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it is worthy to know many different proofs of the two variables case.
Because of this reason, I am giving here my proof of the two variables
case and also some comments on the general case.

Thanks are due to Professor Abhyankar, Professor Zariski for their
valuable informations on the problem; to my friends at Purdue University
for their discussion on the problem; to Mrs. Hayashi for type-writing

the manuscript.

Masayoshi Nagata
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Part O Introduction and preliminaries.

Introduction.

By a ring, we shall mean a commutative ring with identity throughout
this article.

Let k be a ring and let k[x] = k[xl, vee s xn] be the polynomial

ring in n variables x X over k. Then the question which

10 cce o
we shall deal with is on the structure of the group of automorphisms
A.utk kix] over k, k and k[x] will maintain these meanings throughout
this article.
We shall begin with looking at some special subgroups of Autk klx].
Linear subgroups. Let us consider the general linear group GL(n, k)

over k. An arbitrary element o ¢ GL(n, k) defines a k-automorphism

of k[x] so that
(oxl, cee s axn) = (xl, cee s Xn)O

where the right hand side is understood by matric multiplication. Note

that if o, t € GL(n, k), then (o(Txl), v o(rxn)) = 0[(x1, cee xn)T}

= (cxl, e oxn)r = (Xl, cen s xn)cr. Thus we may regard that

the general linear group GL(n, k) 1is a subgroup of Aut, k[x].

k

Furthermore, we can observe affine transformations similarly. Namely,

an affine transformation of the n-space is defined by a sequence of



an element, say ¢, of GL(n, k) and n elements, say Cys eov 5 O

of k. Such an affine transformation defines also a k-automorphism such
that X, is sent to ox; + c,- Thus the affine transformation group
A(n, k) can be regarded as a subgroup of Autk kix].

Jonquiéres automorphisms. When a a ~are units in k and

17

fi € k[xi

ITEREEE Xn] for i=1, ... , n (fn e k), thgn there is.an

element T of Autk k[x] such that 1tx, =a,x, +f, (i =1, ..., n).
i i%1 i

This type of automorphism is called a Jonquidres automorphism of k[x].

The set J(n, k) of all Jonquieres automorphisms of k[x] is a subgroup
of Autk kix].

As we shall show later (§ 0.2), it holds that

Theorem 0.1. Let s +or 5 8 be nilpotent elements of k[x].

Then there is a o ¢ Autk k[x] such that ox; = X, + 8 GE=1, ..., n).

The set of all automorphisms of this type forms a subgroup of

Autk k[x] and is called the subgroup of nilpotency of A.utk k[x]. We

shall denote it by N(n, k). As for this subgroup, it holds that :
Proposition 0.2. Let Y0 Dbe the nil-radical of k and we consider

the natural homomorphism ¢ : Autk kix] — Aut /6-(k//6—)[x]. Then U

k/
is a surjection and N(n, k) is the kernel of .

The proof will be given later in § 0.2.

Now, one particular problem in our question is :



Qestion 0.3. Is Autk k[x] ‘generated by GL(n, k), J(n, k) and
N(n, k) ?
Unfortunately, the answer is negative in the general case as will
be shown in Part 2. Part 1 of the article contains a proof of the
following theorem, which should be called a theorem of Jung-van der Kulk
(cf. § 0.1), and also a structure theorem of Aut, k[x] due to van der Kulk.
Theorem 0.4, The question 0.3 is affirmative if k dis a field and
if n= 2.
On the other hand, it is obvious that
Lemma 0.5. If k 1is the direct sum of rings k

Autk k{x] is the direct product of Autk ki[x] (i=1, ... , s).

i

In view of Proposition 0.2 and Lemma 0.5 above, we have

Corollary 0.6. The question 0.3 is affirmative if =n = 2 and if
k dis an Artin ring.

Part 2 contains some results related to the question in case either

n# 2 or k is not an Artin ring.

0.1 Historical remarks on the problem.

The case where n =1 and k 1is a field is well known and easy ;
even if k is not a field, if =n = 1, then Autk k[x] has fairly simple
structure (cf. § 0.3).

In the past, mostly the case where k 1is a field and n = 2 has



been treated. In that case, an affirmative answer of the questiomn 0.3
was claimed by Jung [4] in 1941, in the classical case. Some related
questions in the classical case were treated also by some authors including
Engel [2] aﬁd Gutwirth [3]. But I am afraid that their treatments are
too difficult to follow. Meanwhile, van der Kulk [6] gave a much better
treatment and proved our Question 0.3 for n =2 and k an arbitrary
field. Recently, Abhyankar-Moh [1] treated the question from another
aspect. Namely, as one will see later in this article, the question has
very close relationship with the following classical conjecture :
Conjecture 1.1. Let. C be an irreducible curve on an affine plane
S defined by f(x, y) € kix, y]. Assume that C is biregular to an affine
line, namely, k[x, y1/(f) = k[t]. Then there is a polynomial g(x, y)
such that klIx, vl = k[f, gl.
As was shown by the writer [8], this conjecture is not affirmative
in the positive characteristic case, hence the conjecture was modified
Modified conjecture 1.2, Add one assumption that deg f 1is not
divisible by the characteristic of the ground field k. Then the assertion
in the conjecture holds good.
One of important results in [1] is an affirmative answer of this
modified conjecture.

On the other hand, our treatment is very different from those given



by these authors : We are to make use of nice behaviour of birational

correspondences of non-singular projective surfaces.

0.2 Some easy results related to the statements in Introduction.

To begin with, we shall prove a well known lemma :

Lemma 2.1, Let M be a k-module and let N be a submodule of M.
If I is a nilpotent ideal of k and if M = N + IM, then M = N.

Proof. M=N+IM=N+IN+ IM =N + IZM° Similarly,

M= N+ IrM for every natural number t. Because of the nilpotency of I,
we have M = N, g.e.d.
Proposition 2.2, Consider n elements Vs v 5 Yy of the
polynomial ring k[x]. If kiy] = kix], then k[y] 1is a polynomial ring,

i.e., F{x) ¢ k[x}l, Fly) = 0 imply F(x) = 0. Hence there is a

k-automorphism o of k[x] such that oxX, =y, i=1, 2, ... , n).
Proof, Assuming the contrary, let F(x) (# 0) be such that

F(y) = 0. Since kly] = k[x], there are polynomials fl(x), coe s fn(x)

such that X, = fi(y), Let k' be the subring of k generated by the

coefficients of 1, F(x), Yy e s Voo fl(x), cee fn(x)= Then k'

is noetherian, because k' is finitely generated. Therefore, considering

k' 1instead of k, it suffices to prove the assertion under the additional

assumption that k is noetherian. Let ¢ be the k-surjection given by

¢xi =y i=1, ... , n). Then powers ¢r are also k»homomorphisms,



Let Ir be the kernel of ¢r. Since k is noetherian, there is one r,
say s, such that IS =1 = ,.. . Let a be an arbitrary element
of IS. Since ¢S is a surjection, there is an element b of k[x]
such that a = ¢s(b). Then we see that 0 = ¢S(a) = ¢zs(b). Hence
bel, =1I_. This implies that a = 6% (b) € ¢S(Is) = {0}. Thus
IS = {0} and we see that ¢ 1is an automorphism. q.e.d.
As a corollary to these two results, we have :
Proposition 2.3. Let Yys e s Y E k[x] be such that they
generate k[x] over k modulo the nil-radical, i.e. (k[y] modulo the

nilradical) = (k[x] modulo the nil-radical), then kix] = k[y] and

there is a k-automorphism o such that oxX; =y, (A=1, ..., n).

S,
Proof. x, =t, + 3. ° (ti e kly] , cij € (the nilradical

it T f3=1 %4373
of k), zij € k[x]). Let N be the ideal generated by these cij
@=1, ... ,n;j=1, ..., si). Then N 1is nilpotent and therefore
k[x] = k[y] by Lemma 2.1. Therefore we have the result by Proposition 2.2.
q.e.d.

