
Enumerating Constrained Non-crossing
Geometric Spanning Trees ?

Naoki Katoh and Shin-ichi Tanigawa

Department of Architecture and Architectural Engineering, Kyoto University, Kyoto
615-8450 Japan, {naoki,is.tanigawa}@archi.kyoto-u.ac.jp.

Abstract. In this paper we present an algorithm for enumerating with-
out repetitions all non-crossing geometric spanning trees on a given set
of n points in the plane under edge constraints (i.e., some edges are
required to be included in spanning trees). We will first prove that a
set of all edge-constrained non-crossing spanning trees is connected via
remove-add flips, based on the constrained smallest indexed triangula-
tion which is obtained by extending the lexicographically ordered trian-
gulation introduced by Bespamyatnikh. More specifically, we prove that
all edge-constrained triangulations can be transformed to the smallest
indexed triangulation among them by O(n2) times of greedy flips. Our
enumeration algorithm is based on the reverse search paradigm of Avis
and Fukuda, and it generates each output graph in O(n2) time and
O(n) space. This result improves the previous O(n3) bound by Avis
and Fukuda for the unconstrained case by factor of O(n). For the edge
constrained case, the previous algorithm cannot be extended so as to
cope with edge constraints. However, our algorithm can deal with the
edge-constrained case in the same running time.

1 Introduction

Given a graph G = (V, E) with n vertices and m edges where V =
{1, . . . , n}, G is a spanning tree if and only if G is connected contain-
ing no cycle. An embedding of the graph G(P) on a set of points P =
{p1, · · · , pn} ⊂ R2 is a mapping of the vertices to points in the Euclid-
ian plane i 7→ pi ∈ P . The edges (i, j) of G are mapped to straight line
segments (pi, pj). An embedding is non-crossing if each pair of segments
(pi, pj) and (pk, pl) have no point in common without their endpoints.

An embedded spanning tree on the point set is called geometric span-
ning tree. Here geometric non-crossing spanning tree is simply called non-
crossing spanning tree (NST). We assume in this paper that spanning
trees are embedded on fixed general point set P in R2, and x-coordinates
? Supported by JSPS Grant-in-Aid for Scientific Research on priority areas of New

Horizons in Computing.

of them are all distinct. Let F be a set of non-crossing line segments on P .
A spanning tree containing F is called F-constrained spanning tree. Then
we give an algorithm for enumerating all the F -constrained non-crossing
spanning trees (F -CNST). We simply denote a vertex pi by i and an edge
pipj by ij or (i, j).

Novelty. The algorithm we propose requires O(n2) time per output
and O(n) space. For the unconstrained case (i.e. F = ∅), the algorithm
by Avis and Fukuda [7] requires an O(n3) time per output and O(n)
space. For this case, our algorithm improved their algorithm by O(n)
factor. Also it does not seem that the algorithm by [7] can be extended
to the edge-constrained case. For the F -constrained case, in our recent
paper [9], we proposed an algorithm for enumerating the F -constrained
non-crossing minimally rigid frameworks embedded on a given point set
in the plane. We remarked therein that based on a similar approach, we
could develop an algorithm for enumerating F -CNSTs, although we have
not given either any algorithm details or analysis of the running time.
Although the details are omitted here, the running time of this algorithm
is O(n3) time per output and it seems difficult to improve this running
time.

Historical Perspective. Enumerating combinatorial and geometric
objects are fundamental problems and several algorithms have been de-
veloped for, e.g. a set of triangulations [7, 12, 14], non-crossing spanning
trees [7], pseudo-triangulations [4, 10, 13] and non-crossing minimally rigid
frameworks [8, 9]. Let O be a set of objects to be considered. Two objects
are connected iff they can be transformed to each other by a pre-defined
local operation, where local operation generates one object from the other
by means of small changes. Especially, local operation is sometimes called
(1-)flip if they have all but one edge (or element) in common. Define a
graph GO on O with a set of edges connecting between objects that can
be transformed to each other by one local operation. Then the natural
question is how we can design local operation so that GO is connected,
or, if it is possible, how we can design GO with small diameter. There
are several known results for these questions for triangulations (e.g. [17]),
pseudo-triangulations [1], geometric matchings [16], some classes of simple
polygons [15] and also for NSPs [1–3, 7]. Especially relevant to the histor-
ical context of our work are the results for NST by Avis and Fukuda [7],
and Aichholzer et al. [1–3]. Let SP be a set of all NSTs on a set of n
points. Avis and Fukuda [7] have developed simple 1-flip such that GSP
is connected with diameter 2n−4. For the case of a local operation other

than 1-flip, Aichholzer et al. have described the operations with diameters
O(log n) [2] and improved result [1]. Aichholzer et al. in [2] also tried to
design 1-flip with the additional requirement, called edge slide, such that
removed edge moves to the other one along an adjacent edge keeping one
endpoint of the removed edge fixed. And Aichholzer and Reinhardt [3]
have proved that all NSTs are connected with O(n2) edge slides. In this
paper, we will propose 1-flip with the additional requirement such that
removed and added edges are sharing one endpoint, and show that all
F -CNSTs are connected by O(n2) flips sharing one endpoint plus O(n)
base exchange operations.

Main tools. Main tools we use are reverse search and the F -constrained
smallest indexed triangulation. Reverse search is a memory efficient method
for visiting all the nodes of GO developed by Avis and Fukuda [6, 7] has
been successfully applied to a variety of combinatorial and geometric enu-
meration problems. It generates all the elements of O by tracing the nodes
in GO. To trace GO efficiently, it defines a root on GO and parent for each
node except the root. Define the parent-child relation satisfying the fol-
lowing conditions: (1) each non-root object has a unique parent, and (2)
an ancestor of an object is not itself. By this, iterating going up to the
parent leads to the root from any other node in GO if GO is connected.
The set of such paths defines a spanning tree, known as the search tree,
and the algorithm traces it by depth-first search manner. So, the neces-
sary ingredients to use the method are an implicitly described connected
graph GO on the objects to be generated, and an implicitly defined search
tree in GO. In this paper we supply these ingredients for the problem of
generating all F -CNSTs.

The idea of a smallest indexed triangulation is derived from a lexico-
graphically order triangulation developed by Bespamyatnikh [12] for enu-
merating triangulations efficiently. We generalize it to an F -constrained
triangulation by associating an appropriate index for each triangulation
rather than lexicographical ordering. In this paper a smallest indexed
triangulation plays a crucial role in the development of our enumera-
tion algorithm. We conjecture that the general idea to use triangulations
which is proposed in this paper can be extended to develop an efficient
algorithm for enumerating non-crossing graphs other than non-crossing
spanning trees and minimally rigid frameworks because any non-crossing
graph can be augmented to a triangulation and there exists an efficient
algorithm for enumerating triangulations based on a reverse search.

Organization. We review smallest indexed triangulation by Bespamy-
atnikh and extended it to the F -constrained smallest indexed triangula-
tion in Section 2. Section 3 shows that F -constrained non-crossing span-
ning trees are connected by O(n2) flips. Section 4 gives an algorithm for
enumerating F -constrained non-crossing spanning trees. Section 5 proves
the correctness and gives detailed analysis of the algorithm.

2 Smallest Indexed Triangulation

In this section, we define new index for a set of triangulations and an op-
timal triangulation with respect to the associated index, which we call a
smallest indexed triangulation. Then we show that any edge-constrained
triangulations can be transformed into smallest index triangulation by
O(n2) flips. We remark that our idea, that is the index for each tri-
angulation, is derive from the lexicographical ordering developed by Be-
spamyatnikh although he had not extended his results to edge-constrained
case. We will use the smallest indexed triangulation to enumerate edge-
constrained non-crossing spanning trees. Before introducing the indexed
triangulation, we first define several notations which we will use through-
out paper.

2.1 Notations

Let P be a set of n points on the plane, and for simplicity we assume
that the vertices P = {1, . . . , n} are labeled in the increasing order of
x-coordinates with distinct x-coordinates. For two vertices i, j ∈ P , we
use the notation, i < j, if x-coordinate of i is smaller than that of j. We
use the notation Pi to represent {i + 1, . . . , n} ⊆ P for i ∈ P .

We usually denote an edge between i and j with i < j by (i, j). For
three points i, j, k the signed area ∆(i, j, k) of a triangle ∆ijk is defined
by ∆(i, j, k) = (x(j)−x(i))(y(k)−y(i))−(x(k)−x(i))(y(j)−y(i)), where
x(·) and y(·) are x-coordinate and y-coordinate of each point. The sign of
∆(i, j, k) tells us that k is on the left and right side of a line through i and j
by ∆(i, j, k) > 0 and ∆(i, j, k) < 0, respectively. Then the lexicographical
ordering on a set of edges is defined as follows: for e = (i, j) with i < j
and e′ = (k, l) with k < l, e is lexicographically smaller than e′ (denoted
by e ≺ e′ or e′ Â e) iff i < k or i = k and ∆(i, j, l) < 01, and denote by
1 In general the lexicographical ordering for edge set is defined in such a way that

e = (i, j) is smaller than e′ = (k, l) iff either i < k or i = k and j < l holds. But in
this paper we adopt our lexicographical ordering for efficient enumeration described
in Sections 4 and 5.

e = e′ when they coincide. Notice that, when i = k, the lexicographical
ordering corresponds to the clockwise ordering around i in our definition.

For two vertices i, j ∈ P , j is visible from i with respect to a con-
strained edge set F when an edge (i, j) and any edge in F do not have a
point in common except their endpoints. In this paper, we assume that
j is visible from i when (i, j) ∈ F . And we denote a set of vertices of P
visible from i with respect to F by VF (i, P).

Let conv(P ′) be a convex hull of a point set P ′. For a vertex i that is
outside of the convex hull of P ′, i.e. i /∈ conv(P ′), j ∈ P ′ is visible from
i with respect to (the boundary of) conv(P ′) when j = (i, j) ∩ conv(P ′)
holds (see Fig. 1).

i

P′P′

Fig. 1. Black vertices represent a set of vertices visible from i with respect to conv(P ′).

