P-WAVE $\Lambda N\Sigma N$ COUPLING AND THE SPIN-ORBIT SPLITTING OF $^{9}_\Lambda$Be

Y. FUJIWARA1, M. KOHNO2, Y. SUZUKI3

1 Department of physics, Kyoto University, Kyoto 606-8502, Japan
2 Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan
3 Department of Physics, and Graduate School of Science and Technology, Niigata University Niigata 950-2181, Japan

Received [Day Month Year]
Revised [Day Month Year]

We reexamine the spin-orbit splitting of $^{9}_\Lambda$Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the $\Lambda\Omega$ spin-orbit potential from the quark-model $\Lambda N\Sigma N$ resonating-group kernel predicted three to five times larger values for $\Delta E_{ls} = E_{\Omega}(3/2^+) - E_{\Omega}(5/2^+)$ in the model FSS and fss2. This time, we calculate $\Lambda\Omega$ LS Born kernel, starting from the LS components of the nuclear-matter G-matrix for the Λ hyperon. This framework makes it possible to take full account of an important P-wave $\Lambda N\Sigma N$ coupling through the antisymmetric $LS^{(-)}$ force involved in the Fermi-Breit interaction. We find that the experimental value, $\Delta E_{ls}^{exp} = 43 \pm 5$ keV, is reproduced by the quark-model G-matrix LS interaction with a Fermi-momentum around $k_F = 1.0$ fm$^{-1}$, when the model FSS is used in the energy-independent renormalized RGM formalism. On the other hand, the model fss2 gives too large splitting of almost 200 keV, owing to the uncanceled contribution of the scalar-meson exchange LS components.

Keywords: Quark-model baryon-baryon interaction; spin-orbit splitting of Λ hypernuclei

1. Introduction

In view of rich experimental data accumulated for the light Λ-hypernuclei, 1,2 it is important to examine if various models of the fundamental hyperon-nucleon (YN) interactions can reproduce these experimental data or not. For few-body systems, this program is most reliably carried out by detailed Faddeev calculations for the hypertriton ($^3_\Lambda$H), $^3_\Lambda$H and $^4_\Lambda$He, using some versions of the Nijmegen models 5 and Jülich potentials. 6 The knowledge of the ΛN interaction learned from these calculations, however, is mainly about the central part of the interaction and features of the $\Lambda N\Sigma N$ coupling of the $^3S_1 + ^3D_1$ state due to the one-pion exchange tensor force. For the p-shell Λ-hypernuclei, some kinds of models inevitably need to be assumed so far, to connect properties of the Λ-hypernuclei and the under-
lying YN interactions. For example, the small spin-orbit (ℓs) splitting commonly observed in many of the light Λ-hypernuclei is typically manifested in the excited states of $^9\Lambda$Be, for which a simple $\Lambda + \alpha + \alpha$ three-cluster model is usually employed with appropriate $\Lambda\alpha$ and $\alpha\alpha$ potentials. In the framework of this model, the origin of the ℓs splitting for the $5/2^+$ and $3/2^+$ excited states is the spin-orbit potential between Λ and one of the α clusters, which is known to be very small due to the strong cancellation between the symmetric (LS) and antisymmetric ($LS^{(-)}$) LS forces of the ΛN interaction.

In our previous study of the $^9\Lambda$Be spectrum, we have carried out the $\Lambda\alpha\alpha$ three-cluster Faddeev calculation, trying to reproduce the very small ℓs splitting of the $5/2^+$ and $3/2^+$ excited states, $\Delta E_{\ell s}^{exp} = 43 \pm 5$ keV, experimentally observed. As a first step, Ref. 8 directly used the quark-model (QM) ΛN LS resonating-group kernel (RGM kernel) to generate the $\Lambda\alpha$ LS potential by a simple procedure of the α-cluster folding. In this approach, the QM ΛN LS interaction of FSS or fss2 predicts 3 to 5 times larger values for $\Delta E_{\ell s}$, which is not much improved in comparison with the results of Nijmegen simulated potentials. It was pointed out in Ref. 8 that a further reduction is possible in the model FSS, if one can properly take into account the short-range correlation of the P-wave $\Lambda N - \Sigma N$ coupling by the $LS^{(-)}$ force. This was conjectured through the analysis of the Scheerbaum factors for the single-particle (s.p.) spin-orbit potentials, calculated in the G-matrix formalism.

2. Calculational Procedure

Following the above suggestion, we here generate $\Lambda\alpha$ LS Born kernel from the LS component of the nuclear-matter G-matrix for the Λ hyperon. Our calculation consists of the following three steps.

