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Preface

These notes contain a systematized description of the contents of
my series of talks held at Kyoto University in January, 1968.
Principal theorems of which only outlines were announced in the talks are

given here proofs; they are some of my recent results which have not yet

been published elsewhere.

T. Kubota,

January 22, 1969.
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Introduction

In the present paper, we shall intend to describe a few basic steps in the
study of a territory of the number theory which possibly includes a satisfactory
generalization of the remarkable relationship between automorphic forms and
the reciprocity law pointed out by Hecke in the last chapter of his book [5].

This kind of phenomenon appears rather topological and real analytic than
algebraic or complex analytic. In fact, a clear, theoretical explanation of
the result of Hecke can be given as a simple application by the general theory
of [23] concerning unitary operators. The investigation in this paper has also
a similar chracter.

We shall first observe the general linear group GF of degree 2 over
a totally imaginary number field F containing the n-th roots of unity for some
fixed n 2 2, and construct an n-fold, topological covering group 6A of the
adele group G, of G_ through an explicit factor set. In the case of n= 2,

A i)

éA coincides essentially with a metaplectic group in the sense of [23].
While the construction of the covering group with arbitrary n was already
done by [15] and [9] ., the explicit factor set used in this paper enables
us to deal rapidly with various concrete problems.

Next, we shall consider an arithmetical discontinuous group I built up
from GF which acts, completely analogously to Hilbert's modular group,
on a direct product H' of the real, three dimensional upper half space H,
that is, a non-hermitian symmetric space called usually quaternian hyperbolic
space. If, under this situation, { is a function on H" satisfying

f(ou)=y(c)f(u), (cel'), where yx is a representation of the type introduced

in the theorem of [7], then f corresponds in a natural way to a function on



aA . We shall construct a finite dimensional Hilbert space ® over &€ of
such functions, which are in addition square integrable on T\Hr, by using
real analytic Eisenstein series E(u, s, ¥ ) in the sense of [17], [16] at

a singularity with respect to the complex parameter s. This procedure has
its origine in a general remark in [18] that as the residue at a pole of an
Eisenstein series one gets an automorphic form which is square integrable on
a fundamental domain, but is not a cusp form.

It is one of the principal conclusions in this paper that a function f as

above can be regarded as a function on E}A, but not on GA (Prop. 5); this is

so to speak another expression of the fact that, as is shown in [1], the existence
of a non-congruence subgroup of finite index of I is equivalent to the existence
of a non-trivial covering of GA°

The notion of the Hecke ring can also be extended to the covering group
E‘QA. Indeed, the Hecke ring of 5A can be defined in the frame of the general
theory of automorphic functions, and it is almost commutative in the sense
that Theorem 4 holds. Furthermore, the finite dimensional space ®X is
mapped into itself by the operation of the Hecke ring (Theorem 8). Thus,
by the general theory, ®X is decomposed into a sum of irreducible subspaces
with respect to the operation of the Hecke ring, and each direct component in
the decomposition determines an irreducible unitary representation of éA in
a space of automorphic forms. In our case, however, we can show moreover
that the representation is of a simple and explicit nature. For instance, the

zonal spherical function of the representation is expressed by using an

arithmetical sum.



§ 1. GL(2) over a totally imaginary field.

Throughout the paper, we denote by F a totally imaginary number field
of finite degree which contains the n-th roots of unity for a fixed n > 2.

If n> 2, then the assumption that F is totally imaginary is automatically

satisfied. We denote by G_ the general linear group GL(2, F) of degree 2

F

over F, and we put Gp= GL( 2, Fp) for a prime p of F, where Fp means

the p-adic completion of F. If yp is finite, and if o _ is the ring of integers

p

of FXD’ then, for any matric group G over op and for a natural number N,
we denote by GN the congruence subgroup mod. N of G, i.e. the group of

all ce¢e G with o=1 (mod N), where I ‘is the identity matrix. The congruence
subgroup of a matric group over the ring o of integers of F is defined
similazrly.

The adele group of GF with usual topology will be denoted by GA. For
the p-component of an adele a, we use the notation a , (a) , or prba, and
these will sometimes be identified with the adele of which the y-component
equals to that of a and all other local components are 1. The product of all

0 and will be called the finite component

prva for finite p will be denoted by pr
of a. The infinite component pr a of a is II pr a. We put
G, = prOG

0 G G, , and more generally we write X

A o = proo A X, and

o P%o

= proon for any subset X of G,. On the other hand, we put

Xoo A
K = GL(2, op)N for finite y, and K = U(2) for infinite y, then K= II Kp is
p p

a compact subgroup of GA, and the p-component of a ¢ GA belongs to K for
almost all . We denote furthermore by A the group of all adeles a such that

ab is diagonal for all infinite p, and 1 for all finite y,



The group of principal adeles will be identified with GF. GF is then

a discrete subgroup of G,, and the number h' of double cosets G egK G ,
A F” 0 oo

(ge GA), is finite [2]. So, there exist a; e GO, (i=1,2,..., h') such
that every double coset GFgKOGoo is of the form GFaiKOGoo for some i,
3 3 1 -
and GFKOGOO is a normal subgroup of index h' of GA' If N=1, then
h' is equal to the class number of F.
The space GF\GA/ AK has a finite volume with respect to a natural

measure induced by the Haar measure, but is not compact [2]. Let f be

a function on this space, and let a, be as above. Then, through the relation

(1) f(g)=f(g ) for g=ta-kg ., (6 G, ke K, g ¢ G_)

we have functions fi on Goo with the property
= f
(2) f(og w)=1 (g )

-1 B -1
a G a.m KOGOO) = px'oo(G ~ aiKOGooai ).

for weAKOO, ce pr P

(
o' F
Conversely, if we have functions fi satisfying (2) for all i, then (1)
determines a function f on GF\GA/AK. Thus, putting

-1
= K . we have a one to one correspondence between
Ta; = Pr(GpnaKG a;7),
functions on GF\ GA/ AK and vectors of functions fi on I“ai\ Goo/ AKOO.
In order that f is square integrable, it is necessary and sufficient that all

f. are square integrable with respect to a natural measure. If a, = 1, then
i

we write I' for I’ ; I' is equalto GL( 2, o)N.
i



Now, if (F: @)= 2r, then GOO/AKOO is the direct product HY of r
copies of the quaternion hyperbolic space H = SL(2, €)/SU(2). Some
elementary properties of the space H are summarized in [10]. In particular,
H is realized as a real, three dimensioanl upper-half space, if we denote by

u = (z )

, (z=x+v .1 vye C, v>0), apointin the upper-half space and
z

define the operation u-ou, (e SL(2, €)), by

~ ~ o~ e -].
(3) cu=(au+t b)(cu+d) ’,

(22,

W ) for any we €. Since (3) has a well-defined

where o = and w= (

meaning even if v < 0, we can regard u—ou in (3) as a transformation of
3 . . 3 . AP .

R. with coordinates x,y,v. If we addto R~ a point oo at infinity, and if

we identify the (x, y)-plane with the complex plane €, then € is invariant

under o. A natural left invariant metric on H can also be given explicitly by

(4) ds? (dx? + dy? + av?).

1

v2
To the direct product H = Goo/ AKOO, we give the product metric of (4).
It is of course Goo-left invariant and there are r independent Laplacians

on H'., While the operation of Goo on H' is induced by (3) in a natural

way, it should be noted that the operation of o ¢ I‘a on Hr is of '"'Hilbert's
i
T
t ", i = o = A R
ype Namely, if u (ul, , ur) e H Goo/ Koo then
1
(5) ou = ((r( )ul,. , U(r)ur),



(1)

where o is the £ -th conjugate of o over @ in the usual sense of algebraic
number theory. For any o¢e GL(2, F), the transformationin (5) represents
also a transformation of the direct product of r copies of R3. If we identify

F with the set of points vy = (y(l), cees Y(r)) e € X'+ X€, and if we denote by
o a symbolical point at infinity‘l), then the set F\/{ oo} is invariant under
ce GL(2, F).

At least geometrically and group theoretically, there is no essential difference
between our discontinuous group I‘ai and Hilbert's modular group. In particular,
we can construct a fundamental domain o@«i = rai\ H* ina quite similar way
to the case of Hilbert's modular group. On the other hand, we can classify all
elements in GL(2, F) according to the action on Hr, To do this, note first
that every oe SL(2, €), (d #£1), is classified into four classes which are
called elliptic, hyperbolic, loxodromic, and parabolic [10]. Now, if some
conjugate (r(l) of o¢e¢ GL(2, F) is elliptic, then all other conjugates of o

(£)

is elliptic, it is necessary and

(2)

are also elliptic. Because, in order to ¢

sufficient that the characteristic polynomial of o is of the form

(2)

xz +va (¢+ g-l)x-{- a, where a=det ¢ ', and ¢ is a root of unity different

from 1. So, in this case, we say that o is elliptic. Considering the case of

(¢)

¢ = =1, we see also that all conjugates of ¢ are parabolic whenever one ¢

is so; in this case we call ¢ parabolic. The situation is not quite similar for

(1)

hyperbolic and loxodromic cases. Namely, it is possible that some ¢ is

(¢)

hyperbolic, while another o is loxodromic. Therefore, we shall use in

1) This point at infinity differs from the above-mentioned one added to R3.



this case such terminologies as mixed, totally hyperbolic, etc.

If oe GL(2, F) is parabolic, then its two characteristic roots are equal,
and belong to F. Therefore, there exists a T¢ SL(2, F) such that -r_lcr-r
is of the form (a :) From this it follows in particular that ¢ has a unique
fixed point in the set FU{o}. Now, let I'' be a subgroup of finite index of
our discontinuous group l“ai, and call the fixed point of a parabolic o ¢ I'

a cusp of I''. Then, the above remark implies that the set of all cusps of I''

is exactly the set FuU { o}, and that the group of all elements of I'' which
leave a cusp fixed contains a normal subgroup isomorphic to er consisting

of all parabolic elements in the group. The number of Tai—inequivalent cusps

of 1"ai is finite; in particular it is equal to the class number of FF when N = 1,

Furthermore, we can show that, if a boundary point of a fundamental domain of
I'' does not lie in Hr, then it is a cusp of I''. These are all analogies of

corresponding results in the theory of Hilbert's modular group.