For an edge e = (i, j) with i < j, let l(e) and r(e) denote the left and
right endpoints of e, i.e. l(e) = i and r(e) = j, respectively. A straight
line passing through i and j split R2 into two regions (i, j)+ and (i, j)−

that are open regions of left and right sides of (i, j), i.e. e+ = (i, j)+ =
{p ∈ R2 | ∆(i, j, p) > 0} and e− = (i, j)− = {p ∈ R2 | ∆(i, j, p) < 0}.
Similarly, the closed regions (i, j)+,0 and (i, j)−,0 are defined. Moreover,
considering a line through a vertex i perpendicular to x-axis, we can define
(i)+ = {p ∈ R2 | x(i) < x(p)} and (i)− = {p ∈ R2 | x(p) < x(i)}.

For i ∈ P , let F (i) denote a set of constrained edges of F whose left
endpoints are coincide with i. Upper and lower hull edges, (i, iup) and
(i, ilow), of i with respect to (the constrained edge set) F are defined as
the upper and lower boundary edges of the convex hull of {i} ∪ VF (i, Pi)
incident to i. Notice that VF (i, Pi) ⊂ (i, iup)−,0 and VF (i, Pi) ⊂ (i, ilow)+,0

hold. They define empty region in which no point of P exists as we describe
below. Let li be a line perpendicular to x-axis passing through i, and let
f1 and f2 be the closest edges from i among F intersecting with li in the
upper and lower side respecting i (if such edge exists). Then there exists
no point of P inside the region bounded by li, f1 (and f2), and the line
through i and iup (and ilow, respectively). When f1 (and f2) does not

i

up
i

low
i

1i

2i

3i

3H

1H0H
f1

f2 2 32 (,) (,)()
i i i i i

H conv P R R− +
= ∩ ∩

p

q

Fig. 2. The part of CSIT around i, where bold edges represent edges of F . Upper and
lower light gray regions are empty regions of an upper hull edge (i, iup) and a lower
hull edge (i, ilow), respectively. CSIT has edges between i and black vertices.

exist, it is defined by the region bounded by li and the line through i and
iup (and ilow). We call this fact empty region properties of the upper and
lower hull edges.

2.2 Constrained Smallest Indexed Triangulation

Although we would be better of introducing the result of Bespamyatnikh,
we omit it in this extended abstract (see [12]). And let us extend his
result to edge-constrained triangulations. F -constrained smallest indexed
triangulation denoted by CSIT or F -CSIT is defined as follows:

Definition 1. Let (i, iup) and (i, ilow) be the upper and lower hull edges of
i ∈ P respecting F , and denote a set of edges of F (i) ∪ {(i, iup), (i, ilow)}
by (i, i0), (i, i1), . . . , (i, ik) arranged in clockwise order around i, (where
i0 = iup and ik = ilow holds). Then F -constrained smallest indexed tri-
angulation (CSIT) has an edge (i, j) with i < j if and only if j is visible
from i with respect to the convex hull Hl = conv(Pi∩(i, il)

−,0∩(i, il+1)
+,0)

for some l with 0 ≤ l ≤ k − 1 (see Fig. 2).

We give an example of CSIT in Fig.3(b) for 11 points, and also give
an example when F = ∅ in Fig. 3 which is called SIT. We remark that
CSIT always has the edges of F (i) ∪ {(i, iup), (i, ilow)} for all i ∈ P .

Lemma 1. CSIT is a triangulation of the point set P .

Proof. For i ∈ P , let i0 = iup, i1, . . . , ik = ilow denote the vertices as
defined in Definition 1. Assume that all faces of the subgraph T ′ of CSIT
induced by Pi are triangles, and we show that all new faces obtained by
adding i and connecting it with T ′ by the edges defined in Definition 1 are

(a) (b) (c)

Fig. 3. (a)SIT. (b)CSIT. (c)non-CSIT.

also triangles. Then, all faces of CSIT are triangles by the induction from
i = n − 1 to 1, which implies that CSIT is triangulation. (Clearly CSIT
has the boundary edges of conv(P).) Let us consider Hl = conv(Pi ∩
(i, il)−,0 ∩ (i, il+1)+,0) for 0 ≤ l ≤ k− 1, and a set of vertices of Hl visible
from i with respect to Hl which we denote VHl

(i) ⊂ Hl (see Fig. 2). From
Definition 1, CSIT has edges between i and vertices of VHl

(i) without
intersection since each VHl

(i) is visible from i respecting all edges of T ′.
And CSIT also has a part of the boundary of Hl connecting the sequence
of vertices of VHl

(i) from il to il+1. It is because, for p, q ∈ VHl
(i) with

p < q such that p and q is adjacent on the boundary of Hl, (p, q) is at
least one of the upper and lower hull edges of p, (otherwise q /∈ VHl

(i)).
Then all new faces incident to i are triangles. ut

2.3 Greedy Flipping in Constrained Triangulations

Let CT ∗ denote CSIT on a given point set. For any F -constrained trian-
gulation, an index of T is defined as a pair of integers n − c and d, and
denoted by index(T) = (n − c, d), where c = c(T) ∈ {1, . . . , n − 1} and
d = d(T) ∈ {1, . . . , n − 3} are the label of the critical vertex of T and
the critical degree of the critical vertex, respectively. The critical vertex is
the smallest label of a vertex whose incident edges differ from the corre-
sponding set of incident edges in CT ∗. The critical degree is the number
of edges incident to the critical vertex not contained in CT ∗. The index
of CT ∗ is defined to be (0, 0). Then, for two triangulations T and T ′ of
index(T) = (n − c, d) and index(T ′) = (n − c′, d′), T has smaller index
than that of T ′ when n − c < n − c′, or c = c′ and d < d′ hold. Note
that the index decreases as the label of the critical vertex increases. For
example, a triangulation in Fig. 3(c) has an index (3, 2).

For an edge e in a triangulation T , e is flippable when two triangles
incident to e in T form a convex quadrilateral Q. Flipping e in T generates
a new triangulation by replacing e of T with the other diagonal of Q.
Such operation is called improving flip if the triangulation obtained by

flipping e has a smaller index than the previous one, and e is called
improving flippable. Now let us show that the greedy flipping property of
the constrained triangulations.

Lemma 2. Let T be the F -constrained triangulation with T 6= CT ∗ and
c be the critical vertex of T . Then there exists at least one improving
flippable edge incident to c in T \ CT ∗.

Proof. Let F (c) and CT ∗(c) be sets of edges of F and CT ∗ whose left
endpoints coincide with c, respectively. And let (c, c0) and (c, ck) be the
upper and lower hull edges of c respecting F .

Now we show that T contains all edges of CT ∗(c). First let us show
that (c, c0) ∈ T ((c, ck) can be similarly proofed). Suppose that (c, c0)
is missing in T . Since T is a triangulation, T has some edge e ∈ T \
CT ∗ intersecting (c, c0). Then, from the empty region property of (c, c0)
discussed in Section 2.1, l(e) < c holds, which implies that the vertex l(e)
is incident to e(6= CT ∗) and contradicts that c is the critical vertex.

Next let us show that each edge (c, v) ∈ CT ∗(c) other than F (c) ∪
{(c, c0), (c, ck)} is contained in T . Suppose that (c, v) is missing in T .
Then there exists some edge e ∈ T \CT ∗. Let (c, c0), (c, c1), . . . , (c, ck) be
the edges of F (c)∪{(c, c0), (c, ck)} arranged in clockwise ordering around
c as denoted in Definition 3. Since (c, v) ∈ CT ∗(c), there exists a unique l
with 0 ≤ l ≤ k−1 of a convex hull, Hl = conv(Pc∩(c, cl)−,0∩(c, cl+1)+,0),
such that v is on the boundary of Hl. Then the edges (c, cl), (c, cl+1) and
the part of the boundary edges of Hl (convex chain) from cl to cl+1 forms
a pseudo-triangle with three corners c, cl and cl+1. Since there exists no
point of P inside of such pseudo-triangle, what e intersects (c, v) implies
that e also intersects at least one of (c, cl) and (c, cl+1), which contradicts
that T contains all edges of F (c) ∪ {(c, c0), (c, ck)}. Hence T contains
CT ∗(c).

Now let us show that there exists at least one improving flippable edge
e∗ /∈ CT ∗ incident to c. Since c is a critical vertex, T has at least one edge
(c, p) /∈ CT ∗. Let (c, c′0) and (c, c′k) be a pair of edges of CT ∗(c) such that
p exists between (c, c′0) and (c, c′k) and an angle 6 c′0cc′k is minimum for all
pairs of edges in CT ∗(c) (see Fig. 4). Consider a set of edges in T incident
to c between (c, c′0) and (c, c′k), and denote them by (c, c′1), . . . , (c, c′k−1)
in clockwise order around c. Note that (c, c′j) ∈ T \ CT ∗ holds for all
j = 1, . . . , k − 1, and no vertex of {c′1, . . . , c′k−1} is inside of the trian-
gle ∆cc′0c′k, since otherwise CT ∗ is not triangulated. Therefore, all edges
(c, c′1), . . . , (c, c′k−1) intersect the edge (c′0, c′k). Let c′j∗ be a vertex furthest
from the line through c′0 and c′k among c′j for j = 1, . . . , k − 1. Then a

c

up
c

low
c

0c′

5,
k

c c′ ′

4,p c′

2 *, jc c′ ′

3 * 1, jc c
+

′ ′

1 * 1, jc c
−

′ ′

Fig. 4. Existence of an improving flippable edge (c, c′j∗). Bold edges represent the edges
of F , and black vertices represent the vertices incident to c in CT ∗. In this figure, a
quadrilateral cc′1c

′
2c
′
3 is convex and (c, c′2) is improving flippable.

quadrilateral cc′j∗−1c
′
j∗c

′
j∗+1 is convex, and flipping (c, c′j∗) to (c′j∗−1, c

′
j∗+1)

produces a new triangulation with a smaller index than that of the pre-
vious one because c < c′j∗−1 and c < c′j∗+1 hold. ut

Theorem 3. Every F -constrained triangulation T can be transformed
into CT ∗ by O(n2) flips.

