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                 Part 0 Introduction and preliminaries. 

Introduction.

By a ring, we shall mean a  commutative ring with identity throughout

this article.

    Let k be a ring and let k[x]  =  k[x'x nIbe the polynomial 

ring in n variables  x1,  ,  xn over  k. Then the question which

we shall deal with is on the structure of the group of automorphisms

Autk k[x] over k. k and k[x] will maintain these meanings throughout

this article.

We shall begin with looking at some special subgroups of  Autk  k[x]. 

Linear  subgroups. Let us consider the general linear group GL(n, k)

over k. An arbitrary element a E GL(n, k) defines a  k-automorphism 

of k[x] so that

 (ax ,  ax) = (x1, ,  x  )a 

where the right hand side is understood by matric multiplication. Note

that if a,  T  EGL(n, k), then (a(Tx1), ,  a(Tx n))  =  a[(xl, ,  xn)T] 

=  (ax
i,  ,  axn)T  =  (xl, ,  xn)aT. Thus we may regard that 

the general linear group GL(n, k) is a subgroup of Autk  k[x]. 

Furthermore, we can observe affine transformations similarly. Namely, 

an affine transformation of the n-space is defined by a sequence of
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an element, say a, of GL(n, k) and  n elements, say  ci, ,  cn,

of k. Such an affine transformation defines also a k-automorphism such 

that  x,  is  sent  to  ax, +  c.. Thus the affine transformation group
                     1

A(n, k) can be regarded as a subgroup of Autk k[x].

 Jonqui&res automorphisms. When  al' ,  an are units in k and 

f. e k[x .1+1"xn] for i = 1,, n (fnk), then there is an 

element-cofAutkk[x]suchthatTx. 1=a.1x.1+ fi (i = 1,,n).

This type of automorphism is called a  Jonquieres automorphism of k[x]. 

The set J(n, k) of all Jonquieres automorphisms of  k[x] is a subgroup 

of Autk k[x].

As we shall show later  (§ 0.2), it holds that  :

Theorem 0.1. Let  gl, ,  g
n be nilpotent elements of  k[x].

Thenthereisaaaiwto[x]sud-Ithato-x..x. 1+ g.(i = 1,, n).

The set of all automorphisms of this type forms a subgroup of

Autk k[x] and is called the subgroup of nilpotency of Autk k[x]. We

shall denote it by N(n, k). As for this subgroup, it holds that  :

    Proposition 0.2. Let  AT be the nil-radical of k and we consider 

the natural homomorphism  : Autk  k[x]  Autkijo-  OkfiT  Mx]. Then

is a surjection and N(n, k) is the kernel of  -0.

The proof will be given later in § 0.2. 

Now, one particular problem in our question is  :
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Qestion 0.3. Is Autk k[x] generated by GL(n, k), J(n, k) and

N(n, k) ? 

Unfortunately, the answer is negative in the general case as will

be shown in Part 2. Part 1 of the article contains a proof of the 

following theorem, which should be called a theorem of Jung-van der Kulk

 (cf. § 0.1), and also a structure theorem of Autk  k[x] due to van der  Kulk.

    Theorem  0.4. The question 0.3 is affirmative if k is a field and 

if  n  =  2.

     On the other hand, it is obvious that

Lemma 0.5. If k is the direct sum of rings  kl,  k
s, then

Autk k[x] is the direct product of  Autk  k[x] (i = 1, ... s).
 1

In view of Proposition  0.2 and Lemma 0.5 above, we have 

Corollary  0.6. The question  0.3 is affirmative if n = 2 and if

k is an Artin ring. 

Part 2 contains some results related to the question in case either

n 2 or k is not an Artin ring. 

0.1 Historical remarks on the problem.

     The case where n = 1 and k is a field is well known and easy  ;

even if k is not a field, if n = 1, then  Autk  k[x] has fairly simple

structure (cf. § 0.3).

     In the past, mostly the case where k is a field and n = 2 has 
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been treated. In that case, an affirmative answer of the question 0.3 

was claimed by Jung [4] in 1941, in the classical case. Some related 

questions in the classical case were treated also by some authors including 

Engel [2] and Gutwirth [3]. But I am afraid that their treatments are 

too difficult to follow. Meanwhile, van der Kulk [6] gave a much better 

treatment and proved our Question 0.3 for n = 2 and k an arbitrary 

field. Recently, Abhyankar-Moh [1] treated the question from another 

aspect. Namely, as one will see later in this article, the question has 

very close relationship with the following classical conjecture

     Conjecture 1.1. Let C be an irreducible curve on  an.affine plane 

S defined by f(x, y)  e k[x, y]. Assume that C  is biregular to an affine 

line, namely, k[x,  y]/(f)  = k[t]. Then there is a polynomial g(x, y)

such that  k[x, y] = k[f,  g].

    As was shown by the writer [8], this conjecture is not affirmative 

in the positive characteristic case, hence the conjecture was modified  :

     Modified conjecture 1.2. Add one assumption that deg f is not 

divisible by the characteristic of the ground field k. Then the assertion 

in the conjecture holds good.

     One of important results in [1] is an affirmative answer of this 

modified conjecture.

On the other hand, our treatment is very different from those given 
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by  these authors : We are to make use of nice behaviour of birational 

correspondences of non-singular projective surfaces. 

0.2 Some easy results related to the statements in Introduction.

To begin with, we shall prove a well known lemma  : 

Lemma 2.1. Let M be a k-module and let N be a submodule of  M.

If I is a nilpotent ideal of k and if  M = N +  IM, then  M = N.

 Proof. M  = N +  IM = N + I(N +  IM) = N +  I2M. Similarly,

 M = N +  IrM for every natural number  r. Because of the nilpotency of  I,

we have  M = N.  q.e.d.

Proposition  2.2. Consider n elements  yl, ,  y
n of the

polynomial ring k[x]. If  k[y] = k[x], then k[y] is a polynomial ring, 

 i.e., F(x)  k[xi,  F(y) = 0 imply F(x) = 0. Hence there is a 

k-automorphism  o of  k[x] such that  ox, =  y. (i = 1, 2, ,  n).

Proof. Assuming the contrary, let F(x)  (i 0) be such that

F(y)  = 0. Since k[y] = k[x], there are polynomials  fi(x),  ,  fn(x) 

such that x. = f.(y). Let k' be the subring of k generated by the 
      1 1 

coefficients of  1, F(x), y1,'yf1(x),,  f
n(x). Then k' 

                                        n

is noetherian, because k' is finitely generated. Therefore, considering 

k' instead of k, it suffices to prove the assertion under the additional 

assumption that k is noetherian. Let  0 be the k-surjection given by

 0x.  =  y. (i  =  1,  ,  n). Then powers are also  k-homomorphisms.
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Let I
rbe the kernel of(1)r. Since k is noetherian, there is one r, 

say s, such that  I s =  is+1  =  • Let a be an arbitrary element 

of  I s. Since  (I)s is a  surjection, there is an element b of k[x] 

such that a =  (I)s(b). Then we see that 0  =s(a)  =2s(b). Hence 

b  c  I2
s  =  Is. This implies that a  =s(b)  Es(Is) =  {0}. Thus 

I
s= {0} and we see thatcpis an automorphism. q.e.d.

As a corollary to  these two results, we have  :

Proposition 2.3. Let  y1, ,  y
n c  k[x] be such that they

generate k[x] over k modulo the nil-radical, i.e.  (k[y] modulo the 

nilradical) =  (k[x] modulo the nil-radical), then  k[x]  =  k[y] and 

there is a k-automorphism a such that  oxi  =  yi (i = 1, , n).

 s

Proof. x
i+c..z. (t.  Ey],c E (the nilradical       1j1=11jij1Mij

of  k),  z.,  c k[x]). Let N be the ideal  generated by  these  c..
 1J  13

 (i  = 1, , n ; j  = 1, ,  si). Then N is nilpotent and therefore

k[x] =  k[y] by Lemma 2.1. Therefore we have the result by Proposition 2.2. 

                                                                                              q.e.d.

Now, let us prove Theorem 0.1. Setting y. =  x.  +  g., we see that
 1  1-1

Proposition 2.3.is applied immediately, and we have the theorem.

