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Preface

     These notes contains the contents of my doctorial thesis. 

In these notes, I give a result on an arithmetical relation between 

 Hilbert cusp forms over totally real algebraic number fields and cusp

forms of one variable.

    H. Saito 

February 3,  1975



                                  Contents 

§ 0 Introduction  

§ 1 Definition of the space SSk(T
a ) 

§ 2  Selberg's trace formula   

§ 3 Twisted conjugacy classes   

§ 4 Explicit formula for tr  Ts(T(ot

§ 5 Main result  .....................

References  

 ))

11 

23 

54

 is

144 

181



 Automor:)hic forms  and algebraic  etensions  of  nuber 

                          by

                       Hiroshi SAITO 

 §0. Introduction

 0.0. The purpose of this paper is to  study an  arithmetical

relation between  Hilbert cusp forms over  a totally real algebraic 

number field and cusp forms of one variable by using the theory 

of Hecke  operators.

     Let F be a totally real algebraic number field, and  (5,"  be 

its maximal order. For an even positive integer K, let  sK(r) 

denote the space of  Hilbert cusp forms of weight  K with respect 

to the subgroup  r = GL_L(&)consisting of all elements with 

totally positive determinants in  qh2(0-). For a place  (archimedc!-n 

or non—archimedean) v of F,  let  Fv be the  comaletion of F 

at v. For a non—archimedean place v (= ")'lete,"-be the 

 ring of  $—adic integers of  Fv.  Let be the  adele of 

F, and  consier  the adele  group (11_,(FA). 7-et?Z ipbe the open 

 .uogrow                  GL()        2  Tr)                                            v of  'IL,(F.).
 v:rchimeden
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Then we can consider the Hecke ring  R(2/1r?,  GL2(F0) and  its 

action T on  sK(ro  as in  G.Shimura  E8]. For some technical 

 reasons ,we shall work with a certain subring  GL2(FA)) 

of  R(27'T"  GL2(FA)). It's  precise  definition will be given in

 §5.1, but roughly speaking  R°(Z7F,  GL2(FA)) is the subring 

consisting of all elements of  R(7(1„  GL2(FA)) which are relatively 

prime to the discriminant of the extension F/Q.

     For the ordinary modular group SL2(Z) (=  GL2(Z)
+) , we also 

consider its adelization =  1TGL2(Z
p)  X  GI2(R) and the Hecke 

ring  GE2(Q0). The latter is acting on the space  SH.,(SL2(Z))

of cusp forms.

0.1. The  space  SSx(r). Suppose F is a cyclic extension

of of degree  Fixing a generator  T of the Galois group 

Gal(F/Q), we define an operator  T, on  SK(F1 by the permutation 

of variables, namely  Tu-f(z1, , z1) =  f(z  2/ z1) • 

Using this  T,,  we define a new  subspace  Jfn(r7) of  2k01, to 

be called "the  space of  symmetric Hilbert cusp  forms", as follows:

 u3),((') =  )fe  :,,r(f-)  I  T(e)T,f  =  T,T(e)f for any  ee-R(211,„ 

Obviously  Tic(fl is  stoble under the  action of GL2(F
A,)), 

and  vTe  L.et  n  new  repreEctption  T, of  tine  Hecke  ring
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 R(V, GL2(FA)) (or  0(WIF, GL2(FA)) ) on the space SSIc( .

Now we assume

 0) The  weight  it  4  .

1) The degree =  [F: Q)  is a prime. 

2) The class number of F is one. 

3) has a unit of any signature distribution. 

4) F is tamely ramified over Q.

As a consequence of 2) and  4), the conductor of F/Q is a 

prime number q.

     The purpose of this paper is to show  that the representation 

T.of RoqF' GL2(FA)) onES,c(r) can be obtained from the 

spaces of cusp forms  SK(SL2(Z)) and  Sic((-70(q),  X) for various 

characters X of (Z/qZ) of order  i where of course 

 I-  = (ab) SI2(Z)                             c 0 mod.q  }  . 
   cd

To give a meaningful description for the above, we  shall

define a  "natural" homomorphism  2. :  G-L2(FA))   

R°(22Q' 2GL,(QA)) in the next section 0.2.Here R°(XQ7-11,2(QA))

is defined as a subring consisting of all elements of  R(aQ'  GL2(QA)) 

which  are relatively prime to the conductor  q of F/Q. Then 

    Q'2C-1,„(QA)) is acting not only on SK(SI.2(Z)) but alsoon

 -3-



 Sk(ro(q), via natural injection 

 R°N,  GL2(QA))  R(ro(q),  GL2()) , hence it has 

representations  Tl on  Sk(SL2(Z)) and  Tx on  Sk(r
o(q),  )t). 

Thus  Sk(SL2(Z)) (resp.  Sk(r
o(q), ) can be viewed as a 

R°0/1„  GL2(FA))-module by the action  TioA ,  (resp. ). Now

our main result (Th. 3 )  claims that there exists a subspace

S of  0  Ek(r70(q),  X) such that

 ES4(r1  Sk(SL2(Z))  0  S 

(and C) Ek(1-7,,(q),  2)  S  C  E  )

as  Ro(2'„ GL-(F)-moduleE,where in,runs  throu7h all   A' 
2 

the  characters of order of(Z/qZ)K.The  above  result  will

be derived by  standard  arguments from the following equality of the 

traces of the operators:

 Theorem

1

 (-x) tr  T(e) = tr  T1(2(e)) +  77  2:  tr  T.,y(2(0) 

 2

for  en  e  e  R°(7AF,  GL2(F0)

 he  i;reof of  ti-  is  1:st  cipalit:y  will  occupy  the  moot  part

of  16:  i  raper. 

                                                        -4-



0.2. The  hom,morphism 

Let  at  (resp. n)  be  an

positive integer),  and  T(670 

integral element in  ROVZF, C

norm  ert  (reap, n). For a pri 

p),letT(3,(reap.  T(p, 

 VFaV.(resp.  'Na V, where  t 

of a is (7(r) ,CE)  (resp. (0

 (5' and the other component 

elements  U(y5)  (resp.  u(pm) 

   Q'GT,(QA)) ) for a prime

and  a non-negative integer a 

 U(&) = 2  T(05')

 (resp.  U(1) = 2  T(1)

 u(ym) =  T() 

 rrilnR

 resp. U(pm) =  T(p) 

                   (  mf_rf

 A  :  Re  (RF  ,  GL2(  FA  )  )  R°  (711,Q' GL2(QA))•

integral ideal of F (resp. a 

(resp. T(n) ) be the sum of all

GL2(FA)) (resp.  F(N,  (1.12(QA)) ) of 

prime ideal of F (resp. a prime 

p, p) )  denote the double coset

the  3.-component  (resp.  p-comronent) 

 0) ) with a  prime  element  7E_ of

of a is the identity.  We define

) of  R(2, GL2(FA)) (resp. 

ideal  .y of F  (resp. a prime p)

by 

 m  1

 Tqm) -  N  T4,  V  T(ym-) , 2

 

,  IT  = 1

 T(pm) - r  T(p, p)  T(Pm-2) , 2

            -5-



 , where  N is the cardinality of  cg-/ . Then the correspondence 

 U(3.111)  y  U(N;m)  can be extended to a homomorphism from

 nyir,  GL2(FA)) to  ii(xclo  GL2(QA)).

     0.3. We give an outline of each section. In  §l, we

define the space  SSic(r) and make some preliminary consideration 

on the representationTs. In § 2, by using  Selberg's trace 

formula, we  shows that tr  T  (TO-0) can be expressed as a  sum 

extended over twisted conjugacy classes (c.f.  (2.12.1)). In  § 3, 

we study the twisted  conjugacy classes and in particular determine 

the numbers  c,(f, r, A) and  cga, r, A) explicitly (c.f. 

§  3.6 ,  3.  12 ). In  § 4, by making use of the results of

 §2 and  3,  we give  an explicit formula for tr  Ts(TW). In 

 §5, from the explicit formula for tr  Ts(T(17-0), tr  Tl(T(n))

and tr  "1"(T(n)), we deduce our main result.

     0.4.  Applications. Our result is related to the recent 

works of the  following authors.