Proof. From Lemma 2, T has an improving flippable edge incident to the
critical vertex, and flipping such edge reduces the index of T . Since the
number of distinct indices is O(n2), T can be transformed into CT ∗ by
O(n2) improving flips. ut

3 Constrained Non-crossing Spanning Tree

Let F be a non-crossing edge set on P , and we assume that F is a forest.
In this section we show that a set of F -constrained spanning trees on P ,
denoted by SP, is connected by O(n2) flips.

Let E = {e1 ≺ e2 ≺ . . . ≺ em} and E′ = {e′1 ≺ e′2 ≺ . . . ≺ e′m} be
lexicographically ordered edge lists. Then E is lexicographically smaller
than E′ if ei ≺ e′i for the smallest i such that ei 6= e′i.

Consider the F -constrained smallest indexed triangulation (F -CSIT),
which is denoted by T (F) in what follows. F -constrained smallest indexed
spanning tree (F-CSISP) is a F -constrained spanning tree which is a
subset of T (F), and we denote a set of all F -CSISPs by CSISP. Let
SP ∗ be a spanning tree consisting of lexicographically smallest edge list
among CSISP. The following lemma holds from the known fact about
matroid (see e.g. [20]):

(a) (b) (c) (d)

Fig. 5. (a) F , (b) T (F), (c) SP , and (d) T (SP), where bold edges represent F and
dotted edges represent added edges for triangulations.

Lemma 4. Every non-crossing spanning tree of CSISP can be trans-
formed to SP ∗ by at most n− 1 flips.

Proof. Let SP ∈ CSISP. Then SP is a base of graphic matroid restricted
to the edge set of T (F). Since all bases are connected via base exchange,
the statement holds. In fact, planarity is maintained since any SP ∈
CSISP is subset of T (F).

Now we will define an index for each spanning tree SP /∈ CSISP to
represent how far it is from one of CSISP. For each F -constrained trian-
gulation T we have defined its index with respect to F by indexF (T) =
(n − cF , dF), which represents how far T is from T (F), i.e. cF is the
smallest vertex in T incident to edges not contained in T (F), and dF is
the number of edges incident to cF not contained in T (F). We associate
SP -constrained smallest indexed triangulation T (SP) with each spanning
tree SP , and define an index of SP (denoted by index(SP) = (cSP , dSP))
as index(SP) = indexF (T (SP)), We also call cSP the critical vertex
of SP . Fig. 5 shows an example of SP whose critical vertex is 1 and
index(SP) is (7, 2).

Let SP (i) and T (SP ; i) be the edges of SP and T (SP) whose left
endpoints coincide with i ∈ P , respectively. The next observation imme-
diately follows from the definition of CSIT.

Observation 5. For i ∈ P all edges of T (SP ; i)\(SP (i)∪{(i, i0), (i, ik)})
are not flippable in T (SP), where (i, i0) and (i, ik) are upper and lower
hull edges of i respecting SP .

Proof. It is clear from the definition of CSIT (Definition 1) that the added
edges for obtaining T (SP) from SP are not flippable in T (SP) except
for the upper and lower hull edges.

Then we derive the followings from Theorem 3 and Observation 5:

Lemma 6. Let SP /∈ CSISP and c be the critical vertex of SP . Then
(i) there exists at least one improving flippable edge in T (SP)\T (F), and
(ii) an edge e ∈ T (SP) is improving flippable if and only if e is flippable
and e ∈ SP (c) \ {(c, c0), (c, ck)}, where (c, c0) and (c, ck) are upper and
lower hull edges of c respecting SP .

Proof. Since T (SP) 6= T (F) holds, from Lemma 2, there exists at least
one improving flippable edge incident to the critical vertex, which implies
(i).

Let us show (ii). From the definition of the index of T (SP), we notice
that flipping an improving flippable edge decreases the number of edges
incident to c. Hence all improving flippable edges must be incident to
c. From Observation 5 all edges of T (c) \ (SP (c) ∪ {(c, c0), (c, ck)}) are
not flippable. Then the proof is completed by showing that none of (c, c0)
and (c, ck) are improving flippable edges. Suppose that (c, c0) is improving
flippable, there exists two triangles ∆cc0v1 and ∆cc0v2 incident to (c, c0)
in T and c < v1 and c < v2 hold. Otherwise, assuming v1 < c, v1 become
the critical vertex and index increases after replacing (c, c0) to (v1, v2).
However, either v1 or v2 is in the empty region of (c, c0), which is a
contradiction. (The same remark holds for (c, ck).)

Lemma 7. Every F -constrained non-crossing spanning tree SP /∈ CSISP
can be transformed into a spanning tree in CSISP by at most O(n2) flips.

Proof. Let c be a critical vertex of SP . From Lemma 6 there exists an edge
e1 = (c, c∗) ∈ SP \F such that e1 is improving flippable in T (SP). There
exist two vertices, denote c∗l and c∗r, incident to both c∗ and c in T (SP).
When removing e1 from SP , the set of vertices of SP − e1 is partitioned
into two components, where c∗ and c belong to different components,
and cl can belong to only one of them. Therefore adding one of (c, c∗l) or
(c∗l , c

∗) to SP −e1, we obtain a new non-crossing spanning tree SP ′. Note
that index of T (SP ′) is smaller than that of T (SP) because T (SP ′) does
not have (c, c∗) but has (c∗l , c

∗
r) instead and the critical degree decreases

by one. Repeating this procedure, the underlying triangulation eventually
reaches the smallest indexed triangulation which is the required F -CSISP.
Since the number of distinct indices is O(n2), O(n2) flips occur.

From Lemmas 4 and 7 we conclude this section with the following
theorem:

Theorem 8. Every F -constrained non-crossing spanning tree is connected
by at most O(n2) flips.

4 Enumerating Constrained Non-crossing Spanning Trees

Let SP ∗ be an F -CSISP with the lexicographically smallest edge list.
And let ISP be a set of improving flippable edges in SP . We define the
following parent function f : SP \ {SP ∗} → SP based on the results of
the previous section.

Definition 2. (Parent function) Let SP ∈ SP with SP 6= SP ∗, and c
be a critical vertex of SP . SP ′ = SP − e1 + e2 is the parent of SP , where
Case 1: SP ∈ CSISP,
• e1 = max{e | e ∈ SP \ SP ∗}, and
• e2 = min{e ∈ SP ∗ \ SP | SP − e1 + e ∈ SP},
Case 2: SP /∈ CSISP,
• e1 = (c, c∗) = min{e ∈ SP \ F | e ∈ ISP }, and
• e2 is either (c, c∗l) or (c∗l , c

∗) such that SP − e1 + e2 ∈ SP, where c∗l is
a vertex such that ∆cc∗c∗l exists in T (SP) with ∆(c, c∗, c∗l) > 0.

Note that ISP 6= ∅ and ISP is the subset of SP \ F incident to c from
Lemma 6. Therefore e1 in Case 2 of Definition 2 always exists. There
exist two vertices, c∗l and c∗r, incident to both c∗ and c in T (SP) with
∆(c∗, c, c∗l) > 0 and ∆(c∗, c, c∗r) < 0, respectively. Here, we adopt c∗l in
Definition 2 in order to define the unique parent. In Fig. 6 we show how
the parent function works for SP ∈ SP\CSISP with index(SP) = (6, 2)
and F = ∅. Removing 27 and adding 57 we obtain a new spanning tree
with index = (6, 1). From Lemmas 4 and 7 these parent-child relation-
ships form the search tree of SP explained in Section 1. To simplify the
notations, we denote the parent function depending on Cases 1 and 2 by
f1 : CSISP \{SP ∗} → CSISP and f2 : SP \CSISP → SP, respectively.

For SP ′ ∈ SP the local search is given by an adjacency function, Adj,
defined as follows:

Adj(SP ′, erem, eadd) :=

{
SP ′ − erem + eadd if SP ′ − erem + eadd ∈ SP,
null otherwise,

where erem ∈ SP ′ \F and eadd ∈ Kn \SP ′. Let elistSP ′ and elistKn be the
list of edges of SP ′ and Kn ordered lexicographically, and let elistSP ′(i)
and elistKn(i) be the i-th element of elistSP ′ and elistKn , respectively. We
also denote the above defined adjacency function by Adj(SP ′, i, j) for
which erem = elistSP ′(i) with erem /∈ F and eadd = elistKn(j) with eadd /∈
SP ′. Then, based on the algorithm in [6, 7], we describe our algorithm in
Fig. 7.

Both the parent function and the adjacency function need O(n) time
for each process by simply checking non-crossing property. Then, the

*

SP
CT

SP 27SP − 27 57SP − +

*

27 57SP
CT

− +

Fig. 6. An example of the parent function for SP 6∈ CSISP, where F = ∅.

while-loop from line 4 to 17 has |SP ′|·|Kn| iterations which require O(n4)
time if simply checking lines 8 and 10. In the following sections we give an
improved O(n2) time algorithm. Especially, we will show that the inner-
while loop from lines 6 to 16 can be implemented in O(n) time. Hence,
from the correctness of the algorithm given in the following sections, we
obtain the theorem:

Theorem 9. The set of all F -constrained non-crossing spanning trees
on a given point set can be reported in O(n2) time per output using O(n)
space.