Next, let us prove Proposition 0.2. If T  EAutvid  (k/id )[x],

then let  yi be an element of k[x] such that  (yi modulo  id) = 

 Tx..  Then Proposition 2.3 implies that there is a  c  Autk  k[x] such
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that ax.  y.. Thus  cj is a surjection. It is obvious that N(n, k) 

is the kernel of  0. q.e.d. 

0.3 The easy case, n = 1.

     Proposition 3.1. If n =  1, then Autk  k[x] is generated by 

A(1, k) and N(1, k). More precisely, there is a one-one correspondence 

between Autk k[x] and the set  M =  {(a, b, f)  I a = a unit in 

k, b c k, f  = a nilpotent element in  k[x]} in such a way that a 

corresponds to (a, b, f) if  ax  = ax + b + f. 

     Proof. In view of Proposition 0.2, we may assume that  /6 =  0).

It is obvious that for a given (a, b, 0)  C  M, there is a a  E Autk k[x]

such that ax + b =  ax. Let  T be an arbitrary element of Autk  k[x]

and write  Tx = c + c1
s                   x ++ cx-(c.k, c0). Since there   01s

is an F(x) k[x] such that  F(Tx) = x, we must have s = 1 and 

deg F(x)  = 1 (by our assumption that  /6  =  fo)). Therefore we see also 

that c1 is a unit in k. q.e.d. 

0.4 Prerequisites, notation and terminology.

     Notation introduced in the introduction above is maintained. When 

we consider two irreducible algebraic surfaces V, W having the same 

function field, we identify points P (  e  V) with Q (  CW) if they

correspond biregularly under the natural birational correspondence
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(i.e., if their local rings over a field K of definition over which 

they are rational coincides with each other). In this sense, the 

quadratic dilatation  dill, V of V with center P is well defined. 

When a successive quadratic dilatation with centers  P1, ,  Pn is 

defined on V, then the transformation is denoted by dil 
                              1n 

 •

Hence dilP
...P= dil*dilP...P     l

nnl                                            n-1 

     We are assumed to be familiar with basic facts on birational

correspondences of non-singular projective surfaces. 

     A point of V in the usual sense is called an ordinary point of V.

By a point of V, we understand that it is either an ordinary point 

oran infinitely  near point V as  for thenotionof  an  infinitely  near 

point, we shall review it in  § 0.5. 

     Let C be an irreducible curve on V. A point P of C (P being

an ordinary point of V) is called a one-place point of C if the derived 

normal ring of the local ring of P on C is local ; this means that 

if W is a surface birationally dominating V and if ordinary points 

Q, Q' of W, corresponding to P, lies on the proper transform of C, 

then Q =  Q'.

     Q denotes a universal domain which we shall fix, and  Q2 denotes 

the affine plane (over  0).  1P2 denotes a projective plane. Using

coordinates system (X, Y, Z) on  P2, the line Z  = 0 is supposed to 
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be the line at infinity and is denoted by  f . The complement of the line
(X:

is identified with Q2.

     When V is an irreducible algebraic variety defined over a field K, 

the function field of V over K is denoted by K(V).

     Let V and W are non-singular varieties such that W dominates V. 

Let T be the correspondence V   ),  W. If D is a divisor on V, then 

the total transform of D is denoted by T{D} ; the proper transform 

of D is denoted by  T[D]. Note that  T{D} is defined by local

equations, namely, if Q dominates P under  T-1, then (the local 

equation of  T{)} at Q)  = (the local equation of D at P). Therefore 

the  total transform  T{ } preserves linear equivalence.

     Linear equivalence of divisors is expressed by the symbol  %  . 

0.5 Infinitely near points.

     One remarkable fact on birational transformations of non-singular 

projective surfaces is as follows  :

     Theorem  5.1. Let V and W be non-singular projective surfaces 

having the same function field. If an ordinary point P is dominated 

by an ordinary point Q of W, then there is a sequence P  =  P0,  ,  P
n 

such that (i) Q  = P
n and (ii) for each i > 0, dilis well                                         PPO°  i -1

defined on V and  P is an ordinary point of dil V which  P

0...Pi-1
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dominates  P.

     In this case, Q is called an infinitely near point to P of order 

n.

     Infinitely near points to P of order one correspond to tangential 

directions around P. Namely, letting t and u be local coordinates

at P, we consider the local equation of a curve C at P  :

                          

• • 

(5.2)i+j=m c..t1u1 + (terms of higher orders)                 ij

 witticijEk,m>0.111.eterram.".zc...tluj gives (besides

that P is an m-ple point of C) tangential directions of branches of 

C at P ; C has a branch of tangential direction t =  au  (a  6  C) if 

and only if t -  au is a factor of h(t, u). On  dill, V, if t/u =  a

at a point P' of  dilp P, then the local equation of the total transform

C* of C at P' is

               umh(t/u, 1) + um+1g(u, t/u) 

with some polynomial g. Therefore it is factored to  um and

    (5.3) h(t/u, 1) + ug(u, t/u). 

     Since u at  P° gives  dil P,  C* is of the form  m•dil
p P + C1

with a curve C1 whose local equation at P' is (5.3). C1 goes through 

 P' obviously because h(t, u) is a homogeneous form having t -  au as 

a factor. Furthermore, if m is the exact  multiplicity of P on C,

                              10



then, the intersection multiplicity of C1 with  dilp P, coincides with 

the multiplicity of the factor t -  au in h(t, u), because, in view of 

the fact that u defines  dil P, we see that the former coincides with 

the intersection multiplicity of the curve h(t/u, 1)  = 0 with  dil P 

at P'. Thus we obtained also the following

     Proposition 5.4. If a curve C goes through an ordinary point P 

of V with multiplicity exactly  m, then letting  C1 denote the proper

transform of C on  dilP  V, we see that

(1) The total transform  dil C of C is equal to C1 +  m-dil P 

(2) the intersection number (C1,  dil P) is equal to m. 

     We note here that the intersection number of two divisors C',  C"

coincides with that of total transforms of C', C". 

     Proposition 5.5. With the same notation as above, we have 

     (1)PP,dil P) = -1.

(2) (C1, C1) = (C, C) - m2

     Proof. Since C  ti C' - C" (C', C" are positive divisors) such 

that C' C"  P, we see that  (dil  C,  dil P) =  (dil C' - dilPC",dilPP) 

= 0. Hence 0 = (C
1 + m dil P.dilPP) = m + m (dilP P.dil P), and 

we have (1). (C, C) = (C1+ m dil P,C1+ m dilPP) = (C1,C1) + 

                                                            2m(C1'dilPP) + m2(dil P) = (C1,C1) + 2m2 - m2 = (C1,C1) + m2. 

                                                                                 q.e.d.
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     Remark 5.6. Proofs of these two  propositions may be done as follows  : 

Proposition 5.4, (1) is proved first. Then considering a special case 

where m = 1, we obtain Proposition 5.5, (1). Then we have Proposition 5.4, 

 (2)  by  :

0 = (C1 + m  dil P,  dilp P) = (C1,  dilp P) +  m(dilp P,  dil',  P)

Here we add a remark on the case where m is not the exact

multiplicity. We consider the condition on curves C such that C 

goes through P as an m-ple point  Ind furthermore C goes through 

certain infinitely near points Q1, ,  Qs of order one to P, for

instance. It is quite natural to understand this condition to be the 

condition on the local equation of C at P to be such that it is of

the form  (5.2) and the form h(t, u) =  E  c„tuj has factors corresponding

to Q1, ,  Q
s. Actually, if we look at a linear system of curves on

V and consider those members of L satisfying the above condition, 

then the subset of such members is a well defined linear system under 

this understanding. If a C goes through P with multiplicity bigger 

than m, then h(t, u) = 0 whence the condition is satisfied by  this C. 

This means that if the multiplicity of P is higher, then the condition 

stated above do not imply that the curve has branches corresponding to  Q.

One extreme case is the case where s > m. Since h is of
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degree  m, it cannot have more than  m factors unless it is zero. 

Therefore, as the actual effect, the condition  " to go through P with 

multiplicity m and furthermore goes through m + 1 distinct infinitely 

near points of order one to P  " is equivalent to the condition " to go 

through P with multiplicity m + 1 ".

     Therefore we must be  careful of the term " to go through  ", and 

therefore we shall define the term after some  preliminaries.