§ 2. Hecke operators and automorphic functions.

For our purpose in this paper, it is not adequate to study automorphic
functions with respect to the group GA, the adele group of GL(2, F),
because what we need actually is automorphic functions over a certain covering
group of GA, and not on GA itself. So, to help the later description, we
state here some generalities about automorphic function on a topological group.
Almost all facts stated in this § are well—knownz), our intention is merely to
gather them together in a convenient form for use in the sequel.

Let G be a locally compact, unimodular group whose Haar measure is

denoted by dx or p, andlet I' [resp. K] be a discrete {[resp. compact]

subgroup of G such that the measure u(K) :§de is 1. We then consider
functions f on G satisfying

(6) £(yx) = £(x), yeT,

and

(7) f(xk)=f(x)x(k), ke K,

where y(k) is a character (representation of degree 1) of K. Such a function
will be called an automorphic function on G with respect to I', K and .
Let ¢ be a continuous, complex valued function with compact support

on G, and let f be a function satisfying (6) and (7), i.e. an automorphic

2) See among others [3], [6], [16], and [21].



function. Denote by

(g% £,)(x) = (£ 00, (v)ay

the convolution of two functions fl, f on G. Then, in general, f * |

2

does not belong to the space of automorphic functions, while

(8) 960 = s60e ) = (e x ot xma= § {6y Nuxmayax

T
does. The operator T (y): f- £ () . foT(P) will be called the Hecke
operator determined by . If the kernel K1 of the representation ¥y 1is open,
and ¢ is (Kl)_l-times the characteristic function of the set Kla, (ae G),

then we write T(a) for T(y) In this case, we have

fT(a)( 1

(9) x)=SKf(xk_la—)x(k)dk.

Two functions ¢ (y) and q;(k(-)lyko), (k. ¢ K), determine one and the same

0
Hecke operator. This shows T ({)= T(q;o) with

(10) b ) = § L (7 haoa

Letnow T (Lpl), T (412) be two Hecke operators with 4’?: by \p: = q;z,

and define the composition T(q;l)'T(-.pZ) by fT("pl).T(q}Z):(fT(Lpl))T(qJZ).

Then we have T(llll)' T (Lpz) =T (q;l s 4;2 ). Furthermore, if we define

10



T+ T () _ T, (T ()

T(y))+ T(,) by

T _ T e T(g) + T(y,) = T(4 T ¥,), and oT(4) = T(ap).

Therefore, all Hecke operators form an algebra over .

If ¢ =y, then it follows from (8) that

0 = § gior™) § bt ) axay,

So, if we put

-1
b () =5 Gahy(oa,

then fTNJ) = fT(LPX> = f* q,:x, and q;x has the property

(1) LPx(kxk' ) = x (), Gox (k)
for any k, k' ¢ K. All continuous functions satisfying (11) with compact
support on G form an algebra aex(G, K) over €, which we shall call the
Hecke ring (algebra) with respect to G, K, and x. The Hecke operators with

a fixed I" constitute a representation of the Hecke algebra ; if

T , T . T T .
f (ll‘l): f % ¢l’x’ £ (4‘2)___ £ % qu’x’ then f (‘*Pl) (LPZ) = f % (qjl,x*q’l

).

2,%

If K is not open in G, the algebra (G, K) contains no unit element.

But, even then, we can add a unit element to the algebra, and the unit élement
is realized in a natural way as the limit of some sequence of operators in the

previous (G, K). So, from now on, we always understand that the Hecke

11

, and aT(y), (e €), by



‘algebra (G, K) is completed to contain a unit element.
We assume now that the measure of the quotient space I \G is finite, and
for two functions f, £ on I'\G, we define an inner product by

1" 2

(f, £ )=§T\Gf1<x)f;¥>dx.

2

This defines a structure of Hilbert space on $ = LZ(I‘ \G), the space of all
complex valued functions f on I'\G with [f “2 = (f, £{)< © containing
all constant functions. If we put (Ugf)(x) = f(xg) for ge G and fe 9,

then Ug is a unitary operator. On the other hand, the operator P defined

by
1 ¢ -1
(12) (P)(x) =t ()i = ([ox (1)U e

is a projection of 9, and the Hecke operator in (8) is expressed as

( -1
(13) T(¢)= P W(y)U dy.

We recall here a fundamental connection between Hecke operators and the
unitary representation. Let M be a finite dimensional subspace of ® over
€ consisting of automorphic functions on G with respect to I', K and ¥,
and assume MTNJ)C M for all Hecke operators. 'Furthermore, X being

a subset of ¥, denote by 9 x the closed subspace of © generated by all

Ugf, (fe X, ge G). Then, since P[f(xg)] = PUgf, it follows from (13) and

12



from the assumption that PUgf e M for fe M. This means PXDM =M
because of PM = M. Now, let Ml be an irreducible subspace of M under
the operation of the Hecke algebra an(G, K). The orthogonal complement

el b
of > M

L is invariant under U , (ge G). Besides, we have P@lC @l,
g

1
because P is self-adjoint by (12). Therefore, P@l = M'1 M must be the

orthogonal complement of M. in M. Since the adjoint operator of T({y) is

1

and is contained in M!.

T(qi(x'l)) € aex(G, K), M! () is orthogonal to M, .

1

Thus, @M is the direct, orthogonal sum of &)M , where M=@ Mi is a
1

decomposition of M into the orthogonal, direct sum of irreducible subspaces

G, K), and each M, has the property PM, = M,. Another
i i

with respect to e i

(
X

important fact is that the unitary representation of G determined by the restriction
of U to Mi is irreducible. To see this, take the union ' of all those {Ug}-
g

invariant subspaces of 9 ~ whose projections by P are 0, and let " be the
i

orthogonal complement in ‘bM of ©'. Then, since " is {Ug}-invariant,
1

every non-zero fe 9" Thas the property PUg,f4 0 for some g' ¢ G, and
PUg,f belongs to Mi. Therefore, it follows from the irreducibility of Mi that

o N = &}Mi. This proves 9" = @Mi, and at the same time our assertion.

We now propose to prepare some concrete formulas on the operation of
Hecke operators. We shall mainly consider the case where the Hecke algebra
2 (G, K) is defined by a locally compact, unimodular group G with a character

x of a compact subgroup K of G such that the kernel K. of y 1is open; we

1
treat the operator T(a) defined by (9) for ae G. Let f be an automorphic
function, satisfying (6), (7) by definition, and let K =\ (Kn a-lKa Jo.,

1

-1 -
Kna Ka= U(KNa 1Kla )-rj be coset decompositions. Then,

1

13



K= i\{j (K1 a_lKla )TjO"i is also a coset decomposition, and it follows from

(9) that

T(a), . _ -1 -1 -1 -1
(x)=p(Kna Kla)Z f(xo 772 (7,9,

i,j

So, we obtain

T(a)

Yx(o.)

(14) f .

X )= C a ? f X0 a
Wlth

cx( a)-= H(Klm a-lKla ) Z x( aT}la_lT. ).

Kao, holds with our
i

We here restrict our observation to the case of the adele group GA of the
general linear group GF = GL(2, F) over a totally imaginary number field.
Notations being as in §1, let fA be a function on GF\GFKOGOO/A
satisfying fA( gk) = fA(g)x(k) for ke K, where x is a character of K.
Then, fA determines a function f on the direct product H' of r copies

of the upper-half space H such that

(15) f(yu) = x(pry(y " Ne(n), (yeT)

The correspondence between fA and f is given by

14



(16) f(g ) =1,(g) for g =Ekg

with £ ¢ GF, ke K, € ¢ Goo'

Every result which was obtained in this § for a general topological

group G applies of course for the case where we use G= GFKOG(D/ A

together with its discrete and compact subgroups G., and KA/A. This

_ F
case will be basic in the sequel. We shall, however, often abbreviate A

for the sake of simplicity. For example, the Hecke ring aex(G, KA/A)

will be denoted by e (G, K) for G= G_K G _/A. Ifthe character y

X F 0 oo
is trivial, then we write (G, K) for %X( G, K).
We propose here to observe (G, K), and to get a formula which gives
AY \ 3
fT(a), (ae GO, pr:pa= 1 for p|N), determined by fT(a)(goo)z fi(a’(g) )

In this case, there exists an ae GF such that KOaKO = Ko(a)OKO, and it
follows from the local theory of elementary divisors and from the approximation
theorem for SL(2) that the double cosets Ko(a )OKO are in one to one

natural correspondence with double cosets T(Q)OOI‘., So, if T(Q)OOT = urai

is a coset decomposition, then cne obtains
-1 T(a) _
(17) (K; Kna Ka)f (u)—Lf(a/iu)

using (14) and (16).

3) By (9), T(a) is defined as an element of (G _, K_), but it has a well
defined meaning also as an element of (G, K), because (G , K )} is
completed to contain a unit element, and 2(G, K) is the tensor prc?auct
of ae(Goo, Koo) and ae(Go, KO ).

15



§ 3. Construction of a covering group.

Previously we investigated the adele group GA of GL(2, F) over a

totally imaginary number field ¥ containig the n-th roots of unity for a

fixed n > 2. We are now going to comstruct an n-fold, topological covering

~

group GA of GA by means of an explicit factor set, and to exhibit some

fundamental properties of GA' Such a group was discovered in [23] for the

first time for n = 2, and was called a metaplectic group. So, even in case

n > 2, we shall use the same name. The construction of the metaplectic group
in the general case was done independently by [15], and the metaplectic group
has an intimate connection with those subgroups of GL(2, o) which contain no

4)

congruence subgroup ', o being the ring of integers of F.
Theorem 1. Let p be a place of F, andput G = GL(2, Fp ). For
b 1

o= (:Z)e SL(2, F_), define x(¢) by

p

-, c+0,
x(o) = {

d, c=0,
and put
(18) a(o, 7) = (x(o), x(7))(-x(o) " %(7), x(o7))

for o, Te SL(2, F ), where (%, *) means the Hilbert-Hasse' s norm residue
P

4) See [1], [14], and [19].