Now, let us prove Theorem 0.1. Setting Vi T X + g;» we see that
Proposition 2.3.is applied immediately, and we have the theorem.

Next, let us prove Proposition 0.2. If 1 ¢ AUtk//a (k//0 )[x1,

then let Vs be an element of k[x] such that (yi modulo /0) =

X . Then Proposition 2.3 implies that there is o ¢ Autk k[x] such



that GXi = yi. Thus ¢ 1is a surjection. It is obvious that N(n, k)

is the kernel of ¢. g.e.d.

0.3 The easy case, n = 1.

Proposition 3.1. If n =1, then Autk k[x] is generated by
A(l, k) and N(1, k). More precisely, there is a one-one correspondence
between A,utk k[x] and the set M= {(a, b, f) | a = a unit in
k, b e k, £ = a nilpotent element in k[x]} in such a way that o
corresponds to (a, b, £) if ox =ax + b + £,

Proof. In view of Proposition 0.2, we may assume that V0 = {0}.
It is obvious that for a given (a, b, 0) € M, there is a o ¢ Autk kix]

such that ax + b = gx. Let T be an arbitrary element of Aut. k[x]

k

and write tx=c¢. .+ c.x+ ... + ¢ x° (c, € k, ¢ # 0). Since there
0 1 s i s

is an F(x) k[x] such that F(tx) = x, we must have s = 1 and

deg F(x) = 1 (by our assumption that v0 = {0}). Therefore we see also

that ¢y is a unit in k. q.e.d.

0.4 Prerequisites, notation and terminology.

Notation introduced in the introduction above is maintained. When
we consider two irreducible algebraic surfaces V, W having the same
function field, we identify points P ( €V) with Q ( € W) if they

correspond biregularly under the natural birational correspondence



(i.e., if their local rings over a field K of definition over which
they are rational coincides with each other). In this sense, the
quadratic dilatation dilP V of V with center P is well defined.
When a successive quadratic dilatation with centers Pl’ eve 5 P is

defined on V, then the transformation is denoted by dilP p -
‘ 1°"""n

Hence dllP p = d11P 'dllP

1 n n 1 n-1
We are assumed to be familiar with basic facts on birational
correspondences of non-singular projective surfaces.

A point of V 1in the usual sense is called an ordinary point of V.

By a point of V, we understand that it is either an ordinary point
or an infinitely near point V : as for the unotiom of an infinitely near
point, we shall review it in § 0.5.

Let C be an irreducible curve on V. A point P of C (P being

an ordinary point of V) is called a one-place point of C if the derived

normal ring of the local ring of P on C is local ; this means that
if W 1is a surface birationally dominating V and if ordinary points
Q, Q' of W, corresponding to P, lies on the proper transform of C,
then Q = Q'.
2 denotes a universal domain which we shall fix, and QZ denotes
. 2 . ; .
the affine plane (over Q). B denotes a projective plane. Using

coordinates system (X, Y, Z) on Ez, the line Z = 0 is supposed to



be the line at infinity and is denoted by L. The complement of the line
is identified with Qz.

When V 1is an irreducible algebraic variety defined over a field K,
the function field of V over K is denoted by K(V).

Let V and W are non-singular varieties such that W dominates V.
Let T be the correspondence V —> W. If D is a divisor on V, then
the total transform of D is denoted by T{D} ; the proper transform
of D is denoted by T[D]. Note that T{D} is defined by local
equations, namely, if Q dominates P wunder T“l, then (the local
equation of T{D} at Q) = (the local equation of D at P). Therefore
the total transform T{ } preserves linear equivalence.

Linear equivalence of divisors is expressed by the symbol =~ .

0.5 Infinitely near points.

One remarkable fact on birational transformations of non-singular
projective surfaces is as follows :

Theorem 5.1. Let V and W be non-singular projective surfaces

having the same function field. If an ordinary point P 1is dominated

by an ordinary point Q of W, then there is a sequence P = PO’ cee s Pn
such that (i) Q = P and (ii) for each i > 0, dil is well
n P ...P,
0 i-1
defined on V and P, is an ordinary point of dil V which
i PO...Pi_l



dominates P, _.
i-1

In this case, Q@ 1is called an infinitely near point to P of order

Infinitely near points to P of order one correspond to tangential
directions around P. Namely, letting t and u be local coordinates
at P, we consider the local equation of a curve C at P

(5:2) Zi+j=m cijtiuj + (terms of higher orders)

3

with Ciy € k, m > 0. The term h(t, u) = % cijtlu gives (besides

J
that P 1is an m-ple point of C) tangential directions of branches of
C at P 3 C has a branch of tangential direction t =ou (o e Q) if
and only if t - ou dis a factor of h(t, u). On dilP vV, if t/u=oa

at a point P' of dilP P, then the local equation of the total transform

c* of C at P' is
umh(t/u, 1) + um+1g(u, t/u)

with some polynomial g. Therefore it is factored to u"  and

(5.3) h(t/u, 1) + ug(u, t/u).

Since u at P' gives dilP P, C* 1is of the form m'dilP P+ Cl
with a curve Cl whose local equation at P' is (5.3). Cl goes through

P' obviously because h(t, u) is a homogeneous form having t - ou as

a factor. Furthermore, if m is the exact multiplicity of P on C,

10



then, the intersection multiplicity of C., with dilP P, coincides with

1
the multiplicity of the factor t - au in h(t, u), because, in view of
the fact that u defines dilP P, we see that the former coincides with
the intersection multiplicity of the curve h(t/u, 1) = 0 with dilP P
at P', Thus we obtained also the following :

Proposition 5.4. If a curve C goes through an ordinary point P

of V with multiplicity exactly m, then letting C denote the proper

1

transform of C on dilP V, we see that

[¢D) The total transform dilP C of C 1is equal to Cl + m-dilP P

(2) the intersection number (Cl, dilP P) 1is equal to m.
We note here that the intersection number of two divisors C', C"

coincides with that of total transforms of C', C".

Proposition 5.5. With the same notation as above, we have

~~
et

) (allP P, dllP P) = -1.

@ (), ¢) = (€, O -n

Proof. Since C~ C' - C" (C', C" are positive divisors) such
that C'V C" 3P, we see that (dil,C, dil P) = (dil, C' - dil; ¢", dily P)
= 0. Hence 0 = (C1 +m dilP P, dilP P) =m+m (dilP P, dilP P), and

we have (1). (C, C) = (Cl + m dilP P, C, +m dilP P) = (Cl, c,) +

1

2 2 2
Cl) +2m" - m = (Cl, Cl) + m,

1
. 2, .. _
Zm(Cl, dllP P) + m <d11P P) = (cl,

q.e.d.

11



Remark 5.6. Proofs of these two propositiorms may be done as follows
Proposition 5.4, (1) is proved first. Then considering a special case
where m = 1, we obtain Proposition 5.5, (1). Then we have Proposition 5.4,

(2) by :

\

0= (C, +m dilP P, dilP P) = (Cl, dilP P) + m(dilP P, dilP P)

1

Here we add a remark on the case where m is not the exact
multiplicity. We consider the condition on curves C such that C
goes through P as an m-ple point ind furthermore C goes through
certain infinitely near points Ql’ cee s QS of order one to P, for
instance. It is quite natural to understand this condition to be the
condition on the local equation of C» at P to be such that it is of
the form (5.2) and the form h(t, u) = % cijtiuj has factors corresponding
to Ql’ cee Qs' Actually, if we look at a linear system of curves on
V and consider those members of L satisfying the above condition,
then the subset of such members is a well defined linear system under
this understanding. If a C goes through P with multiplicity bigger
than m, then h(t, u) = 0 whence the condition is satisfied by this C.
This means that if the multiplicity of P is higher, then the condition

stated above do not imply that the curve has branches corresponding to Ql'

One extreme case is the case where s > m. Since h is of

12



degree m, it cannot have more than m factors unless it is zero.
Therefore, as the actual effect, the condition ™ to go through P with
multiplicity m and furthermore goes through m + 1 distinct infinitely
near points of order one to P " is equivalent to the condition " to go

e

through P with multiplicity m + 1

LA

Therefore we must be careful of the term " to go through ", and
therefore we shall define the term after some preliminaries.