(I) In their joint work  L23,  K.Doi  and  H.Naganuma rtudied 

 a relation between  C11171) forms with respect to  'f2(Z) and 

 Hilbert  cucT• forms  over real  quadrc _tic  fields.  lore precisely,

                                                             -6-



let  c3  (s)  =  2: ann al = 1 , be the Dirichlet series             n=1n 

associated with a cusp form of weight  Pc with respect to  SI2(Z)

which is a common  eigen-function for all Hecke operators, and 

let  )r be the real character corresponding to a real quadratic 

field F =  Q(/T) in the sense of the class field  theory. If we
 bo

 put  ,  )  =  (n)  an  n-s  then (6(S) SPS)r"anIne                                T(s)9\vi 
 n=1

expressed in the following  forn, with suitable coefficients  Col 

which are defined for every integral ideal  61 in F

 cf(s)5°(sX  = Z  Calif/Cs 
 CR

For a  Grbssen-character of F, we set 

 D(s,y  ) =  }(0)  Coc  Ncrcs
IT I

In (2) , K. Doi and H. Naganuma tried to prove a functional 

equation of D(s,  9)  ,  X  ,1 ) , and proved it for the case where 

the conductor of is one, and showed that  if the maximal order 

of F is an  Euclidean domain, the  Dirichlet series  9D(s)90(s,X)

is  actually associated with a  Hilbert cusp form over F and 

the function

                                                                       o-                                                    uE  h(zl' z2)  .  7. co,",ex,(2it.i.—_2-7(ILEz1+c)—z2)) 
                          ra:-)-7,-                cx=(,LA) EE E+ 

              —8— >> 0 
         Fr
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on the  croduct  HX H of the complex upper  hslf planes is a 

 Hilbert cusp form over F .  Foreover in  0_41 H.  Naganuma showed 

 that a similar  result holds also for cusp forms of  "Neben" type 

(in Hecke's sense) with a prime level. Now, from our present 

result for  .e  = 2, it can be  proved  that  Cp(s)  Sp(s,X) is the

 Dirichlet series  asoociated with a Hilbert cusp form over a real 

quadratic field F , and that Doi—Naganuma's construction is 

 "injective" (see text Th.3, Cor2) under the condition for F 

in this  peper. In fact, an effort to show this injectivity is 

the  mein motivation of our study.

     (II) In  (12) , H.  Jacquet studied the similar theme as 

 Doi—Naganuma's, in a more general (adelic and representation—theoretic) 

point of view, hence this result should have a close connection 

to ours.

 (III)  F. Hirzebruch  (.91110) and R. Busam  [1)  gave a dimension 

formula for the subspace  SK(7) of  Sk(r) consisting of elements

f such that  'Art' =  (-1)1cf.  ince there is an obvious relation

             1  dim 
T      OF )= (  dim  ) +  (  —1)d  m  (T)  )  ,

our  rocult  can be  viewed  se  a  generilization of  their  formula. 

                     -8-



 C.5.  Notation.  As usual, Z, Q, R and C denote 

respectively the ring of rational integers, the  rationfJ number 

field, the  real number field, and the complex number field. For

a rational prime p,  Z
p and  Q denote the ring of p-adic

integers and the field of p-adic numbers, respectively. For 

every element z  E C, we denote by z and Im(z) the complex 

 conjugate and the  imajinary part of z, respectively.  We  denote 

 ty the  empty set, and for a set S by  IS1 the  cardinality 

of S (however if z E C,  (1 denotes the ordinary  :-bsolute 

value of z). For a ring S with the  unity 1, we denote by  SX

 The multiplicative  group of the  invertible elements of 2, and 

by  1,(2) the ring of 2 by 2 matrices over  S, and  we put

1--11-2(S)=12('LfC . If S is commutative,  we  denote by  det s 

(reap.  tr s) the  determinant (resp. trace) of a for a  T2(5) 

and identify the center of  T.:(S) with  S. For  subsets  ij 

 (1 2) of  S, (2ij)CIY„.(S) denotes the set

 IS= (S.)M(0 
                  c), 

              2'-ij

The author would like to express his  hearty  thcn1-: to

 :rot'.  I.  Del and  rof.  E.  Hijikta  for their  v:T.:luellc 
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 jl. Definition of the space  S5k(TO. 

    1.1. Let F be a totally real algebraic number field,

which is a cyclic extension of the rational number field Q of 

a prime degree . And let  6/- be the maximal order of  F, E the 

group of  units of F and  E+ its subgroup of totally positive

elements of E. We assume that the class number of F is equal

to one and that the index  [E:E41 is equal to  21. Moreover we 

shall assume that F is a tamely ramified extension of Q later ,

We denote by  g the  Galois group of the extension  F/Q. 

We fix a generator of , and denote it by  0'. If we fix an

embedding of F into R and identify F with its image, then 

all the distinct embedding of F into  R is given by

a 1  lafore7-.=0- . Let H be the complex upper

half plane and  Hi be the product of  )2 copies of  H. Let 

 GL2(R)+ be the subgroup of  GL2(R) consisting of all elements

g such that  det  g",70 , and let  GL2(R): be the product of  ,e
copies of  GL2(R)4. Then  GL2(R)f_ acts on  H by 

 g; (d1)z(1,   ,die)

 O)  cv11(1), _(1)  a  z +                  ao 

 g =  = (•.                                               (1,(1) 

                 +

             (1701),P                  ,e).'GLo(R)P for g = (g ,z=z,as an 
                                     c analytic transformation  group. Let  GL2(F) + be the subgroup of 

GL2(F) consisting of all element g such that det g is totally

-11-



positive. With  7-i's , we can embed  G-I2(F)+ into  GL2(R)+ by

 g  i  > (gig, . . ., ,  Q9'-g) 

                   cp       (7iGab)                        a b whereg        =(:afor  g=(c d)6GL2(F)4_.With   ic 1d) 

this embedding, we concider  GL2(F)+ as a transformation group
on  H. Let  k. be an even positive integer. Put 

 I

 j(g,  z) =  IT (cd'z'''+ di)-I`Idet
 i=1

for' = ()  6 GL2 +(R)t,z e H.Letr7be the subgroup 
 GL2(6) + = GL2(&)  ()GL2(F)4_ of  GL2(9-). We denote by  SK(/') 

the space of all functions  f(z) on  HI satisfying the following

conditions.

 (S1) f(z) is holomorphic on le. 

 (S2)  f(Yz) =  j(Y,  z)-if(z) for  Y  E  r-  . 

(53) f(z) is regular at every parabolic point x of P
and the constant term in the Fourier expansion of  f(z)

at x vanishes.

Let 5r, be a fundamental domain of r- in Hi. In the space 

 Sic(r), we have an inner product given by 

(1.1.1) <f,g? = f(z)g(z)(Trylldz for f, g Str(r(1.1.1) <f,g? = f(z)g(z)(11 dz for f, g Str( ) 

                                      dx                                       di)dyti) 
where x(1'+dz„. 2 nd g(z). denotes 

 41;

 yl1+ nd g(z) denotes 

 

. 2

the complex  .c; of g(z).



     1.2. For a place v of F, we denote by  Fv the completion 

of F at v. We shall use to denote  • finite places. Let 

be the ring of -adic integers in  F. And let  FA and

be the adele ring and idele group of F respectively. We denote

the subgroup  71GL2(cyX  ITGL2(Fv) of GL2(FA) by  TEF. Then 
for any element a of GL,(FA')Fand a2/7.7a-1 are commensurable 

with each  other, hence we can define the Hecke ring  R(2'L7,  GL2(FA)) 

as in  G.Shimura  [18].  Namely  R(2/77,  GL2(FA)) is a free 

 Z-module generated by all  72-770dYIF  (cD  GL2(FA) ) with a 

structure of ring as well. And in our case  R(277,  GL,(FA)) is 

a commutative ring. Now we define a representation of  R(217,  GyFA 

in the vector space  Sk(r). For a  '277-double  177a 21F, by the 

assumption on  F9  Apa  r\GL2(F) ,_ is a  1-7-double  coset. Let
 d

7,7FaRF  r) GL2(F)+ = J glr be a disjoint union. For f of 
 V=1

 stc(r—),  put

 (T(21,027,)f)(z) =    j(gv19 z)9  
 v=i 

then  T(210T(7)f  is also contained in  sic(p), and T can be 

extended to a linear mapping of  R(J(7, GL2(FA)) into the ring

of  endomorphisms of  Sk(r). It is actually a ring homorphism, 

and gives a representation of R(71F,GL2(FA))insi,(7). 

 TrctFartF) is a normal operator with respect to the inner product 

given by (1.1.1) and  R(21F, GL2(FA)) is a commutative  rin, 

hence there  exists a basis of  Stc(r)  consisting of common 

eigen-functions for all  T(21FaR)

Now we define another linear operator  T6.-- in  Sff(r).  Let

 -1

 )  ))



 Ta- be an automorphism of  Hk given by

                      Z41)=02), 

                                  (.2J for  z=17,,z) e HR. Then as elements 

tion group of  Ht,  Tg_ and g  GL2(F)± satisfy

relation,

 (1.2.1)  Trg =  °-gTcr 

where  %, =  (  0-0  ,a) for g =  bd%  ) of  GL2(F)+. 

we see easily  f(T-z) is also contained in  SK(r). 

the condition  (L1) in the definition of  SK(r) is 

to  (S2), for  Y  r7 we have

 f(T,-  Yz) = , G17z4))) 

            f(°ID         = f(Yz,Yz) 

        = IT(P-Vjj + z(3),2 

          =  j  (Y,  z)-1f(T. „0z)  .

