is infinity, we can assume v∗j ∈ Z holds for any j = i + 1, . . . , k since
otherwise cc(Y ∩ Z) = +∞ and the theorem clearly holds. We have

cc(Y ∩ Z) ≥ ∑k
j=i

∑
e∈δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z))c

c(e) (3)

(See the appendix for the proof of this inequality). Since δ(PQ(j) ∩ Z, V (j) −
(PQ(j) ∩ Z)) is the set of arcs outgoing from PQ(j) ∩ Z in the j-th component,
the following inequality holds for every j with j = i, i + 1, . . . , k
∑

e∈δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z)) cc(e) ≥ λDc[V (j)](v∗j , sj)|Ij | (from v∗j ∈ PQ(j) ∩ Z)

= λD(v∗, s)|Ij | (from Lemma 1(ii)) = |δ(Q, s)||Ij | (from v∗ ∈ P∗Q). (4)

Since |δ(Q(j), sj)| ≤ |δ(Q, s)| holds, we have from (2), (3) and (4)

cc(Y) =
∑k

j=i |δ(Q(j), sj)||Ij | ≤
∑k

j=i |δ(Q, s)||Ij | ≤ cc(Y ∩ Z). ut

3.2 The restricted parametric flow problem

In this problem, we are given a static network with multiple sinks N ′′ = (D′′ =
(V ′′, A′′), c′′, b′′, S′′) such that (i) S′′ is a set of sinks, (ii) the capacity c′′(e) for an
arc e incident to a sink is a linear function ae + geξ where ae is a constant, ge is a
nonnegative constant and ξ is a nonnegative parameter. The problem asks to find
the minimum value of ξ such that N ′′ is feasible where we define f : A′′ → R+

a feasible flow in N ′′ when it satisfies CC and FC for any v ∈ V ′′ − S′′. This
problem can be transformed into a parametric maximum-flow problem studied by
[7] by introducing a super source vertex q and arcs from q to every vertex v with
b′′(v) > 0 such that the capacity of qv is set to b′′(v). It is then easy to see that
N ′′ is feasible for a fixed ξ if and only if the maximum-flow value from q to S′′

in the transformed problem is at least
∑

v∈V ′′ b
′′(v). Regarding ξ as a parameter,

the maximum-flow value is a linear function in ξ.

Lemma 5 ([7]). The maximum-flow value from q to S′′ in the transformed net-
work is a non-decreasing piecewise linear concave function κ(ξ), and the largest
breakpoint of κ(ξ) can be found in the same time complexity as that of a single
computation of the maximum-flow, i.e., O(|A′′||V ′′| log(|V ′′|2/|A′′|)).

Lemma 6. We can determine whether there exists ξ such that N ′′ is feasible, and
if there exists such ξ, the minimum such value can be found in O(|A′′||V ′′| log(|V ′′|2/|A′′|)).

Proof. From the above discussion, N ′′ is feasible when there exists ξ such that
maximum-flow value in the transformed problem is larger than or equal to

∑
v∈V ′′ b

′′(v).
On the other hand, the maximum-flow value in the transformed problem can not
exceed

∑
v∈V ′′ b

′′(v). The slope of κ(ξ) is zero and κ(ξ) is less than or equal to∑
v∈V ′′ b

′′(v) when ξ is larger than the largest breakpoint. Checking whether there
exists ξ such that N ′′ is feasible reduces to computing the largest breakpoint of
κ(ξ). Moreover, if there exists ξ such that N ′′ is feasible, the minimum value of
ξ such that N ′′ is feasible is equal to the largest breakpoint of κ(ξ). Thus, the
lemma follows from Lemma 5. ut