First, we define divisorial cycles in very generalized way. Namely,
let DCO(V) be the set of point of V (including infinitely near points)
and let Dcl(V) be the set of irreducible curves on V. Let Dc(V) be

the free module generated by DcO(V)\V’Dcl(V) over Z. This module

Dc(V) is called the divisorial cycle group of V and each member of it

is called a divisorial cycle on V.

When P 1is an ordinary point of V, we define a group homomorphism
Dc (V) ———)—Dc(dilP V) by
(1) if C e Dcl(V), then C is mapped to its total transform
(in the usual sense),
(ii) P is mapped to its total transform dilP P,
(iii) if P # Q ¢ DcO(V), then Q is mapped Q itself.
We shall denote this homomorphism by the same symbol dilP as the birational

transformation. One sees quite easily that dilP gives an isomorphism.

13



If W is a nonsingular projective surface having the same function field

as V, birational transformation 1 : V —> W is factored to the form

with fundamental points Ql’ ces s Qr on W with respect to V and
fundamental points Pl, ey PS on V with respect to W. Therefore

by composing isomorphisms dilP and dil —l, we obtain an isomorphism

Q

i i
Dc(V) — De (W), which we shall denote by T again. Then, one sees easily
that if the birational transformation T is the composition of two
birational transformations Tl’ T2, then the corresponding isomorphism
T is also the composition of corresponding isomorphisms to Tl’ T2-

For c ¢ Dc(V), Te is called the total transform of ¢ on W,

Secondly, we define positivity of divisorial cycles as follows :

An element ¢ e Dc(V) is called virtually positive if all of the

coefficients of c. are non—negative. (Note that element O is virtually
positive under this definition.) An element ¢ ¢ Dc(V) 1is called

effectively positive if there is a dilatation T = dilP P of V
1B,

such that T¢ is virtually positive.

AL

Now we define " to go through ". A curve C on V is said to go

s
P . (£ _ .
through Zi=1 m P, (mi e Z, Pi points of V) if C b miPi is

effectively positive.

14



We add here another definition. A point P of V dis said to lie

on a curve C, if, letting P Pr = P be the sequence of points

0r e

of V such that P is an ordinary point and each Pi (i > 0) is an

0
infinitely near point of order one to Pi—l’ P 1lies on the proper
transform C*¥ of C on dilP P V. The effective multiplicity of
o Fro1

P on C 1in this case is defined by the multiplicity of P on C%,

We now observe a linear system L on V. L is a set of positive
divisors and is defined by a pair of a finite k-submodule of k(V) and
a divisor D on V so that L= {D+ (f) | 0 # f ¢ M}. Consider the

birational correspondence T : V — W. We define effective transform

TefL of L on W to be the uniquely determined linear system by the
properties that (i) it has no fixed component and (ii) the same module M
is associated to it. On the other hand, we define total transform of L,
For the purpose, we generalize the notion of a linear system a little.
Namely, we consider symbols of type L - % miPi’ where L is a linear
system, m, e Z and Pi £ DcO(V). To this symbol, we associate

{D -z mP, | DeL,D -3 m P, effectively positive}, which is a set

of effectively positive divisorial cycles. The total transform of

L -3 miPi is defined to be the set of total transforms of these
effectively positive divisorial cycles. Remarks to be given here are

Remark 5.7. If T is regular, then the total transform TL of

15



L is of the form L* -~ ¢ miPi (L*# a linear system ; P; £ DcO(W)).
m < 0 implies that the total transform of P; is a fixed component
o

of L.

Remark 5.8. In general, if L has no fixed component, then
_ - [}
TL = (T_L +D) - I mP}

with a positive divisor D, m, € Z, Pi € DcO(W), and for every member

of Te L + D, the multiplicity of Pi on it is at least m, .

f

Remark 5.9. As for L -3 miPi above, if dil is well

Ql"'Qr
defined on V and if every Pi is among these Qj’ then the total
transform dilQ ...Q -7 miPi) is a linear system.
1 T
By virtue of Remark 5.8, we can see the following fact :
Remark 5.10. Let L be a linear systemon V. If L has no

fixed component and if Te L. has no fixed point, then

f

= - P
TefL T - 3 m i)

where the Pi are fixed points of L and each m is the multiplicity
of Pi on a general member of L. Consequently, each Pi is fundamental
with respect to( W.

As a corollary to this, we have the following remark, which we are

going to use later :

16



Remark 5.11. Let L be a linear system on V. Assume that L

has no fixed component. If TefL consists only of non-singular curves

and if Te L has only one fixed point Q, then

£

(1) Singular points of a member of L are fundamental with respect

to T and are fixed points of L.
2) A fixed point of L 1is either a fundamental point with
-1

respect to T or O itself ; if Q is fundamental with respect to T ~,

then every fixed point of L is fundamental with respect to T.

17



Part 1. The case n =2 and k is a field.

1.1. A preliminary step.

We begin with the following lemma.

Lemma 1.1. Let o ¢ Autk k[x, y]. If ox =cx+d with ¢, d ¢ k,
then o ¢ J.

Proof. oy 1is expressed as vh(x, y) + f(x), with f(x) ¢ k[x],
h(x, y) ¢ k[x, y]. Then k[x, yv] = k[x, vh(x, y)], therfore there is a
k-automorphism of k[x, y] which sends vy to vh(x, y). Therefore vh
must be irreducible, and h dis a unit in k[x, y]. Thus h ¢ k, and we
see that o ¢ J. » q. e. d.

Now we assert that in order to prove the generation of Au

by J =J(2, k) and G = A(2, k), we have only to show the following

(1.2) If o ¢ Autk k[x, y], then there is an element 1t in the group
JVe generated by J and G such that ox = tX.
Because, if this statement is proved, then T—10 is in J by
Lemma 1.1 and we see that ¢ ¢ J VY G.
Therefore we are going to prove (1.2) by induction on the degree d
of ox. If d = 1, then the assertion is obvious and we assume thatr d > 1.
We consider the projective plane Ez with generic point (tx, ty, t)

= (X, Y, Z2) so that Z # 0 gives the affine plane Qz with coordinate

ring k[x, y]. Then we consider the linear system L defined by

18



{x+ ¢ | c ¢ k}, or more precisely, L = {Ca ’ ace Q) “’{dzm} where Ca
is the plane curve defined by h(X, Y, Z) + aZd with homogeneous form
h of degree d such that h(x, vy, 1) = gx. Note that
(1.3) Coefficients of the defining equations for members of L can be
chosen to be independent of the member, except for the coefficient
of Zd and also except for the member d-zm.
Note also that
(1.4) o defines a birational correspondence T : EZ — Ez by
(x, v, 1) —> (0%, oy, 1) and T is biregular on Qz =2 - 3
L dis then the effective transform of pencil of lines, on the
first EZ, going through (0, 1, 0).

Obviocusly, Q[x, v}l/(ocx + 2) W Qft] with a variable t over Q.
Therefore (1.3) implies that d-g  is the only reducible memebt of L
and that Ca(\Qz is biregular to an affine line. Therefore there is
only one ordinary point P common to Ca and 2 and P is a
one-place point of Ca' Furthermore, if a # a', then Ca and Ca' do

2
not meet each other in ( . Therefore the point P is common to all

Ca. Thus we have

1.5) There is an ordinary point P on zm such that P is a
one-place point of all Ca and Ca'zm = dP.