First,  we define divisorial cycles in very  generalized  way. Namely,

let Dc(v) be the set of point of V (including infinitely near points) 

-

and let Dc1(V) be the set of irreducible curves on V. Let Dc(V) be

the free module generated by Dc0(V)L/DcI(V) over Z. This  module 

Dc(V) is called the divisorial cycle group of V and each member of it 

is called a divisorial cycle on V. 

     When P is an ordinary point of V, we define a group homomorphism

Dc(V)  --)-Dc(dilp V) by

(i) if C  s Dc1(V),then C is mapped to its total transform

(in the usual sense),

(ii) P is mapped to its total transform  dil P, 

(iii) if P Q  c  Dc0(V), then Q is mapped Q itself.

We shall denote this homomorphism by the same symbol dil as the birational 

transformation. One sees quite easily that  dilp gives an isomorphism.
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If W is a nonsingular projective surface having the same function field 

as V, birational transformation  -r  : V W is factored to the form

(dil)-1dil    0 ...0P1...P s   1T

with fundamental points Q1,  ,  Q
r on W with respect to V and 

fundamental points P1, ,  P
s on V with respect to W. Therefore 

           • by composing isomorphisms dilPand dil, we obtain an isomorphism                                         Q-1

i

Dc(V)  --,-Dc(W), which we shall denote by T  again. Then, one sees easily 

that if the birational transformation T is the  composition of two 

birational transformations  T1,  T2, then the corresponding isomorphism 

T is also the composition of corresponding isomorphisms to T1, T2.

For c  s Dc(V), Tc is called the total transform of c on  W.

Secondly, we define positivity of divisorial cycles as follows  : 

An element c  s Dc(V) is called virtually positive if all of the

coefficients of  c are non-negative. (Note that element 0 is virtually 

positive under this definition.) An element c c Dc(V) is called

effectively positive if there is a dilatation T  = dilof V                                                         P
.P.                                         1*

r

such that  Tc is virtually positive.

     Now we define  " to go through  ". A curve C on V is said to go  

throughEi1
11m.P.(m.c2,P.' points of V) if C -  E m.P.is 

=

effectively positive.

14



    We add here another definition. A point P of V is said to lie 

on a curve C, if, letting  P0, ,  P
r = P be the sequence of points 

 of  V  such  that  00) is an 

infinitely near point of order one to  Pi -1, P lies on the proper 

transform C* of C on dilP
_.PV. The effective multiplicity of  .. _

 0.---r  -1

P on C in this case is defined by the multiplicity of P on C*. 

     We now observe a linear system L on V. L is a set of positive

divisors and is defined by a pair of a finite k-submodule of k(V) and 

a divisor D on V so that  L=  fD + (f)  OifcM}. Consider the 

birational correspondence T  : V W. We define effective transform

 T
efL of L on W to be the uniquely determined linear system by the

properties that (i) it has no fixed component and (ii) the same module  M 

is associated to it. On the other hand, we define total transform of L. 

For the purpose, we generalize the notion  of a linear system a little. 

Namely, we consider symbols of type L -  E  m.P,, where L is a linear
 1  I_

system,m.cZanolP.
1E Dc0(V). To this symbol, we associate 

 fD -  E m.1P.1DEL, D -11m.P.effectively positive}, which is a set

of effectively positive divisorial cycles. The total transform of 

L -  E m.P. is defined to be the set of total transforms of these
 1  1

effectively positive divisorial cycles. Remarks to be  given here are  :

Remark 5.7. If T is regular, then the total transform TL of 
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L is of the form L* -  E m.P! (L* a linear system ; 1c Dc0(W)).

 m < 0 implies that the total transform of  P° is a fixed component

of L. 

     Remark 5.8. In general, if L has no fixed component, then

TL = (TefL + D) E mill_

with a positive divisor D,  mi c L,  PI c  Dc0(W), and for every member 

of TefL + D, the multiplicity of P!1on it is at least m.1.

    Remark 5.9. As for L -  E m.P.above,if dilQis well 
              111...Q

r

 defined  on  V  and  if  every  P.  is among these Q.3, then the total

transform dilQ
..Q-Im.P,) is a linear system.       l.

r3.

     By virtue of Remark 5.8, we can see the following fact  : 

    Remark 5.10. Let L be a linear system on V. If L has no

fixed component and if  T
efL has no fixed point, then 

         T
efL =  T(L -  E m.P.)                            11

 where  the  P.  are  fixed  points  of  L  and  each  m.  is the multiplicity 

of P
1.on a general member of L. Consequently, each P. is fundamental

with respect to W.

     As a corollary to this, we have the following remark, which we are 

going to use later  :

                             16



    Remark 5.11. Let L be a 

 has  no  fixed  component.  If  T _ of 

and if T
efL has only one fixed 

     (1) Singular  points of a

to T and are fixed points of 

    (2) A fixed point of L

respect to T or Q itself ; 

then every fixed point of L  is

 linear system on V. Assume that L 

L consists only of non-singular curves

 point Q, then 

member of L are fundamental with respect

L. 

is either a fundamental point with

f Q  is fundamental with respect to  T-1,

fundamental with respect to T.

 17



            Part 1. The case n = 2 and k is a field. 

1.1. A preliminary step.

We begin with the following  lemma.

Lemma 1.1. Let a s Autk k[x,  y]. If ax =  cx + d with c, d c k,

then a c J. 

    Proof. ay is expressed as yh(x, y) + f(x), with f(x) s  k[x],

h(x, y) c  k[x,  y]. Then k[x, y] =  k[x, yh(x, y)], therfore there is a 

k-automorphism of k[x, y] which sends y to yh(x, y). Therefore yh 

must be irreducible, and h is a unit in k[x,  y]. Thus h c k, and we 

see that a  s J. q. e. d.

     Now we assert that in  order to prove the generation of  Autk  k[x, y] 

by J  = J(2, k) and G = A(2, k), we have only to show the following 

(1.2) If a c  Autk k[x, y], then there is an element T in the group 

     J  V G generated by J and  G such that ax =  TX.

Because, if this statement is proved, then  T-1a is in J by

Lemma 1.1 and we see that a c J  v  G.

     Therefore we are going to prove (1.2) by induction on the degree d 

of ax. If d = 1, then the assertion is obvious and we assume that d >

We consider the projective  plane2 with generic point (tx, ty,  t)

 = (X, Y, Z) so that Z 0 gives the affine plane  C2 with coordinate 

ring k[x,  y]. Then we consider the linear system L defined by

18
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{x  +cicck}, or more  precisely,  L  = {Ca a  c  S-2} `j  {clz } where C

is the plane curve defined by h(X, Y, Z) +  aZd with homogeneous form

h of degree d such that h(x, y, 1) =  ax. Note that 

(1.3) Coefficients of the defining equations for members of L can be 

      chosen to be independent of the member, except for the coefficient

of  Zd         and also except for the member  (1•2,  .

Note also that

(1.4)  G defines a birational correspondence T  e  /2  F2 by

(x, y, 1)  ((Tx,  ay, 1) and T is biregular  on  Q2  =2  -

L is then the effective transform of pencil of lines, on the

first  F2, going through (0, 1, 0).

    Obviously,  Q[x,  y]/(ox + a)  ti  Q[t] with a variable t over  Q. 

Therefore (1.3) implies that  d•R, is the only reducible memebt of L

and that  C
a(1Q2                    is biregular to an affine line. Therefore there is 

only one ordinary point P common to C
aand Q                                              and P is a 

one-place point of  C. Furthermore, if a a', then  C and  C, do
 a  a  a 

   2
not meet each other in  C . Therefore the point P is common to all 

C . Thus we have
a

(1.5) There is an ordinary point P on  z such that P is a

one-place point of all C
a and Ca•t. = dP.

Consider one Ca with a c k. Then since k[x,  y]/(ax + a) k[t],
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we have

+ c__t + + ctr x  E  c/o+clii                     t++c rt 
(1.6) (mod cx + a) 

            y E  c20  + c21t + + ct                                       2s 

where cijk, cl rc2s O.