As was defined in Section 2.1, in the condensed time-expanded network, the
capacity of all arcs in the k-th component Dc[V (k)] contains the parameter T , i.e.,
linear function of T . In Fig. 2(a), regarding T as the parameter, we have cc(u4s4) =
2(T −5), cc(w4s4) = 7(T −5), cc(v4u4) = 6(T −5), and cc(v4w4) = 4(T −5). Thus,
the arcs which are not incident to a sink (i.e., v4u4 and v4w4) have the parametric
capacity. Therefore, we can not reduce EP(N) for a general dynamic network with
uniform path-lengths to the restricted parametric flow problem.
3.3 Reduction to the restricted parametric flow problem
Our reduction is constructed by the following lemmas. First, given a vertex set
V̂ , a supply function b̂ : V̂ → R+, a path-length function l̂ : V̂ → R+, and a sink
ŝ ∈ V̂ , let N (V̂ , b̂, l̂, ŝ) be a set of dynamic networks N̂ = (D̂ = (V̂ , Â), ĉ, τ̂ , b̂, ŝ)
which satisfies (i) |δ−(ŝ)| = 1, (ii) for any v ∈ V̂ the length from v to ŝ is equal to
l̂v, and (iii) ĉ(e) = 1 for any e ∈ Â. Since we are only given path-length function
but not the arc set or transit time of arcs, there may exist many possible networks
which satisfy the given path-length function. For example, given V̂ = {ŝ, x, y, v, w},
(b̂(ŝ), b̂(x), b̂(y), b̂(v), b̂(w)) = (0, 4, 3, 5, 1), and (l̂ŝ, l̂x, l̂y, l̂v, l̂w) = (0, 1, 2, 4, 7), all
dynamic networks in Fig. 4 belong to N (V̂ , b̂, l̂, ŝ).

5

5

1
1

3
3

5

6

1
1

3
3

5 1
1

2 2

1

3

4

5

1

3

4

5

1

3

4

v

w x

y

v

w x

y

v

w x

y

ŝŝŝ

Fig. 4. Example of dynamic networks in N (V̂ , b̂, l̂, ŝ). (The numbers attached to the arc
and the vertex indicate the capacity and the supply, respectively.)

Lemma 7. For any N̂ ∈ N (V̂ , b̂, l̂, ŝ), Θ(N̂) takes the same value regardless of
the underlying network topology of N̂ .

Proof. For any N̂ = (D̂ = (V̂ , Â), ĉ, τ̂ , b̂, ŝ) ∈ N (V̂ , b̂, l̂, ŝ), Pŝ consists of a single
element from |δ−(ŝ)|=1. Thus, N̂ is fully connected because any v ∈ V̂ is reachable
to ŝ by using the path of length l̂v. Since l̂v does not depend on the choice of N̂ ,
the number of distinct values in {l̂v : v ∈ V̂ } does not depend on the choice of N̂ .
Let k̂ denote this number. Let N̂ c be the condensed time-expanded network for
N̂ . Since N̂ is fully connected, V̂ (i)− ŝi is contractible in N̂ c for any i = 1, . . . , k̂

from Theorem 1. Let N̂ ∗ = (D̂∗ = (V̂ ∗, Â∗), ĉ∗, b̂∗, ŝ∗) be the one obtained by
contracting V̂ (i)− ŝi into a single vertex pi for every i = 1, . . . , k̂ in N̂ c. It is easy
to see that arcs whose capacity is not infinity in N̂ ∗ are piŝi with i = 1, . . . , k̂ and
the capacity of piŝi is equal to |Îi| since the capacity of any arc is assumed to be
one where Îi is defined for N̂ in a manner similar to Ii for N . It is easy to see that
|Îi| does not depend on the choice of N̂ from the definition of Îi. Since V̂ (i) does
not depend the choice of N̂ , the supply of pi does not depend on the choice of N̂ .
From the above discussion, regardless of the choice of N̂ ∈ N (V̂ , b̂, l̂, ŝ), N̂ ∗ is the
same. This completes the proof. ut

1

1

53

3

4

+∞ +∞ +∞ +∞

+∞+∞+∞

2 (6)T −

2
p 3p 4p 5p

1̂s 2
ŝ 3̂s 4ŝ 5̂s

Fig. 5. N̂ ∗ for dynamic network in Fig. 4. (The numbers attached to the vertex and the
arc indicate the supply and the capacity, respectively.)

Form the proof of Lemma 7, we can see that for any N̂ ∈ N (V̂ , b̂, l̂, ŝ) Θ(N̂)
depends only on the sum of the supplies of vertices v ∈ V̂ such that lev(v) takes
the same value, but not the supply of each vertex.

For N = (D = (V, A), c, τ, b, s), let δ(Ps, s) = {e1, e2, . . . , ed}, and V j = {v ∈
V : v is reachable to the tail of ej} ∪ {s}.
Lemma 8. Given a dynamic network N = (D = (V,A), c, τ, b, s), there exist d
arc-disjoint s-rooted trees Dj = (V j , Aj) for j = 1, . . . , d such that Dj spans V j

and Aj ⊆ A if and only if λD(v, s) = |δ(Rv, s)| holds for any v ∈ V − s.