16



symbol of degree n of F . Furthermore, fora oe GL( 2, Fp ), denote by
b

1
p(o) the element of SL(2, Fp) determined by o = (

deto )p( o), denote by

1 -1 1
o7, (ye Fp' y4 0), the matrix ( Y) o y), and put

Then,
detT
(19) a(o, 7)= a(p(o)” ", p(r))v(detr, p(o)), o, T¢ G,
p
is a factor set which determines a topolegical covering group G of G

p

A
such that G 1is central as a group extension.
p

Proof. It was provedin [9] that (18) determines a topological covering

~

SL(2, Fb) of SL(2, Fp) which is central as a group extension. Let

a b B al bl
o= (C d>’ T = (C, d'> be two elements of SL(2, Fp)’ and put

te it
- (> P > Then, for any non-zero vy e¢ F , we have

oT =
\CII ELL b

(20) a(o, 7) = a((rY, ‘TY)V(Y, o )v(y, 7)v(v, cr"r)—l.

This can be proved by simple, direct computations. Indeed, if ¢ :* 0,

0'4 0, and <c¢'' = 0, then

a(o, ‘r)a(cry, TY)—l: (c, c' )(-c-lc', d")(cy_l, c'y_l)_l(-c

¢ )= (y, a) = (y, @)

-]'Cl , drr )'1

17



if ¢=0, ¢' 30, then

a(o, ‘T)a(O’Y, 'ry)_1

(d, ¢ )(-d-lc' , de')(d, ¢ y_l)_l( —d-lc' y-l, dc! y'_l)-l

(y, d4),

and if ¢ %0, c' = 0, then

alo, T)al (rY, ’ry)_1

(c, & )(—c_ld' , d -lc)( cy_l, d' )-l(~c d'y, d _1cy_ )

(y, d4').

1

other cases are obvious.

We denote an element of SNL(Z, Fb) by the symbol (o, g)a,
(o e SL(2, Fb), gn = 1), so that the multiplication in SA]I_J(Z, Fp) is given
by (o, t_;o_)a( T, ‘“’T)a = (o, gggTa(O', -r))a. Now, let &= (o, g)a be an

element of SL(2, F ) and put &7 = (o7, ¢ev(y, (r))a. Then, it follows from
p

~

(20) that o-— 57, is an automorphism of SNL( 2, F ), and from the
p

1 1
definition follows (5y)y =7 for two non~zero y, v'e FP' Therefore
l ~ ]. A ~y _ l NY‘ ~
[Cy) F10C ) &1 =0C ) & &

defines a structure of topological group on the set ab of all pairs

[ (1 V>’ g] , and through the mapping [ (l y), G] ~> (1 y)ff, (’(; = (o, C,)a),

18



G becomes a covering group of G  satisfying all conditions in the theorem.
p

Theorem 1 assures the existence of a covering over the local group G .
b

The next theorem, which explains the behaviour of the factor set a{o, v) on
the compact subgroup K of Gp defined in § 1, is useful in constructing a
»

global covering of the adele group GA.
Theorem 2. Let p be a finite prime of F, and let N be a natural number

divisible by nz; then the factor set a(o, 7) in (19) splits on the compact

subgroup K of G . More precisely, we have
P

a(o, 7) = s(o)s(7)s(or) (o, T¢ Kp),

with
-1,-1 . . .
(c, ddeto ") 7, if cd is not zero, and ordpc is
s(o) = not divisible by n,
L 1, otherwise,
_sab
for o= (cd € Kp'

Proof. Since o, T arein Kp’ the above definition of s(o) is equivalent

to

{ (c, d det (r-l)_l, if ¢ is neither 0 nor a unit,

1, otherwise.

19



The proof will be performed by using this modified definition, because it is

more convenient than the original, while the original definition is necessary

for the later application.

: _/sab _¢a' b
First we assume o, Te¢ SL(2, gp), and put o = <c T <c' d')’

T bll
oT = (i” d”)' If ¢, ¢', or ¢' 1is zero, then the validity of the theorem

can be chequed by a direct computation using fundamental properties of norm

5)

residue symbol /., Namely, if c¢c= 0, c' 4 0, and if c¢' not a unit, then

a(o, 7)=(c', d), while S('D'): 1, s(t)= (c', d‘)-l, and s(o7)= (c', dd‘)_l.

If ¢4 0 1is nota unit, and c' =0, then a(o, )= (c, d'), while

s(e) = (c, d)_l, s(t)=1, and s(oT) = (cd' _l, b'c+ dd')-1= (c, dd')_l.

If ¢4 0 isnota unitand c' =0, then T = , and

(_dn-lc -cbhb''+ ad")
therefore a(o, 7)= (c, d" _1), while s{o)= (c, d)_l,

1 -1

s(t)= (-d'"" "¢, -cb""+ ad'') "= (¢, dd" _l), and s(oT)= 1. Other cases with

cc'c'' = 0 are trivial. So, we may assume now cc'c'' § 0. If ve SL(2, Fp)
5 1x .
is of the form ( 1), then it follows from (18) that
a(ve, 1) = alov -l, vt)=a(o, Tv). On the other hand, if such a v belongs
to SL(2, o )N’ then s(vo)=s(ov )= s(o). This means that we may replace
o, T by vlo—vz, vz crv3 to prove the theorem, where vl, vz, V3 are in
1

SL(2, o )N and of the form ( f) Therefore, unless both ¢ and c¢' are

p

non-units, the proof of the theorem reduces to the following three cases:

5) A convenient formula for our purpose here is the formula (1)-of [7].
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D= ) =G ) e (BT LD
1
ii) 7= C s-l)’ = (s' N )’ o= (e _15' —-zsel"l);
] X
i) 0_:<£ -81)’ T:C' e'—l>’ o= (s-sc's - )

Here, €, ¢' are units, and ¢, ¢' are non-units. If a' is zero or a unit,
then i) becomes trivial. Excluding this case, the proof of the theorem for
i), ii), iii) can again be carried out by an elementary calculation. Thus the

only remaining case is the one of

where €, ¢' are units, and non of ¢, ¢' is a unit. In this case, we have

a(o, T)s( U)_IS(T )-ls( oT )

-1 -1 - -1 -
{(c, ¢'")(-c ¢, ce'+ c'e )<, €) l(c', e') {ce't cle 1, ee')

i}

(ce', c'e -1)( -(ce')—lc's _1, ce'+ c'e -l).

6)
But this is 1 because of a well-known property ) of the norm residue symbol.

We now turn to the general case, and observe the factor set (19) for o,

Te¢ K. On one hand, we have a(o, 7)= a(p(o’)detT, p(T))

P

det 7

= s(p(cr)de‘c T)s(p(-r))s(p(o-) p(T ))-1, using the above results for SL(2, op).

6) The formula (1) in [9].
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On the other hand, s(p( cr)det T) = s(p(o)), p( U)det Tp(-r) = p(oT), and, for any

o Kp’ s(p(c)) = s(¢) by definition. Hence, the theorem is proved.

‘Theorem 2 was proved under the assumption that o, T ¢ GL(2, gp) and
that p does not divide N. But the number s(o) in the theorem is well-
defined even if o is an arbitrary element of Gp’ or if b'N- So, we define

a new factor set b(o,T) of G by
»

(21) b(o, 1) = a(o, T)s(o‘)_ls(:r)-ls(cr'r), (o, Te Gp)’

)

7
for an arbitrary p ’. The assertion of Theorem 2 is nothing but b(eo, 1) =1

for o, T e Kb, when p does not divide N.

!

Let now g, g' be two adeles in GA; then b(g

3 l! H " d
b gp) a(gp gb) an

s(g ) are all well-defined. These will be denoted by b (g, g' ), 2 (g, g'),
b p by
and s (g), respectively. Since bb( g, g')=1 for almost all p, we can
p

i f
define a factor set bA o GA by

(22) bA(g,g)=1prp(g,g)’ (g, g'e G,

the product being extended over all places of F. The factor set N determines

~

a central group extension 5A of GA. Namely, GA is realized as the set of

all pairs (g, ¢ ), (ge GA, gn = 1), with the group opetation defined by

7) If p is infinite, we put always s(¢)= 1. In this.case both a(c, T) and:
b(o, T) are trivial.
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(23) (g ¢)(g'. ¢')= (gg", b, (g g')eL")

between two such pairs. We denote the element (1, ¢) e 5A by €.

The group 4 of all { is contained in the center of EI}A, and ';(—){‘ gives

an isomorphism between ; and the group of the n-th roots of unity in F.
Let N be a natural number divisible by nz, and let K be the compact
subgroup of GA defined in §1. Then, it follows from Theorem 2 that

Ka>k>(k, 1)e GA is a group-theoretical isomorphism. Whenever no
confusion is possible, we identify the image of the above mapping with K,
and denote (k, 1) simply by k. Through this identification K 5A is
given a structrue of a compact topological group, and the topology coincides on

b

vanishes on a suitable neighbourhood in Gb of 1. On the other hand, the set of

K C Gp with the previous covering topology of G  because s(o) in Theorem 2
P

all (g, 1), (ge GOO), forms a group isomorphic to Gc:o' Identifying (g, 1)

with g, we have a subgroup GOOC éA, to which we give the same topological

structure as GmC GA. It should be noted here that the subsets of the groups
K, Goo will also be identified with corresponding subsets of G'A. , If we require
now that 5A/KOG00 is discrete, then we obtain a unigue topological group

structure on GA’ and GA—> GA = GA/5 is an n-fold covering map because of

Kn 3 =1. In this way we can construct a global covering group 6A of GA

which coincides locally with the covering stated in Theorem 1. Since 3 can

~S s
be regarded as a subgroup of Gb for every b, GA is a semi-direct product
of G . The covering G,—+G, isnot trivial, because it is not locally trivial

b A A
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. 8 e . : i e N
at finite places ) At infinite places, the covering is trivial, and if GO is the
inverse image of G, with respect to the covering map, then G, = G_x 5 .