5 Correctness and Analysis of the Algorithm

We will devote this section to the proof of Theorem 9. Let SP and SP ′

be two distinct spanning trees for which SP = Adj(SP ′, erem, eadd) for
erem ∈ SP ′ \F and eadd ∈ Kn \SP ′. Now we want to efficiently determine
whether SP ′ is the parent of SP . More specifically we want to charac-
terize the pair of edges, erem and eadd, satisfying either f1(SP) = SP ′

or f2(SP) = SP ′. Lemma 10 and Lemma 12 show necessary and suf-
ficient conditions for which erem and eadd satisfy f1(SP) = SP ′ and
f2(SP) = SP ′, respectively. Lemma 11 shows that for each erem ∈ SP ′\F
we can enumerate, in O(n) time with O(n) space, a set of edges E1 satis-
fying all conditions of Lemma 10. Lemmas 18 and 19 show that for each
erem ∈ SP ′ \F we can enumerate, in O(n) time with O(n) space, a set of
edges E2 satisfying the conditions of Lemma 12. Then we can enumerate
all the edge pairs of (erem, eadd) such that SP ′−erem +eadd is child of SP ′

are obtained in linear time for each erem. Since the number of possible
elements for erem is O(n), Theorem 9 holds.

Algorithm Enumerating F -constrained non-crossing geometric spanning trees.

1: SP ∗ := F -CSISP with lexicographically smallest edge list;
2: SP ′ := SP ∗; i, j := 0; Output(SP ′);
3: repeat
4: while i ≤ |SP ′| do
5: i := i + 1;
6: while j ≤ |Kn| do
7: j := j + 1;
8: if elistSP ′ (i) /∈ F , elistKn (j) /∈ SP ′ and Adj(SP ′, i, j) 6= null then
9: SP := Adj(SP ′, i, j);
10: if f1(SP) = SP ′ or f2(SP) = SP ′ then
11: SP ′ := SP ; i, j := 0;
12: Output(SP ′);
13: go to line 4;
14: end if
15: end if
16: end while
17: end while
18: if SP ′ 6= SP ∗ then
19: SP := SP ′;
20: if SP ∈ CSISP then SP ′ := f1(SP);
21: else SP ′ := f2(SP);
22: determine integer pair (i, j) such that Adj(SP ′, i, j) = SP ;
23: i := i− 1;
24: end if
25: until SP ′ = SP ∗, i = |SP ′| and j = |Kn|;

Fig. 7. Algorithm for enumerating F -constrained non-crossing geometric
spanning trees.

5.1 Checking f1(Adj(SP 0, erem, eadd) = SP 0

First we show the following lemma which contributes to efficient check of
whether f1(SP) = SP ′ holds or not.

Lemma 10. Let SP and SP ′ be two distinct F -CSISP which are sub-
graphs of T (F) for which SP = Adj(SP ′, erem, eadd) for erem ∈ SP ′ \ F
and eadd ∈ Kn \ SP ′. Then, f1(SP) = SP ′ holds if and only if erem and
eadd satisfy the following conditions:

(A) erem ∈ SP ∗,
(B) eadd ∈ T (F) \ (SP ∗ ∪ SP ′),
(C) erem ≺ min{e ∈ SP ∗ \ SP ′ | SP ′ − erem + e ∈ SP},
(D) eadd Â max{e | e ∈ SP ′ \ SP ∗}.
Proof. We first remark that all SP , SP ′ and SP ∗ are subgraphs of SIT .
Then all edges in SP ∪ SP ′ ∪ SP ∗ are non-crossing.

(“only if”-part.) Since f1(SP) = SP ′ holds, erem and eadd must be
chosen as e2 and e1 in Case 1 of Definition 2. From Definition 2, eadd(=
e1) ∈ SP \SP ∗ holds. Since SP ∈ SP, SP ⊂ T (F) and eadd ∈ T (F)\SP ∗

holds, proving (B). Similarly since erem(= e2) ∈ SP ∗\SP ⊂ SP ∗, we have
(A). From erem = e2, we have

SP ′ − erem = (SP − e1 + e2)− erem = SP − e1. (1)

Let e′ = min{e ∈ SP ∗ \ SP ′ | SP ′ − erem + e ∈ SP}. Suppose (C) does
not hold. Then e′ ≺ erem holds. (Note that the equality does not hold
since erem ∈ SP ′ \ F .) We have

e′ = min{e ∈ SP ∗ \ SP ′ | SP ′ − erem + e ∈ SP}
= min{e ∈ SP ∗ \ (SP − e1 + e2) | SP − e1 + e ∈ SP} (from (1))
= min{e ∈ SP ∗ \ SP | SP − e1 + e ∈ SP} (from e′ ≺ e2 ≺ e1).

Thus, e′ would have been selected instead of erem when the parent function
f1 is applied to SP , which contradicts erem = e2. Hence, (C) holds.

Finally, let e′′ = max{e | e ∈ SP ′ \ SP ∗}, and suppose that (D) does
not hold and eadd ≺ e′′ holds. (Note that the equality does not hold since
eadd /∈ SP ′.) Since e2 ≺ e1 = eadd ≺ e′′, we have

e′′ = max{e | e ∈ SP ′ \ SP ∗}
= max{e | e ∈ (SP − e1 + e2) \ SP ∗}
= max{e | e ∈ SP \ SP ∗}.

Then e′′ would have been selected instead of eadd when the parent function
f1 is applied to SP , which contradicts eadd = e1. Thus, (D) holds.

(“if”-part.) From (A) and (B), SP = SP ′ − erem + eadd ∈ CLOSP.
Since erem ∈ SP ∗ from (A), (D) implies that

eadd Â max{e | e ∈ SP ′ \ SP ∗}
= max{e | e ∈ (SP + erem − eadd) \ SP ∗}
= max{e | e ∈ (SP − eadd) \ SP ∗}.

Thus, eadd = max{e | e ∈ SP \ SP ∗} holds, and hence f1 chooses eadd

for an edge e1 to be deleted from SP . From this we have SP − e1 =
SP ′ − erem + eadd − e1 = SP ′ − erem. Since eadd /∈ SP ∗ from (B), (C)
implies

erem ≺ min{e ∈ SP ∗ \ SP ′ | SP ′ − erem + e ∈ SP}
= min{e ∈ SP ∗ \ (SP + erem − eadd) | SP − e1 + e ∈ SP}
= min{e ∈ SP ∗ \ (SP + erem) | SP − e1 + e ∈ SP}.

Since erem ∈ SP ∗ \ SP , erem = min{e ∈ SP ∗ \ SP | SP − e1 + e ∈ SP}.
Thus, f1 chooses erem for an edge to be added, and f1(SP) returns SP ′.

Lemma 11. Let SP ′ ∈ SP and erem ∈ SP ′ \ F . Then the conditions
(A) and (C) in Lemma 10 can be checked in linear time for each erem.
Moreover we can enumerate a set of edges E1 ⊂ Kn \SP ′ that satisfy the
conditions (B) and (D) in linear for each erem with linear space,.

Proof. We assume that SP ∗ and T (F) are pre-computed in the prepro-
cessing phase before enumeration, and the sets of edges in SP ′, SP ∗ and
T (F) are maintained in lexicographically ordered edge lists. So the con-
dition (A) can be checked in O(log n) time for each erem. For the edges to
be added, from the condition (B), it is sufficient to check only the edges
of T (F) \ (SP ∗ ∪ SP ′). Using linear time we compute a list of edges of
T (F)\(SP ∗∪SP ′) stored lexicographically, and denote it by elistadd. And
we compute the edge e′ = min{e ∈ SP ∗ \ SP ′ | SP ′ − erem + e ∈ SP}
in O(n) time by checking each edge of SP ∗ \ SP ′ one by one whether
it spans the different components of SP ′ − erem. (Note that all edges in
SP ∗∪SP ′ are non-crossing.) Also we can compute the edge e′′ = max{e |
e ∈ SP ′ \ SP ∗} in O(n) time. By using e′ and e′′ the condition (C) can
be checked in O(1) time and the set of edges in elistadd satisfying the
condition (D) is obtained in O(n) time. Thus, the lemma follows.

5.2 Checking f2(Adj(SP 0, erem, eadd)) = SP 0

Next we will explain how we can efficiently check whether f2(SP) = SP ′

holds or not. Consider the situation that we remove erem = (a, b) with
a < b from SP ′ and add eadd = (x, y) (or (y, x)) to SP ′ − erem such that
SP ′ − erem + eadd ∈ SP. From Definition 2, erem and eadd must share
exactly one endpoint. Then, we assume without loss of generality that
either y = a or y = b holds. Especially, we will characterize the other
endpoint x of eadd depending on erem = (a, b). The endpoint of eadd other
than y is denoted by x throughout this section.

Now let us start to characterize the edges erem and eadd.

Lemma 12. Let SP and SP ′ be two distinct F -constrained spanning
trees for which SP = Adj(SP ′, erem, eadd) for erem = (a, b) ∈ SP ′ \F and
eadd ∈ Kn \ SP ′ that is incident to either a or b. Then, f2(SP) = SP ′

holds if and only if erem and eadd satisfy the following conditions:

(A) eadd = min{e ∈ SP \ F | e ∈ ISP },
(B) l(eadd) ≤ a, (i.e. l(eadd) ≤ l(erem)),
(C) a ∈ eadd

+ (or b ∈ eadd
+) holds when erem and eadd share b (or a,

respectively), and
(D) the triangle ∆abx exists in T (SP).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fig. 8. Six cases of relative position of x.

Proof. The necessary and sufficient conditions for f2(SP) = SP ′ is that
erem = e2 and eadd = e1 hold, where e1 and e2 are those defined in Case 2
of Definition 2. Then, replacing e1 and e1 of Definition 2 by eadd and
erem, respectively, we obtain the conditions (A), (C) and (D). Moreover,
we have l(e1) ≤ l(e2) since e1 is a improving flippable edge in T (SP) from
Definition 2 and we know that all vertices of two triangles incident to e1

in T (SP) is lexicographically larger than l(e1). Thus (B) holds.

Remember that erem and eadd must share one endpoint, so the number
of candidate edges, eadd, satisfying Lemma 12 for each erem ∈ SP ′ \ F is
O(n). However, Lemma 12 does not directly provide an efficient algorithm,
and we need more precise analysis for each condition in Lemma 12.