Fig. 6(b) and (c) illustrate D1 and D2 of the directed graph D in Fig. 6(a).

Proof. It is not difficult to see that “only if-part” holds. We then prove the “if-
part”. We prove that there exist d s-rooted trees satisfying the lemma statement

s
1
e

2
e

(a)

s
1
e

(b)

s

2
e

(c)
Fig. 6. (a) D = (V, A), (b) D1 = (V 1, A1), (c) D2 = (V 2, A2).

by induction on i = 2, . . . , k for D[V≤i]. For i = 2, this lemma clearly holds.
Assuming that the lemma holds for the induced subgraph D[V≤t] with t ≥ 2, we
will prove the lemma also holds for D[V≤t+1]. For an arbitrary v ∈ V≤t+1−V≤t we
define the bipartite graph G = ((V +, V −), E) as follows. Let V + and V − represent
the set of arcs whose tail is v and those whose tail belongs to Rv, respectively.
v+ ∈ V + and v− ∈ V − are joined by an edge in E if and only if the head of the
arc which corresponds to v+ is reachable to the tail of the arc which corresponds
to v− (Fig. 7).

v
s

1
e

2
e 3
e

e

[]
t

D V
≤1

e

2
e

3
e

4
e

5
e

(a)

V
+

V
−

1
e

2
e

3
e

1
e

2
e

3
e

4
e

5
e

(b)
Fig. 7. (a) Arcs between V≤t and v ∈ V≤t+1−V≤t. (The arc e represented by a dotted
line means that the tail of e is reachable to the head of e.) (b) G for v in (a).

In order to prove that the lemma holds for D[V≤t ∪ v], we will show that there
always exists a matching M which saturates V − in G. This is because if there
exists such M, from the induction hypothesis we can extend arc-disjoint s-rooted
trees satisfying the lemma in D[V≤t] to the ones in D[V≤t ∪ v]. Let e=v+v−∈M,
and let ēi and ej be arcs corresponding to v+ and v−, respectively. Let T j denote
the s-rooted tree containing ej which satisfies the induction hypothesis. T j can be
extended by including ēi. Then s-rooted trees so extended for all e∈M become
also arc-disjoint. In order to prove the existence of M, we use Hall’s theorem [9].
Assume that there exists some W ⊆ V − with |W | > |Ne(W)| where Ne(W) is
the set of vertices adjacent to some element of W . This contradicts the fact that
there exist |δ(Rv, s)| arc-disjoint paths from v to s. This is because that the paths
contain the arcs corresponding to W have to contain the arcs corresponding to
Ne(W), and thus these paths are not arc-disjoint from |W |> |Ne(W)|. ut

Now let us fix {bj : j = 1, . . . , d} such that (i) For any v∈V ,
∑d

j=1 bj(v)=b(v)
holds, and (ii) for any v ∈ V and j = 1, . . . , d with v /∈ V j , bj(v) = 0 holds.
Intuitively speaking, bj(v) represents the assignment of the supply of v which
reaches s through Dj = (V j , Aj). For a fully connected network N = (D =
(V, A), c, τ, b, s), let N j = (Dj = (V j , Aj), cj , τ j , bj , s) where cj and τ j respectively
denote c and τ whose domain is restricted to Aj . Notice that from Lemma 7 Θ(N j)
does not depend on the choice of Aj if bj is fixed. Let f j

opt be an optimal dynamic

network flow in N j . Recalling that since Aj1 ∩ Aj2 = ∅ holds with j1 6= j2, the
dynamic flow obtained by combining f j

opt for all j = 1, . . . , d is feasible in N .

Lemma 9. Given a fully connected network N = (D = (V, A), c, τ, b, s), under the
constraint such that for each v ∈ V the amount of b(v) which reaches s through ej

is bj(v), Θ(N) is equal to max{Θ(N j) : j = 1, . . . , d}.
The proof of this lemma is almost the same as Theorem 3 in [2], and hence is
given in appendix. From Lemma 9, we only need to determine bj for j = 1, . . . , d
to obtain Θ(N).