0 A fos) 0

Let ae G be aprincipal adele. Then, s (a¢) =1 for almost all .
P

Therefore a)=T1s (o) is well defined. Moreover, ap(a, B)=1,

s, (
A b ¥»
(a, B e GF)’ for almost all p, and from the product formula of the norm
residue symbol follows I ab(oz, B )= 1. This implies
P

bA(a, B )= sA(a)-lsA(ﬁ )-lsA(aﬁ‘v ). So, if we put @ = (a, sA(oz)), (ae GF)’

then

AN B A
&8 = (aB, b, (a B)s,(a)s,(B))= (aB, s,(aB))= &P

for a, B ¢ GF. Thus, a—»& gives an isomorphism of G_ onto the group

F

A ~ AL A . . ~s
GFC GA of all a; GF is a discrete subgroup of GA'

In the rest of this §, we always assume n2 |N.

Proposition 1. For an element o= <a b of I = GL(2,

cd = C}FAKOGOO’

D)N

put

x(0')= if

where (:ci_) is the n-th power residue symibol in F. Then, SA(O') = x(o).

8) See the theorem of [9].
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Proof. Suppose first c 4 0. Then, using the definition, the fundamental

9)

properties of the power residue symbol”’, and the product formula of the norm

residue symbol, we have

In case  c = 0, the proposition is trivial.

Proposition 210). Let x be as in Prop. 1. Then, x(o7)=x(0o)x(7),

(o0, Te "), i.e. ¥ is a character of T.

Proof. Since (o, 1), (7, 1) belong to KOGOOC G ., the equality

A,
(o, 1)(7, 1)= (o7, 1) must hold. Hence bA( o, 7)=1. On the other hand,
o7 ) because of 07 = &r. Our assertion follows

bA(O', T)sA(G)sA(T)= SA(

immediately from this and from Prop. L

Proposition 3. Let Fl be the kernel of the character in Prop. 2.

A A
Then, GF/\KOGOO =T (= I‘l).

Proof. Since o= {0, x(0)), (¢re '), by Prop. 1, ¢ belongs to KGoo

if and only if and only if y(o) = L

A ~
iti . 8= .
Proposition 4 GFKOG GFKOG

Proof. Since yx is not trivial, there exists a o ¢ I' such that

9) See [4].
10) This is the theorem of [7]; itis given here a new proof.
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x(o) =% 1is equal to a given n-th root of unity, I' being as in Prop. 1.
N
It follows now from (o, x(o))e G_, (o, 1)e KOGOO that

F
(o, x(o))(o, 1) "= (1, x(o)) =L e GFKOGoo’ which proves the proposition.

By virtue of Prop. 4, we can obtain a correspondence between functions

N A
f on GF\ GFK

A Goo?’/AK and the functions f on rl\Hr' ut being as

0

in § 1; similarly to (16), it is done by

(24) fg )= f,(g)  for  g=tkg

A N
with £e G_, ke K, gOOeG

F o’

For the compact subgroup K3 E}A, a character ¥ can be defined by
. -1 A .
(25) x(k-&)=¢ 7, (ke K),

N
and we can consider automorphic functions on GFKOGOOB/A with respect

N~
to G K3, and yx; they are namely functions f, on aFKOGOO3 satisfying

P’ A
A . . -1
flyx) = £(x), (y e GF)’ and f(xk§ )= f(x)x(kt )= £f(x)§ ~. From now on, we
A N ~ e . «
A= A ; G 1is the inverse image
denote the group GFKOGOOS/ GFKGoo/ by G; g
with respect to G, > GA of G= GFKOG” .
Proposition 5. There is a one-to-one correspondence determined by (24)

~ A
between automorphic functions fA on G with respect to GF, K3, and ¥y,

and functions f on H' with the property
(26) fou) = x(o)f(u), (cel),
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T, (o) being as in Prop. L
A
Proof. Let g= {E,kgoo be as in (24), and put (o) =¢.
. A ~ _l
Then our assertion follows from g§ = £¢ kgoo =&(o, x(o)){o 7, l)kgo0

=fo- (e k(0T g

The formula (26 ) is an analogy to (15).
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§ 4. Hecke ring of the metaplectic group.

Since the metaplectic group 5A constructed in the preceeding § has
the disctete subgroup GF and the compact subgroup K3, and since K3 has
the character x, we can consider the Hecke ring aex(éA/A, K3) according
to the definition given in § 2 for general topological groupsll). Also for the

~ A A
group G=G KOG = G K G 3, we can define the Hecke ring 2z (G, K3).
o X

F F 0 o

In both cases, aex is the tensor product of & Goo’ Koo)’ with trivial character,

and the '' finite part'' aeX o If EO stands for the inverse image of GO with
respect to ’éA+ G, then the finite part an’ 0( 6A, Kz) of aex( EA/A , K3)

is the same thing as aex(éo, Koﬁ), which is generated over € by all functions
on GO satisfying (1l) and vanishing outside a set of the form K(a, 1)K3

with ae GO. The finite part an 0(6, K3) of aex(é,Ka) is the subring

AL

of aex( GO, Koa ) generated by all functions which vanish outside a set of

the form K(a, 1)K%, where a means an adele in Gof‘\ G, (G = GFKOG‘*)' The
subring of e 0 generated by functions which vanish outside a set of the

form K(a, 1)Kz with a € GO’ proa = 1 for all p|N, will be denoted by

12
39)2 o 1in the above both cases ).

14

The aim of this paper is, as was said in the introduction, to construct
a Hilbert space which is generated by certain Eisenstein series, and which

gives a finite sum of irreducible unitary representations of the group GA.

11) Here and already in introducing automorphic functions on g} in §3, we
have avoided such a notation as K3 4&/A, and have written simply K3 for
it. Cf, the definition of aex (G, K) in §2.

12) In these definitions, of course, the adele a is not fixed, but may depend
freely on functions.
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From this point of view, there is at least abstractly no essential difference
between the investigation of E}IA and that of the subgroup G of finite index.
So, we shall mainly treat G in the rest of this paper. In this §, however,
we shall state fundamental properties of aex, especially of & for both

x> 0

C-A and 6, without strict selection of what is actually used later.

Proposition 6. Let p be a finite place of F which does not divide N, N
being a multiple of nz. Then, the factor set b(o, 1) given by (21) of
Gp = GL(2, Fp) has the following properties :
i) if o= (a d>’ T = <a' d,}) are diagonal elements of G ,
then b(o, 1)= (a, d').

n
i) if o= <a dn)g Gp,then b(o, 7)=b(T, 0)=1 for every Te Gb

iii}) if the determinants of o, T ¢ GD are both n-th powers in Fb’ and

the p-orders of x(0), x(7) and x(or) are divisible by n, then
b(o, 7)=1. Here, x(¢) for o ¢ G‘p is defined by the same formula

as in Theorem 1.

13)
Proof. i) follows directly from the definition ). In order to prove ii),
it suffices to show a(o, 7)=a(7, ¢)=1 and s(or)= s(vo)= s(7).

. . 13 . .
But, these assertions are also direct consequences ) of the definitions in (19)

and in Theorem 214), The proof of iii) is similar.

We now resume the observation of the global metaplectic group GA.

. s 2
In the rest of this §, we always assume that N is divisible by n~, and

13) Cf. Lemmalof [9].
14) See the remark above (21).
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we denote by G(') the group of adeles ac¢ G0 such that prpa =1 for all

p,N.

Proposition 7. If ae G‘O, then the double coset Kj(a, 1)K3 in 'éA is
a disjoint union of the double cosets of the form K(a, 1)K§ , ((_, € 3).
The number of distinct cosets K(a, 1)K22., in Kij(a, 1)K3 is n if and

only if the p-elementary divisors of a_ are n-th powers in Fp for all yp.

p

Proof. The first assertion is obvious. To prove the second assertion,

take Ep €, € KDC Gp such that Elapsz = (‘e‘l eZ), where el, ez are powers

of an element we o with ordbw =1 such that ellez, and assume first that

one of e.,, say e , is not an n-th power in Fp. Then, there exists a unit n of
i

1
Fp with (e, n)= g,l:! 1. From this and from i) of Prop. 6 it follows that

H . 1
( n), 1)(¢ 2 DE = (e 2, 1)(( T]), 1).

pt 2’

This means K(alaps > 1)K-£_,1= K(elaps 5 1)K. Since K(alabs > 1)K is

one of K(a, 1)K-{, at least two cosets of the form K(a, 1)K- { coincide
with each other. Next, assume conversely that el, e2 are n-th powers, and
suppose that there exists a § 1€ 8 with K( 3y, 1)K = K( 2y 1)K- ¢ X Then,

there are elements sl', 52' € KpC Gl’ such that

(e, (L ez), 1) = (1 ez), D(e), 1)L

But, this is impossible by ii) of Prop. 6.
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Proposition 8. If ac« C—b, and if there exists a place p of F such that

at least one of the p-elementary divisors of ab is not an n-th power in Fb )

n

then T((a, £))=0, (§ =1).
15).

Proof It is no restriction of the generality to assume ¢ = 1.
Now, the operator T({a, 1)) is determined by a function { on E‘:A with

the property (1l1) which takes the value 0 outside K(a, 1)K. Such a function

must-be 0 by Prop. 7.

If a is an element of G'O such that ap is the n-th power of a diagonal
element in Gp for all p, then we call the double coset K (a, 1)K, a standard
v v
double coset. A function 4Ja which takes the value 1 on a sastandard coset

K. (a, l)KO, t "=yx(&) on Ko(a, I)Ko'f:; and 0 everywhere else on G

O( 0

will be called a standard y-characteristic function. The standard function
 is exactly the function in (11) which determines the Hecke operator
a

T((a, 1)) e &'

N O(G, K3 ) through fT((a, 1))= f % y_» and the algebra

1

= O(

functions. It should be noted here that the group K in the sense of §2 is

G, K3 ) 1is a complex linear combination of standard y-characteristic

~
K3 in the present case, and therefore the measure of GA is normalized by

H(K) = ]./n.