Checking the conditions (B), (C) and (D) Now let us first analyze
the conditions (B) and (C) in Lemma 12. Considering the intersections of
open halfspaces defined by the three lines, one is passing through a and b
and the others are through a and b perpendicular to x-axis, the following
six cases are possible depending on the position of x (see Fig 8):

Case 1: x ∈ R+++, where R+++ = (a, b)+ ∩ (a)+ ∩ (b)+,
Case 2: x ∈ R++−, where R++− = (a, b)+ ∩ (a)+ ∩ (b)−,
Case 3: x ∈ R+−−, where R+−− = (a, b)+ ∩ (a)− ∩ (b)−,
Case 4: x ∈ R−++, where R−++ = (a, b)− ∩ (a)+ ∩ (b)+,
Case 5: x ∈ R−+−, where R−+− = (a, b)− ∩ (a)+ ∩ (b)−,
Case 6: x ∈ R−−−, where R−−− = (a, b)− ∩ (a)− ∩ (b)−.

Neither of Case 1 or 2 happen. It is because that, from the condi-
tion (B), eadd must be (a, x) in these cases. However, if so, b 6∈ eadd

+

and the condition (C) is not satisfied. Simply checking the conditions (B)
and (C) for each case, the endpoint of eadd other than x that is either a
or b is uniquely determined depending on the position of x as follows:

Lemma 13. Let SP , SP ′, erem = (a, b) and eadd be as in Lemma 12. The
conditions (B) and (C) hold if and only if x ∈ R+−− ∪ R−++ ∪ R−+− ∪
R−−− and x satisfies the following conditions:

(BCD-1) (BCD-2) (BCD-3) (BCD-4)

Fig. 9. Each shaded region represents the forbidden region to be a point in P visible
to (a, b) when removing (a, b) and adding the bold edge.

(BC-1) eadd = (x, a) when x ∈ R+−−,
(BC-2) eadd = (a, x) when x ∈ R−++,
(BC-3) eadd = (a, x) when x ∈ R−+−,
(BC-4) eadd = (x, b) when x ∈ R−−−.

Proof. Immediate from the conditions (B) and (C).

For a point p and an edge e = (a, b), p is completely visible from e with
respect to SP ′ when p is visible from all points on (a, b) with respect to the
edges of SP ′. We denote a set of such points by CVSP ′(e) or CVSP ′(a, b).
For each case from (BC-1) through (BC-4), the following lemma tells
when condition (D) holds:

Lemma 14. Let SP , SP ′, erem = (a, b) and eadd be as in Lemma 12.
The conditions (B), (C) and (D) hold if and only if x ∈ CVSP ′(a, b) and
one of the following conditions is satisfied:

(BCD-1) when x ∈ R+−−, eadd = (x, a) and CVSP ′(a, b) ∩ ((x)+ ∩
(a, b)+ ∩ (x, b)+) = ∅,

(BCD-2) when x ∈ R−++, eadd = (a, x) and CVSP ′(a, b) ∩ ((a)+ ∩
(a, b)+ ∩ (b, x)−) = ∅,

(BCD-3) when x ∈ R−+−, eadd = (a, x) and CVSP ′(a, b) ∩ ((a)+ ∩
(a, b)+ ∩ (x, b)+) = ∅,

(BCD-4) when x ∈ R−−−, eadd = (x, b) and CVSP ′(a, b) ∩ ((x)+ ∩
(a, b)− ∩ (x, a)+) = ∅.

Proof. Fig. 9 shows an example of forbidden region in which there exists
no point of P completely visible to (a, b) with respect to SP ′. (Since
x ∈ CVSP ′(a, b) is required in Lemma 14, you may add a triangle ∆abx
to each forbidden region.) We here show only the case (BCD-1) and omit
the other cases in order to avoid similar arguments.

(“only if”-part.) From Lemma 13, eadd must be (x, a). Let SP =
SP ′−erem+eadd. We show that if there exists some point in (x)+∩(a, b)+∩

(x, b)+ completely visible from (a, b), the updated triangulation T (SP)
contains some edge intersecting (x, b). Let p ∈ (x)+∩(a, b)+∩(x, b)+ such
that the angle 6 pab around a is largest. When x < p < a holds, (p, a) is
the lower hull edge of p in SP since (x, a) ∈ T (SP), and hence T (SP)
has (p, a). When a < p holds, (a, p) is the upper hull edge of a in SP
since (a, p) has the largest angle around a among the edges connecting
a and the points of VSP (a, Pa). Then T (SP) has an edge (a, p). In both
cases T (SP) has some edge intersecting (x, b). Therefore we cannot have
∆abx in T (SP).

(“if”-part.) When the conditions in the statement hold, we can ob-
serve that there exists no edge in T (SP) intersecting ∆abx except their
endpoints (see Fig. 9). In fact, b ∈ VSP (x, Px) holds, and T (SP) contains
∆abx.

Now let us analyze the time complexity for efficiently checking the
conditions (B), (C) and (D) in Lemma 12. Let EBCD be a subset of
Kn \ SP ′ satisfying the conditions (B), (C) and (D) in Lemma 12. First
we will describe how to obtain CVSP ′(a, b) for an edge (a, b) ∈ SP in linear
time in Lemma 17. And then we will show how to enumerate EBCD in
linear time in Lemma 18.

For a simple polygon P and a point p in the inside of P, the visibility
polygon of p in P is the set of all points visible in P from p with respect
to the edges of P. For a set of line segments F and a point p, the visibility
polygon of p in (the arrangement of) F is defined by VPF (p) = {q ∈ R2 |
q is visible from p with respect to F}. Similarly, replacing the the term
“visible” by “completely visible”, complete visibility polygon is defined.
The following two facts are known:

Fact 15. ([18, 19]) Let P be a simple polygon. Then a visibility polygon
of a point p in P can be found in linear time.

Fact 16. ([5]) Let F be a set of line segments. Then a complete visibility
polygon of a line segment (a, b) ∈ F is the visibility polygon of b in
VPF (a).

From Facts 15 and 16, CVSP (a, b) can be found in linear time if
VPSP (b) is obtained in linear time. In general, it is known that it takes
O(n log n) time to compute the visibility polygon of a point in the ar-
rangement of line segments. However, computing the visibility polygon of
a point in a spanning tree in linear time is possible as will be shown in
the following lemma.

Fig. 10. Spanning tree SP contained in large rectangle R. Dotted simple polygon P
is obtained by tracing the edges of SP, R and the line through a and b.

Lemma 17. Let SP be a non-crossing spanning tree on a point set P .
Then, a completely visibility polygon of an edge (a, b) ∈ SP can be found
in linear time with linear space.

Proof. Suppose that SP is contained in the large rectangle R, and let
us find a completely visible polygon of (a, b) inside (a, b)+,0. Let Lab be
a straight line through a and b. From Fact 16, if we obtain a visibility
polygon V PSP∪R∪lab

(b) that is a visibility polygon of b in the edge set
SP bounded by R and lab, in linear time, a completely visible polygon of
(a, b) is found in linear time from Fact 15. We can view the problem of
finding a visibility polygon of b in the edge set SP as the one of finding a
visibility polygon in the polygon P, where P is a simple polygon obtained
by tracing the edges of SP, R and the line through a and b as in Fig. 10.
Thus, the lemma follows.

Lemma 18. We can enumerate the edge set EBCD ⊂ Kn \ SP ′ each
of which satisfies the conditions (B)(C) and (D) in Lemma 12 in the
lexicographically sorted edge list in O(n) time.

Proof. From Lemma 14, it is sufficient to determine those among the
edges each of whose one endpoint is in CVSP ′(a, b) and the other is either
a or b. From Lemma 17, we can find the set of vertices, CVSP ′(a, b), com-
pletely visible from (a, b) in linear time. Moreover the algorithm described
in Lemma 17 computes the visibility polygon of a in the visibility poly-
gon of b. It is well known that the visibility polygon is star shaped (see
e.g. [5]). Then we obtain, from the visibility polygon of b, two sorted lists
of vertices of CVSP ′(a, b), one contains the vertices of CVSP ′(a, b)∩(a, b)+

and the other contains those of CVSP ′(a, b)∩ (a, b)− in O(n) time by the

angles 6 bax around a for elements x ∈ CVSP ′(a, b). Denote these lists by
cv-list+ and cv-list−, respectively.

Let us first focus our attention on the points in cv-list+. From Lemma 13
the points in R+++∪R++− (which correspond to Cases 1 and 2 in Fig. 8)
should be removed from cv-list+. Then, for each point x ∈ cv-list+, the
edge to be chosen as eadd is determined, i.e. (x, a) must be chosen as eadd

when x ∈ R+−−. So, let us consider how to efficiently check the remaining
part of the condition (BCD-1) of Lemma 14, that is, how to enumerate
the set of x ∈ cv-list+ for which CVSP ′(a, b)∩((x)+∩(a, b)+∩(x, b)+) = ∅
holds in O(n) time. It can be done easily by preprocessing before remov-
ing the points in R+++∪R++− from cv-list+. In this preprocessing phase,
we calculate the largest x-coordinate point x1 among cv-list+. Then, for
x ∈ R+−−, CVSP ′(a, b)∩ ((x)+ ∩ (a, b)+ ∩ (x, b)+) = ∅ holds if and only if
x1 /∈ (x)+∩(a, b)+∩(x, b)+ holds. Actually, only x1 satisfies the condition
(BCD-1) of Lemma 14 if x1 ∈ R+−−, and there exists no point satisfying
that condition otherwise.