Hence  f(T, z) also satisfies (S2). The  con 

to see in our case. Actually, by the  assumpt 

exists only one cusp up to  F--equivalence and 

 0100,  aE a representative. Let 

the extension F/Q. Then f(z) has the  Four

 form

f(z) =  exp(27tv+:1(c1kAz + 
 rt  ct

 ;'

of the transforma-

 the following

For  fE  Se(r), 

In fact,

is obvious. As

The  condition  (S3) is easy 

 assumption on F there

we may take 

be the different of

 Fourier expansion of the

 a'k,tz`k5)



 , where in the summation,  CI runs through all the integral ideals

of  F and  ft runs through all totally positive elements  of F 

such that  0149. =  (h).  And  C(cO's are the Fourier coefficients. 

Then the Fourier expansion of f(T,z) is of the form

                                             (  f(Trz) = 0(a) exp(2X1=i(g-1Z2)14.  .  .-cikA  ZU))  . 
           at 01/79-.4)

 k)7' C

Hence the condition  (S3) is  obvious. For f  E  WM, put 

 (TG-f)(z) =  f(T,z)

  then  To-  defines a  0-linear operator in  s,(F), and T, 

obviously induces an automorphism in  S,-(fl).

 Yaking use of this operator  T7,- and the operators  T(17va2"y, 

we define the  subspace  ss,(r) of  S5(F) as  follows. We 

denote by  SE9c(7) the set of all elements of  Sm(r) which 

satisfy 

 (1.2.2)  TaT(e)f =  T(e)T„f  , 

for all e  E  R(71F,  GL2(FA)). Then it is easy to see  SSic(r) 

is a  subspace of  Sk(r). We show that  SSit(n) is stable under 

the action of  R(22F'  GL2(F1,)). Extend the automorphism  t)--- to 

 FA,  GL2(FA)  and.  R(2TF' GL2(FA)) naturally, and denote it also 

by  (7- . Then by (1.2.1) we see easily

(1.2.3)  To-T(e)f =  T(°'  e)T,f

for f  St,(F) and e  R(221.,  GL2(FA)). If f is contained 

in  ss,c(17), then for any e and e'  E  R(TtF,  GL2(FA)),

 -15-



 T,T(e')(T(e)f) =  Tc,T(e)T(e')f 

                  =  T(o'sle)T,---T(e1)f 

                  =

=  T(e')T9,(T(e)f)

Hence T(e)f is also contained in  S3k(r), and we obtain a 

representation of  R(21p, GL2(FA)) in the space  s3,(r). We

denote this representation by T0.

     In the rest of this section, we give some preliminary 

consideration on this representation.

 1.3. First we make some remarks on the representation T.

 Tt  is  known  that  the HeckeringR(Tt
F'GL2(10A)) is  isomorphic 

to the tensor product of the Hecke rings  R(GL2(6-s .),  GL2(Fy_)) 

with respect to  GL2(6) and GL2(F,) by the correspondence,

 GL2(6yaiGL2(0-i)  7 

where  a7. denotes the  T,-component  of  :.LEGL2(FA). And it is also 

known that  R(GL2(6),  GL2(F)) is generated as a ring by the 

 GL2(6)2)-double cosets  GL2(6',0(  7c,)GL2(Cy,  GL2(vi,)(  7)GL2(6x)

and GL,(0 )(                       2, whereTis a  prime element of 

        VIP ..PP P.,4P1 1 ir th t -1-.1-1p (-3 ro-thl P OnPP+. n-P fn-rrn     We see easily that the double coset of the form 71,0a 

with  a acts on  Lk(r) as an identity, hence the  represen-

tation T is determined  by the restriction of it to the subring

RI(t1F'GL2(F.)) of R(rlI'GL2(FA'))which generated by the 

 _1r_



double cosets  2,,F  a  1  F such that the right  M2(07)-ideal

 r)ay _I2(6'i) is integral. For an integral ideal  a of F, we 
denote by  T(ct.) the sum of all the double cosets  "(Arii,aV7F such 

that the right  M2(&)-ideal  11  cy12(&) is  integral and of the 

norm  ETC-. Then by the  well-known formula for the Hecke ring 

 R(2/r,  G1,2(pA)), T is determined by the action of  T(iTT) for all

integral ideals  UT.

     Now  we will describethespaceS3K(F)usingT(c7.0.We 

note that  T  (Vat)) and  T  (T(W) are equal to each other as 

operators on  S3tc(n) for any integral ideal  07_. This is easily 

seen by (1.2.3) and the definition  (1.2.2) of  SEtc(7). As 

remarked before, there exists a basis of  SK(7) consisting of 

common eigen-functions for all  T(e), and  for a  o=on 

for all T(e), we have the  following.

     Lemma 1.1. Let f be a common eigen-function for all 

operators  T(e). Then f belongs to  55c(r) if and only if 

the eigen-value  a6710 of f for  T(TW) is  equal to that 

 a('-pr) for  T(TMT)) for all integral  ideals6T.

     Proof. If f belongs to  S3ic(r), then by the above remark 

 WO is equal to  a(°TL). On the other hand, if  a(Du) is  equal 

to  a(°O-L), then by (1.2.3) f satisfies the condition (1.2.2) 

for  T(T(10-0), hence also for all T(e). And f belongs to 

 lt(  r

     Corollary  1.2.  SS,  (f) is the  subspace of  s,,(1-,) generated 

by the common eigen-functions for all T(e) such that the

 -17-
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eigen-values for  T(T(01)) and for  T(T('h_)) are equal to each 

other for all integral ideals  oz.

     Proof. We note that there exists a basis of  S$ (J') 

consisting of common eigen-functions for all  Ts(e) in the same 

way as in the case of  Sic((—'). Hence our corollary easily follows

from Lemma 1.1.  .

     Let f be a common eigen-function for all T(e). Then we 

see easily that f satisfies the condition  a(a) =  a(°  T) for 

all the integral ideals  OZ if and only if f satisfies the

condition  a(y) =  a(70 for all prime ideals  y of F such 

that . For a prime number p which decomposes by the 

extension F/Q, let p =  yi  ...'4 be the prime ideal decomposition

in  F. Then the  above  condition  is  equ  valent  tr, that f 

satisfies  a(T1)  =   =  a(M for all p which decompose

by the extension F/Q. This fact shows that the definition of 

 SSic(  n) does not depend on the choice of a generator o- of  g-  .

The operators  Ts(e) in  3,(J') are normal with respect

to the inner product (1.1.1), hence they generate a commutative 

semi-simple algebra of operators over C. Hence the representation

 Ts is determined by all traces  tr(Ts(e)) of  Ts(e), and also 

by all the traces tr  Ts(T(71)) of  Ts(T(07)). On tr  Ts(T(N)),

we can prove the following.

     Proposition 1.3. For an integral ideal  01, of F, we have 

 (1.3.1)  tr(Ts(T(170)) =  tr(T,T(T(07.))) =  tr(T(T070)To--)  .

Proof. First we note that in the space  SK(r) a common

-18-



eigen—function f for all  T(T(1)) is determined by its

eigen—values  la(o0) up to a constant. This follows from a
general result Th.2 of  t133 , and can be proved easily in our case 

in the following way. Let

 f(z) = C  (co exp  (z71111(  Crittzti))  ) 
         crE- OA) = RA9

 be  the  Fourier expansion of f at the cusp  (F100,  ...

For an integral ideal  tr, let  C'(01.)) be the Fourier coefficients 
of  T(TO)f. Let  C.:(.6-)A be the union of  all double cosets in 

 T(Z). We see that(Z)An11,2( F )4_= (g1-DF-7 
 (a)(d)=.ry  b mod.d

 a>>0,  d>>0 

is a disjoint union. Here a and b are totally  positive 

elements of  0- such that (a)(d)  =.4i- and run through a complete 

system of representatives of the equivalence classes with respect 

to the relation x  x'   x =  x'e for some e  6  E. And 

b is an element of  0- and runs through a complete system of

representatives of61- mod.d. Since'7  b                                  exp( — zzFi) 

                                             b mod.d

is equal to N(d) or 0 according as  (I'Vd),19- is integral or

not, we obtain

 C'  UT) = N(2)".N(1-)C(V7)  . 
 1(0-L,Zr)

In this formula taking  az_ to be (1), we obtain

 C'  (1) =  N(&)---Tc(&)

-19-



If f is an eigen-function for  T(T(-&)) with the eigen-value 

 a(.), then this value is  equal to  a(ory)C(1) and we obtain 

(1.3.2)  c(tr) =  NVOW2-1a(6-)C(1) 

Hence if f is a common eigen-function for all  T(T070), all the 

Fourier coefficients are determined by the eigen-values  a(6) 

up to a constant, hence f is determined up to a constant. Now 

if f  E  Sic(r) is a common eigen-function for all  T(T(ITL)) with 

eigen-values  a(m), then by (1.2.3)  To-f is also a common 

eigen-function for all  T(T0-0) with eigen-values  a(OT). Hence 

by Lemma 1.1. f belongs to  SSic(n) if and only if f and  T,f 

have the same eigen-values for all  T(T(Ct)), and then by the above 

remark f and  Ta-f differ only up to a constant. From this it 

follows that f is an eigen-function also for  Ta-, and that  Ta-

transforms  SSK(r) into itself.  On the other hand, if a common 

eigen-function for all  T(T(01)) does not belong to  AO—  ), 

then  Ta-f belongs to a eigen-space different from that of f 

with respect to the representation T, and it is obvious that 

 Ta_f also does not belong to  SSk(r). Hence the traces of the 

restrictions of the operators  T(T(01))T, and  T,T(T(M)) on the 

 orthogonal complement of  2Sk(r7) in  .9,,(r) with respect to 

the inner  product (1.1.1) are both equal to zero. Since a common 

 ei,zen-function f  6  SSIr(r') for all  T(T(01)) is also an 

 cigen-function for  Ta- and  T, is an identity operator in 

 Sk(n),  there exists a  i-th  root of unity  which satisfies

 =  f

 -2C-



If it is shown that is equal to 1, then for a common 

eigen-function f for all  T(T(W) with the eigen-values  a(010 

of  Mic(r), we have

 Ts(TOO)T,f =  TcrTs(T670)f =  a(00f 

and our proposition will be proved. Hence we show = 1.