Consider one Ca with a ¢ k. Then since k[x, yl/(ox + a) ¥ k[t],

19



we have

- r
b = c10 + Cllt + ... F Clrt
(1.6) s (mod ox + a)
Y = 9 + c21t + ...+ czst
where Cij e k, 1% # 0.

Since the degree d is the number of intersections of Ca and
a line at a general position, we see that d = max{r, s}. Then, using
the transposition of x, y (which is in G) if necessary, we may assume
that s = d. Then using a linear transformation which fixes y if r = d,
we may assume that r < d. Then r 1is the number of intersections of
Ca(ﬂ Q" with the line x = constant, Ca and the line x = constant must
meet at infinity with intersection multiplicity d - r. Since Ca has
only one point P at infinity and since P is a one-place point such
that Ca~2w = dP, we see that d - r must be the multiplicity of P
on Ca' Since L 1is a linear system which is the effective transform

of a pencil of lines, singularities of irreducible members of L must

be common to all irreducible members (Part 0, Remark 5.11). Therefore

a.7 In (1.6), we may assume that s =d > r. These r and s are
independent of the particular choice of a. Furthermore,
r =d - (multiplicity of P on Ca)’

Now we consider applications of elements of J. Let 1 e J. Then
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the linear system L' to observe is the one defined by {i0x + a [ a e k}.
Therefore (1.7) implies that if there is an 1 ¢ J such that the degree
of vy in t on the new Ca become smaller than d, it implies that

the degree of 10x d1s less than d, hence we complete the proof by
induction argument on d. Since the above reduction is possible if d

is a multiple of r, we have that

(1.8) Assume in (1.6) that r < s =d # 1. Then in order to prove that
Autk k[x, y] = 3 VG, it is enough to show that d is a multiple
of r =d - (the multiplicity of P on Ca),

We are to give two proofs of (1.8): one is geometric (§ 1.2) and

the other is rather due to computation of numericals (§ 1.3).

1.2, Geometric proof of (1.8).
We shall make use of some results on rational ruled surfaces.
Though we shall refer them to [7] for the detail, we sketch some of
basic facts.
By a ruled surface, we mean a projective non-singular surface V
from which there is a regular map T onto a curve C such that inverse
image of each point of C 1is a non-singular ratiomnal curve, or, equivalently,
there is a pencil L of curves on V having no fixed point and such
that every member of L 1is biregular to El. Each member of L 1is

called a fibre or a generator. An irreducible curve C on V is
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called a section if the intersection number (C, 2) = 1 for a fibre g.

A minimal section is a section whose self-intersection number is the

smallest among sections. In the case of rational ruled surfaces, the
1 1 . . : . .
product B x B~ of projective lines is one special example, because

it has two ruled surface structures. We take one of its, so that

1

Px P (P ¢ El) are fibres and Q x El

1
(Q e ) are minimal sections.

Now, take one Q x El and let P Pn be mutually distinct

l,‘a.a »
ordinary points lying on the section Q x B~. Then we can consider the
. 1 1 . .
elementary transformation elmP P on B x B, and we obtain a rational
IRRRE
ruled surface.
Notation 2.1. A ruled surface which ig bhiregular to

elmP P El X El is denoted by F in general (including the case
10" n !

where n = 0, namely, El x Il is an FO).

of course, we must observe that the definition above does not

depend on the particular choice of the points Pl’ e Pn’ namely two
Fn are biregular to each other. Furthermore,
Proposition 2.2. (i) A rational ruled surface is an Fn for

some n. Furthermore (ii) if m # n, then Fm cannot be isomorphic
to Fn' Actually, if m > 0, then Fm has only one minimal section,
whose self-intersection number is -m.

Proposition 2.3. Let P be an ordinary point on an Fn'
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1) If P 1lies on a minimal section, then elmPFn is an Fn+l'

(ii) Otherwise, elmPFn is an Fn-l'

As for the relationship with EZ,

Proposition 2.4. If P is an ordinary point of EZ, then dilP EZ

is an Fl. Fibres are proper transforms of lines going through P and
the minimal section is dilP P.

One preliminary result we need is

Proposition 2.5. Let V be an Fn, 2 a fibre, b a section and
let P be the common point of 2 and b. Assume that a curve C on
V goes through P and P dis a one-place point of C. Furthermore,
assume that C°f = oP, C°b = BP with natural numbers o and RB. Let
W= elmP V, let C', b' be proper transforms of C, b on W, let P’
be the point on W corresponding to &, &' the fibre corresponding to
P and let Q° be the infinitely near point to P of order one lying
on b (hence is the common peint of &' and b'). Then

(1) if B > a, them C':b' = (B - a)Q", C'-2" = aQ',

(2) if B8 < a, them C'-2' = gpP',

(3) if B8 = a, then C' do not go through any of P', Q'.
In any case, the ordinary point where C' meets &' 1is a one-place

point of C'. m = min {0, B} is the multiplicity of P on C.

Proof. Denoting by C", &', b" the proper transforms of
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c, Z{ b, respectively, on dilP V, we see that (C", dilP P) =m and
therefore (C", b") = (C, b) = m, (", 2") = (C, 2) - m. From this, we
see (1), (2), (3) immediately. The last assertion is immediate from the
property of a one-place point. q. e. d.
Before going back to (1.8), we give a remark on fundamental points
of the birational correspondence T : Ez — Ez given by
(x, vy, 1) —> (ox, oy, 1). For distinction of these projective planes,
we denote them by V and W so that T : V — W. Assume on the
other hand that T 1is not biregular. Let L* be the linear system of
lines on W and let L** be the effective transform T;% L*, Since T
is biregular on Qz =V -2, for each irreducible member C of L¥%,
its affine part C.F\Qz is biregular to an affine line. Therefore
there is one and only one common ordinary point, say P, of C and §
and P is a one-place point of C. DNote that fixed points of L*%* amounts
the same as fundamental points with respect to T. Since L*%* has no
fixed point on Qz, P must be the unique fixed point among ordinary
points. In view of the fact tﬁat P 1is a one-place point, we have
Proposition 2.6. A1l of fundamental points with respect to T
form a sequence, say, P = PO, Pl’ cee s Ps such that each Pi 1> 0)
is an infinitely near point to Pi—l of order onme.

Proof of (1.8). If r =1, or if T defined above is a biregular
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map, then d = 1 and therefore we assume that r > 1 and T is not
biregular, Let L be as in §1.1, and we consider fixed points of L.
By the same reason as above, they form a sequence Pé, Pi, e s P; SO0
that each Pi (i » 0) is an infinitely near point of order one to P,

i-1°

Since an irreducible member C of L is rational and of degree d > 1,
C must have at least one singular point. Hence, by virtue of Part 0, Remark 5.11

Pé (even if vy = 0) and also all Pi for 1 < y must be fundamental

with respect to T. Therefore Proposition 2.6 shows that Pé = P and
for i < vy, Pi = Pi' We consider dilP V. This is an Fl with unique
minimal section dilP P which we shall denote by bl” Note that V is

the unique EZ birationally dominated by this Fl°

Therefore we have
(2.7 s > 1.

Starting with this F., we consider sequence of F_, elmP o,
1 1 1

tee s elm?l"'P@ F1 as far as Pl, vee s Pu lie on b1 (for the

definition of the term " lie on ", see § 0.5, p.15). Because of the

(the original

condition, each V@+l = elmPl-..P Fl is an Fa+l

Fl = dilP V being Vl). v (B < o+ 1) has a special fibre ¢

B B8

such that ¢ came from L. and 16 (B > 1) came from P . Let

1 R~-1

bB be the minimal section of VB. Note that bB is the proper
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transform of bl. Let CB be the proper transform of C on VB. Since

P is a one-place point of C, we see that

(2.8) (i) P is the unique common point of b and ¢

B B B”

(ii) QB and CB have only one ordinary point, say Pé, in common.