Next let us consider the points in cv-list−. By the same way as in
the above discussion for cv-list+, we can determine the edge to be cho-
sen as eadd for each x ∈ cv-list− depending on the position of x. In the
preprocessing phase we calculate, in linear time, two points x2 and x3

such that x2 is the point with the minimum angle of 6 abx around b
among x ∈ CVSP ′(a, b) ∩ R++−, and x3 is the point with the minimum
angle of 6 abx around b among x ∈ CVSP ′(a, b) ∩ (R++− ∪ R+++). Each
can be found in linear time by simply checking all points in cv-list+.
By this, for each x ∈ cv-list+, we can check from scratch the condi-
tions of Lemma 14 in O(1) time as follows. (BCD-2)When x ∈ R−++,
CVSP ′(a, b)∩ ((a)+∩ (a, b)+∩ (b, x)−) = ∅ holds if and only if x2 ∈ (b, x)+

(or x2 does not exist), see Fig. 9. Therefore, the algorithm can check the
condition (BCD-2) in Lemma 14 in O(1) time by checking only whether
∆(b, x, x2) > 0 holds or not. (BCD-3)When x ∈ R−+−, similarly the
algorithm can check the condition (BCD-3) in Lemma 14 in O(1) time by
checking only whether ∆(x, b, x3) < 0 holds or not (see Fig. 14). (BCD-
4)When x ∈ R−−−, which is the last part of the algorithm, we assume
that the above process for x ∈ R−++∪R−+− is already done and we have
only the points of R−−− in cv-list−. Remember that the points of cv-list−

is stored in the sorted ordering by the angle around a. The algorithm
will check the condition (BCD-4) for each x in cv-list− in the decreasing
order of angle 6 bax, i.e. counterclockwise order around a in R−−−. At
each time we remember the largest point x4 among the already scanned
points. Then we have that CV (a, b)∩ ((x)+ ∩ (a, b)− ∩ (x, a)+) = ∅ holds

if and only if x4 < x holds (see Fig.9). Thus, the algorithm can check the
condition (BCD-4) in Lemma 14 in O(1) time for each by checking only
whether x4 < x holds or not. After checking it x4 is updated if x4 < x
holds in O(1) time.

Finally we remark that we can obtain the lexicographically ordered
edge list satisfying the condition (B)(C) and (D) in O(n) from the edges
obtained after performing the above processes. It is because that the
edges obtained after performing them are sorted in the counterclockwise
order around a, so the edges (a, x) satisfying (BCD-2) or (BCD-3) are
already sorted in lexicographical order. The edges (x, a) satisfying (BCD-
1) and (x, b) satisfying (BCD-4) have distinct left endpoints, so they can
be sorted lexicographically by putting each edge e of them on the l(e)-th
entry of one dimensional array of length n.

Checking the Condition (A) of Lemma 12 Our goal of this section
is to show the following lemma:

Lemma 19. Let SP ′ be a F -constrained spanning tree and erem = (a, b) ∈
SP ′ \F . We can enumerate the edge set E2 ⊆ EBCD, in linear time with
linear space, that satisfies the condition (A) in Lemma 12.

Based on four cases for edges Ebcd considered in Lemma 14, we can divide
the proofs into the following six cases, where c′ denote the critical vertex
of SP ′:

Case 1 l(eadd) = a, which corresponds to (BCD-2) or (BCD-3), and one
of (1-a) c′ < l(eadd), (1-b) l(eadd) = c′ or (1-c) l(eadd) < c′ holds,
and

Case 2 l(eadd) = x, which corresponds to (BCD-1) or (BCD-4), and one
of (2-a) c′ < l(eadd), (2-b) l(eadd) = c′ or (2-c) l(eadd) < c′ holds.

For simplicity, we abbreviate SP ′ − erem and SP ′ − erem + eadd to
SP ′− and SP ′−+, respectively. The condition (A) claims that eadd is the
lexicographically smallest improving flippable edge in T (SP ′−+). Then we
need to provide the efficient way to check the followings for each eadd,

(A-1): eadd is improving flippable in T (SP ′−+), and
(A-2): there exists no improving flippable edge in T (SP ′−+) lexicograph-

ically smaller than eadd.

We will supply how to check these in O(1) time for each eadd ∈ EBCD

with fixed erem with one exception of Case 2-b. For this purpose, it
must be sufficient to observe how a set of edges incident to a vertex i

in T (SP ′−+), (denoted by T (SP ′−+; i)), changes not for all i ∈ P but only
for i ≤ {1, . . . , l(eadd)} ⊆ P . Therefore let us consider how we can up-
date a set of edge incident to i for i ≤ l(eadd), that is, from T (SP ′; i) to
T (SP ′−; i) when removing erem = (a, b) from T (SP ′), and from T (SP ′−; i)
to T (SP ′−+; i) when adding eadd to T (SP ′−). Of course, there exists no lit-
erature concerning how the CSIT can be constructed dynamically when
removing and adding constrained edges. So we should present several
Lemmas answering these matters although their rigorous proofs will be
provided in the next section.

Now let us first consider removing one edge erem from T (SP ′).

Lemma 20. T (SP ′−; i) = T (SP ′; i) holds for i ∈ {1, . . . , l(erem)− 1}.
This lemma implies that a set of edges incident to a vertex i on the left
side of l(erem) does not change at all when removing the constrained edge
erem. Similar argument is also hold when adding eadd to T (SP ′−).

Lemma 21. T (SP ′−+; i) = T (SP ′−; i) holds for i ∈ {1, . . . , l(eadd)− 1}.

As a consequence, from l(eadd) < l(erem) (which is the condition (B)),
we have the following observation:

Observation 22. T (SP ′−+; i) = T (SP ′; i) holds for i ∈ {1, . . . , l(eadd)−
1}.

Remember that we are now concerned about T (SP ′−+; i) for i ∈
{1, . . . , l(eadd)} for checking (A-1) and (A-2). Then we also need the fol-
lowing two lemmas for calculating T (SP ′−; l(erem)) and T (SP ′−+; l(erem)).

Lemma 23. It takes linear time to update T (SP ′−; l(erem)) from T (SP ′)
with linear space.

Lemma 24. It takes linear time to update T (SP ′−+; l(eadd)) from T (SP ′−)
with linear space.

Notice that, to achieve the efficient algorithm, namely O(n2) time algo-
rithm per output, we cannot call the method of Lemma 24 using O(n)
time for every eadd. However this argument will tell us a useful tuition
into (A-1) as follows.

Let us consider how the edge set T (SP ′−+; l(eadd)) is obtained from
T (SP ′−; l(eadd)) when adding eadd to T (SP ′−), (assuming that we have
T (SP ′−)). We can find that there exists two edges, e1 = (l(eadd), v1) and
e2 = (l(eadd), v2), of T (SP ′−)) such that r(eadd) exists between e1 and e2

and an angle 6 v1l(eadd)v2 is minimum for all pairs of edges in T (SP ′−).

Then the update occurs locally only inside of (l(eadd))+ ∩ e−1 ∩ e+
2 . We

compute two convex hulls, H1 and H2, of Pl(eadd)∩e−1 ∩e+
add and Pl(eadd)∩

e−add ∩ e+
2 , and connect l(eadd) and each vertices visible from l(eadd) re-

specting H1 and H2, respectively. Then we obtain T (SP ′−+; l(eadd)).
Notice that in the above construction newly added edges (connecting

the vertices of two convex chains with l(eadd)) are not flippable. Then we
derive the following observation:

Observation 25. Every flippable edges e ∈ T (SP ′−+; l(eadd)) is either
flippable in T (SP ′−) or equal to eadd.

Furthermore we can easily see the following observation:

Observation 26. eadd is flippable in T (SP ′−+) if eadd /∈ T (SP ′−).

Although the proof is left in the next section, we can find the necessary
and sufficient condition to reply (A-1) developing Observations 22 and 26.
Notice that, from Observation 26, eadd is improving flippable only if eadd /∈
T (SP ′−) holds, and, from Observation 22, all edges of T (SP ′−+; i) for i ∈
{1, . . . , l(eadd)−1} are edges of T (F) and l(eadd) may become the critical
vertex when l(eadd) ≤ c while c remains critical vertex if c < l(eadd) holds.

Lemma 27. Let c be a critical vertex of T (SP ′), and let eadd /∈ SP ′ −
erem. Then eadd is improving flippable in T (SP ′−+) if and only if both
l(eadd) ≤ c and eadd /∈ T (SP ′−) hold.

Then let us start the proof of Lemma 19

Proof (Proof of Lemma 19). Let erem = (a, b). Let c be a critical vertex
of SP ′ and e∗ = min{e ∈ SP ′ \ F | e ∈ ISP ′}. From Lemma 27, an
edge eadd ∈ EBCD cannot be improving flippable in T (SP ′−+) if eadd ∈
T (SP ′−), and then cannot satisfy the condition (A). So only the edges of
EBCD \ T (SP ′−) may be the edges satisfying all conditions in Lemma 12.
Denote EBCD \ T (SP ′−) by E′

BCD and let us consider how to get E′
BCD

from EBCD in O(n) time. Now, from Lemmas 20 and 23, we can obtain
T (SP ′−; i) for all i ∈ {1, . . . , a} from T (SP ′) in O(n) time. Although
no edges of T (SP ′−; i) for i ∈ {a + 1, . . . , n} are computed, E′

BCD can
be obtained because l(eadd) ≤ a must hold from the condition (b) of
Lemma 12. Note that EBCD obtained from the algorithm in Lemma 18
is already sorted in lexicographical order, and also T (SP ′−; i) is updated
in lexicographical order from T (SP ′). Then E′

BCD = EBCD \ T (SP ′−) is
obtained in O(n) time.

Let us consider how to check whether eadd satisfies the conditions (A)
(more precisely (A-1) and (A-2) discussed above) in T (SP ′−+) for each

eadd ∈ E′
BCD. We consider the problem according to the cases mentioned

above.

Case 1 x ∈ R−++ ∪ R−+−, which is the case (BCD-2) or (BCD-3)
and eadd = (a, x), we further divide the proof into three cases depending
on the relative position of a. (Note that a = l(erem) = l(eadd) in this
case.)

(1-a): When c < a holds, from Lemma 27, we notice that eadd is
not improving flippable in T (SP ′−+). In this case eadd ∈ E′

BCD does not
satisfy the condition (A).