Actually let 

 T. 

 f(z)  2,  c  (D-0  L  exortn(  L7,  tkz 
 tn.  (to=  /0_

 >,>.

 bethe  Fourier expansion, then

 Tcrf(z) =  c(rR) 2 exp(;-.F.:C9Iti.z(2,crik4z(3' ttz
 at 

 o

 =  )  )  .

        (tormA, 
 r>>0

If f is an  eigen-function for  Ta- with the eigen-value

then it holds the following

 On) =  (-)(07) 

for all ideals such that  (rat_  =  n. Taking  a to be  (1), we 

obtain  C(1)  =  c(1). Now if f is a common  eigen-function 

for all  Ts(T(a)), we see by (1.3.2) that 0(1) is not equal to 

zero. Hence is equal to 1 and our proposition  is proved.

     As a corollary of the proof of Proposition  1.3., we obtain 

the following 

 -21-



     Corollary  1.4. If f  E  SSic(r) is a common eigen—function 

for all  Ts(T070), then f is an  eigen—function also for  ;_

with the eigen—value 1. And we have

(1.3.1)' tr  Ts(T(07..))  =  tr(TT-1T(T(M9)) =  tr(T(T(00)T0-71)  .

     Thus the calculation of the  trace of the operator  Ts(T(OL)) 

in the space  aik(r) is reduced to that of the operator 

T(T(10-10)T-4-11 or  T!T(T(Ot)) in the space  Sk(r). In the following 
 three  sections, we shall compute the trace of  Ts(T(r10) in  SS/c(r).

 0"



 §2.  Selberg'  s trace formula

2.1. As to the detail of what is stated in 2.1. and 2.2.

we refer to  t_16)  § 3, 4  ,  Lin  § 2 , and C6)  Exposé  8, 10  .
For  z z'  Ht  , put 

                 (i)-- t€ 
  k( z ,  z'  )z-z'  

 2  \I-1

then we have

k(z,  z')  =  k(z'  z) 

k(gz,  gz)j(g, z)j(g,  z') =  k(z,  z'  )

                    2, We denote byHic1—) (resp.HiT  (  ) the space of all functions 

on He, satisfying the conditions (31) and (S2) in the definition 

of  Sic(  F) and 

 H  2 =  [  51k(z,  z)1-1  if(z)12dz]  1/2 <
 z)1-112 if(z)i <  60  )  (reap. 11f H6= supZe,T Ik(z, 

Then Hic( )  (reap.  ( r) ) forms a Banach space with respect 
to the norm II 112 (resp.  11  114,0 ). The  space  11,7  (r') is a 
closed subspace of HK                       () and coincides with  S,(r). For 
z,  HL, put

      K(z,  z'  ) = k(z,  )j(I', a') 
 mod.  E 

Then  K(  z  ,  z  '  ) converges absolutely and uniformly on any compact 

 set in  Hi  x  HL. We have
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for

 Z 

 K( )z,

Y,  1-7

.^^^

 YIz

 z

 17(  z 

 j(Y, z)

And

,  z  '  )

z)  

f  z')

 z)1112 [k(zI,z1)11/2

 ECK  HC, and it  holds

K-1\  1 K(z, z')  f(zI)

 K(z,  z'

 [lc  (  z  ,

is  bounded on

     f(z) =      (1;1 
for every f  e  H:7(n).

double  cosetcJicL

=  U  c
,)=2. 1. 

                         rc-1  tr(T(T(Ln))T-1) = ()-a 

        =    ) 

 '
)Z 

    ( 

           4)

 ConsPnuentl  we  have 

(2.1.1)  

(  (  T  (a)  )  )  tr.(  (

 appears

 djsjoint

 =1 

 T 

 =1 

d=1

 dzi
 k(z', z') 

Let  E(a0A  be union of all the

in  T(CZ), and  let  2(07.)ArIGL2(F)1 _

union.  Then  we

dY7-1o'-1z—1 
77-(—T&,9 z) j(gpz)

dz

 7,

k(z,

 -•1
 k(T;

 z)

-1
 Tr')  J(r.

       -1 
z) j(gy z)

    d 

 ) 

           =-1 

 by (1.

 (C-L))  )

 is  d,E 

 k(  z  ,

 Z) ( z ,

rn 
_Lo-z  YTz LDu-

 

-  d

 dz

 Ter,  mcd,E  

.  3)

, (i f 4-7z1)  5-7
       (-7 (   b(rn

 —24—

fl

 k(  z  ,  z)

 

(  z  ,  7Trrz  )  j  (  To  )

 z )  Ci

 'T( I)  mc( .E



We  will  calculate this integral explicitly following the method 

of  H.  Shimizu  (t16] ,  [173 ). In the case where  OT  =  09-  , the 

calculation of the above  integral has been treated in R.Busam  [1). 

But there, the explicit calculation of them was carried out only 

in the case where  ,e= 2.

     2.2. As we noted before, all the parabolic points of  F-

are  1-7-equivalent to the infinite point  (flee, ... ,J77.1450 ). We 

take it as a representative of the  r-equivalence class of
                           (1) parabolic points. Letnobe the group of all  Y  e  p leaving 

 91=-16,3 ) fixed and  r-c, be the group consisting of all 

                                       ( parabolic transformations in17,c)1). Put  U,, =  iz e  HP  Im  z(1)  d
where d is a suitable positive  number. Let  Voo be a fundamental

               i) domain offlin  Ua.. Then we may assume that is of the

 form

 =

where, a relatively compact set in H  (u±  )). We note 

 c

that1)))I        Ilog(/y-is bounded in  Vo, . This is easily seen

by the section 9 in  g61.

     In the following we write B  =  '3(`'L)A  nG12(F) for the 

sake of simplicity. We denote by <  GL2(F) +,  > the  group 

generated by  GL2(F)4. and  T„ with the relation  (1.  .1) 

Then we may consider the group  <  GL2(F)+,  T0-> acts on  H. 

Let  B-) (resp.  (BT, )0,11 ) the set of all elements in B  (resp.

 BT,) leaving  (:7N ,  ,:7  NJ ) fixed, where we consider BT,

as a subset of  <GL2(F)+' .  Then we have (BT,)„(1=(1/T,.
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In fact, if an element  gT, of B leaves (Ft ex, ,  .  .  . 4r-71) 

fixed, then since Tg- leaves  (1:1co  ,) fixed, g also 

does. On the other hand if g leaves  (F1 ,  .  .  .  ) fixed, 

then  gT,-- also does.

     To exchange the integral and the summation in (2.1.1), we 

proceed as in  116) and  CL7). From  6_7)  , we quote the following
 (j)  (1) 

                                            1 lemmas. For g eG-1,2( F) , put019-±g =g 1)(a                                              (i)  bid. Then we
have

     Lemma 2.1. (Shimizu) 

1) For  E  >  0, we have

           1 

    -1=1 (c/detgi)) 
E1                  c(i)/det [ii+<c>c)

 ) 
g running over all the representatives of j--;„,, B - B  /  I

2) For E > 0, we have

 -- Idet  E 

 g i=1 do-'  b<1

g running over all the representatives of  B  /  tx,  r

Using the above lemma, we can prove the following lemmas

which are analogues of Lemma 13 and 14 of  tin. 

     Lemma  2.2. If  it  4, the integral

          k(z,  g7)i(g, TEO) 
 —  dz 

               ( V„, gEE-B,1„'  k(z,  z)
g  mod.E



is  termwise integrable.