Theorem 3. Let P be a finite place of F, let (o, {) be an element of

ab

G, (o=(2D)

; Gb)’ and set

15) Another proof of this proposition is obtained by using (14). In fact,

x(ar ._la_l'r. ) is a character of the group Kn a_lKa/K ~alK.a which
is ndt trivPal in the case treated here. Therefore we have CX (a)= 0.
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(27) (o, ¢ )%= (0%, s(o)s(o*)s' ()¢ ),
with o% = ( d _b), and
-c a
(det o, -c), cd o0,
s' (o) = if
(-1, d deto), c= 0.
Then, * is an anti-automorphism of ép satisfying (o, ¢ )k* = (o, ¢- (-1, det o)),

and gives rise to an anti-automorphism of aA. Moreover, if ace Gb , and
every p-component a_is the n-th power of a diagonal element of Gp , then
(K(a,1)K)* = K(a, 1)K in 8A.

Proof. We use temporarily the notation (o, ¢ )a in the proof of Theorem 1,

so that (27) can be reduced to (o, ¢ )k = (0%, Q_ls' (o)) , and we show first

a
ab

that * defines an anti-automorphism of SL(2, Fp)‘ Let o= ( d)’
c

1 1 [N 1
T = (2, 3, ) bein SL(2, FD), and put oT = (z'” 2”). If cc'e" 40,
o s} — t -1 1 t ' -1 ny -
then a(o, T)a(T*, o%)=(c, ¢')(-c ', c'")(-c', -c)-(-¢' "¢, -c'')=1,

if ¢=0, c'c'"" 40, then a(o, T)a(v*, o%)= (', d)(-c', d-l)= (-1, 4),

if ¢ =0, cc''4 0, then a(o, 7)a(v*, o%)= (c, d')(-c, a' _1) = (-1, d4'),

d-b, a' b

and if cc' 4 0, c'"" =0, then T = o--l(UT):( c a)( d") and we have

-1 -1 1 1

a(o, 7)a(T*, o%)=(c, -cd'" T)(d" 7, d" Wed'' ™, -c)(d', dav

16 )

)= (-1, d'").

Furthermore, if c=c' =c¢" = 0, then a(o, v)a(v*, o%)=1 Since

16) For these computations, use Lemma l of [9].
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a(o, )= a(7*, o%) "s' (o) "s' (1) "s'(or) holds in all cases,

(o, ¢) > (0, ¢ )a = (0%, g'ls' ((r))a is an anti-automorphism of SIL(2, Fp )
a
We now intend to prove that * in (27) is an anti-automorphism of 5p
. . 1 w= ((Y
satisfying  (( Y), l)a (( 1), l)a.
In fact, the relation
(Y oy 1= L)1) (o0 1) Y= (o, 8 (0)) (V) 1)
vy a v a a a 1 a
holds for any o ¢ SL(2, Fp) because of
K (c, y)_l, cqo,
sk Yy =
alon (V)=
L 1, c=0
Therefore, to prove that * is an anti-automorphism of E;’p it is enough to

show that = satisfies

(28)  {(e, 1) (

for any o= (ig)e SL(2, Fp ). 1f ¢ %0, then the left hand side of (28) is

and (y, -c) is equal to s' (cr)a((yl), o%), If ¢ = 0, then the left hand
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side of (28) is

(o' ) (3 ar= (7 e (-1 a)ys )7,
and (-1, d)(vy, d-l) = (d, -y) is equalto s (cr)a((y l), o) in this case.
Thus (28) holds always. Since, s(tr)_ls(c*) = (-1, det o) follows directly
from the definition of s{o) for oe Gb, the first assertion of the theorem is
proved.
To prove the second assertion of the theorem, it is enough to show that
K* = K, because we have K(a, 1)*K = K(a*, 1)K = K(a, 1)K, whenever 2y

is the n-th power of a diagonal element of C‘rp for all p. We observe an

element (o, 1) of KbC.(A}Jb for a finite place p, where o= (:z) is an
element of K_< G, . Since s(oo*) =1, it follows from Theorem 2 that

by
s(o)s(o*)s' (a)= a(o, o%)s' (c). Furthermore, if c§ 0, then
. -2 -1 -1 .
a(o, o%)=(cdeto 7, -cdeto )(deto, deta )= (-c, deto), andif c= 0,
, 1 -1.-1 -1
then a(o, o%)={(ddeto , d ) (det o, ddeto )= (-1, ddet o). Hence

a(o, o%)s' (o) =1, and consequently we have (o, 1)* = (o%, 1), This completes

the proof of the theorem.

In the beginning of this §, we have defined the algebra ae‘x 0( GA, K3 ).

The next theorem about this algebra may be proved in defferent ways. We

give here, however, a direct proof using Theorem 3.

0( GA, K3 ) is commutative.

’

Theorem 4. The algebra ae;<
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Proof. Let a, b be two elements of G'O such that, for every p, 2y bp

n

are of the form (el n), ("1 fn), respectively, with e,, f. ¢ F_, and let
e2 > 1 1 be]

Yo Yy be standard x-characteristic functions with q;a((a, 1)) = q;b((b, 1))=1

a
in the sense explained after Prop. 8. To prove our theorem, it is enough to
show qja::: ¢b = Lpb * kpa. First, we shall see that Lpa*q)b is a linear combination
of standard y-characteristic functions with positive, rational integral
coefficients. For this purpose, we observe the coset decomposition

~/
= ith G .
Koa{b, 1)K03 UKO?;(b, 1)(fi with o, e Kog GD If we regard o. as an

. . -1
element of GA_. then the set {o,} is a set of representatives of b Kob/\KO\ KO
i \
in GA, and it is no restriction of the generality to assume that fll fz for

every ». So, we may choose o, such that every local component of 0‘i is

either of the form (l iz) or (Zl —1). Now, let x be an element of G‘0 such
n

that every p-component X, is of the form (Xl Xn) with x. ¢ Fy, and assume
2

x2 l xl. Then,

b0 )= S w6 Dy gy =D (5 D o] 5 17

-1 - -1 -
and L'Ja((X, l)o’i*( b, 1) 1): q;a((xcrilb 1, 1)) by ii) of Prop. 6. For every

-1.-1 . .
p, the p-component o of X0, b is one of the following two forms:

n_ -n n. -n n_-n
. 5 oxi,e g x £,
i) o= , ii) o= .
heTh B S
%252 2’1 T2'2
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1 -X?X; Z
In the case i), To is diagonal with 71 = \ )
\ 1

€ Kp’ and from the

. 17 .. . . .
definition we can deduce b(T, o¢)=1 ) In the case ii), the situation is

somewhat different. If ordpfl-n < Ordpfénz, then o7 is diagonal with

1 filf;&nzw -1 n n
T = ( e K, and b(o,7)=1 1If ord x, <ord x_z, then
1/ 1 b p 1 = p 2

1
) ), and b(T, o)=1

-n n

To is diagonal with T = (1
X X,z 1

If finally ordbng;nz is smaller than the p-order of any other matric element

in the case ii), then we may assume that ord,z is divisible by n; otherwise

b

the elementary divisors of o are not n-th powers, and therefore ¢ (o) =0
a

by Prop. 8. If nlordpz, then 70T, is diagonal with

) n -n -1 .
/1 ‘X1X2 z 1
.= e K, v_ = \e K , and
1 p 2 p

- -1
1 k o .
g fl f;z 1

b(7,, ¢)=Db(T,0, 7,)=1. Thus, bothin case i) and in case ii), it was

i o

veirified that (XO',_lb—l, 1) belongs to a standard double coset, i. e. a coset of
i

the form K wn, 1)K0C60, every w, being diagonal. Since Lpa is a standard

O( b

y -characteristic function, ¢ (o) is either 1 or 0. This implies that ¢ Lpb
a a
is a linear combiantion of standard y-characteristic functions with positive,

ratioanl integral coefficients as claimed above. Consider now the mapping of

o' O( ’Cv}A, K3 ) into itself defined by U(g)—-y*(g)=TT(gF), (ge 60) This is
x’
a linear mapping over R, and an anti-automorphism of the algebra; namely,

sk X = %k ok s 1 . , s H
(k{Jl LJJZ) LIJZ s.pl holds for q;l q;zeaex,o However, Theorem 3 implies

Y* = ¢ for any standard y-characteristic function .

17) Here and in the following calculations of b(o, 7), use 1iii) of Prop. 6.

36



f X = ) ko= , %
Therefore Lpa L|Ja Y LIJb and from the above argument about LIJa Lpa
it also follows that (L{Ja % ¢b)>.< = Lpa* q_;b. Hence we have L]Ja* ¢b = ¢a=:= Lpb,

and the theorem is proved.