Since the degree d is the number of intersections of C
a and

a line at a general position, we see that d =  max{r,  s}. Then, using 

the transposition of x, y (which is in  G) if necessary, we may assume 

that s = d. Then using a linear transformation which  fixes y if r = d, 

we may assume that r < d. Then r is the number of intersections of

Ca Q2 with the line x = constant, Ca and the line x = constant must 

meet at infinity with intersection multiplicity d - r. Since Ca has

only one point P at infinity and since P is a one-place point such

that  C
a•2, = dP,  we  see that d r must be the multiplicity of P 

on  Ca. Since L is a linear system which is the effective transform

of a pencil of lines, singularities  of irreducible members of L must 

be common to all irreducible members (Part 0, Remark 5.11). Therefore 

(1.7) In (1.6), we may assume that s = d > r. These r and s are

independent of the particular choice of a. Furthermore, 

r = d - (multiplicity of P on  C
a).

Now we consider applications of elements of J. Let  i E J. Then 
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the linear system L' to observe is the one defined by  {lax  +alatk}. 

Therefore (1.7) implies that if there is an  i c J such that the degree

of y in t on the new  Ca become smaller than d, it implies that

the degree of  lax is less than d, hence we complete the proof by 

induction argument on d. Since the above reduction is possible if d 

is a multiple of r, we have that 

 (1.8) Assume in  (1.6) that r < s = d 1. Then in order to prove that

 Aut  k[x,  y] =  J  V  G, it is  enough  to show that d is a multiple
 K 

of r  = d - (the multiplicity of P on  C
a).

     We are to give two proofs of  (1.8): one is geometric  0 1.2) and 

the other is rather due to computation of numericals  0 1.3). 

 1.2. Geometric proof of (1.8).

     We shall make use of some results on rational ruled surfaces. 

Though we shall refer them to [7] for the detail, we sketch some of

basic facts.

     By a ruled surface, we mean a projective non-singular surface V 

from which there is a regular map T onto a curve C such that inverse 

image of each point of C is a non-singular rational curve, or, equivalently, 

there is a pencil L of curves on V having no fixed point and such

that every member of L is biregular to  le1 Each member of L is 

called a fibre or a  generator. An irreducible curve C on V is
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called a section if the intersection number (C, = 1 for a fibre  2.

A minimal section is a section whose self-intersection number is the 

smallest among sections. In the case of rational ruled surfaces, the

product  P1 x  F1 of projective lines is one special example, because

it has two ruled surface structures. We take one of its, so that 

El x P (Pef1) are fibres and Q x121                                           (Q  c F1) are minimal sections.

Now, take one Q x  F1 and let P1, ,  P
n be mutually distinct 

ordinary points lying on the section Q x  Pl. Then we can consider the

elementary transformation  elm„  Pon F1 x F1, and we obtain a rational 
 r_. ..

 1----n 

ruled surface.

Notation 2.1. A ruled  surface  which  is  biv,=gmlnr to

 elmr  Fl x  El is denoted by  F
n in general (including the case

 1"n 

 _1  _1
where n =  U, namely,  F x  2 is an F0). 

     of course, we must observe that the definition above does not

depend on the particular choice of the points P1,  ...  P
n, namely two

F are biregular to each other. Furthermore,

    Proposition 2.2. (i) A rational ruled surface is an Fnfor

some n. Furthermore (ii) if m n, then F
mcannot be isomorphic 

to  Fn. Actually, if m > 0, then Fm has only one minimal section,

whose self-intersection number is -m.

Proposition 2.3. Let P be an ordinary point on an F.
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 (i) If P lies on a minimal section, then  elyn is an  F1114. 

(ii) Otherwise,  elmpFn is an

 2
As for the relationship with  1-, 

        7  _  2
     Proposition 2.4. If P is an ordinary point of  F, then  dil 

is an F1. Fibres are proper transforms of lines going through P and 

the minimal section is  dil P.

One preliminary result we need is 

Proposition  2.5. Let V  be an F
n, 72 a fibre, b a section and

let P be the common point of  k and b. Assume that a curve C on 

V goes through P and P is a one-place point of  C. Furthermore, 

assume that  C.R, =  aP,  C'b =  313 with natural numbers a and  (3. Let

W =  elmp V, let C', b' be proper transforms of C, b on W, let P'

be the point on W corresponding to  9.9  C the fibre corresponding to 

P and let Q' be the infinitely near point to P of order one lying 

on b (hence is the common  point of and b'). Then

(1) if  13 > a, then  C''b'  =(13  - a)Q', = aQ', 

(2) if  3 < a, then  CT-2,' = 

(3) if  13 = a, then C' do not go through any of P', Q'.

In any case, the ordinary point where C' meets  Z' is a one-place 

point of C'. m =  min  fa,  0 is the multiplicity of P on C.

Proof. Denoting by C",  k", b" the proper transforms of 
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C,  Q, b, respectively, on  dilp  V, we see that (C",  dilp P) = m and 

therefore (C", b")  = (C, b) -  m, (C",  Q")  = (C,  m. From this, we 

see (1), (2), (3)  inunediately. The last assertion is immediate from the 

property of a one-place point. q. e. d. 

     Before going back to (1.8), we give a remark on fundamental points

of the birational correspondence T  F2  F2 given by

(x, y, 1)  (ax, ay, 1). For distinction of these projective planes, 

we denote them by V and N so that T : V W. Assume on the 

other hand that T is not biregular. Let L* be the linear system of

lines on W and let L** be the effective transform  T-1 L*. Since T 
                                                          ef

is biregular on  Q2 = V -  k  , for each irreducible member C of  L**

its affine part  C  ,,  02 is biregular to an affine line. Therefore 

there is one and only one common ordinary point, say P, of C and  ,Q

and P is a one-place point of C. Note that fixed points of L** amounts

the same as fundamental points with respect to T. Since L** has no 

              2
fixed point on  0-, P must be the unique fixed point among ordinary

points. In view of the fact that P is a one-place point, we have 

     Proposition 2.6. All of fundamental points with respect to T

form a sequence, say, P =  P0, P1,  ,  P
s such that each P. (i > 0) 

is an  infinitely near point to Pi -1of order one.

Proof of (1.8). If r = 1, or if T defined above is a biregular
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map, then d = 1 and therefore we assume that r > 1 and T is not 

biregular. Let L be as in  §1.1, and we consider fixed points of L. 

By the same reason as above, they form a sequence  PJ),  Pi,  ,  P° so 

that each  Pi (i > 0) is an infinitely near point of order one to  Pi -1

Since an irreducible member C of L is rational and of degree d > 1, 

C must have at least one singular point. Hence, by virtue of Part 0, Remark  5.11 

P (even if y = 0) and also all  P° for i < y must be fundamental 0 

with respect to  T. Therefore Proposition  2.6 shows that  P P and 

for i <  y,  PI =  Pi. We consider  dilp V. This is an  F1 with unique 

minimal section  dil P which we shall denote by b1. Note that V is 

the unique  F2 birationally dominated by this F1.

Therefore we have 

(2.7)  s > 1.

Starting with this  F1, we consider sequence of F1, elm F1, 

                                                  1                                                           T-1'

 , elmp
l...pa F1 as far as  P1,,  Palie on  b1 (for the

definition of the term " lie on ", see §  0.5, p.15). Because of the 

condition, each  V elm_ F1is an  F
a+1 (the original                    P ..P 

                                        a 

F1=  di1 V being V1). V ($ < a + 1) has a special fibre9,  $ _                                                    $ 

such that  9,1 came from  Z and  t  0 > 1) came from P1°Let  $6 -

b be the minimal section of  V. Note that  b is the proper 6

                              25



transform of b1. Let C8be the proper transform of C on V. . Since

P is a one-place point of C, we see that

(2.8)  (i)  P is the unique common point of b8and  2,  .

(ii) 9,8and C8have only one ordinary point, say P13',in common. 

(iii) If b8meets C8'8then P'= P. 

                                                                                                                           . Set m  = d - r.  m is the multiplicity of P on C by (1.7).

Therefore  (C1, b1) = m by Part 0, Pronosition 5.4, hence we have  (C1,  k1) 

= d - m  = r. Let q and r' be non-negative integers such that 

 m = qr + r', r' < r. If m is a multiple of r, then d is a multiple

of r. Therefore we assume that 

(2.9) m is not a multiple of r, i.e., r'  0 0.