Lemma  2.  3 For  Z  F  EL, put  I(z) =  Tr  Ira  zri)  . Then for
    4, we have

      ,k(z,  nz)j(g,T,z)   dz 
Vg6B   11) k(z, z) „„ 

 k"--7' k(z, Az)j(g,T7) 
 lim 2  , =  dz 

 s->0 g0V         L1) I(z)sk(z, z) 
    6,

 g  modoE

The proof of the above two lemmas proceed in a quite similar way 

as that of Lemma 13 and 14 in  a73, if it is noted that 

 lag  y-jjhtil  I is bounded in  Vey° and that  (BT(T),,,,(1)=  B1T„.._ . And
we omit the proof.

On account  of Lemma 2.2. and 2.3. we obtain

   471e47-cl1 (2.2.1)(KHtr Ts(T(07.))=( tr(T(T(0-1))Ta-) 
                            K-1

      ),:i[.Sk(z, gT,7)j(g,T,F) + lim  dz 
 s...0k(z, z) 

        g mod.E 
 ge       03T 

        k(z,  gV)j(g,  T.,z) 
+dz 

           I(z)sk(z, z) V
„ i
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2.3.  Before going further, we study some properties of the

transformations of  Hk of the form  g;: For g  6  GL2(F)+, put

         u1(uCr 
 (2.3.1)  Ng  =g 2g

Then by (1.2.4(gTo..) is  equal to Ng as elements of the 

transformation group of  HQ. The element Ng is of one of the 

following types; i) Ng 6 Fx, di) Ng is elliptic, Ng 

is hyperbolic and no fixed point of Ng is a cusp,  iv) Ng is

hyperbolic and one of the f xed points of Ng is a cusp,

                                       2 v) Ng is parabolic, vi) Ng is mixed. Let H be the 

set of all e-tuples z = (za), ,  e) with  Zji‘ c,  Im  z(i) 0 

 4 orz(=Fla). The set  H-  His called the boundary of H1. 

If an element z = (Zi)) of  0 be a fixed  point of gT, 
     cr.;0al6)0173,(1 .)(1)(2). i.e. ('gz,gz,,) = (z,, z  ) ,  then  we

obtain

        (1)1) (2) 0a O;                              (1)tn) =01a)  (2.  3.  2) z= NgZ, z = g'egz ,gz 

                            ,

 Conversely we consider Ng  E  GL2(F)+ as an element of  G-L2(R)+

by  the.embedding of F into  R and assume Ng has a fixed

point11 -7            in I_ as such. Define Zi) for  2 by (2.3.2), 

                                                                                                                        _ then the element z = (zdA)of H9is a fixed point of  gTo..  . 

Hence the set of fixed points of  gT, in  H' is in one to one

correspondence with the set of fixed points of Ng  as an element 

of  GL2(L)
+ in  H. And we see easily that the set of the fixed 

points of  gTu.. in  171Q is contained in that of Ng in  11)". If 

Ng is of type then the set of the fixed points of  gT6.., in



HC- consists of all the points of the form (z,62g... Tegz,  , 

for some z  e H and is holomorphically isomorphic to H. If 

Ng is of type ii), the set of the fixed point of  Ng consists 

of a unique inner point of  HR. Hence  gT,  also has only one 

fixed point in  H which is the same point as that of  Ng, If 

 Ng is of type the set of the fixed points of Ng consists

of  2t points contained in the  boundary of  fik, and they are not

                                 1 cusps. The fixedpointsofgT,in Hare twopointsof  them, 

and are both not cusps. If  Ng is of type  iv), the set of the 

fixed  points of  Ng consists of  22 points contained in the 

boundary of  H  , and two of then are cusps of  fl  . And if 

z =  (z(i) is one of its cusp, then the fixed point z' =  (z(1)) 

 1 of  Ng with  z(i)                       for all i  (1  ) is also a cusp. 

The fixed points of  gT,„ are two points of  22 fixed points of

 Ng. If one of the fixed point of  gT,-- is a cusp, then the other 

is also a cusp. In fact, let  z, =  (z,(1)
 J  0

 (z  co  )..ez(1)• ° •j)) , z H-H , = 1, 2  ,
 tl  t  1  )be the fixed points of  gT0- , then it holds that  z1  A z2 

for all i. Hence if  zi is a cusp of  r , then z2 also a 

cusp. We show  gTo_ fixes two cusps of if 2. Actually, 

let  z1 and  z2 be the  cusp5of the fixed points of  Ng. Then 

there exists an element h of  GL2(F)+ such that

 h(0, 0) = andd  h(Fico  , ) =  z2  • Since  h—iNgh

leaves (0,  ..., 0) and  op  ,...,Firo) fixed, it is a 

diagonal matrix. The set of the fixed points of h lehT, is 

contained in that of  h-1Ngh, hence it hold one of the followings;

 Tegz



i)  h-igTh(FiN)) =  (Fica) ,  h-leh(0) = (0)  , 
      -1

gcr  di) hh(l7IN) = (0) ,  hleh(°) =  (floo) . According to

i) or ii),  hleh is of the form (4(c)- .(,),) or  ((,),_  4(;) . Since 

 N(h1eh)  =  h1Ngh, in the case where 2,  h1eh must be of 

the form (0*°). Hence the fixed points of hehT0- are

 (0,..., 0) and  (loo,...,Floo), and the fixed  points of  gTo-

are two cusps of  7, In the case where  f= 2, 

it can occur that  h1eh is of the form  (  ())  and in this 

case, the fixed point of  h  lg  hTcr. are  (0,1:10Q) and (1---7106, 0). 

Hence neither of the fixed points of  gT,- are cusps of  r- . If 

Ng is of type v), the set of the fixed points of Ng consists 

of a  unique cusp of  7. Hence  gT5  also has a  unique fixed 

point which is the same as that of Ng. We show that the case 

 vi) does not occur. In fact, we see by the definition of Ng

                         —1  N
g = Ng ,GINg = g(Ng)g , 

  g = g-1 2g  .  .  . l(Ng) 1.7g  .  .  . cre-g g  .

This show that  Ng is not of type  vi). Summing up the above 

results, we obtain

Proposition 2.4. An element of  GL2(F)+Tr is of one

of the following types.

i)  Ng 6  Fx and the set of the fixed points of  gTo- in  HC is

 holomorphically isomorphic to H.

 ii) Ng is elliptic and the set of the fixed  Points of  gT, in 
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 H consists of a unique inner point of  H  . 

iii) Ng is hyperbolic and none of fixed points is a cusp of  r'.

The set of the fixed points of  gT,9_ in  H consists of two 

boundary points, which are not cusps of  F-

iva) Ng is hyperbolic and one of its fixed points is a cusp. 

                                      a      The set of th e fixed point of gT,_in H consists of two 

     cusps of  r- .

 ivb) Ng  is hyperbolicandoneofitsfixedpoints is a cusp of
 -e

 r,. The set of the fixed points of  gTu_  in  H consists 

of two boundary points, which are not cusps of  P

v) Ng is parabolic and the set of the fixed points of  gT0 

 in  H consists of a unique cusp of  n  •

The type ivb) can occur only in the  case where  i= 2. 

     We  will call an element g  ,G-1,2(F)+ is of type  Ar  , e, h,

 ha, hb or p accordings as  gTo_. is of type i), ii), iii), iva), 

ivb) or v) in the above  proposition.

Now we define two equivalence relations (  r
, E) and  F,

in  GL2(F) by 

                                                         , (2.3.3) g(^=•--g't=> g=tY-1g0-Y , for  Yen ,  EeE
 (r,E) 

        <> g=lgcrY , for y 6.  (2.3.4) g g

The condition (2.3.3) (resp. (2.3.4) ) is equivalent to  that 

 gTo- =  ErigTO for  Y  6)-7  E  E E (resp.  e  = 1) in

 (GL2(F)+, . Let  n(gT,)  (resp.  Mg-Tu.) ) be the  group of
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all Ye r' which  satisfy = g for  EE  E (resp. E =  1). 

Then we see easily  r(gT„,)E  is a subgroup of  r(gTo..) of

finite index, since the  1=-- Galois  cohomology group  H1(CT,  E) 

of  E is a finite group. For g  eGL2(F), put 

 

(  2.  3.  5  )  Zo-(g) = x EIN_2(F)  I  e  k  = xg 

then  ZT.(g) is a  ;,—algebra and  1-7(gT) =  Zcr(g)H-7 . We will 

study in  § 3 the equivalence relation and  the  Q —algebra

 ZT(g). Here we give a direct consequence of Prop. 3.2., which 

is needed for the  later calculation. 

     Proposition 2.5. The notation being as above, let g

be an element of GL,(F). 

                            + 

 i) If g is of type v,r;(gTo--)/  ngT0-)r)E is a Fuchsian 

    group of the  1st kind as a subgroup of  GL2(E)+.

ii) If g is of type e,  r(gT,)/  r(gT,)rE is a finite cyclic

group.

iii) If g is of type h, hb, or p,  F(gT,_)/r(gTo.-)flE is a

free abelian group of rank one.

iv) If g is of type  ha,  r(gT0-)/(NgT,)0E =  flj.

Before the computation of the integral  (2.2.1), we prove the

following. 