We conclude this § by giving a concrete formula similar to (17 ) about
the action of a special Hecke operator. Let w be a prime number of F such

that w=1 (mod N), and let a be the adele of which the w-component is

1 . ) 18 )
( wnt>’ (0 <t), and all other components are identity, The operator T((a, 1))
will then be denoted by T(1, wnt). We use formula (14) with K3, K instead
of K, Kl. Since ( a, 1)_11{( a, 1) = (a"lKa, 1) by ii) of Prop. 6, we have

-1 , -1 .
Ksn(a, 1) Ki3(a, 1)= U (Kn(a, 1) K(a, 1) ¢. So,
%=1

-1 -
CX<< a, 1))=(K:Kna Ka) 1, the index being taken in Gy- On the other hand,
if K=uU(EKn a-lKa)Gi is a coset decomposition in GA’ then
Kz = U(Ks n(a, l)ﬁlKg(a, 1)) o, 1) is a coset decomposition. Furthermore,
q= Hco || being the norm of w, we can choose as {O'i} the qnt + qnt-=1 adeles

z -1 nt

whose w-components are <11z>, (60 22z modwnt), < ), (w|z mod w ),

1

w

and whose other components are identity. Suppose =z =w ¢, k= ord 1z, in
w

-1-
the second case, and put o = (znt ), then we have
w

18) See foot note 3.
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and b(T, o) = (c, w)k. This means

z - k _.-1
S(C ) G T e e e

Therefore, for a function £, on G, with (25), (14) vields

A A
nt nt-1 nt
(29) (@ +q 7)-£,(g)T(L o)
e 1, ¢k
= + —
£,(8(ag o VT ) ) el o DTS
k=1 03c mod w
w T C
+ f (gla ) l)—l)
; A nt, ¢ ’
p3c mod ™
where a stands for the adele whose only one non-vanishing component is
’ wnt—k c
the w-component < k)' If we take an automorphic function f, on
w A

aF\a/AK, and observe the influence of T(1, wnt) on the function f(u) on

r\H® induced by fA through the relation (24), then (29) vyields

nt
(30) (" + ™) f(w)er(r, ) = (P Ju)+

o 3¢ mod oot

— nt-k —
D (GRS 131 D SR (G )

This formula is an analogy of (17); it can be interpreted by means of a double

. r .
coset with respect to a discontinuous group actiong on H', as was done in §2
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about the formula (17). For this purpose, however, one should consider in

the case of (30) double cosets with respect to I , the kernel of y in Prop.l,

1

instead of double cosets with respectto I' = SL(2, o )N
Using the matrix <wn£ ) instead of (1 used obove we can
g on(ett) it

ng n(£+t))'

define the operator T(w , w nt)

But, this is equal to T(1, w
nf

>

because if a' is the adele of which the w-component is (w nl)’ and other
w

~
components are 1, then a' belongs to the center of GA’ and every function

A ~
A ty =
fA on GF\ GA/ K has the property fA( ga') fA(g).
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§ 5. Eisenstein series,

We now observe the product H' of r copies of the upper-half space, and
the group I = GL(2, o )N which acts discontinuously on H'. Asin §1,
o stands for the ring of integers of a totally imaginary number field F
containing the n-th roots of unity, and I" is the congruence subgroup mod. N
of GL(2, o); the action on H of ocel is, similarly to Hilbert' s modular
group, given by (5). So far as no contrary is stated, we assume always that
N is a natural number divisible by nz. Our aim in this § is to define
Eisenstein series related to I" and the character y of I' given in Prop. 2,
and to prepare several fundamental formulas for such Eisenstein series.

According to the expression adopted in §1, the i-th component u, of

u= (u u )e H' will be denoted by u, = o -Vi) with z e €
777 T Yoy (v z; i ’
R? A > 0. We shall, however, sometimes use u, with vy < 0 for the sake
of convenience, and identify a vy ¢ F with the point v = (y(l), e Y(r ))
. 3 3 (i) | . . 3
e €x ... xCCR x ... xR, where vy is the i-th conjugate of vy, R means

- 3
the space of all (i ;) with ze €, ve R, and € is imbedded in R- by
the mapping w->W = (W \7/> for we C.

, u_)e H, we put v(u)=v...vr, and

For u=(u1,... - 1

(31) jlo, w)=1j.(o, u), j.(o, u) = ]c(i)z. + d('i)|2+ ,c(i)lzv.z,
1 1 1 1
with o = (Z‘ z) ¢ GL(2, F). The formula (3) of [10] vyields then

(32) v(ou) = j(o, u)‘lv(u)
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for o0e¢ GL(2, F) such that ¢ = det ¢ 1is a unit of F. Since (3) of [10] is
valid only for o ¢ SL(2, €), (32) is not quite evident; to prove it, one should
recall that the action of oe GL(2, €) on H is given by (3) with

(iz = (det 0)_1/20', and that {I e (1)[ =1 holds for a unit ¢ of F. Since
jle, u) does not depend on a2 and b, we shall also write j(c, d; u) for

b

j(e, u). If B is the group of all (° sl)eC}L(Z, F) where ¢, ¢' are units

of F, then it follows from (32) that
(33) viou) = v(u), (o e B).

Let % beacuspof I', and I,, bethe groupofall ceI with ox = x .
On the other hand, let p be an element of SL(2, F) such that poo= %,
Then, p_lr p consists of all elements in pmll“p which are of the form

P

ab . .. ..
< d>° Since, however, the characteristic roots of o eI are algebraic integers,

- - -1
one sees P 1Fx p= Bnep 1Tp, or I, =pBp n I'. We have moreover the

following

-1 -1
Proposition 9. Notations being as defined above, the group p T, ,p= Bap Tp

contains a subgroup I _ of finite index consisting of all elements of the form

(El :2), where ¢

0

e, are units of F satisfying ¢. = =1 (mod N')

1’ 1- %2

with a natural number N', and p belongs to an integral or fractional ideal m
of F.

Proof. Put p= (2 Z) Then, p-l: <_g _]:>, and

41



2
. - - - + :
RIS ads1 bca2 acy,, ab(s2 sl) a .
p p=
2

2 )
€ cd(el- 52) - T, adsz-bcs + acp

From this follows at once the assertion.

We observe again a cusp ® of I', and put as above I, = {ocel lo'x =%},

If the character y in Prop.2 is trivial on I , then X is said to be an essential

cusp (with respectto X ). Let Xpp Kogrenvs Xy be representatives of all
I' -inegquivalent essential cusps, put I‘X = ri, and denote by o, an element
i
1
of SL(2, F) suchthat o.,0c0= Xig). If here .= oo, let us take o = 1L

Then, the series

ou)®, (seC),

is well-defined by (32), and by the definition of an essential cusp; itis
convergent for Re s > 2, and is an eigenfunction of all Laplacians of the
space H'. Furthermore, Ei is automorphic, i.e.

(35) Ei((ru, s, x)=x(cr)Ei(u,s,x), (cel).

We call E. the Eisenstein series attached to the essential cusp x,l.
i

The following theorem gives a more concrete feature of the series Ei.

19) o corresponds to p in Prop. 9.
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Theorem 5. Denote by e the group of units of F congruent to

F, N
1 modulo a natural number N', let € be a set of representatives of

n FX/eF’ N F* being the group of non-zero numbers of F, and let Mij be

the set of pairs (c, d) of numbers of F such that ce € and that there
exists an element in Ubi-lro-j which is of the form (C d) Then, for a suitable

N', there exists a natural number ki for each essential cusp x: of I' such

that

-1 _ e sk _
where xij(c, d) = X(crimrj ) for o= (C d) € o, I‘(rj, and 6ij =1, or O

according to 1i=j or not.

€1 Vv _
Proof. Let €. be the group of units ¢_ in F with ( 1 >e 0'.11“,0’_,
i 2 €2 i i
and choose N' such that e N is contained in all e this is possible by

ab ,_(a‘
t

! -
Prop. 9. Then, for two elements ¢ = (c a) o= g, >e Uilfcrj, the relation

o. ,o,-o=0, T, o, o' holds if and only if there exists an c¢¢ e  with
i

c=ec', d=¢ed'". In other words, the equivalence classes defined by the

equivalence relation : (c, d)~ (ec, ed), (ce ei), of the pairs of numbers

(c, d), (c, de F), with (Cd

-1 .
) € o, I‘O‘j are in one-to-one correspondence

. -1 -1
with the set of cosets of o l“i(ri\tri T'c. Moreover, the pair (0, d) occurs
if and only if i = j because the cusps K.i are mutually T'-inequivalent.

Thus, our theorem follows from
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Ei( O'ju, s, %)= Z % ( o-.o*cr_—l) JB—L‘S .

i 7 jle, a5 u)
-1 -1
ceo, I'o\o TIo,
i Tiivi j

if we put ki = (e,

< :$~F, N). The fact that x(cri(ro-j_l) depends only on c,

d is an immediate consequence of that x, is an essential cusp.
i

In this proof, we have chosen N' such that Prop. 9 holds simultaneously
for all essential cusps. We now choose also one and the same ideal m of
F so that Prop. 9 can hold for all X, Since the function Ei( o-ju, s, %)
is invariant under the transformation u +(1 lp')u, (ne m), by Prop.9, we
can consider a Fourier expansion of Ei( (rju, 5, ¥ ). Namely, let m#* be the
dual ideal of m consisting of all numbers be F such that trF bpe Z

for all pe m, trF being the ordinary trace from F to @. On the other

hand, put
e(u)=exp(2wv -1 Ztrui), for u=(ul,. , ur)e H,
i=1

and

r mi), 'lm(i)lv
e(m, u) = exp(21V/ -1 Y tr 1 i

(37) ( ) P(Z ‘/—1 L t ('m(l)lv }"n(l)g ),

i=1 i

for me F, tr belng the trace of a matrix. Then, if m # 0, (37) is equal

to e((m '1)u>, the additivity e(m + m', u) = e(m, u) + e(m', u) holds for
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any m, m'e F, and we have the Fourier expansion

(38) Ei(O‘ju, s, %)= Z

me m*

aij, m(vl,..., Vo 8 x)e(m, u)

with

S

_ -1
4 m Ve Voo S, x)=V(m) SPEi(O-ju, s, x)e(-m, u)dv(z),

r
where me m is regarded to operate naturally on € through the operation

.1 m

1 3r v s . .
of ( 1 ) on RO, and V(m) is the volume with respect to the Euclidean
r
measure dV of a fundamental domain P = m \€ of the operation. We now
propose to give an explicit expression for the Fourier coefficient aij o'

We observe first the case of m = 0, i. e. the constant term of the Fourier

series. By using (36) in Theorem 5, it is shown that

V(m)aij’ ol vy oo

= V(m )6ijv(u)s X

S
-1 i = ! n Vi
k, s e, d))- I av(z),
DT ) xte ) fen B e e
ce @ (c, d) e M., + *
ij
d mod cm