    We want to show that 

(2.10)  a > q.

    Assume that q >  a.  (C1,  2,1) = r < m  = (C1, b1) implies that P1 

is an r-ple point of  C1. Then, on V2, we have (C2,  z2) = r, 

 (C2, b2) =  m - r. Thus, step by step, by virtue of our assumption that 

q >  a, we see that (Ca+1'ba+1) = m -ar > r=(Ca+1, ka+1)and P'                              'a+1 

is an r-ple point of C and lies on  b1. By Part 0, Remark  5.11,  13(41 

is fundamental with respect to W and therefore P'
00.1 = P004. Thus 

(2.10) is proved.

By the same computation as above, we see that 
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(2.11)  (Cq+1,q+1) = r,(C (4+1'bq+1) = m - qr = r' >  O.

Let Q be the common point of  2,
q+1 and  bq+1. (2.11) shows that

r' is the multiplicity of Q on C, and this is independent of the choice 

of the irreducible member C of L. Hence Q is a fixed point of  L.

Consider dilQ V
q+1' and let b', V, C' be the proper transforms of

 bI (or,  b
q+1),q+1' C  (or,  Cq+1) respectively. Since r' is the 

multiplicity ofQ onC
q+1, wehave(dilQ, C')=r'°                                                         ,(C,V) -                               Q 

r  r' >  O. Thus the common point, say Q', of  dilQ  Q' and  52,' is a 

point lying on C'. Thus Q' is also a fixed point of L. Hence we 

have by virtue of Part 0, Remark 5.11 that

(2.11) Q is fundamental with respect to W, hence  Q =  Pq+1 

      Q' is either  Pq+2 or the point (0, 1, 0) of W.

On  dil V.19 irreducible  curves  such  that  (i)  self-intersection
   q+1' 

 numbers are  ne,„ative and (ii) lies completely out side  of Q-  

                                                    7

 are 

 b',  2,1 and  dil Q only. Therefore on dil
p...pVq+1' those                               o+1s

irreducible curves having selfintersection number  -1 and lying

completely outside of  Q2 are only some curves of the form dilP P.                                                          
_ 1

therefore, in order to obtain W by successive contractions of 

irreducible exceptional curves of the first kind, we must contrant some

 of  dii Pi,  which  contradicts  the  assumption  that Pi  is fundamental.
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Thus r' cannot be positive, and we complete the proof of  (1.8). 

1.3. Remarks to the proof.

Let us look at the proof of the last section again. The first place

we should change now is (2.9), where r' was assumed to be positive, but 

we know now that r' =  O. (2.10) is still good and (2.11) becomes 

(3.11) (Cq+1'q+1) = r, (Cq+1' bq+1) =  O.

     Since L is the effective transform of a complete linear system 

with a base condition, L itself must be a complete linear system with 

a certain base condition. On the other hand, members of L are of degree 

d = m + r (r is assumed to be at least 2) and P0is an  m-ple point, 

 P1' '  
q+1are r-ple points. Let Ld be the linear system of

curves of degree d on V, then we see, by virtue of the fact that 

m = qr, that

    dim [ Ld - (mP0 1+ E.=1rP.)] >[d2+ 3d -  m(m+1) -  qr(r+l)]                                 =21  

  1222       =[m+ r+ 2mr + 3m + 3r -m2- m - mr - m] 
         2

 121  =[r+ mr + m + 3r] =--T(dr + d + 2r) > d + rd + 2. 

    2

But, dim L = 1, hence L must have either at least one more singular 

fixed point or at least two more fixed point. Therefore, by virtue of
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Remark 5.11 in Part 0, Pq+1 is a fixed  point of L. If Pq+1 lies 

on k
q,then Pmust be the common point of dilPand the proper  cl,q+1Pq  q 

transform of 9qion d].Va. Then, by the same argument as at the end           P 

                        q

of the last section, we have a contradiction. Hence  P
q+1 is an ordinary

point of  kq+1. Since  (Cq+1,  bq+1)  =  0, we see that  Pq+1  bq+1

Thus P
q+1 is an ordinary point of 2,(1+1and is  neither the common point 

of k
q+1 and bq+1 nor the point which is the proper transform of Qq.

Now we consider the sequence  Wo = V
q+1 W1 = elm_pW0''W =  q+1 

 elmp  W
15-1, as far as possible but with restriction that (a. < q. Let  q+d

VbethefibreonW.correspondingtoPand let b! be the     1q+1

 mininalsectionofW..Note that the common  point of  9.! and b! is 
                 1 1

the proper transform of 9!1-1By this fact and by the same argument as 

                                                                                           °

at the end of the last section, we see that if  q +  i + 1 < s, then

 q+i+1         is an ordinary point lying on Z!1which is not the common point

of  2,! and  h!. Therefore we see that  W. is an  F  _  , hence
1 1 1  q-1

q +  i + 1 > s unless i =  q. Therefore =  q and  W is an F1. 

W dominates a  R2, say W*. Let  P* be the transform on W* of the

minimal section of W  . 
 q

By the nature of the  transform, we see that

(1) Either W* = W or s > 2q and  P2q+1'  , Ps are all of

the fundamental points of W* with respect to W. 
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(2) The transformation j =  .p •dilp is induces by                        2
q 0

some element T of Autk  k[x, y].

We shall show now 

Proposition 3.2. Above j is a special type of  Jonquires

transformation and T is an element of J = J(2, k) under suitable choice of 

coordinates systems on V and W*. Conversely, every element of 

J is obtained in this manner.

     Proof. We begin with the last assertion. Let  T be an element 

of J. The linear system L* corresponding to this birational transformation 

is defined by the module generated by 1, x, y + f(x) with f(x)  e  k[x]. 

Therefore the module of defining homogeneous forms of members of L* is

generated by  e,  Xe-1 and  Ye-1 + f*(X,  Z), where q = deg f(x) and

f* is the form of degree q such that f*(x, 1) = f(x). Then one sees 

easily that P = (0, 1, 0) is a  (q-1)-ple point of members of L*,

hence T is a  Jonquieres transformation. By a similar argument as we 

made above in this section, we see that the birational transformation 

defined by T is of the form as j above. This completes the proof 

of the last assertion. Let us prove the first assertion. We use the

notation of §1.2. By virtue of the generation of Autk  k[x,  y] by  G = A(2,k) 

and J, we see that the fundamental points P  = P0,P1,,  P
s are all

k-rational. On the other hand, we see that j is a  Jonquieres
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transformation such that the module of the corresponding linear system

contains  Zq and  Xe-1. Indeed, because of the special position of the 

points  Pl, ,  Pq such that they lie on  dill, P, we see easily that 

 t + (q -  1)2,goes through (q1=-  1)P + z.q1PiifRis a curve going 

through P. Since P, P1,  P2 a are all  k-rational, we see that

j induces an element of Autk  k[x, y]. Since  Zq and  XZq-1 are in

the module, we may assume that x is invariant under the automorphism 

induced by  i. Then, by Lemma 1.1, we see that  j is in J. Thus the 

proof is completed.

We shall prove one more result:

Theorem 3.3. Autk k[x, y] is so-called amalgamated product of

G = A(2, k) and J = J(2, k). Namely,  ai  e G,  a.  J,  Ti E J,  To  G 

(i =  1, 2, n 1) imply that  Tlai  Tn-lan-lTn G. (cf.  [6])

 Proof. Note that the set of elements of G which fixes the point 

(0, 1, 0) is exactly the subgroup  GnJ. Each element of J which is 

not in G defines a  Jonquieres transformation having  (0, 1, 0) as the 

unique ordinary fundamental point and also having (0, 1, 0) of the new 

plane as the unique ordinary fundamental point with  respect to the 

inverse transformation. Therefore, if we look at the multiplication of 

T.1G.  to Ti+1ai+1... an-1Tn' we see that no fundamental points of these 

factorsarecancelledoutbythemltiplicationbecausea.1changes
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 (0,1,0),hencethefactorT.gives fundamental points which are 

infinitely near points to the last fundamental point with  T1+1ai+1 

Thus the number of fundamental points with respect to  T1a1 ...  an-1Tn

is exactly the sum of the number of fundamental points with respect to

       = 1, , n), hence the product cannot be in G. This completes

the proof of Theorem 3.3. 