(iii) If bB meets CB’ then Pé = PB.

Set m=4d - r. m is the multiplicity of P on C by (1.7).
Therefore (Cl’ bl) = m by Part 0, Provosition 5.4, hence we have (Cl, 21)

=d-m=1r., Let g and r' be non-negative integers such that

m=qr +r', r' <r. If m is a multiple of r, then d is a multiple

of r. Therefore we assume that

(2.9) m is not a multiple of r, i.e., r' # O.

We want to show that

(2.10) o > q.

Assume that q > ao. (Cl’ zl) =r<m= (Cl, b,) dimplies that P

1 1

is an r-ple point of C Then, on V2, we have (CZ’ 22) =r,

1

(C2, bZ) =m - r. Thus, step by step, by virtue of our assumption that

q > o, we see that ( ) =m-ar >r = (C

]
Cor1? Po1 o1 Yor1)r and Pl

is an r-ple point of C and lies on bl. By Part 0, Remark 5.11, P&+l

. . 1 =
is fundamental with respect to W and therefore Pa+l Pa+1' Thus
(2.10) is proved.

By the same computation as above, we see that
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]
H
\'2
[an)

(2.11) (c )=1r, ( ) =m-qr

qtl’ JLq+l Cq+l’ bq+l

Let Q be the common point of § + (2.11) shows that

g+l and bq+

1°

r' is the multiplicity of Q on C, and this is independent of the choice

of the irreducible member C of L. Hence Q is a fixed point of L.

Consider dil Vq+l’ and let b', ', C' be the proper transforms of

Q

1

b1 (or, b +l), 2q+l’ c (or, Cq+1) respectively. Since r' is the
multiplicity of Q on we have (dilQ Q, ¢')y =x', (C', ") =

r - r' > 0. Thus the common point, say Q', of dil_ Q' and ' is a

Q
point lying on C'. Thus Q' dis also a fixed point of L. Hence we
have by virtue of Part 0, Remark 5.11 that
(2.11) Q 1is fundamental with respect to W, hence Q = Pq+l :
Q" 1is either Pq+2 or the point (0, 1, 0) of W.
On dilQ Vq+l, irreducible curves such that (i) self-intersection

. . . . 2
numbers are ne_,ative and (ii) lies completely out side of @ are

b', 2' and dil, Q only. Therefore on dil those

Vo 15
Q Pq+l-..Ps g+l

irreducible curves having selfintersection number -1 and lying
. 2 .
completely outside of @ are only some curves of the form d11P Pi'
i
therefore, in order to obtain W by successive contractions of

irreducible exceptional curves of the first kind, we must contrant some

of dilP Pi’ which contradicts the assumption that Pi is fundamental.
i
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1

Thus r' cannot be positive, and we complete the proof of (1.8).

1.3. Remarks to the proof.

Let us look at the proof of the last section again. The first place

1

we should change now is (2.9), where r' was assumed to be positive, but

we know now that r' = 0. (2.10) is still good and (2.11) becomes

(3.11) (c L ,.) =1, (c

q+l’ “q+l ) = 0.

q+l’ bq+l

Since L 1is the effective transform of a complete linear system
with a base condition, L itself must be a complete linear system with
a certain base condition. On the other hand, members of L are of degree
d=m+r (r is assumed to be at least 2) and P0 is an m-ple point,

P are r-ple points. Let L, be the linear system of

1> 0t Pq+l d

curves of degree d on V, then we see, by virtue of the fact that

m = gr, that

. q 1 2
dim | Ld - (mPO + Zi= rPi)] —E_{d + 3d - m(m+l) - qr(r+l)]

v

1

—%-—[m2 + r2 + 2mr + 3m + 3r - m2 - m~ mr - m]

1
—%—{rz + mr + m + 3r] = 2 (dr+d+2r) > d+1r >d+ 2.

But, dim L = 1, hence L must have either at least one more singular

fixed point or at least two more fixed point. Therefore, by virtue of
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Remark 5.11 in Part O, Pq+l is a fixed point of L. If Pq+l lies

must be the common point of dilP Pq and the proper

on lq, then Pq+l '
q
transform of Qq on dilP Va. Then, by the same argument as at the end
q
of the last section, we have a contradiction. Hence Pq+l is an ordinary

) = 0, we see that P £ b

point of 2q+1. Since (C )

qt+l’ bq+l q+1°

Thus P is an ordinary point of ¢ and is neither the common point

g+l q+l

nor the point which is the preoper transform of ¢

of ¢

and bq+l

q+l

i W= 1. = i e W=
Now we consider the sequence "o Vq+l’ Wl elqu+l WO, ceos VB

elmP wB—l’ as far as possible but with restriction that B < q. Let
q+p
¢" be the fibre on W, corresponding to P . and let b! be the
i q+i i

minimal section of Wio Note that the common point of Qi and bi is
the proper transform of Qi_lu By this fact and by the same argument as
at the end of the last section, we see that if q + i + 1 < s, then

. . - o ¥ o . .
Pq+i+l is an ordinary point lying on 21 which is not the common point

of 2! and b'. Therefore we see that W, 1is an F_ ., hence
i i i q-i

q+1i+1>s unless i=q. Therefore B =q and Wq is an Fl.

Wq dominates a Ez, say W%, Let P* be the transform on W* of the

minimal section of Wq.
By the nature of the transform, we see that

(1) Either W¥ =W or s > 2q and P e s PS are all of

2q+1°

the fundamental points of W* with respect to W.
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(2) The transformation j = contb,-elmpl.“P 'dilP is induces by

q 2q 0
some element T of Autk k[x, vIl.
We shall show now
Proposition 3.2. Above j 1is a special type of Jonquidres

transformation and T is an element of J = J(2, k) under suitable choice of
coordinates systems on V and W%, Conversely, every element of
J 1is obtained in this manner.
Proof. We begin with the last assertion. Let 1 be an element
of J. The linear system L* corresponding to this birational transformation
is defined by the module generated by 1, x, v + £(x) with f(x) « k[x].
Therefore the module of defining homogeneous forms of members of L* is
generated by Zq, qu—l and YZq—l + £*%(X, Z), where q = deg f(x} and
f* 1is the form of degree q such that f£*(x, 1) = f(x). Then one sees
easily that P = (0, 1, 0) is a (g-1)-ple point of members of L*,
hence 1 1is a Jonquiéres transformation. By a similar argument as we
made above in this section, we see that the birational transformation
defined by 1 1is of the form as j above. This completes the proof
of the last assertion. Let us prove the first assertion. We use the
notation of §1.2, By virtue of the generation of Autk kix, vyl by G = A(2,k)

and J, we see that the fundamental points P = P . PS are all

0» Pysoee

k-rational. On the other hand, we see that j is a Jonquiéres
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transformation such that the module of the corresponding linear system
contains z%  and Xanl. Indeed, because c¢f the special position of the

points Pl’ ees 5 P such that they lie on dilP P, we see easily that

2+ (q - 1)2oo goes through (q - 1)P + Ziil Pi if ¢ 1is a curve going

through P. Since P, P., ... , P are all k-rational, we see that
1 2q

j induces an element of Aut, k[x, y]. Since z4 and X are in

k
the module, we may assume that x  is invariant under the automorphism
induced by j. Then, by Lemma 1.1, we see that j d4s in J. Thus the
proof is completed.
We shall prove one more result:

Theorem 3.3. Autk kix, v] 1is so-called amalgamated product of

G=A(2, k) and J = J(2, k). Namely, o, € G, oy £ T, T, e J, T, ¢ G

3

(i=1,2, ..., n> 1) dimply that T997 *rc T 1%-1Tn ¢ G. (cf. [6])
Proof. Note that the set of elements of G which fixes the point
(0, 1, 0) is exactly the subgroup G M J. Each element of J which is
not in G defines a Jonqui2res transformation having (0, 1, 0) as the
unique ordinary fundamental point and also having (0, 1, 0) of the new
plane as the unique ordinary fundamental point with respect to the
inverse transformation. Therefore, if we look at the multiplication of
404 0 T,490547 ¢ Op_1Tpe We see that no fundamental points of these

factors are cancelled out by the multiplication because oy changes
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(0, 1, 0), hence the factor T4 gives fundamental points which are
infinitely near points to the last fundamental point with T4+1944+1 Ty
Thus the number of fundamental points with respect to TyOq ++ Op TR

is exactly the sum of the number of fundamental points with respect to

t, (i =1, ..., n), hence the product cannot be in G. This completes

1

the proof of Theorem 3.3.