”c I being the ordinary norm of ¢ with respect to F/Q. Here, we have
used the fact that the pair (¢, d+ cm), (me m ), belongs to Mij whenever

the pair (c, d) does, and that xij( c, d) depends only on d mod c ; these
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properties are consequences of Prop. 9. From the above equalities, it follows

that

_ s
(39) aij, O(vl,..., Vo S x)= (Sijv(u) +¢ij(s,x)v(u)

with
—l ~1 g "
40 ..(s, = V( ¥..(c, d))———5
(40) ¢, (s %) DO TeEC D myle )
C € @ (C: d) € M..
1)
d mod cm
containing a Dirichlet series. The non-constant terms
aij, m( vl,. cer Vo 8 x), (m3 0), can be treated similarly. We have first
V(“ﬁ)alj’ m('vl, P Vs 8 X)
. S Y %..(c, d)exp(2mv=Ttry =)
R - ) Nyle dexel(zn /S Terp g
ceg (c, d) e M.,
1]
d mod cm
¥S
I . —_— . - » -
-\ . I — exp(-Zﬂ/-l(m(l)z. +m(1)z,))_dV(z),
C "I(Iz |2+v2)s i i
1= i i
and using the formula
\S 5 exp (- 2nf:(wz + wz)) dxdy =
(x  +y o+ l)
s s-1 -1
(2m)° |w|"TT(s) K _(47|w]), (z=x+v-Ty, we €, wf 0),

s-1
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concerning the modified Bessel function Ks, we obtain

(41) aij’mvl,...,v,s,x)=
s-1 . ()
Z i rs -r
¢,.(s m, x)|m]| - o K__ (4n|m v ) (27) " 0(s)  v(u),
J i=1 s -1 i
with the Dirichlet series
(42) <oij(s, m, x) =
roa-Lo-1o ¢ 1 Ay = . Veser{ 20 /T ¢2 224 1y
vim) Ki L ”C”S\ Z_/ ij\b, d/CAy\:_u ¥ -1 L_LF - /)
ce@ (c,d)e Mi'

The series (38) is called the Fourier expansion of Ei at the essential
cusp xj. To get a nice survey of the constant terms for this expansion, it
is convenient to use the matrix.

(43) v(w)S+ a(s, x)v(u)? 5,

where 1 is the identity matrix of degree h, and @&(s, y) = (¢ij( s, x))

the element in the i-th line and in the j-th column of (43) is equal to the

constant term of the Fourier series for Ei at XJ_.
t
Denote by e(u, s, x) the column vector (El, cees Eh ), then the general
theory of the Eisenstein series yields the functional equations

®(s, x)®(2-s, x)=1,
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and

e{u, s,x)=@&(s)(u, 2-s,%).

Furthermore e(u, s, x) is meromorphic with respect to s on the whole
complex plane, and the poles of Ei are simple and independent of u, i.e.,

if s_ is a pole of Ei’ then (s-s

0 )Ei has no singularity with respect

20)
0 -

0

to u and s, whenever s is in a suitable neighbourhood of s

20) For the general theory of Eisenstein series, see [17], [18] and [12 ]
The functioanal equation is not used in this paper.
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§6. Unitary representations determined by Eisenstein series.

In the preceding §, we have introduced Eisenstein series Ei( u, s, X)s
(i=1, 2,..., h), h being the number of essential cusps with respect to the
charcter y of the discontinuous group I' of Hilbert's type operating on the
direct product H' of the upper half space H. The functions Ei are
automorphic with respect to u in the sense that they satisfy (26), but,
for general s, they are not square integrable on a fundamental domain
T\H" of I'. Our aim is now to construct a certain finite dimensional space
over € of automorphic functions which are derived from Eisenstein series
and are square integrable on I‘\Hr. This is done by investigating Ei at
the point s = (n+ 1)/n. T(; speak precisely, denote by ®s, x the space of
all functions of the form Z Wi( s )Ei(u’ s, x ), where A is a holomorphic

i=1

function on the whole s-plane. Furthermore, denote by ®X the space of all
functions 6(u, x) on H® which are square integrable on T\Hr and are

expressed in the form

6(u, x)= lim f(u, s, x), f(u, s, x}ess

s—>(n+ 1)/n ’ X.

The space ® is then finite dimensional over €, every 6{(u, xy) is an

r .
eigenfunction of all Laplacians on H' , and satisfies

(44) B(ou,x )=x(o)o(u, x), (0 eI),



i.e., 8(u, x) is automorphic. Making use of the space ®X, we shall obtain

later a special kind of unitary representation of the metaplectic group GA.

The non-triviality of ® is assured by the following
X

Theorem 6. If the natural number N which is used in the definition of
the compact subgroup K of the adele group GA is divisible by nz, and is
an n-th power in F, then the space ®X is not empty.

Proof. Since oo is always an essential cusp, one can find among
E(u, s, x), (i=1, 2,..., h), a series corresponding to o. We denote

1

it simply by E(u, s, ¥) and propose to show that

( n

+ 1
s - YE(u, s, %)

(45) 0(u, x)=  lim
s>(n+1)/n
actually belongs to ® . Of course, this is enough to prove the thecrem.
X
We now investigate the Fourier expansion of E at every essential cusp
¥ .. For the sake of simplicity, let us abbreviate i in all notations concerning

the Fourier expansion. In particular, let us write ¢,, X ., or M, for ¢,
J J J 1]

X5 or Mij in (40) and (36).
Furthermore, for xj = o0, let us also abbreviate j, and write simply o, y,

or M. We see then

) Wew= ) (@ =l 5 ()7

(c, d)e M c=d-1=(N) d=1(N)
d mod cm d prime to ¢ d prime to c
d mod cm d mod cyN
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-1 )
“m Il ¢F(CON)¢F(N) , if ¢, isan n-th power modulo certain

= finitely generated group of numbers,
0, otherwise,
where ¢ = cON ¢, and 2 means Euler's function in F. If <, is an

n
and N =v with ¢, ve o, and

)" 1

n-th power, we have (co) = (c1

-1
q;F(cON) = ¢F(cl v )”clv “n . Therefore, the Dirichlet series contained

in (40) is up to a constant factor equal to

N ¢p 1" B s« erlev)
(46) Z “clv ”‘ns-(nﬂ—) - ”N” , \“C:L“ns-(n—1)'

{ Y o
(UM RS (c

1 7 1

We want to prove that the function of s determined by the series (46) has

a pole of first order at s = (n+ 1)/n. For this purpose, it is enough to show

that Z goF( cl)/” < ”ns “(n-1) has the same property, because {(46)
(<))

is convergent for Re s> (n+ 1)/n, and because we have q)F( c) < (PF( cv) <

(pF(c)“‘V ”21), Let & be a character of the absclute ideal class of F, then

— Ma)op(a) o Ae) C Al
alen“““'lT %usn“““'” %ncuns"“"“’

21) It is a consequence of the general theory that all functions which we concern
here are meromorphic.
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a, b, ¢ running over all integral ideals of F. Hence

— A(G)(pF(a)
Z ”a”ns-(n'l): L(ns - n, A)/L(ns - (n - 1), A)

a

with Hecke's Li-series L(s, A). At s=(n+1)/n, L(ns - (n-1), A)
is holomorphic and not equal to 0, while IL(ns-n, x) is holomorphic for
non-trivial 4, and has a pole of first order for trivial A. From this follows
immediately our assertion, and at the same time one sees that ¢(s, x) has
a pole o£ first order at s= (n+ 1)/n.

It follows now from the general theory of the Eisenstein series that the
singularities of E(u, s, x) in the half s-plane Re s > 1 are singularities
of ¢(s,x), and even at these singularities E(u, s, x)/¢(s, x) is holomorphic
with respect to s22 ) Thus, we obtain by (45) an automorphic form 6(u, y)
satisfying (44), and (39) implies that the constant term of the Fourier
expansion of 8(u, x) atevery essential cusp X, is, up to a constant factor,

J

of the form v{u )( n-1 )/n It follows here again from the general theory of
Eisenstein series that ©{(u, x) 1is bounded on a domain & which is obtained
from a fundamental domain & = I‘\Hr by removing arbitrarily small

neighbourhoods of all essential cusps ; furthermore it follows that the sum of

all non-constant terms of the Fourier expansion of 6(u, x) at an essential

22) The idea of a proof of this result is described in [18]. Details of the proof
are in [12]. In the present case, however, the key point of the proof of
our assertion is the same evaluation as mentioned in §4, 2. of [11]. Cf.
also the seminar note of the author; Elementary theory of the Eisenstein
series, (in Japanese), Tokyo University 1968.
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cusp Kj is bounded in a neighbourhood of co. On the other hand, if 9’Y

denotes a subdomain determined by v(u)>7Y, (Y > 0), of a fundamental domain

u)(n-l)/n is square integrable in X.

in Prop. 9, then v( .

of a group as 1“O

Therefore, 6(u, ¥) itself is square integrable in &, and ® contains
X

consequently the non-trivial function 6(u, ¥ ), which completes the proof.

Our final task is to verify that ®X constitutes a representation module

of the Hecke algebra. Of course, the correspondence fwa given by (24)

~ A
enables us to regard ¢ and ® as spaces of functions on G= G_K G ,
s, X X F 0 oo

>

and under this situation we investigate the action of the Hecke operator

ae(é,Ka) on ¢ and @ .
X 8, X X

For the Eisenstein series Ei(u, s, x ), denote by EA i(?’ s, x)

the corresponding function on G in the above sense, and put

s -1 ] °
V(goo) ¢, if ge KOGOO“Q,

0, otherwise,

T
where v goo) means the value of the function v(u) at the point ue H

"
which is determined naturally by CE GL(2, €) through the relation

H' = GL(2, € )r/AKOO. Then we have

Proposition 10. The meanings of 0 ¢ SL(2, F) and T, be as in the

definition (34) of the Eisenstein series, choose the group l"O in Prop. 9

. . -1 .
in such a way that I'  is contained in all o, T o (i=1, 2,..., h).

0

Furthermore, put 2= (a, 1)¢ GA for any ace GA’ and put
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= ! 1
Uiroo—i Ti. Then, EA, i( g, s, x.) 1is equal to

(47) Z val(o, );ivg)
o€ l"i \(A}F

up to a constant factor.

-1
Proof. By Prop. 9, UiI“ o, is a subgroup of a finite index £ of I‘i.