     Lemma 2.6. Let  By be the set of all elements of type v

in  7. Then the integral

Sk(2,  gT,z)j(g, T,a7)  dz            L___3i 
 Vgai,-'-')k(z, z)   A,v!-)Q°

 mod.  E



is termwise integrable. 

 (1)
Proof. First we show that  the set Bv°°divides into 

a finite number of classes with respect to the equivalence

 ) 

relation given by g)g' g =_lg'Y , for  /  E ,,(i 

An elementg By (-)B,„`D is of the form ( (a). bd.                                                ) with a, b, d  60- 

and the ideal (ad) is  fixed. Hence by considering the element 

  1gT
0.1 for a suitable  y = (0EE0,) ( E ) with  E  E' e  E,

we may assume that a and d are contained in a finite set.

For fixed a and d, g = ( (a), bd.                                  ) is contained In Bv(-) B:2")
 b 

if and only if  NF/n (14= 1 and Tloi(---(T) = 0, where 
                           kcal 

  c2/121 = °.1(al°'212P.)cr:eHb d) 

                                                                     P 

    a/dkd))d)kd)

Hence we may assume NF/va = NF/Q d  , and for such  .a and d 

we see easily that the elements b of  6- which satisfy

Ltio)  /d0 =  0 form a free  27-module M of rank  f- 1. Now for
 62_  , we have

        11b'-1°-1b',/abl-aTh'-bid.      k
01)g (01) =ko), 

we see that the set a°Io' - b'd b' E (9- 1we see that the set a'b' - b'd b' E (9- I is a  Z  -submodule 

of M of rank  ,e-1, hence it is a submodule of  1\1 of finite

index. From this it follows that B B(1) divides into a                                    By co 

finite number of F,,,-eauivalence classes. Hence to prove

our assertion it is enough to  prove that
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 = k(z, gT,,z)i(g,  T,z)  S (z)

       g,..riery  I k(z, z)
 YE  cl) 17„;- 

 mod.E

is integrable, where the sum runs over all the elements g' of 

the  form—lgo-               7 for some  7(1) modulo E. For g

       OJ B
yn 130° , put

 roo(gTo-)  =  y  F7C°I—107,,,                                                      oc,_

 , then we see that

 r7,,(gTo_) = n I E = ±1,  13,60- ,  a°-b' = b'd 

and that all  13'18, of  &- which satisfy  a°-b' =  b'd form a

free Z—module of rank one. And it is enough to show that the 

 function

 k(z,  gTo-z)i(gt  T0-z) 

      k(z, z)

is integrable on a fundamental domain  U,,/  11.0(gT„) of  1-7,(gT,) 

in  U„,. This can be verified by explicit calculation.

     2.4. We classify all the elements in B with respect to 

the equivalence relation  ti ((2.3.3)). We denote the class 
 (P,E) 

containing g by  ( g).  Let  r-(gT,-) be as in  2.3.. Let  go

be a complete system of  representatives of the above equivalence 

 classes in B, and for each  go,  16r; be a system of representatives 

of  1-7(g0T,)\r. We set
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 Fgo  =  U
 O

  then         Fgis a fundamental domain of F(goT,r) inI-1'. And 

              o

we set

         0.y  * 

        Tgo go —lg
ocTE-B(3)11.c.° 

In notice of the fact that  I(z) =  I(z'  )  j(g,  z'  )1  s for z =  gz'

by  (  2.  2.1) and Lemma  2.6. we obtain

     4T47C \e- ( 2. 4.1)tr  Ts(T(0-))  = (  )                                      tr(T(T(a) )Ta-  )

                                     k(z, goT,3-z)j(go, T<-z) 

                              (,  go ° Lgoi n(3,„1- Bv)  k(z,  z) 
 'Tho 

 k(z,  goTa-z)j  (go,  Tirz) 
 +  lim 

 co 
 go: [go) n(B,—BIT)4.1)...,7g0 k(z, z) 

 k(  z  , goTtrz )j (go , Trrz) 

                                                      dz 

     ,E--lgor,,EB(1)cv I(z)sli(E1,z)Isk(z, z)         6 co t

 In the following, we calculate the integrals in  ( 2.  4.1). 

 2.  5.  go is of type v. Let  01,  ,  crk be as in

 ma  '  b 

 1.1.  , and for  g  = (ab)GI,F)                                   put gi) =crig= (0--,.T.  )             cdi2I'i+'-b'cT' d 

By  a--1, we may consider  r(g
0T,-) as a subgroup of  GL2(R)+, 

and then by  Prop.  2.  5.  r(g
oT,r) is a Fuchsian group of the 1st
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dz

dz



kind. 

then as 

the set

We set

g =

And we

 12  =

 , where

 12 =

As a  tune 

condition

Hence by

Let 7obe a  fundamental domain ofMgoT) in H,

a  fundamental domain of  1---7(g0T,-) in  H  , we can take 

 XHX...  XH. Put 

               k(z, goTz)j(go'  T-z)
 I(go) = u   dz 

                    k(z, z) 
         L.)go 

                     k(z,  goTo_z)j(go,  T0z)
    — dz 

 \ 

                      k(z, z)

 z –  E'\ 
for z, z'EH  ko(z, z')  =   )and for 

 24-1 

 d) e  GL,(R) ,z H.() = (cz ± a,dp-1-. 0-1/2         -g. z) •-1i

consider the following integral  12  .

k z`ji,  o go(lz(2))ko Z2)  (2) (3) g
o

(2(11 

 0  1  7g( )  i  0  )00(g

 

( 2) 

 o  '
 z(3)

 122
re 

 12  = 

 function

 f  11 2

 Th.3,

H

=

H

x(2) 

 k0(

+  -1)2) 

 41)-1z(1),
 2

k  (z(2) 7(2 
o  '

We  see

)koW),go2)z3  g
 0

 )0 z  0
1)-1 (42),z(3))

of  z(2) 

[

 Expose

 ko  (  z(2),  42)) 

 f  (  z(2) k ((2)((.3), 
            0z'goz) 

 Iko(z'  2.)-1/2f(z)i  2  (II
 10,  , we have 

 -36-

  satisfies 

 1/2
 cx)

the

  (2)(2) d
xdy  

 (2.?

  (2)(2) dxdz 

 51(32



 4  7L. 
 I2  =  k(,(1y1) (20/)i(,(171 , z(1)jo(gO21' z(3) 

    K-1o'6o ,  go"oDo 

 4  TC,-- 
   .  k(zOi_,(1),(2)d)),(,(7),(2)zt3)) 

           o',°0°0'0`505o ,  lc -1

By the same calculation for  i  73, we obtain 

           4 
 I =c —1kza)j(Ng 

                        7c- 

        )(I)) d(1)yG.) 
                            o1), Ngoo,zxd 

                                  I,(41)c1))                                     Of 
 c)ro'o'-

Since  Ng  E  F" , we see 

 471.  • dxdy 
 I  -   

     K-1Y2 
 To

 — 1

         (4R:)-                   v(Ivr-(gT,_))  9 
               1,(-1 ) 

where  v(H/  r(gT,)  ) is the volume of a fundamental  domain of 

 r(gT0--) in H with respect to the invariant  meas-ft-e?(dy 

 2

 y

 2.6.  go is of type e. In this case, by  Prop.  2.  5. 

 r(  gTcy-)/E is a finite group. We consider  r(goTa) as a 
subgroup of  GL2(1114 by  cr1, and let  .fic) be a  fundamental 
domain of  FU

0  T in H. Then by the same calculation as in 
 2.5., we obtain

            k(z, goTG-z)j(g'Tz) 
I-dz 

 k(z, z)° 

=
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 k-1(1(1)(1) 

 C 4rko(z',Ngoz(1))j(Ng°, z) dx dy                            ko(z(1), za..)) y(1)2

 , where  zll=  3111 +  \1-157(.2) . Since  Ng is an elliptic element, 

there exists a unique fixed point  zo in H. Let ,  C be the
eigen-values of  Ng and suppose that we have for z H

       Ngoz - z z -  z 

(2.6.1)os-1_ 
 Ngoz -  zo z -  zo

Then we have

                                                                   it.  47C)2- 1sic-11--f 
I -     (det  Ngo) . 

    tC-1,/ ftp(goTcr) : E] )9(- C. 