1.4. Another proof.
We shall prove (1.8) in a stronger form. Namely
Theorem 4.1. Assume that C dis an irreducible rational curve of

2 .
degree d on B and that there is an ordinary point P such that

Jede

«)) P s a one-place point of C,

(2) c¢c*2_ = dP, and
. 2, . . s
(3) the affien part Cp Q is biregular to an affine line.

Let P = Pl’ P2, cee Prl be all the singularities of C (Pi being

an infinitely near point if Pi—l for each i =2, ... , n) with

respective multiplicities m = m,, m m . Then either d is a

23 tee

multiple of d - m, or b mi > d2 + 3.

In particular, if the linear system L of curves of degree d going
through =T m.p, is of positive dimension, then d - my divides d.

Before proving the theorem, we introduce a notion which we shall

call a (d, r)-sequence.
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When two natural numbers d and r such that d > r are given,

the sequence r r defined as follows is called the (4, r)-

1, cse 9

sequence

Start with d, =d and d, = r. When d

0 1 0 o dj are defined

and if dj > 0, let q and d_]_F1 be such that dj—l = qjdj + dj+1

\
< d. <d,). T +
(0 —-d3+l J) hen for every k such that [iz. qu 1<k
<J
< I q., T is defined to be d,.
-, . i k 3
1<]
Lemma 4,2, Under the notation, we have
=17 d = 6G.C.M.(d, r) and
q—i= qi, OL—.T.-. s I an
2
Ty, =d+r -4, I r = dr.
i a .
i
Prood. We have

= . - 2
dO = qldl + d2 : dOdl = qld1 + dle'
d, =gq,d, +4d, ; d.d, = q d2 + d,d
1 272 37 172 272 273
d .=q .d +d 3 d .d .=q .d>.+4d
o=2 a-1"0-1 a * a-2"0-1 ‘ol 0=1 o010
du—l = 9,9, 5 du-lda = 934y -
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Summing up these equalities respectively, we have do + dl =

) qidi + du 5 dod1 = I qidi and we have the required result.
Proposition 4.3. Let € be an irreducible curve on a non-singular
surface F and let P be a one-place point of C. Let m be the
multiplicity of P on C. Let D be another irreducible curve on F
which goes through P as a simple point. Let d be the intersection

multiplicity of C with D at P, and let c¢ be the G.C.M. (d, m).

Let the (d, m)-sequence be r

10 tees rq. Then there is a sequence of
points P, = P, Pos ey Pq which is determined uniquely by d/c, r/c
and D such that (i) each Pi+l is an infinitely near point of Pi of

order one and (ii) effective multiplicity of Pi on C is T (The
way of determination of Pi is shown by the proof below.)

Proof. We use an induction argument on d. If d =m, then ¢q =1,
r;=m and the assertion is obvious. Assume that d > m. Consider the
quadratic dilatation dilP F, the proper transforms C', D' Of, c, D
and also the intersection number (dilP P, C'). Since P 1is an m-ple
point of C, we have (dilP P, C') = m by Proposition 5.4 in Part O.

Consider the unique common point P, of dilP P and D'. By our

2

assumption on P, P is the unique common ordinary point of d:'LlP P and

2
C'. On the other hand, since the intersection multiplicity at P of C

and D is d and since P 1is m-ple on C, the intersection multiplicity
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at P, of C' and D' 1is d - m. Therefore the multiplicity of P

2 2

on C' is the minimum of m and d - m. Now, if d - m > m, then
considering C' and D' instead of C and D respectively, we have
a case with less d, and the proof is completed by our induction argument.
On the other hand, if m > d - m, then considering dilP P and C°
instead of D and C respectively, we complete the proof similary.

The following lemma is obvious.

Lemma 4.4. Let m m be a sequence of natural numbers,

1, as oy

m (> 1). Then for any ¢ < n

such that m, > m, > ... >
2 = Z Ta Z

12

3 mg < 5 m? + (m + l)2 + (m_ - 1)2.
i . i o n
ifo,n
Corollary 4.5. Let m

ceos mn and s .5 S be positive

1’ v

integers, such that g3 si ST m, M > coa > mn and s, > ... > 8

If s, >m

i i

b si >3 mj, b si(si -1) >z mj(mj - 1).

Now we are going to prove Theorem 4.1.

Consider C, d, m, Pi and so on as in the theorem. Let (d, ml)—
sequence be m, = r T

1 12 Tos +ees a

(&D) Assume that G.C.M. (d, m) = 1. Then we see by virtue of
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Proposition 4.3 that m, =, for any 1 <n and Tl ST Tt T

rq = 1, This means that 2-(genus of C) = d2 - 3d +2 -73 rf + ri =

d(d - m - 2) + my + 1 by Lemma 4.2. Therefore, by the fact that C
is rational, we have d - m - 2 < 0, whence my >d -1, and we see
that my = d - 1, and therefore 1 =4d - my divides d in this case.

(2) Assume now that ¢ = @d, ml) # 1 and that d - my does not

divide d. Then n > g and mo= T, for any i < q and mj < § for

any j > q. On the other hand,

o
It

2(genus of ©C) = d2 -3d+2 -7 mi + 5 m,

=d -3d+2- I wm, + ¥ m, - ¥ m, + I m
<g

i<q i<q j>q

d(d - ml) - 24 + m, +2-68- 3 m% + I m,
i*qa 1 33q

Let the (d, d - ml)—sequence be s sq. Then =% si =d(d - ml),

12 e
Ls; = d+ (a - ml) ~ §. Therefore

(4.6) pX m% - £ m, =3 s? - Xs, +2~2§.
. | . i i
1>q J>q

Since d - m, does not divide d, d - m, is' a proper muitiple of
§ 3 d - m = ué (u > 2). On the other hand, let B and vy be integers

such that Zj>q mj =88 +y, 0<vy<d§. Set 61 = L. = 68 = g,

= vy, Th =
§ Y en I Si

e+l and, by Corollary 4.5, and by the fact

Iz, m,
J>q ]

36



i
162 _ 58 > % p2_ % oa
i i . j b
J>a J>4
Assume for a moment that I, q m, <z sy + 26, Then, since 512.5 ’
>
we have similarly
P S 82 - 3 s
T ET Y B )
Therefore

z s% - I s i_si -, + I 6% - §

+ + isur2 T i>u2
=u252——u6+ by 6?-— % S,

uk2 T w2 Tt
= (u2 - u - 2)62 + 28 + & 6? -z &8,
i i
> 28 + I m?-— % m,
a7 g
2

=28 + % si—Z si+2—2§ (by (4.6).)

This implies 2 < O, which is impossible. Therefore we must have

Then, since Ziig m, + % s; = d4+m, -8 +d+ (@ -~ ml) -8 = 3d - 28

1

(by Lemma 4.2), we have
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T m, > 3d .

Since O = d2 -3d+2 -2z mi + z m s we have 3 m? = d2 - 3d + 2+ 7z m

> d2 + 2. This proves the main part of Theorem 4.1. As for L, this
implies that two members of L have intersection number bigger than
d2 + 2 which cannot happen unless they have common components. Since L

has an irreducible member C, we see that dim L = 0.