1.4. Another proof.

We shall prove (1.8) in a stronger form. Namely 

Theorem 4.1. Assume that C is an irreducible rational curve of

degree d on  F2 and that there is an ordinary point P such that

(1) P  is a  one-place point of C, 

(2)  C'2, = dP, and 

(3) the affien part Cn Q2 is biregular to an affine line. 

 1being

an infinitely near point  if P.1-1for each i  = 2,..., n ) with 

respective multiplicities m = m1,m2,                                          ,  mn. Then either d is a

multiple of d ml orEmi2+ 3.
In particular, if the linear system L of curves of degree d going

through  E  mipi is of positive dimension, then d -  ml divides d.

     Before proving the theorem, we introduce a notion which we shall 

call a (d, r)-sequence.
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When two natural numbers d and r such that d > r are given,

the sequence  r1, ,  r a defined as follows is called the  (d,  r)-

sequence  :

                      d1 ,d. are defined

and if di > 0, let qi and di+1 be such that di -1 = q.d.+ d.,,                                                                                                11-1 

(0f_di+1<y.ThenforeverylcsuchthatEqi1+1 < k 

                                   j 

 -i<j 

 <  E  q r is defined to be d.. 
 i<i

Lemma  4.2. Under the notation, we have

 a

q = Ei=1q,,da= G.C.M.(d, r) and

Er=d+r-d
a'2

                           Er-=dr.

Prood. We have

 2  d

0  =  qldl + d2 d0d1 =  qldl +  d1d2. 

d1= qd+ d3dd= qd2+ dd 1223'122223'

• • • • •

 d
a-2= qa-1da-1 +d; dd=qd2+dd               aa-2a-1-a-1a-1a-1a 

 2  d

a-1= qada ;  da-1da=  qada  .
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Summing up these equalities respectively, we have d0+ d1=

 9 I  qidi + du ; dod1 = E qicr; and we have the required result.

Proposition 4.3. Let C be an irreducible curve on a non-singular

surface F and let P be a one-place point of C. Let m be the 

multiplicity of P on C. Let D be another irreducible curve on F 

which goes through P as a simple point. Let d be the intersection 

multiplicity of C with D at  P, and let c be the  G.C.M. (d, m).

Let the (d, m)-sequence be r1,  r  . Then there is a sequence of 

points P1 =  P, P2,  Pq which is determined uniquely by d/c,  r/c 

and D such that (i) each  P1+1 is  an  infinitely  near  point  of  P.  of

order one and (ii) effective multiplicity of  P, on C is  r,. (The

 way  of  determination  of  P.  is shown by the proof below.)

    Proof. We use an induction argument on d. If d = m, then q = 1, 

 r1 = m and the assertion is obvious. Assume that d >  m. Consider the 

quadratic dilatation  dilp F, the proper transforms C', D' of C, D 

and also the intersection number (dil  P, C'). Since P is an m-ple 

point of C, we have  (dilp P, C') = m by Proposition 5.4 in Part 0. 

Consider the unique common point P2 of  dil P and D'. By our 

assumption on P, P2 is the unique common ordinary point of  dilp P and

C'. On the other hand, since the intersection multiplicity at P of C 

and D is d and since P is m-ple on C, the intersection multiplicity
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at P2 of C' and  D° is d -  m. Therefore the multiplicity of P2

on C' is the minimum of m and d -  m. Now, if d - m > m, then 

considering C' and  D° instead of C and D respectively, we have 

a case with less d, and the proof is completed by our induction argument. 

On the other hand, if  m > d - m, then considering  dil P and  C' 

instead of  D and C respectively, we complete the proof similary.

The following lemma is obvious.

Lemma  4.4. Let  ml,  m
n be a sequence of natural numbers,

such that m1> m2> ...  > m
n( > 1). Then for any a < n      ——— — 

 Z 1111 <E1m.+ (m
a+ 1)2 + (mn - 1)2.  l*

t,n

    Corollary  4.5. Let  m1, m
n and sl,  sv be positive 

integers, such that Esi>Em
j,  m1L Linn and s1Lv. 

                                  If  s >  m. for i = 1, ...,  v  - 1, then  —  1

 2  2
 E  s. >  E m  E s.(s. - 1) > E  m.(m. -  1).  1—  J91 —  3  3

Now we are going to prove Theorem 4.1.

Consider C, d,  m., P. and so on as in the theorem. Let  (d, ml)-

sequence be  m, = r,r,r.       12
q 

     (1) Assume that  G.C.M. (d,  m) = 1. Then we see by virtue of
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Proposition 4.3 that  m, =  r, for
 1  1 

r = 1. This means that  2•(genus
 q

 d(d  -  ml  -  2)  +  ml  +  1  by  Lemma  4. 

 is  rational, we have d -  ml - 2 < 

that m1 = d - 1, and therefore 1

     (2)  Assume  now that  6  = (d, 

divide d. Then n > q and  m.  =

any j > q. On the other hand,

Let the

 E + (d

(4.6)

     Since 

 6  • d  -  m,
 1 

such that

 66+1  =  y.

0 = 2(genus

any

of 

2. 

0,

d.,-

 m1 

 i
r

 i < n and r

C) = d2 - 3d +

Therefore, by

whence m1 d

-  m
1 divides

) 1 and that 

for any i < q

 of C)  =  d2  -  3d  +  2 - E m2

 ,22 = 3 

                                        7 

 "0 .+cf.—LEL 
            1E mi-

 L 
i<qi<q j>q

=  d(d -  m1) - 2d +  m
i + 2 -  6 -  E  m

j>q

(d, d - m1)-sequence  he s1,s.        1q 

-  m
1) -  S. Therefore

 j>q

 d-m1

 =  u6 (u 

 E.  m.  =
 3>q 3 

Then  E  6

2 

 i

does 

> 2)

 36 

1

 n+1= rn+1

 2  -  E  r.  +  E  r. =
        1

the fact that C 

- 1, and we see

d in this case. 

 d -  m  does  not
 1 

 and  m.  <  6 for 

 —

+  E m. 
      1

2 
 m  +  L  m. 

    •>1      J
14

 2  +  E  
m.  . 

    •>q 1    j

 2
Then  E  s:  = 

           1

 E  m.  =  E  s.  -  E  s.  +  2  -  26  . 
 3  1  j>q

not divide d, d -  m1 is a proper

 . On the other hand, let  3 and

 y,  0  <  y  <  S. Set  Si  =  =

 E. m. and, by Corollary 4.5, and
 j>q

d(d - m1),

multiple of 

y be integers

 6,

by the fact
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that m. <  6 
      1 — 

       E 62 -E>  E2E -.
1 1 

             >4>9

Assume for a  moment that  Z.  111.<Es.+26. 
 J>4  —  1

we have similarly

     2 
   s.Ei>2si>E  62 -  E  6 i>2i 

                  i>u+2 1 i>u+2

Therefore

      s. s2 s  +  X  62--E  5 
 1—  1  1 

 i>u+2 i>u+2 

 2  2  2=  u6  u6 +  E  S .  E  S 
          i>u+2 i>u+2 

 =  (u2  -  u  -  2)62  +  26  +  E  62  -  E

>  25 +  E  m.  E m. 
       J•     j>qj>q 

=  252s+ 2 -  26 
            1

This  implies 2 < 0, which is  impossible. Therefore 

 E  m.  >  E s.  +25  .

1>q 31

Then,sinceE.
11m,+Es.=d + m1 - 6  +  d  +-m    <q 

 by Lemma 4.2), we have
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Then, since  s.> 
 1-

1

cS . 
 1

)6)  .(4.(by

havemustwe

3d cS) 1  26

 a,



 E  m. > 3d  . 
 1-

 Since.0=d2-3d+2-Em2+xm.,we have  X  m2 = d2 - 3d + 2 +

> d2 + 2. This proves the main part of Theorem 4.1. As for L, this

implies that two members of L have intersection number bigger than

d2 + 2 which cannot happen unless they have common components. Since L

has an irreducible member C, we see that dim L =  O.

     By these (1) and (2), we completes the proof of the Theorem 4.1.