2.7.  go is of type h.  Leto be a fundamental

domain of  F4(gTO in H. Then by the same calculation as in
 2.5.  , we obtain

          k(z,  goT,z)j(go,  T,z) 
 I  =. dz 

                k(z, z) 

 o

 1 k0(1, Ng0za5j(Ng0, za) 

 (K-1)ir(gT,,-)  :14(goTT)E)                                               k(1/(1)                                             o(z,z)

          (1)CD---(11  , wherez= x + \I -ly . Ther exists an element h  E  GL20/4 

                                a1 such that  h1Ng
oh is of the form(with a, dRx, and                                        '0' 

then obviously a  V d. By  Prop.  2.  5.  ,  r(  g
o  To--)/  FlgoTT)nE is

-38-

  (32(' d
xdy' 

 tl2



a free abelian group of rank one, hence we may assume

 =  h  To'  , where  Fo' =  z=.3E  +  e  H  <x  <bo  ,

with a positive number A. Hence we see

 1(a)fl/2 YK-2 
 I  -  ' dxdy    (:7,)9'-1[rr( gT). f4(gT )E1id) (z - a-ii-f               oT'0T-,  —Oa  <x<Ao d

 <  y  <  A

 =  0

2.8.  go is of type  ha. By  Prop.2.5.,

 r(  goTa_)/  (4(  goT0-)  nE  = 1  j and  11  2- is a fundamental domain 
of  (4  ( T  0-) in}IL. We may assume that  goT  0._ is of the form

 (  )Tcy  since every cusp of  r7 isf'-equivalent to 

 (-7  160  ()o  ) and then the  fixed  points of  goT  0- are 

 0060 ) and  (°a,0a,0"e-                                    ,a) with a  6.  Fx.  Let 

 T  o be an  element of  r7 such that Y o , 1-7): Bo) = 
 ( '11  a  ,  ()la,  °17-a). Then the  set of all  I  E  r which satisfy 

  Cl)/ 
  gocr6 Bis the union Yo1-7,,c,(1,. We denote by h 

               ao

the matrixGL2(p) +,then h (F.T.0 ,  .  .  .  00  ) =  (1.71  04,  / 

and  h(  0  , , 0) = (61a, ... ,  (3'2  a)  , and put  go  ' = 

            1 and' = hYh. Then  g0' is a diagonal matrix and Yo'

 G7i  .  .  )  )  (  o  ,  .  0).  . And the 

contribution I of the conjugacy class  (go7 to the integral  

(  2.  4.  1  ) is

 —39—

1<y<A

prd )



     ( I =  liM      cL1 7r 
 ga 

        + 

 E  goT,O\  [

We see that  (--)

 'hh      (1,g(hlvoj 

rs  d1 and d2  '

 k(z  g01T7z)j(g01,  T-z)

 k0(z, z)
dz

k(z,  goiT-z)J(goi  '  Ta-z  ) 1

g  00'171 

numbers

and U'(d2) 

 (Y11, z) =  1 

(2.8.1)

where

 I =

2

 E 17 go To-) \ F7,ao'UT 0 riT 

    i) c  g(h1V60) =  h  1U, 
g h 

 g(h1V,s,,) =  Yo'h1U(d) =  (d2)

and d2 , where  U(d1) = 

= z  E  H2 

and j(11.11, z) = j(70'1, z)

 1

 I  =  lim    (I, 
 s40 I 1-7( gT,-) : ff(gT,-)E1[r(g1,0 

 k(z,

: gT,-)E] 

 go'  Trrz)j(gol  ,

 1(z)  s  k( g —1h,  z)1
      dz) sko(z,z)

and 

 , =  U(d1) and 

       for some  positive

 E  H  I  ir  im(z  ).> 

 d2  I  • We note 
      for  v  r-10(1)  .

 +  12 +  I3)

12  =

13  =

 H--U(d

 integrals

 U(di) 

  (d2)

 I(z)sk
 0

k(z,

(z,  z)

 go'T7z)j(go',

 T,z)
   dz

 T,rz)

We show

 I(z)51,10 0;,02

k(z,  go'Tu_z)j( 

      k(z,  z)

dz

the

 goiTTz)J(go  Tn_z)
dz

   (d2)

 I1 and  12 

 -40-

vanish. For  g..  = (g



put

 Il

 where

 T

 note We

 put and 

 then

 I

 °

 is

 hence 

 go"

 I2

 I2

 ce 

 H

 in 

ee

 S 

S

d

 TFA ( 2

 x  + Z(i)

 Cri  1  a

 ThAi  t  1
      (1)n 

 u1= x

 1

Then we have

 K-s  K-s  - 

     czaLA-0)k-(z(2)--A2e—A 
  i U(d)

 (1.)          N
ow we  consider the integral 

 dX2mos dx4t)

 Eel)r-(z°//12-0)K  (  2,tiCqc 

and  i  ) 0, since  go is of type h

                                    (e,a) 
x(2),u2=x(2)-21x6),,u= x- Agx 

 ,du1  ...  dug

 k -(1

I 
, II

 a. 

 9

dz

 I1-Dd (u'35)K(  1
.11e"1/2y°`11,v+

0

 1vanishes. Put  Y = (10-10)  , go"=-1go, '

also a diagonal matrix, and we have

k(z,  gouTT-z)j(go",  To_z) 
 dz

 I(z)sj(0 , z)k(z, z) 
 Y_'U(d2)' 

    1i*  1U(d
2)' = U(d2) and roY is of the formf)0.

= 0 by the same calculation as above. Put

 U(di) -  U(d2)', then

-41-

   it 
eY( stIL)+) 4-1

then

we



 ki K/2 
13  (1TAi) 

In the rest of 2.8, we 

of simplicity. Then

 K/2
 I3 =  (2\F--1)  (

 , where  za) = 

 11  sin  e;/d2  II <  di/ 

 12  53/5.2 '  •  •  •  11.-1 

               K/ 2 
I=(2\1:1)(          TV)  3-

 , where W2 =  /0  <  < 
 Tisin  6-1/d2 <  di/Tr  s 

 r  o,  c-i ,  t  

(  2.  8.  2)3_(24°1) 

                  -

 ( TT  3rw)

 t  JW 

write

z(2))1c 1)-21 z

 E6.] e

 Tr

(2) z-22z)

 exp(T-1  61-  )

Pc-1 
)  (II sin

 (za,  Atzayt dz

for the sake 

 Lc-2

 s-i)

 e  L6xl-A2rier--613) 

 

,  and  Wi  =  0  < 

d,/7f sin  62-„

 (41e  C6)-1)-Al  S32ei--6-2]).  i2et61-2I-A-2  53e  [-9-37)  •  '

 1

 d  di9
j2,

 and  =  0  <  <  ,  0, 

sin  62-±  ,  ““P:t. Put  71  =  ?2/j'1

 1k/?k-1  , and  Y =  .  .  p  p_ , then
-1  kc-2

 (1T  yi)  (Tr  sin  6-1)

  (e (6)11-XI)K)•• (e[6g-13-N-17,L-le 
W2

1

                                          d7,...dY d0-2... 
(e[6 .-e) --. . 

 (41<  ,  rj>  0,

 sin.  ,62i1  . Put  W3=  o  <  0-i  < ,  1  ,
then we see 

 K/2
 (IT/1i)  to  d

id2)I31 +  I,"

L-67;d)c 

d



 , where

13, =  L1W
 3 

and 

13" =

 w3 

To compute 

J.

 J  =  S5a,S.'4(' 
 D o

Put  z  =

J = ,Sx),S7

 (Y.Y)   i• •I-I
—1

 (7-1  sin  t9-i)
K-2

 (er.61,3 —  eL-83 .3  )'" 

 1

 (etk_t)

 (eCet2.3  -  22(111 

                -1

 Y"  (7  sin

           K- 
eat] ) 

9-j(iog( IT  sin

 - eL 6z3)K 

                dY, d'Yd(9.d6-  1• "1' 

          —2
 )

 (e  63  -  J,Y,

 x

e  )K

1

 

.  .  (  e  0-2-0

 (eL613  2t  T1 

the integral

         -1       )  
e  L-61,)  )

I3we consider 

    1 )dc-2  y
e_i( s in 6'i

 -  A,2171_1  e  L9(91,  )  ) 

 dYi.  dy52_t  d6)2_,

the following integral

                         !ti 

(eC6kJ—eL-ee) 

x + =  e  r&ij

 Jc-2

 (eL6',3-  Ap(T1  •  •  -  Te--1)-1

then

               rc dxdy 
   Y f_2) leL-B,J)

 y~t-

 e  )

 d6pd7R

 ^c.

) c.c.(eL6-1-J-  Af_IT) (z- MTI

27E4-1( 2tC-2)! (-1)Pc-1

or -1 )  )  A,_,)ic  (2(--ly+eL0;„ 

0
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    -1 
J  -  A,1(  7,  .1  _.2)  )

 21t-1

dy



 47G 1

 (  2Nr.1)ic  (K-1)  (eLbti_ID —  71  •  •  •  TL-2)—le  H&j  ) 

By the same calculation for  (6k, , 2  i  E-1, we obtain

            7L- K-2  e -, 

 

(  47r)  (sin  (9) 
I ' —       3—

_icci-1 )1    (2J -1) (K-1)P-Id64-   (ece-,)—  Ai•  •  •AE  e  L—Of  ] ) 

                                0

Since  ITAi  4 1 , we see 

 I3'  =  0  .

Put 

       —1  k-2 —2

 (Yi  Te_i)  (7r  sin  6-1)  log( sin  9-±)
oi=\ K 

 (  e  —  AIYi  e  IL—  0-)  )  .  (  e  Lt9-1-0  —  e  L-61)  ) 
 LI  W3

1

X  dT.                   kc12-I1L. 