0
Therefore, (47) is equalto £ °* Z X (o )v( o-i-lo"u)s, which proves the

.\T
proposition, e 1\

Theorem 7. For any {eee (8, K3), we have eT(qj)C £ .
X S, X s> X
Proof. In the beginning of §4, we have notified the decomposition
an(G, K3) = =(G_, Km)®aex’ 0(5, K3). Since E(u, s, x) isan

eigenfuction of Liaplacians on Hr, we see that ET(qJ,) for cee( G LK
g b A, i @

is a multiple of Ei by a holomorphic function of s on the whole s-plane.

T
So, for the proof of the theorem, it is enough to. show that E (Lpi) belongs

™ i =
0, I G0 G with G

U

t £ for e ae (E Kz). If we put G
° %s, x v Xs 0777 P

Py . . . —_
GFKoGw’ GO, 1 the inverse image of the covering map GA GA’ then

aex O(G, Kz) = an(G

0. 1° Koz), and what we have to show turns out
b ]

- -1
(48) fe. ma oy oon e,
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for any continuous function  with compact support on GO I satisfying

Wyt )= gly)L -1. The integral in (48) is not the proper convolution on
E‘:O I Since, however, no confusion is possible, we use temporarily in

this proof the notation x to indicate a rather modified convolution so that

(48) may be written as EA, i*q) ce "
The function vz(( '&’i );g )%y is a finite linear combination of functions
s, ~ -1~ s .
of the form VA((O'i )oo([S )og), (B« GF), and VA satisfies

VZ((\T)Og) = VZ( g) forany vyeIC Gr.- Therefore, it follows from Prop. 10

that EA i>:<qJ is up to a constant factor equal to a linear combination of

P s ~ ~ ) r
Z vA(( 7, )oo(ﬁ )Otrg). Now, making o B operate on H', and
T\Gg

-1 -1
considering in particular the point X ¢ FCCr with o, B x = oo, one sees
a' bt

that there exista v eI, 7= ( c'> ¢ GL(2, F), and a 7 among
o [ such that 0'-1 1o (r_l So ttin

o T iB 'rj\{., , pu g

-1,-1 -1 -1 -1
r = —
Yﬁo’i O(Ti B v 0“j'r 1"01-0'3_ = l“;,
and using the fact v () _g)=lla" /e | %S (g), we have
A fo's} A ’

D @) Eree) = ) Vi) (5T Foe)

1 (0 0] J
o€ fl\aF f‘ ;\éF
= llar/et 1® ) vREE D 5Bee) = lla /e [T 5 viE) re).
TG, 1\ G
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Since the last sum is up to a constant factor equal to EA j by Prop. 10,

B

the theorem is proved.

From Theorem 7 it follows that the space of all functions of the form
f(g, n+ 1/n), (f(g, s)ece 5 x ), is mapped into itself by any T(¢) with
U aex( &', K3 ). On the other hand, the image by T() of a square integrable
function on GF\E}' is again square integrable. Since ®X is the space of
all f(g, n+ 1/n) which are square integrable on aF\ G, one obtains the

following

Theorem 8. For any eaex(é/, K3 ), we have @;NJ)C @X.

The space ® is finite dimensional over €, and consists of functions

X
o (x) on G satisfying 8 ,{(yx) =0 (x), (ye G ), and
A A A ’ ¥
(xt)=6 (x)t °, (Le 3). Hence, by Theorem 8 and by the generalities

of the unitary representation explained in § 2, we have

Theorem 9. Let 9 be the Hilbert space, with the inner product

(£, i Jdx, genetated by all functions of xe¢ G of the

r SG \&h(x

form © (xg), (©

A € ®X, ge G), then the unitary representation

A
{Ug}, (ge G), determined by (Ugf)(x) = f(xg) .is decomposed into a sum
of finite irreducible unitary representations of G. Furthermore, U; is the

¢
multiplication by & 1, if § ¢ 3.
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Theorem 9 is the main aim of the present paper. Using the method
of ordinary induced representations, itis no longer hard to construct
a representation of GA which has all corresponding properties of the

g . - . 4" -
representation of G in Theorem 9; for, as was mentionedin §1, G is

a normal subgroup of finite index of GA.
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§ 7. Further miscellaneous results and remarks.

1. Let &

. O( G, K3) be the algebra introduced in the beginning of

§ 4. Then, by Theorem 4, &

\ 0( G, K3} is commutative, and is a subalgebra

of = G, K3). On the other hand, it follows from the argument in § 2
X

about general Hecke operators that the adjoint operator of T(y),

e e G, K%), is again a Hecke operator of the same type. So, Theorem 8

X O(
implies that e’ . O( E’}, K3) 1is represented by mutually commutative normal
operators of ® , and consequently ®X is a derect sum of one dimensional

X

l

subspaces over € which are e &’;, K3%) modules. If €8 is one of such

T(y)

X 0(

subspaces, then © =0xy=p 0, (p, e €), for any xpeae'x G, Ki).

¥ Y ol
We now propose to show that the eigenvalue pr of the Hecke operator T(iy)
is of a very simple nature. Namely, at least under certain conditions which
do not essentially restrict the generality pLP is an elementary arithmetical
sum similar to the power sum of divisors of an integer. The latter is indeed
the eigenvalue of the classical analytic Eisenstein series under the action

of Hecke operators. We assume first that the constant term of the Fourier
expansion of © at oo is not 0. Such a 6 actually exists, because Theorem
6 is proved by finding a function which satisfy the same condition at oo.

t
Next we assume that the Hecke operator T(y) is the operator T(1, w?

)
in (29), (30). For the sake of convenience, regard now ® as a space of
functions on H', and apply (30). Then it follows from (38) that pLp is

obtained by observing the effect of the Hecke operator only on the constant

term of the Fourier expansion of 6 at oo. The constant term is v(u)( n-1)/n
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up to a constant factor, and Z (—)k = 0 if k is not divisible
c mod oF, wt c

. t . . .
by n. So, denoting p by p(1, wn ) in this special case, we have

P
(49) @™+ ¢™ ) p(1, &™) =
Zl(n‘l)t £ -(n-1) nf nf -1 -(n-1)t nt
q (1+ Z q ( - ) + ).
=1

Here, the term with Z must be removed if t= 1.

If we observe a suitable subgroup of G, for instance the product

~

G' = G % (G'Oﬁ G), G’O being the inverse image with respect to the covering

~

map G —?GA of the group G! in Prop.7, then the function w(g) of

A 0
~0(x)P(xgjdx, (ge G'),

. . 2 _ {
ge G' givenby [[0]“w(g)= (6, ug)= ‘SGF\G

is the zonal spherical function of the irreducible unitary representation of
G' determined by unitary operators Ug; f(x) — f(xg) of the Hilbert space
@e spanned by 0(xg), ge G'. 1If [KS(Xk_lg)x(k)dk = pge(x), then we
have (8, Uge) = 5 . This result which means that the zonal spherical function
is the same thing as the eigenvalue of the Hecke operator in the sense we
have introduced in §2, and which is of course merely an elementary fact in
the general theory of the unitary representation, shows, however, together
with (49) that the zonal spherical function w(g) of the unitary representation

of G' by H is, at least under some restriction of g & G', given by a

0

simple sum as (49).

59



2. In [22] it was shown that a special type of unitary representation
of SL(2) over a local field F is obtained by the representation of the type
discovered in [23] of the metaplectic group over any quadratic extension
F' of F, and this result is obtained by using a natural imbedding of SL(2, F)
in the metaplectic group. We now propose to explain that a similar situation
is found in a rather generalized form also in the case of our 8A' Let F
be an extension of degree n over a totally imaginary algebraic number field
F containing the n-th roots of unity, and let EA be the (generalized)
metaplectic group over F' 1in the sense of § 3. Then, it follows from the

23)

properties of norm residue symbol and from the definition that

a , g')=1 for an lace p of F and s =1 for any b of
qﬂ) e g) yp qﬂ 0‘(g) y

24)

F which is not ramified in F' , the product being extended over the places
glp of F' in both cases. Thus the factor set bA( g, g') splitsif g, g'
are restricted to adeles of GL(2, F). Hence, EA contains a group which
is isomorphic to the adele group GLA( 2) of the general linear group of
degree 2 over F, and the representation obtained by Theorem 9 induces

a representation of GLA( 2).

3. For apoint u= (3 _lz,) of the upper half space H, put I(u)=

<ifr i;), and for u= (u

r .
1,...,ur)eH asin (5), p.ut

23) See in particular the formula (9.) inp.54 of [4].
24) If F'/F 1is normal, then the second equality holds also for any p.
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Furthermore, let « oy be a Z-basis of an ideal a of F, and put

A
A= . . . 7
N
A is the matrix of complete conjugates of Qpseees over .

Then, tAI(u.)A is a point of the Siegel' s space 9 . of degree r, and the

g t
theta function Z exp(mv-1 1Zt), (Ze @r ), determines a function
Ie z"
Hu) of ue ' through

(50) 8(u) = #(tAI(w)A)

= Z exp(w T Z (Q(f)ZZJZJr zﬁlau)tzvﬂ +a(”22£ 125,

o€ a y

If now n =2, then the Dirichlet series (42) becomes essentially the

25) Cf. [8].
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Hecke' s Li-series with a quadratic class character, and using for example
the method as in [13] or [20] one can show that the space ®X in §6

is a space of functions like (50). This fact suggests that our representation
in Theorem 9 is of a similar nature to the representation in [237]. But,
satisfactory results for n> 2 are not obtained yet, and for this purpose

it seems to be necessary to investigate the representation in Theorem 9

~

L
for each local component Gp of GA.
4. The Dirichlet series (42) is, in case n > 2, expressed by special
kind of zeta functions as introduced in [1l]. So, the representation in
Theorem 9 is, so to speak, constructed by using the values, or residues,

of such special zeta functions at s = (n+ 1)/n.

5. As in the classical case, linear relations between coefficients of
Fourier series (38) for an eigenfunction of Hecke operators are obtained
by means of the explicit expression (30) of Hecke operators. For n= 2,
this kind of investigation was done in [24].

The operation of (30) on the exponential function e(m, u) in (38)
yields clearly a Gauss sum containing a congruence character of order n.

Therefore, the nature of the case of n> 2 becomes largely different from

the case of n= 2.
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