(1-b): When a < c holds, from Lemma 27, eadd is improving flip-
pable in T (SP ′−+) and (A-1) holds. So let us show (A-2) that means
there exists no improving flippable edge smaller than eadd. We claim
that erem ∈ T (F) holds when a = l(erem) < c since all edges incident
to vertices smaller than c in T (SP ′) are coincide with the correspond-
ing edges in T (F) from the definition of the critical vertex. Therefore,
T (SP ′−) = T (SP ′) holds from Lemma 29 and the critical vertex of SP ′−
is still c. And then T (SP ′−; a) = T (F ; a) holds for a < c, which implies
that no edge of T (SP ′−; a) \ F (a) is flippable except for the upper and
lower hull edges because all added edges for constructing T (F) from F
are not flippable from the definition of CSIT (Observation 5). Since the
upper and lower hull edges are not improving flippable from Lemma 6,
only eadd is improving flippable edge in T (SP ′−+). Hence, in this case,
eadd ∈ E′

BCD always satisfies the condition (A).
(1-c): When c = a holds, we again notice that c = a = l(erem) =

l(eadd) hold. Similarly, from Lemma 21, eadd is improving flippable in
T (SP ′−+) and the critical vertex of SP ′−+ is l(eadd). Then let us show how
to check whether there exists a lexicographically smaller improving flip-
pable edge in T (SP ′−+; l(eadd)) than eadd. Let (a, a′0), (a, a′1), . . . , (a, a′k)
be the edges of T (SP ′; a) in clockwise order around a, and assuming that
b(= r(erem)) = vl. Then we can observe that T (SP ′−+) still contains the
triangles ∆a′0a′1b, . . . , ∆a′l−1ab because the triangle ∆axb is always con-
tained in T (SP ′−+) from the condition (D) in Lemma 12. (Imagine that
we continue having the constrained edge erem = (a, b) when updating the
triangulation from T (SP ′) to T (SP ′−+)). By using this fact we can show
that eadd satisfies the condition (A) if and only if either (i)eadd ≺ e∗ holds,
or (ii)e∗ = erem(≺ eadd) holds.

If (i) holds, we show that there exists no edge in T (SP ′−+; a) such
that it is improving flippable and lexicographically smaller than eadd in
T (SP ′−+). First we remark that erem = (a, b) is next to eadd = (a, x)

in lexicographical increasing order among T (SP ′−+; a) from the fact that
T (SP ′−+) contains ∆axb. Then we show that no edge smaller than erem

in T (SP ′−+; a) is improving flippable in T (SP ′−+). In fact, e∗ is lexico-
graphically smallest improving flippable edge in T (SP ′), that is, no edge
of T (SP ′) smaller than eadd is improving flippable in T (SP ′). Remem-
ber the above mentioned fact that all edges smaller than erem(Â eadd) in
T (SP ′) are still contained in T (SP ′−+) and incident to the same triangles
as in T (SP ′). Then there exists no improving flippable edge lexicograph-
ically smaller than eadd in T (SP ′−+). If (ii) holds, by the same reason as
in (i), no edge smaller than erem = e∗ in T (SP ′−+; a) is not improving
flippable in T (SP ′−+). And erem /∈ SP ′−+ is not flippable in T (SP ′−+)
from Observation 5. Hence, no edge smaller than eadd in T (SP ′−+; a) is
improving flippable in T (SP ′−+). (No edge exists between eadd and erem

from ∆axb ∈ T (SP ′−+).)
Conversely, suppose that e∗ ≺ eadd and erem 6= e∗ holds. As already

noticed, eadd = (a, x) is next to erem = (a, b) in lexicographical ordering
among T (SP ′−+; a), and we have e∗ ≺ erem ≺ eadd. From the fact that
all edges smaller than erem(≺ eadd) in T (SP ′; a) are still contained in
T (SP ′−+; a) and incident to the same triangles as in T (SP ′), e∗(≺ eadd)
remains improving flippable in T (SP ′−+). Hence, either eadd ≺ e∗ or e∗ =
erem is necessary for eadd to satisfy the condition (A).

As a result, eadd with x ∈ R−++ ∪ R−+− satisfies the condition (A)
iff eadd ≺ e∗ or erem = e∗ holds, and this can be checked in O(1) time for
each eadd ∈ E′

BCD.

Case 2 x ∈ R+−− ∪ R−−−, which is the case (BCD-1) or (BCD-4).
Notice that eadd = (x, a) holds when x ∈ R+−− and eadd = (x, b) holds
when x ∈ R−−−, and l(eadd) < l(erem) in both cases. When c < x holds,
by the same reason in the case (1-a), eadd cannot satisfy the condition (a).
Similarly, when x < c holds, eadd always satisfies the condition (A). And,
these can be checked in O(1) time for each eadd ∈ E′

BCD.
(2-b):When x = c holds, we calculate T (SP ′−+; x) from T (SP ′−)(x)

in O(n) time by the algorithm described in Lemma 24. Since there exists
no improving flippable edge in T (SP ′−+; i) = T (SP ′; i) for i ∈ {1, . . . , x−
1(= c−1)} (from Lemmas 20 and 21), we can check whether eadd is lexico-
graphically smallest improving flippable edge in T (SP ′−+) by comparing
only the edges of T (SP ′−+;x) in O(n) time. For the analysis of the time
complexity, notice that all x of edges in EBCD are distinct. Then, we have
at most one time when x = c′ holds. Thus the total time for finding the
edges satisfying the condition (A) is O(n). This completes the proof.

we can see that eadd is neither the upper nor lower hull edge of l(eadd)
respecting SP ′−+ since, otherwise it remains the upper or lower hull edge
respecting SP ′− when removing eadd from SP ′−+, and eadd ∈ T (SP ′−)
holds.

References

1. O. Aichholzer, F. Aurenhammer, C.Huemer and H. Krasser. Transforming span-
ning trees and pseudo-triangulations. Inf. Process. Lett., 97(1):19–22, 2006.

2. O. Aichholzer, F. Aurenhammer and F. Hurtado. Sequences of spanning trees and
a fixed tree theorem. Comput. Geom., 21(1-2):3–20, 2002.

3. O. Aichholzer and K. Reinhardt. A quadratic distance bound on sliding between
crossing-free spanning trees. In Proc. 20th European Workshop on Computational
Geometry (EWCG04), pages 13-16, Sevilla, Spain, 2004.

4. O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The zig-zag path of a
pseudo-triangulation. In Proc. 8th International Workshop on Algorithms and
Data Structures (WADS), Lecture Notes in Computer Science 2748, pages 377–
388, Ottawa, Canada, 2003. Springer Verlag.

5. T. Asano, S. K. Ghosh and T. Shermer. Visibility in the plane. In J.-R Sack and
J. Urrutia eds, Handbook in Computational Geometry, Elsevier, Chapter 19, pp.
829–876, 2000.

6. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra. Discrete and Computational Geometry,
8:295–313, 1992.

7. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math-
ematics, 65(1-3):21–46, March 1996.

8. D. Avis, N. Katoh, M. Ohsaki, I. Streinu, and S. Tanigawa. Enumerating non-
crossing minimally rigid graphs. In Proc. 12th Annual International Conference
Computing and Combinatorics (COCOON 2006), LNCS 4112, pages 2005–215,
Taipei, 2006

9. D. Avis, N. Katoh, M. Ohsaki, I. Streinu, and S. Tanigawa. Enu-
merating non-crossing constrained minimally rigid frameworks.
http://arxiv.org/PS cache/math/pdf/0608/06

08102.pdf

10. S. Bereg. Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory
Appl., 30(3):207–222, 2005.

11. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. Computing
in Euclidean Geometry, 2nd Edition, Du and Hwang eds., 23–90, 1992.

12. S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Com-
put. Geom. Theory Appl., 23(3):271–279, 2002.

13. H. Brönnimann, L. Kettner, M. Pocchiola, and J. Snoeyink. Enumerating and
counting pseudo-triangulations with the greedy flip algorithm. In Proc. ALENEX,
Vancouver, Canada, 2005.

14. A. Dumitrescu, B. Gärtner, S. Pedroni, and E. Welzl. Enumerating triangulation
paths. Computational Geometry: Theory and Applications, 20(1-2):3–12, 2001.

15. M. C. Hernando, M. E. Houle and F. Hurtado. On Local Transformation of Poly-
gons with Visibility Properties. In Proc.6th Annual International Conference Com-
puting and Combinatorics,COCOON 2000, LNCS 1858, pages 54–63. Springer,
2000.

16. C. Hernando, F. Hurtado and M. Noy. Graphs of Non-Crossing Perfect Matchings.,
Graphs and Combinatorics, 18(3):517–532, 2002.

17. F. Hurtado, M. Noy and J. Urrutia. Flipping Edges in Triangulations. Discrete &
Computational Geometry, 22(3):333–346, 1999.

18. B. Joe and R. B. Simpson. Corrections to Lee’s Visibility Polygon Algorithm. BIT,
27(4):458–473, 1987.

19. D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing, 22(2):207–221, 1983.

20. D. J. A. Welsh. Matroids: Fundamental Concepts In Handbook of Combinatorics
Vo.I, R.L.Graham, M.Grötschel, and L.Lovász eds. North-Holland, 1995, 481-526.

A Deletion and insertion of the constrained edges

In this section we give the rigorous proofs of Lemmas described in Sec-
tion ??. First let us consider how T (SP ′) changes to T (SP ′−) when re-
moving a constrained edge erem. Althoug the following two lemmas have
not been claimed in the main sentence, we need them.

Lemma 28. T (SP ′−+) = T (SP ′−) holds if eadd ∈ T (SP ′−).

Proof. We show that the upper (and lower) hull edges of i respecting
SP ′−, (i, i0,SP ′−), and that respecting SP ′−+, (i, i0′), are consider for all
i ∈ P . If not, and suppose that i0 is not visible from i with respect to
SP ′−+. From this fact, we find that (i, i0) intersect eadd, which contradicts
the fact that both (i, i0) ∈ T (SP ′−+) and eadd ∈ T (SP ′−) hold. Then, by
the definition of CSIT, the lemma follows.

Lemma 29. Let erem ∈ SP ′ \ F . T (SP ′−) = T (SP ′) holds if erem ∈
T (F) \ F .