Lemma 10. We can reduce EP(N) for a fully connected network N to the re-
stricted parametric flow problem.

We will prove the lemma as follows.
For a fully connected network N = (D = (V, A), c, τ, b, s), let R(N) = (DR =

(VR, AR), cR, bR, SR) be the static network with multiple sinks to which EP(N) is
reduced. First we consider R(N) in the case of |δ−(s)| = 1. In this case, R(N)
is the same as N̂ ∗ defined in the proof of Lemma 7. Notice that the parameter T
is contained only in the capacity of the arc which is incident to a sink ŝk̂ by the
definition of Îi (e.g. see Fig. 5). It is clear that in order to compute Θ(N) we need
to compute T ∗ which is the minimum value of T such that R(N) is feasible, i.e.,
the solution of the restricted parametric flow problem defined on R(N). Notice
that Θ(N) = dT ∗e holds.

From the above discussion, we can construct R(N) for the case of |δ−(s)| >
1 in three steps as follows. R(N) is constructed so that the minimum value of
max{Θ(N j) : j = 1, . . . , d} among all bj with j = 1, . . . , d is equal to dT ∗e where
T ∗ is the same as defined above and we can compute an optimal allocation of the
supplies bj with j = 1, . . . , d which attains T ∗, i.e. Θ(N). Let V (i, Q) = {v ∈
V : lev(v) = i, Rv = Q}.

(i) We first construct gadget Gj separately for each j = 1, . . . , d which is the
same as R(N j) with no supply (Fig. 8(a), (b), and (c)). Notice that the parameter
T is common in all gadgets. (ii) For every nonempty V (i, Q), we add vertices uQ

i

in VR. The supply of uQ
i (denoted by bR(uQ

i)) is defined as the sum of supplies in
V (i, Q). (iii) We add the arc from uQ

i to the gadget Gj in AR if V j ∩ V (i, Q) 6= ∅.
Notice that the allocation of the supply of uQ

i to the gadget Gj means that we
allocate the supplies of V (i, Q) to N j . We determine to which vertex in Gj uQ

i is
connected as follows. For any j = 1, . . . , d, we arrange the distinct values {lv : v ∈
V j} as Lj

1 < · · · < Lj
kj . We connect uQ

i to pi′ in Gj with Lj
i′ = Li. Notice that

from the way of construction of R(N) the parameter T is contained only in the
capacity of the arc which is incident to skj in each gadget Gj . Therefore, all arcs in
AR whose capacity contains the parameter T are incident to sinks SR. Lemma 10
then follows from the way of construction of R(N). For example, in step(ii) u

{x,y}
4

in Fig. 8(d) is added to allocate the supply of v in Fig. 8(a). In step(iii), for N 1

and N 2 in Fig. 8(b), k1 = 4 and k2 = 3 hold, and u
{x,y}
4 in Fig. 8(d) is connected

to p4 in G1 and p3 in G2. In Fig. 8(c) and (d), only p4s4 in G1 and p3s3 in G2

contain the parameter T .

s

5

6

1

1

2

3
3

2

5

1

3

4 1
e

2
e

v

w x

y

(a)

s

11e

s

2
e

x

y

6

1

3

5
2

2

N N1
2

(b)

+∞ +∞

+∞

+∞

+∞

+∞ +∞

+∞ +∞

+∞

+∞ +∞

1 32

2 3

1s 2s 3s 4
s

5
s

2p 3p 4
p

1s 2s 3s 4
s

2p 3p 4
p

5
p

1
G

2
G

6T −

6T −

(c)

+∞ +∞ +∞ +∞

+∞

+∞
+∞

5 134

1
G

2
G

2

x
u

{ , }

3

x y
u

{ , }

4

x y
u

{ , }

5

x y
u

(d)
Fig. 8. (a) Dynamic network N . (b) N 1 and N 2 for N with no supply. (c) Gadgets G1

and G2. (d) Vertices and arcs introduced to allocate supplies.