By these (1) and (2), we completes the proof of the Theorem 4.1.

1.5. One question on rational curves.

As we stated in Part 0 as Conjecture 1.1, it has been questioned
that when C 1is a rational curve in EZ of degree d such that
(i) there is only one ordinary point P which is common to C and
L_» (ii) ¢ - {P} (i.e., C f\Qz) is biregular to an affine line, then
whether or not d is a multiple of d —(the multiplicity of P on C),

In the characteristic p # 0 case, one have a counter—example as
we shall see later in this section.

On the other hand, Abhyankar and Moh [1] proved affirmatively the
question in the classical case (i.e., in the case of ground field of
characteristic zero), and also the following : If d 4is not a multiple
of the characteristic of the ground field, then d is a multiple of

d - (the multiplicity of P on C).
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Note that if this conjecture is affirmative, then one can see easily
by induction on d that such a C (with d not multiple of the
characteristic of the ground field k) is defined by an f(x, v) e k(x, v],
for which there is an element o ¢ Autk k[x, v] so that ox = f(x, y).

Now we shall give a family of proposed counter-examples. Assume
that the ground field k is of characteristic p # 0. TFor each b ¢ k,
let C be the curve on QZ defined by the following representation by

b

a parameter t

(5.1)

,.
t

=t + £t + b

where o 1is a fixed natural number, > 1 and prime to bp.

One sees quite easily that

2
k[tP , P + £ + b] = k[t].

Therefore Cb is biregular to an affine line. Let Cé be the completion

of Cb in Rz. Then {Cé 1 b ¢ k} spans a pencil L of curves of

\i

b satisfies the conditions (i) and (ii)

degree d = max {pz, apl. Every C
above with P = (1, 0, 0) or (0, 1, 0) according to p > a or p < a.

But the multiplicity of P on Cé is the difference of pz and ap

39



|

hence every Cb

is a counter-example which we required. We give one more
remark :
Proposition 5.2. The linear system L has variable singularities

among infinitely near points.

Proof is immediate from Theorem 4.1,

40



Part 2 Questions in the general case.
2,1  An example,

In Part 1, we observed the case of a polynomial ring of two variables
over a field. As we discussed in Part 0, these results can be generalized
easily to the case of a polynomial ring of two variables over an Artin
ring.

But, if we deal with a more general case, we shall meet with many
difficulties. In this Part 2, we shall discuss some of such difficulties.

Let us begin with an example.

Let K be a field and consider the polynomial ring R = K[x, v, z]
of three variables. Set %k = K{z]. Then R 1is a polynomial ring of

two variables x over k. We are going to define an element 5 of
s ¥ g g

Autk R by
2.2
[ ox = x - 2y(zx + yz) - z(zx + y‘)2
(1. %
2
gy=y+z(zx+y).
It is obvious that (1.1) defines a k-homomorphism 5 : R —> R,

It is also obvious that ¢ 1is an injection. As for this o, we have

(1.2) o(zx + yz) = zx + yz

Indeed, o(zx + y2)

zx + yz .

1
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Let t be a k-injection R —> R defined by

2
™ x + 2y(zx + yz) - z(zx + Yz)

(1.3)

2
y=y-z(zx+y) .

Then, by virtue of (1.2), we have

2 2
orx = olx+ 2y(zx + v ) - z(zx + vy )2)

X - 2y(zx+y2) - z(zx+y2)2 + 2(y + z(zx+y2))(zx+v2) - z(zx+y2)2

]

2
v+ zlzx+ v ) - z(zx +v)

oty = oy - z(zx + Yz))

Thus ot = 1. Since ¢ and 1 are injective, we see that ¢ is an
automorphism and that 71 = 0_1. Now we assert :

Theorem 1.4. The automorphism o defined above is not in the
group J(2, k) VA2, k).

Proof. Let k* be the field of quotients of k. Then o, as an

where

-1
% .
element of Autk* k*[x, v], is equal to 919,07 s
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-1 2 -1.2
b:d z 'y

X x+z vy 1] % -
Ol o= N 01 = b
y y v y
X X
O‘ =
2
2 y y+zx;

Note that o, ¢ J(2, k*) and that 7o

1 me J(2, k) with = ¢ SL(2, k)

2
such that 7x = v, Ty = x, Assume that o e J(2, k) V/A(Z, k), i.e.,

there are T € J(2, k), A, € A(2, k) such that

1712 0 Ttan

j} T, # A(Z, k) for evervy 1,
!

Vo, £ J(2, k) unless Ai =1, i=1 or n+ 1.
Then we have

0, M0 1 = 1,

17142 o TRt 91m9270

By the uniqueness of the factorization proved at Part 1, Theorem 3.3,

we see that A =1 and Tt o, £ A(2, k*). We write

n+l nl

‘j TnX alx + £(y)

(

NT
o

[}

o
N

«
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-1 22 B
¥ = 8% + f(y) + z a,y . Since T, € J(2, k), a and a, are

Then TnG 1 2

units in k and f(y) ¢ k[y]. Therefore f£(y) has no term to cancell
-122 .

out the term =z ay . Hence T,01% cannot be of degree <1 in vy.

Thus T,91 ¢ A(2, k*). q. e. d.

k din the above example is a polynomial ring in one variable over a
field, hence is an Euclid ring. Thus our example shows that even if the
coefficient ring k is so good as an Euclid ring and n = 2, the group
Autk k[x, y] is not generated by J(2, k) and A(2, k) (cf. Exercise 1.6
below). Therefore we ask :

Question 1.5. Find a good structure theorem for Aut, k[x, v] in

k
re k = K{z], ¥ a field and x, y, z algebraically
independent over K, or more generally in the case where k 1is reasonably
good integral domain and x, y algebraically in dependent over k.
Excercise 1.6. Let k be an integral domain with a non-unit =z.

Take o ¢ Autk k[x, v] defined by the same equality as (1.1). Prove

that o is not in J(2, k) VY A(2, k).

2.2  Another example.

In § 2.1, we gave an example of ¢ ¢ Autk k[x, v] which is not in

J(2, k) V A(2, k). Letting k* be the field of quotients of k, the
example ¢ as an element of Autk* k*[{x, y] is the product of three

R . . . . 2
automorphisms each of which induces a Jonquieres transformation of B,
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If we condsider worse k, then we have much simpler example, and

we have the following

Theorem 2.1, Assume that k is an integral domain which is not

a principal ideal ring. Then there is an element o of Autk klx, v]

(x, v being algebraically independent elements over k) such that

(i) o is not in J(2, k) VY A(2, k), and

2

(ii) o induces a Jonquikres transformation of B~ over the field

of quotients k% of k.

Let us construct a required example.

Let a, b be elements of k such that ak + bk is not a principal

ideal : such pailr exists because of our assumption on k. Let
a polynomial in one variable X with coefficients in k. Let

k-homomorphism k[x, y] — k[x, v] defined by

[

0% x - bf(ax + by)

(2.2)

oy v + af(ax + by)

We are going to prove that this o 1is the example.

Consider k-homomorphism 1 defined by

™x = x + bf(ax + by)

(2.3)

1y =y ~ af(ax + by) .
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Then we have

(2.4) t(ax + by) = ax + by.

a(x + bf(ax + by)) + b(y - af(ax + by))

Indeed, rt(ax + by)

it

ax + by.

Therefore we see that
Tox = t(x - bf(ax + by)) = x + bf(ax + by) - bf(ax + by) = x,

and similarly, we have <toy = y. Thus we see that ¢ is an element of

Autk k[x, y] and that =< = 0_1.