1. Solve the G-matrix equation for the Λ-hyperon in symmetric nuclear matter with an appropriate Fermi momentum k_F and determine the s.p. potentials for N, Λ and Σ.9,10

2. The LS components of the $\Lambda N G$-matrices with definite momenta K and starting energies ω are converted to the $\Lambda\alpha$ Born kernel by the folding procedure recently developed for the $\Lambda\alpha$ system.11

3. Solve $\Lambda\alpha\alpha$ three-cluster system in the Faddeev formalism for composite particles.8

We generate $\Lambda\alpha$ LS Born kernel from our QM baryon-baryon interactions, FSS and fss2. For the $(0s)^2\alpha$-cluster folding, a new method developed in Ref. 11 is used to derive the direct and knock-on terms of the interaction Born kernel from the $\Lambda N G$-matrix, with explicit treatments of the nonlocality and the center-of-mass motion between Λ and α. The G-matrix calculations are carried out by assuming a constant value of the Fermi momentum, $k_F = 1.07, 1.20$, and 1.35 fm$^{-1}$ (the normal saturation density ρ_0), since the local density approximation does not seem to work in light nuclear systems. The G-matrix equation is solved for the energy-
Table 1. The Scherbaum factor S_A for symmetric nuclear matter and the ℓs splitting of the ^9Be excited states predicted by the quark-model G-matrix $\Lambda\alpha LS$ Born kernel. In the last column, “ΛN Born” implies the previous results, in which the ΛN single-channel RGM kernel is used for the S_A calculation and the α-cluster folding.

<table>
<thead>
<tr>
<th>ρ/ρ_0</th>
<th>k_F (fm$^{-1}$)</th>
<th>$\Delta E_{\ell s}$ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1.07</td>
</tr>
<tr>
<td>G-matrix</td>
<td>S_{Λ} (MeV fm3)</td>
<td>1.20</td>
</tr>
<tr>
<td>Faddeev</td>
<td>S_{Λ} (MeV fm3)</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>ΛN Born</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ/ρ_0</th>
<th>k_F (fm$^{-1}$)</th>
<th>$\Delta E_{\ell s}$ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1.07</td>
</tr>
<tr>
<td>G-matrix</td>
<td>S_{Λ} (MeV fm3)</td>
<td>1.20</td>
</tr>
<tr>
<td>Faddeev</td>
<td>S_{Λ} (MeV fm3)</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>ΛN Born</td>
<td></td>
</tr>
</tbody>
</table>

3. Results and Discussion

Table 1 shows the ℓs splitting of the ^9Be excited states, predicted by the $\Lambda\alpha\alpha$ Faddeev calculations, using the QM G-matrix $\Lambda\alpha LS$ Born kernel. The Scherbaum factor S_A is also listed to indicate the strength of the spin-orbit potentials of the Λ hyperon in symmetric nuclear matter. The Fermi momenta $k_F = 1.07$, 1.20, and 1.35 fm$^{-1}$ correspond to the densities $\rho = 0.5\rho_0$, 0.7ρ_0, and ρ_0, respectively, with $\rho_0 = 0.17$ fm$^{-3}$ being the normal saturation density. The final values for the ℓs splitting of the $5/2^+$ and $3/2^+$ excited states are $\Delta E_{\ell s} = 55 - 114$ keV for FSS and 206 - 223 keV for fss2, depending on the k_F values in the range of 1.07 - 1.35 fm$^{-1}$. A smaller k_F value gives a smaller ℓs splitting. If we compare these results with the experimental value $\Delta E_{\ell s}^{exp} = 43 \pm 5$ keV, we find that the model FSS can reproduce the experimental value if the k_F value around 1.02 fm$^{-1}$ is used. We find the strong cancellation between the LS and $LS(\ell s)$ forces taking place in the QM Fermi-Breit interaction by the P-wave $\Lambda N-\Sigma N$ coupling in the $^1P_1-^3P_1$ state, when the G-matrix equation is solved especially in low-density nuclear matter. This is most prominently exhibited in the model FSS. The spin-orbit contribution from the effective-meson exchange potentials in fss2 does not lead to the sufficiently small ℓs splitting of the Λ hyperon, since the scalar-meson exchange LS force contains only the ordinary LS and does not produce the $LS(\ell s)$ force.

4. Summary

We have carried out $\Lambda\alpha\alpha$ Faddeev calculations by employing the $\Lambda\alpha LS$ Born kernel generated from the LS components of the nuclear-matter G-matrix for the Λ...
hyperon. One of our SU_6 QM baryon-baryon interactions, FSS, can reproduce the very small ℓs splitting of $^9\Lambda$Be excited states, $\Delta E_{\ell s}^{\exp} = 43 \pm 5$, when an appropriate k_F value corresponding to almost half of the normal saturation density is employed in the G-matrix calculation. The explicit value of k_F depends on the model construction even within the framework of the $\Lambda\alpha\alpha$ cluster model; $k_F = 1.02$ fm$^{-1}$ for the model FSS, when the energy-independent renormalized RGM kernels are used for the $\alpha\alpha$ RGM kernel and for the QM baryon-baryon interaction. On the other hand, the model fss2 gives too large splitting of almost 200 keV, which is traced back to the un-cancelled contribution of the scalar-meson exchange LS components.

An essential ingredient of the present formalism is to take into account an important P-wave $\Lambda N - \Sigma N$ coupling through the antisymmetric LS force involved in the Fermi-Breit interaction. The present results indicate that the spin-orbit contribution from the effective meson-exchange potentials in fss2 needs to be improved to reproduce the small spin-orbit interaction of the Λ hyperon in the nuclear medium. A new model for the ΛN interaction with consistent central and LS components is strongly desired.

Acknowledgments

This work was supported by Grants-in-Aids for Scientific Research (C) (Grant Nos. 18540261 and 17540263), and for Scientific Research on Priority Areas (Grant No. 20028003), and Bilateral Joint Research Projects (2006-2008) from the Japan Society for the Promotion of Science (JSPS). This work was also supported by the Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References