1.5. One question on rational curves. 

  As we stated in Part 0 as Conjecture 1.1, it has been questioned

that when C is a rational curve in  F2 of degree d such that

 (i) there is only one ordinary point P which is common to C and

 , (ii) C -  {P} (i.e., C (-IQ2) is biregular to an affine line, then

whether or not d is a multiple of d -(the  multiplicity of P on C).

     In the characteristic p 0 case, one have a counter-example as 

we shall see later in this section.

     On the other hand, Abhyankar and  Moh  [1] proved affirmatively the 

question in the  classical case (i.e., in the case of ground field of 

characteristic zero), and also the following  : If d is not a multiple 

of the characteristic of the ground field, then d is a multiple of 

d - (the multiplicity of P on C).

 E m.
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     Note that if this conjecture is  affirmative, then one can see easily 

by induction on d that such a C (with d not  multiple of the 

characteristic of the ground field k) is defined by an f(x, v)  e  k[x,

for which there is an element  cy  e  Autk y] so that ax = f(x, y).

     Now we shall give a family of proposed counter-examples. Assume 

that the ground field k is of characteristic p 0. For each b  e k,

let Cb be the curve  on  C2 defined by the following representation by

a parameter t 

                      2

 (5.1) 

where a is

     One sees 

Therefore  C_

of Cb in  R

degree d  = 

above with P 

But the multi

a

quite

2

 tp k[

 2
.

 b

ycit

max 

 P  = 

ipliit mu

 71,

 x t

 y  =  tap  +  t  + b

fixed natural number, > 1 and prime to p. 

uite easily that

 tap + t +  b]  =  k[t].

is biregular to an affine line. Let  C' be the completion 

 Then  {C'  I b  6  k} spans a pencil L of curves of

 2  f
p  ,  apl. Every  C' satisfies the conditions (i) and (ii) 

(1, 0, 0) or (0, 1, 0) according to p >  a or p <  a.

of P on  C' is the difference of p2 and  ap
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hence every CI'
, is a counter-example which we

remark  :

     Proposition 5.2. The linear system L 

among infinitely near points.

Proof is immediate from Theorem 4.1.

 required.

has variable

We give one more

singularities
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                Part 2 Questions in the general case. 

2.1 An example.

 In Part 1, we observed the case of a polynomial ring of two variables 

over a field. As we discussed in Part 0, these results can be generalized 

easily to the case of a polynomial ring of two variables over an Artin 

ring.

     But, if we deal with a more general case, we shall meet with many 

 difficulties. In this Part 2, we shall discuss some of such difficulties.

Let us begin with an example. 

Let K be a field and consider the polynomial ring R = K[x,  y,  z]

of three variables. Set k =  K[z]. Then R is a polynomial ring of 

two variables x, y over k. We are going to define an element  G of

Autk R by  : 

      7  7.2
 ax  =  x-  2y(zx  +  y-) -  z(zx  +  y-)- 

(1.1) 

               ay = y + z(zx + y2). 

    It is obvious that (1.1) defines a k-homomorphism  a  : R   R.

It is also obvious that  a is an injection. As for this  a, we have 

(1.2)  a(zx + y2) =  zx + y2  .

Indeed, a(zx + y2) = z(x - 2y(zx + y2) - z(zx + y2)2) + (y + z(zx + y2))2

 2
 =  zx  +  y  . 
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Let  T be a k-injection R R defined by

    ,, TX = X+ 2y(zxy2)-  z(zx + y2)2

(1.3)

TY =  y -  z(zx  + y2)  .

Then, by virtue of (1.2), we have

 CTX = a(x  +  2y(zx + y2) -  z(zx +  y2)2)

                                   2 = x - 2y(zx+y2) - z(zx+y2)2 + 2(y + z(zx+v ))(zx+y2

= X

 aTy  =  a(y -  z(zx + y2)) = y +  z(zx + y2) -  z(zx + v2)

Thus  GT = 1. Since  o and  T are injective, we see that 

 -1
automorphism and that  T  = a  -. Now we assert  : 

     Theorem 1.4. The automorphism a defined above is not

group J(2, k)  V A(2, k). 

    Proof. Let k* be the field of quotients of k. Then

element  of Autk*  k*[x,  7], is equal to  a1a2a1 -, where

42

22) z  (zx+y..^)

anis a

thein

anas 6,



                            , 

  x x + z-1y2 

                            of  a1  =  , 

 Y l  Y  ,  . 

 x x 

 02  

Y-2             7 + zx

Note that  of  E J(2, k*) and that  cc

such that  7X = y,  Try =  x. Assume that

 toere are T.  E K),  A. e iAAL, K)  SUCIA
1  1 

 s 6 =  A1T1A2  '''  T2An+1
 T. A(2, k) for every 1,

 1

  A.  / J(2,k) unless A.= 1,  i 
11

Then we have 

 -1
A1T1A2 ... T

nn+11702vcs1  =  1.

By the uniqueness of the factorization

we see that A
n+1 = 1 and Tnal c A(2, k*) 

            T
nx = alx + f(Y)

 1 \  
Tny = a2y

 X 

 17

 X 

 9

 2ff s J(2, k) 

E J(2, k)

 EnaL

   -1 2 
 - z y

  with 

A(2, k),

 =  1 or  n  +  1.

proved at 

 . We write

Part

 C SL(2, k) 

 i.e.,

1, Theorem 3.3,
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                          2 Th
en  T

nalx =  alx + f(y) + z-1ay2. Since  Tn J(2, k), a1 and a2 are 

units in k and f(y) s  k[y]. Therefore f(y) has no term to cancell

out the term z-1a22y2. Hence Tnalx cannot be of degree <  1 in y. 

Thus Tn1 / A(2, k*). q. e. d.

     k in the above example is a polynomial  ring in one variable over a 

field, hence is an Euclid ring. Thus our example shows that even if the 

coefficient ring k is so good as an Euclid ring and  n = 2, the group

Autk k[x, y] is not generated by J(2, k) and A(2, k) (cf. Exercise 1.6

below). Therefore we ask  :

Question 1.5. Find a good structure theorem for Autk k[x,  y] in

the case  where k  -  K[z], K  a  F4."  and  x, y,  z  algebraically 

 independent over K, or more generally in the case where k is reasonably 

good integral domain and x, y algebraically in dependent over k.

Excercise 1.6. Let k be an integral domain with a non-unit z.

Take a c Autk k[x, y] defined by the same equality as (1.1). Prove 

that a is not in J(2, k)  V A(2, k). 

2.2 Another example.

     In § 2.1, we gave an example of a c Autk k[x, y] which is not in 

J(2, k) V A(2, k). Letting k* be the field of quotients of k, the 

example a as an element of Autk* k*[x, y] is the product of three 

automorphisms each of which induces a Jonquieres  transformation of  !2.
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     If we condsider worse k, then we have much simpler 

we have the following

     Theorem 2.1. Assume that k is an integral domain 

a principal ideal ring. Then there is an element a of 

(x, y being algebraically independent elements over k) 

 (l) a is not in J(2, k)  V A(2, k), and

(ii) a induces a Jonquibres transformation of ]P2

of quotients  k* of  k. 

     Let us construct a required example. 

    Let a, b be elements of k such that ak + bk is

ideal  : such pair exists because of our assumption on k. 

a polynomial in one variable X with coefficients in k. 

k-homomorphism k[x, y] k[x,  y] defined by

               ax = x -  bf(ax + by) 

(2.2)

 ay  =  y  +  af(ax  +  by) 

We are going to prove that this  a is the example.

Consider k-homomorphism T defined by 

 r  Tx  =  x  +  bf(ax  +  by)

(2.3)  4

 Ty = y -  of  (ax + by)  . 
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example, and 

which is not

Autk'k[xv]

such that 

over the field 

not a principal

Let  f(X) be 

Let  a be the



Then we have 

(2.4) T(ax + by) = ax + by.

Indeed,  T(ax + by) = a(x + bf(ax + by)) + b(y - af(ax + by))

                      = ax + by. 

Therefore we see that 

 TUX =  T(X  bf(ax + by)) = x +  bf(ax + by) -  bf(ax + by)  =  x,

and similarly, we have  Tay = y. Thus we see that a is an element of

Autk k[x, y] and that T =  0-1

Since a(ax + by) =  ax .+ by, we see by virtue of Lemma 1.1 in Part  1

that a induces a  Jonquieres transformation of  F2 over k*.