Since gf{ax + by) = ax + by, we see by virtue of Lemma 1.1 in Part 1

that o dinduces a Jonquiéres transformation of Ez over k%,

Now let us prove that ¢ is not in J(2, k)‘v'A(Z, k). Since o
induces a Jonquiéres transformation over k¥*, we see by virtue of
Theorem 3.3 that if ¢ is in J(2, k) V/A(Z, k) then o = A'¢')A with

o' € J(2, k), A, A" £ A(2, k). (2.4) shows that a polynomial g(x, y)

of degree < 1 1is mapped to one of degree < 1 by o if and only if
g is of the form d(ax +by) + ¢ (c ek : d e k*). A_ly is such a
polynomial. This means that by the linear automorphism A—l, y is
mapped to d(ax + by) + ¢ (da, db, c € k). Since ak + bk is not a

principal ideal, we see that dak + dbk is not equal to the unit ideal
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Hence, modulo a maximal ideal m of k containing dak + dbk, we have
-1 -1 .,

that X "y d1is congruent to an element of k, and X is not an element

of Autk k[x, v]. Thus we obtained a contradiction, and therefore

o £ 32, k) YA, k). q. e. d.

2.3 The case of three or more variables.
Consider the case where n = 3 and k is a field. I am quite

v K))

. G, ;T
certain that Aut, ki{x] # J(3, k) A3, k)Y (= J(3, k) VY CL(3

s
Actually, look at the automorphism o defined in § 2.1. This is an
element of AutK K[{x, v, z], K being a field.

Conjecture 3.1. This o is not in J(3, K) Y A(3, K).

I do not have any rigorous proof of this conjecture yet. But I
have some reasoning for this, and I am going to explain it later.
(Theorem 1.4 in § 2.1 is a part of it.)

One important fact used in Part 1 is that, in the case of non-singular
surfaces, birational transformations are very well described by
fundamental points with help of the notion of infinitely near points.
But, in the case of three dimensional non-singular varieties, we do not
have satisfactory theory of infinitely near points ; relationship between
monoidal dilatations whose centers have common points is complicated and
therefore description of a birational transformation making use of

monoidal transformations with nice centers is difficult.
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Let us look at elements of J(3, k) V A(3, k), or more generally,
those of J(n, k) ¥ A(n, k) with n > 3 : let us assume that k is a
field. 1In order to look at fundamental points of induced birational
correspondences, it may be better to look at a smaller group J*(n, k)

defined by
(3.2) J*(n, k) = {0 ¢ J(n, k) | ox; = x; for every i > 2},

It is easy to see

Lemma 3.3. J(n, k) V A(n, k) = J%(a, k) Y A(n, k) = J*(n, k) ¥ GL(n, k).

Now, we take coordinates of P® so that 1 e Autk k[x] induces
birational transformation given by (xl, cee s X 1) — ( Xys eees TE 1).

Let 1 ¢ J*(n, k), v ¢ A(n, k). Then

(3.4) X, = ax; + f(xz, e s xn), X, = X, for i > 2.
Therefore

-1 -1 -1 .
(3.5)v T X =a (xl - f(xz, cer Xn))’ TR =X for i > 2.

Thus we have
Lemma 3.6. Under the birational correspondence induced by ¢, (i)
the hyperplane at infinity of the first " corresponds to the point

(1, 0, ... , 0) of the latter P"  (as the proper transform),
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(ii) the point (1, 0, ... , 0) of the first P" corresponds to the
hyperplane at infinity of the latter "
Now we ask

Nuestion 3.7. Assume that T " e J%(n, k),

15 s
Xl’ cer s Apip € A(n, k), Ki ¢ A(n, k) for any i and that every kj
do not fix the point (1, 0, ... , 0). Let Ti be the graph of the
birational correspondence induced by TixiTn+l eow Xm_le. Does Ti—l
dominates Ti for everv i =2, ... , m?
If this question, or something similar, has an affirmative answer,
we would be able to prove not only an adaption of Theorem 3.3 in Part 1
for the group J(n, k) Y A(n, k) (cf. Lemma 3.3), but also Conjecture 3.1.
Another base is the following conjecture :*)

Conjecture 3.8. Assuem that v £J(3, k) Y A(3, k), v ¢ A(3, k).

i r
Let the highest degree parts of VE{s VEgs vx3 are g, 8,, g5

respectively. Then, either there is one of the & which is a polynomial
of the other two, or, there are two of these g which are powers of the
same form.

Note that our example g in § 2.1 as an element of AutK Kix, v, z]

does not satisfy the condition in the conclusion of the conjecture.

Therefore, if this Conjecture 3.8 has an affirmative answer, then so

*) This was proposed by Professor S. Abhyankar.
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does Conjecture 3.1.

One difficulty in proving Conjecture 3.8 lies on the fact that there
is an injection n : k[x] — k[x] (n = 3) such that the highest
degree parts of nx; (1 =1, 2, 3) satisfy the condition in the
conjecture, and on the other hand, for a suitable choice of 1 & J(3, k),

the highest degree parts of 1nx (i =1, 2, 3) do not satisfy the

i
condition.
By the way, we prove :
Proposition 3.9. Assume that k dis a field, n= 3, ¢ ¢ Autk k[x],

and that deg ox, < 2, deg 0_lxi <2 for every i =1, 2, 3. Then
o = ATA with A, A" ¢ A(3, k), T ¢ J(3, k).
Proof. Considering elements of the form )Xo with ) ¢ A(3, k),
we may assume that oxX, = X, + fi for each 1, where fi is a homogeneous
-1

form of degree 2, Then o X; =X, + 8; with a homogeneous form g,
i

of degree 2, by virtue of our assumption.

-1 -1
. = . = .+ ) = + +
X, =0 ox, =0 (X1 fl) x, +g; fi(xl + 810 % + 8ys Xg + g3)-
C - - .
ompairing degree 2 parts, we have 8y fi(xl’ X, x3) :
F d =
rom degree 4 parts, we have 0 fi(gl, 89> g3).

If the locus of (gl, 89> g3) in the projective plane EZ is dense

. 2
in B, then fi = 0 by the second equality, hence g = 0 by the first
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equality, which is a contradiction. If the locus of (gl, %y g3) is

a curve C, then all of £ , £, £, must be a multiple of the defining

1’ 72 73

polynomial F for the curve C. Hence, either C 1is a conic and

[au]
i

CiF with c, € k, or C dis a line and fi = hiF with linear forms
h,. The former case gives us a contradiction because of the equality

5 —fi. Thus the locus C is a line, which means that 8y 8> g3

aQ
]

are linearly dependent. Therefore, using a linear transformation, we mav
assume that gy = 0. 1In this case 81> 8, are linearly independent and
F = X_,. Then, considering the degree 3 parts, we have 0 = x3hi(gl, o5 0)

(for i =1, 2). Since the locus of (gl, £ys N) dis the line C defined

Thus f. = c.x 2

by x 3 1 1%3

5 = 0, we see that hi is a multiple of x

f2 = c2x329 which contradicts our assumntion that g1s B, are linearly
independent. Thus the locus of (gl, gys g3) must ‘be a point, which

means that G (ci e k) with a fixed quadratic form €C. Then

g1 7 <%
using a linear transformation, we may assume that 8y = 83 = 0. Then
the remainder of the proof is obtained by the following

Lemma 3.10. Assume that 0 € Autk k[x]. If ox, = X, for every

i <2, then o e J(n, k).

Proof is similar to the one for Lemma 1.1 in Part 1.

2.4 One more question.

We like ask here a question. Consider the case where k is a field
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and n >1. If n=1 or 2, then we see the following proposition
by our observation made in Part 0, Part 1 :
Proposition 4.1. If K is a field and if =n < 2, then Autk kx]

is generated by A(n, k) and Autk[ k[x].

xl]

Therefore we ask :
Question 4.2. Assume that k is a field and n > 3. 1Is

Autk k[x] generated by A(n, k) and Aut kix] ?

X

k[x,]
We note here that our assumption that k is a field is important.

Indeed, our example in § 2.1 shows that the question has negative answer

if k is an integral domain which is not a field (in the case n = 2).
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