Proof. Let erem = (a, b) ∈ T (F)\F . It is sufficient to show that erem is still
contained in T (SP ′−) from Lemma 28 (replacing eadd by eadd). We first
remark that, as for the set of points of Pa visible from a, VSP ′−(a, Pa) =
VSP ′(a, Pa) ⊆ VF (a, Pa) holds from F ⊂ SP ′. If erem is the upper or lower
hull edge of a in F (denoted by (a, a0), (a, ak)), erem is also the upper
or lower hull edge of a in SP ′− from the fact that b ∈ VSP ′−(a, Pa) ⊆
VF (a, Pa). Hence T (SP ′−) contains erem from Definition 1.

If erem is neither (a, a0) nor (a, ak), erem is not flippable in T (F) from
Observation 5 (by replacing SP by F in the statement of Observation 5).
Consider T (F) and let us denote the edges of F (c) ∪ {(a, a0), (a, ak)} by
(a, a0), (a, a1), . . . , (a, ak) in clockwise order around a. Since erem is not
flippable in T (F), there exists a unique l with 0 ≤ k−1 of one convex hull
Hl = conv(Pa ∩ (a, al)−,0 ∩ (a, al+1)+,0) such that b = (a, b) ∩ Hl holds.

Similarly, consider T (SP ′) and let (a, ã0), (a, ã1), . . . , (a, ãk′) be the edges
of SP (c) ∪ {(a, ã0), (a, ãk′)} arranged in clockwise order around a, where
(a, ã0) and (a, ãk′) are the upper and lower hull edges of a in SP ′−. Then
there exists a convex hull H̃l′ = conv(Pa ∩ (a, ãl′)−,0 ∩ (a, ãl′+1)+,0) for
0 ≤ l′ ≤ k′ − 1 such that b ∈ H̃l′ . Because of F (c) ⊆ SP ′(c), (a, ãl′)−,0 ∩
(a, ãl′+1)+,0 ⊆ ((a, al)−,0 ∩ (a, al+1)+,0) holds, and hence H̃l′ ⊆ Hl holds.
Recalling that b = (a, b)∩Hl, we have b = (a, b)∩ H̃l′ . Hence erem = (a, b)
is contained in T (SP ′−) from definition of CSIT.

Proof (Proof of Lemma 20). Let (i, i0) and (i, ik) be the upper and lower
hull edges of i in SP ′. We first show that (i, i0) is still the upper hull edge
of i in SP ′−, and T (SP ′−) contains (i, i0). (The same arguments can be
applied to the lower hull edge.) Suppose that the upper hull edge, (i, i′0),
of i in SP ′− is different from (i, i0). Since i′0 is not visible from i in SP ′

but in SP ′−, erem intersects (i, i′0), which implies l(erem) < i from the
empty region property of (i, i′0) that was mentioned in Section 2.2. This
contradicts i < l(erem).

Now the set of edge of SP ′− incident to i is equal to that of SP ′

from i < l(erem). So we can see that SP ′−(i) ∪ {(i, i′0), (i, i′k)} = SP ′(i) ∪
{(i, i0), (i, ik)}, and the statement follows from Definition 1.

Proof (Proof of Lemma 23). Let erem = (a, b). We assume that the set
of edges of T (SP ′; a) is maintained in lexicographical ordering (which is
defined as clockwise ordering in Section 2.1), and show that T (SP ′−; a) can
be updated in O(n) time so that this assumption remains to hold. Let the
vertices of T (SP ′; a) be (a, a′0), (a, a′1), . . . , (a, a′k) arranged in clockwise
ordering, where (a, a′0) and (a, a′k) are upper and lower hull edges of a
in SP ′. If erem = (a, a′0) or erem = (a, a′k) holds, we have T (SP ′−; a) =
T (SP ′; a) as was shown in the proof of Lemma 29. It is because that
(a, a′0) and (a, a′k) are still the upper and lower hull edges of a in SP ′−
from the empty region properties of (a, a′0) and (a, a′k). So, let us consider
the case that erem = (a, a′i) with i 6= 0, k. First we compute, in O(n)
time, two edges (a, a′s) and (a, a′t) in (SP ′(a) − erem) ∪ {(a, a′0), (a, a′k)}
with a′s ∈ (a, a′i)

+ and a′t ∈ (a, a′i)
− such that the angle 6 a′saa′t around a is

minimum (see Fig. 11(a)). Let Pst = {a′s, a′s+1, . . . , a
′
t}, (which is arranged

in lexicographical ordering). Computing conv(Pst) and finding the set of
vertices visible from a with respect to conv(Pst) in O(n) time by tracing
the boundary of conv(Pst) from a′s to a′t. Connecting these vertices with a,
we obtain T (SP ′−; a) maintaining the lexicographical ordering for edges.

a0
0

a0s

b; a0
i

a0
k
; a0t

a

(a)

conv(Pst)

a00

a0s

b; a0
i

a0
k
; a0t

a

(b)

x

y conv(V1)

conv(V2)

y0
k
; y0t

y0s

y00

(c)

Fig. 11. (a)The part of T (SP ′), where the bold edges represent those of SP ′, (b)the
part of updated triangulation when removing erem = (a, b) from SP ′ and (c)when
inserting eadd = (y, x) into SP ′−.

Next let us consider how CSIT changes when we insert eadd into SP ′−
erem. The following Lemmas 30 and 21 can be proved in the same manners
as in those of Lemma 29 and 20, respectively.

Lemma 30. T (SP ′−+) = T (SP ′−) holds if eadd ∈ T (F).

Proof (Proof of Lemma 24). Let eadd = (y, x). When eadd ∈ T (SP ′−)
holds, T (SP ′−+; y) = T (SP ′−; y) holds from Lemma 28. So, we assume
eadd /∈ T (SP ′−). Denote the edges of T (SP ′−; y) arranged in clockwise
order around y by (y, y′0), (y, y′1), . . . , (y, y′k). Note that x /∈ (y, y′0)+ and
x /∈ (y, y′k)

− hold from the empty region properties of the upper or lower
hull edge in T (SP ′−).

By the same way as in the proof of Lemma 23 let us compute in O(n)
time two edges (y, y′s) and (y, y′t) in (SP ′(y)−erem)∪{(y, y′0), (y, y′k)} with
y′s ∈ (y, x)+ and y′t ∈ (y, x)− such that 6 y′syy′t around y is minimum (see
Fig. 11(c)). Then update occurs only in the region (y, y′s)−∩(y, y′t)+. It can
be done as follows according to the definition of CSIT. First we compute
two sets of vertices of Py∩(y, y′s)−,0∩(y, x)+,0 and Py∩(y, x)−,0∩(y, y′t)+,0

visible from y with respect to SP ′−+, (denoted by V1 and V2, respectively),
in O(n) time by the algorithm described in Lemma 17. (These vertices
are obtained in lexicographical ordering). Then, we compute, in linear
time, two convex hulls of V1 and V2 and then compute the sequences of
vertices (two convex chains) by tracing the boundaries of conv(V1) and
conv(V2). Thus T (SP ′−+; y) is obtained by connecting these vertices with
y in O(n) time (in lexicographical order).

y x

yl

yl+1

yl+2

(a)

y x

yl

yl+1

yl+2

p

q

(b)

Fig. 12. (a)(b) Adding eadd = (y, x) with eadd 6∈ T (SP ′−) results in the triangulation
in which eadd is flippable.

B The Necessary and Sufficient Consition for eadd to be
Improving Flippable in T (SP 0`+)

Proof (Proof of Lemma 27). Let eadd = (y, x). (“if”-part.) From Lemma ??
eadd is flippable in T (SP ′−+) when eadd /∈ T (SP ′−) holds. Then, from
Lemma 6, eadd is improving flippable in T (SP ′−+) if eadd ∈ SP ′−+(c′) \
{(c′, c′0), (c′, c′k)} holds, where c′ be the critical vertex of SP ′−+ and (c′c′0)
and (c′, c′k) are the upper and lower hull edges of c′ respecting SP ′−+. To
prove this, we show the following two things:(1) y is the critical vertex in
SP ′−+ and (2) eadd is neither the upper nor lower hull edges of y in SP ′−+.

(1)Now we have y = l(eadd) ≤ c and y = l(eadd) ≤ erem. Then
T (SP ′; i) = T (SP ′−+; i) holds for i ∈ {1, . . . , y − 1} from Lemmas 20 and
Lemma 21. Since all edges of T (SP ′; i) for i ≤ c are edges of T (F) from the
definition of the critical vertex, they remains in T (F) for i ∈ {1, . . . , y−1}.
Thus no edge of T (SP ′−+; i) for {1, . . . , y − 1} is improving flippable in
T (SP ′−+), and the critical vertex of T (SP ′−+) become y if eadd /∈ T (F).
To show this we suppose that ea ∈ T (F). Then T (SP ′−) = T (SP ′−+) holds
from Lemma 23, and eadd ∈ T (SP ′−) holds, which is contradiction

(2)We show that the upper and lower hull edges of y respecting SP ′−+

coincides with those respecting SP ′ from VSP ′−+
(y, Py) = VSP ′(y, Py). If

so, eadd is not equal to them because eadd /∈ T (SP ′−). As we noticed above,
T (SP ′−+; i) = T (SP ′; i) holds now for i ∈ {1, . . . , y − 1}, which implies
VSP ′−+

(y, Py) = VSP ′(y, Py) and the upper and lower hull edges does not
change. Thus “if”-part is proofed.

(“only if”-part.) Suppose eadd ∈ T (SP ′−) holds, we have T (SP ′−+) =
T (SP ′−) from Lemma 28. And, from Lemma 6, all improving flippable
edges in T (SP ′−) are in SP ′−. Then, since eadd /∈ SP ′− from the lemma
assumption, eadd is not improving flippable in T (SP ′−) = T (SP ′−+).
Hence eadd ∈ T (SP ′−) must be hold. Again from Lemma 6, all improv-

ing flippable edges in T (SP ′−+) are incident to the critical vertex of
SP ′−+, so y(= l(eadd)) must be the critical vertex of SP ′−+. Thus we
need l(eadd) ≤ c.