As was seen in Section 3.2, the restricted parametric flow problem defined on
R(N) can be transformed into the parametric maximum-flow problem studied by
[7] by adding the super source vertex q as well as arcs from q to all uQ

i ’s in VR such
that the capacity of quQ

i is set to bR(uQ
i). Since in this parametric maximum-flow

problem the capacities of all cuts except δ(q, VR) diverge to ∞ from the way of
construction of R(N) as T goes to ∞, the maximum flow value of the parametric
maximum-flow problem is bounded by

∑
v∈VR

bR(v), i.e., there always exists T
such that R(N) is feasible. Since we assume b(v) > 0 for at least one vertex v
with lev(v) = k, Θ(N) ≥ Lk holds. Therefore, we need to consider only the case
of T ≥ Lk in the parametric maximum-flow problem.

3.4 Time complexity
Let η be the number of distinct combinations of the path-length from v to s and
Rv, i.e., η = |{(lv, Rv) : v ∈ V }|. Notice that η is equal to the number of uQ

i defined
above and η = O(n) holds.

Theorem 2. The evacuation problem EP(N) for a fully connected network N can
be solved in O(|Ps|m + n log n + d(dk + η)(k + η) log n) time.

Proof. The term O(|Ps|m + n log n) is the time required to construct R(N) (the
proof is given in appendix). The third term represents the time required to solve
the restricted parametric flow problem. Let us evaluate the size of R(N). A single
gadget has O(k) vertices and O(k) arcs. Since there exist d gadgets, the union of
all gadgets has O(dk) vertices and O(dk) arcs. The number of vertices which is
added to allocate the supplies is equal to η. The number of the arcs added to these
vertices is clearly O(dη). From the above discussion, we have |VR| = O(dk + η)
and |AR| = O(dk + dη). From Lemma 6, this completes the proof. ut

Let us analyze the running time given in the above theorem in terms of m and
n. Notice that the number of the arcs added to allocate the supplies is bounded

by O(m). This is because this number is at most
∑

v∈V−s |δ(Rv, s)| since uRv
i is

connected to at most |δ(Rv, s)| gadgets for v ∈ V − s with lev(v) = i. Moreover,
we have

∑
v∈V−s |δ(Rv, s)| ≤ ∑

v∈V−s |δ+(v)| = m since the out-degree of v is
no less than |δ(Rv, s)| from the fact that N is fully connected and the capacity
of any arc is one. Next we prove that the union of all gadgets has O(m) vertices
and O(m) arcs. Since N j has |V j | vertices, the gadget Gj has O(|V j |) vertices
and O(|V j |) arcs from the way of construction of Gj . Thus the number of vertices
and arcs in the union of all gadgets are O(

∑d
j=1 |V j |), respectively. Since V j is

the union of a sink s and the set of vertices which are reachable to the tail of
ej ,

∑d
j=1 |V j | = ∑

v∈V−s |Rv|+ d holds (the term d represents the number of the
copies of a sink). From

∑
v∈V−s |Rv| ≤

∑
v∈V−s |δ+(v)| = m and O(d) = m, the

number of vertices and arcs in the union of all gadgets are O(m), respectively.
Thus we have |VR| = O(m) and |AR| = (m) from η = O(n), and the following
corollary follows from Lemma 6.

Corollary 1. The evacuation problem EP(N) for a fully connected network N
can be solved in O(m2 log n) time.

If we simply apply the algorithm of [5], the time complexity is O(k3m2n log(kn2/m)).
Our algorithm much improves the result of [5] in this case. In many practical cases,
the in-degree of a sink can be considered as a constant. In this case, if we can re-
gard d as a constant, the time complexity of our algorithm is O(dm + d2n2 log n).
Integral capacity case. For this case, we can apply our algorithm by splitting
arcs into ones whose capacity is one. In this case, we have R(N) which has O(kn)
vertices and O(n2) arcs by combining all gadgets corresponding to parallel arcs,
and hence our algorithm can solve EP(N) in O(kn3 log n) time. In the general
capacity case, we can extend our algorithm similarly.

4 Conclusion and Remarks

In this paper, we generalize the class of networks to which the algorithm of [2]
can be applied. Though the details are omitted, our algorithm can solve EP(N)
for a d-dimensional grid network with uniform capacity in O(d2n + n log n +
d332dn2/d log n) time. In particular, in the case of d = 2, EP(N) can be solved
in O(n log n) time. This time complexity matches the result of [7]. In the case
where there exists a vertex v with λD(v, s) < |δ(Rv, s)| (called deficient vertex) in
a 2-dimensional grid network with uniform capacity, this problem can be solved
in O(σ3n3/2 log n) time by contracting the condensed time-expanded network ac-
cording to Theorem 1 where σ is the number of deficient vertices.