Now let us prove that a is not in J(2, k) VA(2, k). Since a

induces a  Jonquieres transformation over k*, we see by virtue of

Theorem 3.3 that if a is in J(2, k)  A(2, k) then a =  X'a'A with

a' c J(2, k), X, A'  c A(2, k). (2.4) shows that a polynomial g(x, y) 

of degree < 1 is mapped to one of degree < 1 by a if and only if

g is of the form d(ax + by)  +c  (cck:dck*).  X-ly is such a

polynomial. This means that by the linear  automorphisma-1, y is 

mapped to d(ax + by) + c (da, db, c  a k). Since ak + bk is not a 

principal ideal, we see that dak + dbk is not equal to the unit ideal k.
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Hence, modulo a maximal ideal m of k containing dak + dbk, we have

that  A-1y is congruent to an element of k, and  A-1                                                              is not an element

of Autk k[x, y]. Thus we obtained a contradiction, and therefore

 a  t J(2, k)  v  A(2, k). q. e. d.

2.3 The case of three or more variables.

Consider the case where n = 3 and k is a field. I am quite

certain that Autk  k[x]  j(3, k) V  A(3, k)  (=  J(3, k)  V  Cr  (3  k)).

Actually, look at the automorphism a defined in  2.1. This is an

element of AutK K[x, y, z],  K being a field.

Conjecture 3.1. This a is not in  J(3, K)  V  A(3, K).

I do not have any rigorous proof of this conjecture yet. But I

have some reasoning for this, and I am going to explain it later. 

(Theorem 1.4 in  2.1 is a  part of it.)

     One important fact used in Part 1 is that, in the case of non-singular 

surfaces, birational transformations are very well described by

fundamental points with help of the notion of infinitely near points. 

But, in the case of three dimensional non-singular varieties, we do not 

have satisfactory theory of infinitely near points  : relationship between 

monoidal dilatations whose centers have common points is complicated and 

therefore description of a birational transformation making use of 

monoidal transformations with nice centers is  difficult.
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    Let us look at elements of J(3, k)  V  A(3, k), or more generally, 

those of J(n, k)  V A(n, k) with n > 3  : let us assume that k is a

field. In order to look at fundamental points of induced birational 

correspondences, it may be better to look at a smaller group J*(n, k) 

defined by

(3.2) J*(n, k)  =  {o  c J(n, k)  I  axi  =  xi for every i >  2}.

It is easy to see

Lemma 3.3. J(n, k) V A(n, k) =  J*(n, k)  V A(n, k) =  J*(n, k)  V GL(n

Now, we take coordinates of  Fn so that T  C Autk k[x] induces

birational transformation given by (x1, ,  x 
 r. 

                                             

, 1) (  x1,  Txn' 

Let T c J*(n, k), T A(n, k). Then 

(3.4)  Tx1 = ax1+ f(x2,,xn)' Tx. =  xi for i > 2.

Therefore

 -1  -1  -1 (
3.5)  T x1= a (x1- f(x2,,  x

n)), T  X. =  x. for i > 2.

Thus we have

     Lemma 3.6. Under the birational correspondence induced by  T,  (i) 

the hyperplane at infinity of the first  En corresponds to the point

(1, 0, , 0) of the latter  ln (as the proper transform),
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(ii) the point (1, 0,, 0) of the first En corresponds to the

hyperplane at infinity of the latter  En.

Now we ask

 nuestion 3.7. Assume that  T1,  T
M J*(n, k),

 ,m -1  E A(n, k),  A.  / A(n, k) for any i and that every  j

do not fix the point (1, 0, , 0). Let T. be the graph of the

birational correspondence induced by TiXiTr+ . A T
m. Does T.                                             m-1

 dominates Ti for every  i = 2, ... , m

     If this question, or something similar, has an affirmative answer, 

we would be able to prove not only an adaption of Theorem 3.3  in Part 1 

for the group J(n, k) V A(n, k) (cf. Lemma 3.3), but also  Conjecture 3.1.

Another base is the following  conjecture : 

Conjecture  3.8.  Assuem that  V  E„T(3, k) V A(3, k),  v  1 A(3, k).

 Letthehighestdegreepartsofare g1,1,2'  g3 

respectively. Then, either there is one of the  gi which is a  polynomial

of the other two, or, there are two of these  g. which are powers of the -1 

same form.

Note that our example  a in  § 2.1 as an element of AutK  Kfx, y, z]

does not satisfy the condition in the conclusion of the conjecture. 

Therefore, if this Conjecture 3.8 has an affirmative answer, then so

*) This was proposed by Professor S. Abhyankar. 
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does Conjecture 3.1.

    One difficulty in proving Conjecture 3.8 lies on the fact that there 

is an injection n :  k[x]  --± k[x] (n = 3) such that the highest 

degree parts of rixi(i = 1, 2, 3) satisfy the condition in the

conjecture, and on the other hand, for a suitable choice of  T  e J(3, k), 

the highest degree parts of  TrIxi (i = 1, 2, 3) do not satisfy the

condition.

By the way, we prove  :

Proposition  3.9. Assume that k is a field, n = 3, a  e  Autk k[x],

 1
and that deg  axi < 2, deg  aj'xi < 2 for every i = 1, 2, 3. Then

a  =  XTX' with X, X' c A(3,  k),  T  e  J(3,  k).

     Proof. Considering elements of the form  Xo with A  e A(3, k), 

we may assume that axi= x.
1 f,1 each i, where f,1 a homogeneous

 formofdegree2.Theno-lx.=x. +  g. with a homogeneous form g .  1  i  1 
i 

of degree 2, by virtue of our assumption. 

      -1  -1 .
x.=a0m.=a  -(x. + f.) = x. + g. + f.(x+gx+gx3+g). 

        _ 111111111,22'3-3 

compairimgdegree2parts,wehave._f .(x)  :                                     gi                                            1l'x2'x3 

From degree 4 parts, we have 0  = f.(ggg).                                                         l' -2'-3

If the locus of  (gl, g2, g3) in the  projective plane  F2 is dense 

 2
in  F-, then  fi = 0 by the second equality, hence  gi = 0 by the first
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equality, which is a contradiction. If the locus of  (g1,  c2, g3) is 

a curve C, then all of f1,f2,-f3must  be a multiple of the defining

polynomial F for the curve C. Hence, either C is a conic and 

f. =  c.F with c. s k, or C is a line and f.  =  h.P with linear forms
1

h.. The former case gives us a contradiction because of the equality

g. =  -f.. Thus the locus C is a line, which means that g1,1,2g3

are linearly dependent. Therefore, using a linear transformation, we may 

assume that g3 =  0. In this case  gl, g2 are linearly independent and 

F =  X3' Then, considering the degree 3 parts, we have 0 = xh                                                                 3.(gg.
1l'g2,0) 

(for i = 1, 2). Since the locus of (g1,g0) is the line C defined

by  x3 = 0, we see that  hi is a multiple of  x3. Thus f1 =  c1x32,

 2
 f2 =  2  3  ' which contradicts our assumption that g1,g2are linearly 

independent. Thus the locus of  (gl,  g2, g3) must  be a point, which 

 meansthatgl=c1C,(c.sk) with a fixed quadratic form  (7- Then 

using a linear transformation, we may assume that g2 = g3 = 0. Then

the remainder of the proof is obtained by the following

Lemma 3.10. Assume that  o  E Aut,
(1(Dcl.Hax.=)c.1for every

 i < 2, then a c J(n, k).

Proof is similar to the one for Lemma 1.1 in Part 1.

2.4 One more question. 

   We like ask here a question. Consider the case where k is a field 
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and n > 1. If n = 1 or 2, then we see the following proposition 

by our observation made in Part 0, Part 1  :

Proposition 4.1. If K is a field and if n < 2, then Autk k[x]

is generated by A(n, k) and Autk[
x] k[x].                                 1

Therefore we ask  : 

Question 4.2. Assume that k is a field and n > 3. Is

Autk k[x] generated by A(n, k) and Aut,k] k[x] ?                                      Autk[ x

We note here that our assumption that k is a field is important.

Indeed, our example in 2.1 shows that the question has negative answer 

if k is an integral domain which is not a field (in the case n = 2).
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