References

1. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Oper-
ations Research 25(1) (2000) 36–62

2. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation prob-
lems in dynamic network flows with uniform arc capacity. In: Proc. AAIM2006.
Volume 4041 of LNCS., Springer (2006) 231–242

3. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton,
NJ (1962)

4. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for the op-
timal sink location problem in dynamic tree networks. Discrete Applied Mathematics
154(16) (2006) 2387–2401

5. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient al-
gorithms and complexity. In: Proc. ICALP2003. Volume 2719 of LNCS., Springer
(2003) 397–409

6. Ibaraki, T., Katoh, N.: Resource allocation problems under submodular constraints.
In: Resource Allocation Problems : Algorithmic Approaches. MIT Press, Cambridge,
MA (1988) 144–176

7. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1) (1989) 30–55

8. Radzik, T.: Parametric flows, weighted means of cuts, and fractional combinatorial
optimization. In Pardalos, P., ed.: Complexity in Numerical Optimization. World
Scientific, River Edge, NJ (1993) 351–386

9. Pulleyblank, W.: Matchings and extensions. In Graham, R., Grötschel, M., Lovász,
L., eds.: Handbook of Combinatorics. Volume 1. MIT Press (1995) 179–233

10. Hoffman, A.J.: A generalizetion of max flow - min cut. Math. Program. 6 (1974)
352–359

A Proofs

A.1 Proof of Lemma 3

Proof. It is clear that N ′
/X is feasible if N ′ is feasible. Suppose that N ′ is not

feasible, but N ′
/X is feasible. We use the following fact.

Fact 2 ([10]) A static network N ′ = (D′ = (V ′, A′), c′, b′, s′) is feasible if and
only if there exist no W ⊆ V ′ − s′ which satisfies b′(W)− c′(W) > 0.

Since we assume that N ′ is not feasible, from Fact 2 there exists some W ⊆ V ′−s′

with b′(W)− c′(W) > 0.
Case 1(X ∩W = ∅ hold.) It is easy to see b′/X(W) − c′/X(W) = b′(W) − c′(W).
Thus, b′(W) − c′(W) ≤ 0 holds since N ′

/X is feasible. This contradicts b′(W) −
c′(W) > 0.
Case 2(X ⊆ W holds.) It is easy to see b′/X((W −X)∪ x)− c′/X((W −X)∪ x) =
b′(W) − c′(W). b′(W) − c′(W) ≤ 0 holds since N ′

/X is feasible. This contradicts
b′(W)− c′(W) > 0.
Case 3(X ∩W 6= ∅ and X * W hold.) From X ⊆ Y ∪W , it is not difficult to
see b′/X(((Y ∪W)−X)∪ x)− c′/X(((Y ∪W)−X)∪ x) = b′(Y ∪W)− c′(Y ∪W).
What remains is to show b′(Y ∪W)− c′(Y ∪W) > 0. From the statement of this
lemma, there exists some Y ⊆ V ′ − s′ with X ⊆ Y such that c′(Y ∪W) ≤ c′(W)
holds. Moreover, from W ⊆ Y ∪ W , we have b′(Y ∪ W) ≥ b′(W), and hence
b′(Y ∪W)− c′(Y ∪W) ≥ b′(W)− c′(W) holds. Since we have b′(W)− c′(W) > 0,
b′(Y ∪W)− c′(Y ∪W) > 0 holds. This completes the proof. ut

A.2 Proof of Lemma 4

Proof. The proof immediately follows from

δ+(PQ(j)) =
{

δ(Q(j), sj) ∪ {vjvj+1 : vj ∈ PQ(j)}, if j = i, . . . , k − 1,
δ(Q(k), sk), if j = k.

(5)

(5) follows from the definition PQ(j) (see Fig. 3(b)). ut

A.3 Proof of (3) in Theorem 1

Proof. We have

δ+(
⋃

i≤j≤k(PQ(j) ∩ Z)) =
⋃

i≤j≤k δ(PQ(j) ∩ Z, V c −⋃
i≤j′≤k(PQ(j′) ∩ Z))

⊇⋃
i≤j≤k δ(PQ(j) ∩ Z, V (j)− (PQ(j) ∩ Z)). (6)

Notice that the first equality of (6) holds since PQ(j)∩PQ(j′) = ∅ with j 6= j′, and
the second inequality holds since V c−⋃

i≤j′≤k(PQ(j′)∩Z) ⊇ V (j)− (PQ(j)∩Z)
holds for any j = 1, . . . , k. Hence we have

cc(Y ∩ Z) =
∑

e∈δ+((
S

i≤j≤k PQ(j))∩Z) cc(e)

=
∑

e∈δ+(
S

i≤j≤k(PQ(j)∩Z)) cc(e)

≥∑
e∈Si≤j≤k δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z)) cc(e) (from (6))

=
∑k

j=i

∑
e∈δ(PQ(j)∩Z,V (j)−(PQ(j)∩Z))c

c(e).

The last equality holds since V (j) ∩ V (j′) = ∅ holds for j 6= j′. ut

A.4 Proof of Lemma 9

Proof. Assume that there exists a feasible dynamic network flow f in N with
Θ(f) < max{Θ(N j) : j = 1, . . . , d}. Let us decompose f into f j with i = 1, . . . , d
such that f j represents a dynamic network flow which enter into s through ej .
For any j = 1, . . . , d, let D̄j = (V j , Āj) denote a subgraph such that Āj ⊆ A
is the set of arcs e which f j uses, i.e., f j(e, θ) ≥ 0 for some θ ∈ Z+. Notice
that from the definition of f j Āj contains only ej in arcs belonging to δ(Ps, s).
Let N̄ j = (D̄j = (V j , Āj), c̄j , bj , τ̄ j , s) where c̄j and τ̄ j are respectively c and τ
whose domain is restricted to Āj . Notice that f j is a feasible dynamic network
flow in N̄ j . Since N j (the definition is given above Lemma 9) and N̄ j are belong
to N (V j , bj , l, s), from Lemma 7 Θ(f j) ≥ Θ(N j) holds. Notice that l is the path-
length function of the input dynamic network N . Thus, we have

Θ(f) = max{Θ(f j) : j = 1, . . . , d} ≥ max{Θ(N j) : i = 1, . . . , d}.

It contradicts the assumption that Θ(f) < max{Θ(N j) : j = 1, . . . , d}. ut

A.5 The rest of proof of Theorem 2

Proof. In order to construct R(N), we compute lv for all v ∈ V in O(m) time by
breadth first search from s since N satisfies the uniform path-length condition.
After this, we can compute lev(v) for all v ∈ V in O(n log n) time by sorting
{lv : v ∈ V }. In order to construct R(N), we have to construct the gadgets Gj

with j = 1, . . . , d and add the vertices and arcs to allocate the supplies. In order
to construct the gadgets, we have to obtain kj and {Lj

1, . . . , L
j
kj} for j = 1, . . . , d.

Recall kj = |{lv : v ∈ V j}|. Notice that the arc-disjoint s-rooted trees exist in N
form Lemma 8 since N is fully connected, and hence in order to construct Gj we
do not have to compute Aj explicitly and we need only V j . If we know V j and
lv and lev(v) of all v ∈ V , we can obtain kj and {Lj

1, . . . , L
j
kj} in O(n) time for

each j = 1, . . . , d. For all j = 1, . . . , d, we can obtain V j by depth-first search
for all u ∈ Ps in O(|Ps|m) time. In order to add the vertices and arcs to allocate
the supplies, we have to compute V (i, Q). First we obtain Rv for all v ∈ V by
depth-first search for all u ∈ Ps in O(|Ps|m) time. Then, we partition V according
to lev(v) in O(n) time to obtain the set of vertices v whose lev(v) takes the same
value. Next we assign the value 20, 21, . . . , 2|Ps| to each u ∈ Ps. Then, for each set
of vertices v whose lev(v) takes the same value (say W), we compute the sum of
the value of u ∈ Rv for each v ∈ W , and sort the vertices v ∈ W by the sum of the
value of u ∈ Rv. Notice that for u, v ∈ V with Ru 6= Rv the sum of the value of
the vertices in Rv never be equal to that of the vertices in Rv. The time required
to complete this operation for all levels i = 1, . . . , k is O(|Ps|n+n log n). From the
above discussion, the time required to construct R(N) is O(|Ps|m + n log n). ut