 (eL6-"iJ — ALCY1 1112_1 )

Then we have

 (  2.8.  3) I3" =  Ft J. 

                           1 For  Ji  '  i 2  , we set 7= 71j<L—i ,                    ii +j-1'‘ 

 It  _i+i  = ( 71..."I'L_j _)-1,  irj =  l'  j....t+i-1 ,  ,t—i+2  :  j  .--1  , 

 , 

    6-&-=i+j-1r(Aesp. A=Ai+j-1), 1 j,<L—i+1  , Jji+j-1 

 ?  ..--=_.-..(resp. A=A.),„e— i + 2jX'. 
    J-1-1-1-1,jj—k +2-1



 Then,

--.7. J  .  1

 IT  A,

 W3

 -1 

j = 3 ,  (y1'  •  lie  ) 
 -1

 (4-1"  •  /J2  -1) (II- sin
 N

 i-1 

 K-2

   and 

 log(  sin

we see 

     —2

 r9-1)

 e[Bt]  —  2.171  e

where  W3

By the same c 

 J1  =    = 

( 2.8  4)

By an explicit

.591, 

 1

K-SC]

1

 (eLt91.„-3—  " e  L-6te]  )

 (eE0/1--

 0 < (9i < 7r-

calculation as 

 J1 ,  , and 

 (4K)

       ( -I)J2--t ( 
2 \I-1i_ ) 

 0

calculation, we see

log(sin6,)®2(sin0)k-2  ci6-
 (e  LOJ  -  1T  aieE-63  ) 

          4 7c-

   Y2--/1e C- 61_,] )

 Yi>  0,

in the case of  T
 3 

TE

                  sin61-)

dY1—dYJ -1dO"1—d0-2

 , we see

K-2-2 
   log(sin0-) 

  -

 (eCi9J-  TTA jeL-6,)

( 2 \r---T.

 2q--1

 (-c-1)(1-TrAi)(Trai)

4  7(7-

 (rt-1)(TT/li-i)

 -45-

K -1
if

if

 >1i Ira

 <1 TIAi



 Hence  b:y  (  2.  8  .  3) and  (  2.  b  .  41

(2.8.5)K  -1                                                    ,1-w/2 

                                               2 

            ( 4"21--)12-rridii  (det Ngo)  if  Trai>  1 
         ( 2-47--1)" (1  -1)ITTdil—Iliad 

 13 tc- _...] 
            (tor)e 

. 

                     Riail                                                 1-1/2   (
det Ngo')if 1T2iC 1 , 

        ( 24=1)Ki(it-1)iliTail -11rdil

 a. 0 

where  tgo =  o d
i) In any case, it holds 

 kC-1

 13 = - 
            4(Min(,IlTdd) )--- 

  (det Ngo)                                                              , 1-11V2 
 K-1rffai - 

Since h-lNg h = ,Ng'odet  Ngo = det  Ng' and we see that 

 ifai and  lTdi  are the  eigen-value of  Ngo. We denote them by

  

,  , then we obtain by  (  2.  8.1)  ,  (  2.  8.  2) and  (  2.  8.  4) 

. 

            1 (47E )(Min(1 fl  III  I))  
                                                  (det Ngo) I = -   

 Lr(goTo_)  f(goTa_)E]  -

                             By  frop.  2.  5,r(goTu-)/ r( go Ti,r)n  E  2.9.  go is of  type hb.

 is a free  abelian group of  rank one. We can show the integral

I ---goTr:7)  j(go,  TTz) 

 o(z,  z)

 -46--



vanishes by the same calculation as in  2.7. We omit the details. 

 il)
    2.10.  go is  of type p. We may assume  go 

since every cusp is  F—equivalent to  (.1-  icor  ,1;  00 ). We note 

that  if-1g°TO'  E  Boo for  YE(' , then Y is contained in 

 r-7 

 

.  Since  j  Y  ,  z)  = 1 for  1'  E  L , we see that the contribution

of the conjugacy classes  Ego] of type p to (2.4.1) equals

 1  im 

 cgo3
 0

~g

 Iii
 k(  Z  goTo_z)

 k(  z  9  z)
dz

 <J  U,,,

 k(  Z

 i(r)sk(z, z) 
  g

 idz

Put

 =  1  i  m 2:
 s-->0

 lgol

go _( 0a b )

 1  = 

 7g o

 0
 Fg

k(z,  goTu7) 

I(z)sk(z, z)

and we

 k(z,

consider

 goTn-z)

I(z)sk(z, z)
dz

dz

the following integral I,

Let 

that 

of

M be the set 

=  and , then  M

 n(goTT) = 

M, and  To the

 37ro =  f  (  zd)=

of all element m 

 is a Z-module of

1+ (36 T) 1  m  6  Ml 
subset  of  letgiven 

(i)(i) e 
xq—ly) 6H11

 of  64. which satisfy 

rank one. And we see easily

 . Let  mo be a generator

by

 Li)ci)  0 <X<

o- << , 

 2  0,  I
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Then we may take  To as a fundamental domain of  r;  (  goTo) in

Qa.ab•aai b  . Il. Put go=0  d  .and-(17-A,=  d  .'                                                                Then
 a  a

we have 

 lc  -2-s 

 (2J-1)  C  (1T  yd")
I  =   

    {r(goTcr): 1( goT,r)Ej (I)-(2)(2)-6)                            (z-z—tA2)(z-- r2) 
 7

   1  ) (1) 

            U.)  X   dxa). dx  dy•  dy       (
z  -qtz  t-ti)

Put  Y1 =  y1,  Y2  =  y2,  ,  YF = , and 

A = +  1(2 + +  Al.  .Af_i Then we see

 k.  -1  kk.  -1 
 ( 27(4-1)  (  2\r-1)  (k.  (K-1)  )!  Imo(  Als(A1/12)8...  (Ar

=I

me do

 CO

 0 v

By

 ((pc—l)!)e  [1.-  (goir  cr)  :  f;(goT,)4 

Do 0 

              CT Y•)K-2-s 

 gic-1)+1 
‘.0..  0  (2qL1(Y1+...+Yi) - A)

calculation, we see

 K-2—s 
 (TTY.)  dY

 • 

      1 i(K  -1)+1      (24-1(Y+..+Y ) - A)

 -4

  d • '  •Y
,e

 dY1

 •  ' dY- 

•



 IT  B(K-1-s,  (2-i)(K-1),i+is)  _241 1+is 
;=1  

 (24=1) A

where B(x, y) is the beta-function. We note

                L   (fi(K -1))! -171 
  lim/2 H B(K-1-s, (k-i)(K-1)+1+is) =   . 

 s30((t-1)!)'1=1 (K-1YE 

Hence we see that the contribution of the conjugacy classes  [go3 

of type p to the integral  (2.4.1) equals

lim(-24E 1 1                                    Ilan( gn )1 s-)0tg oi 2  TC  [r(goTcr.)  ('(goT,)E] 

                                         /_v,iN1,4s 
       Ais(g0)(A2(g0)22(gons.—qe-t(gons ,1,.(go)/

where for a representative  go of the form (ab\                                            sOd' of a

conjugacy class  [go],  A.1(go) =  '(a/d),  ri(go) =  '(b/d), and 

(2.10.1)  A(go)  =,41(go) +  A1(go)h2(go) +  +1(g0)...4.1(go)N(go) 

 /(N And  m(go) denotes an element of&such  that1 mgo)) 

                                                   1 

           0

is a generator of  (r(goTtr)  )/r(goT,)nE 

     2.11. For  i  = v, e, h, p, we denote by  Ci a complete

 system of representatives of elements of type v, e,  h
a, p in 

B  ( =  T'orCL-(7)
+with respect to  the Ail
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relation  (  (  3.  3.  )  ).
 (f7  ,E)

For i p, we take the representatives from Then by

2.5, 2.6, 2.7, 2.8, 2.9, and 2.10, we obtain the following 

theorem.

     Theorem 1.  kc, is even and 4 , the trace of  Ts(T(cm)) 

 In  SElt(r) is given by the following formula. 

(2.11.1) tr  T,(T(M1)  -    Z,  v(H/(7(gT6)) 
 47  geCv 

                                                    , 

     1 5(Ng)K-1 
+ Y,(det Ng)12
 geCe  tr(gTo-) :  El  y(Ng)-5(Ng)

 2-  1 (min( 1?(Ngsl, I( NO))  — (det Ng) 
 [r(gTtr)  :  f4(gT,F)E) I?(Ng)-

+ lim   1-im(g)1A1(g)s(Al(g)22(gns(11(g)—ili-1(gns 
  s->0  geC 27E tr(gTe-) :r7(gTcr-)E:1 

                     1+Rs

 

• 

 A(g) 

Here  v(H/F7(gTo.)) denotes the volume of a fundamental domain of

r(gTOin H with respect to the invariant measure dxdy 
 Y2

For an element g of type e  5(Ng) and  11(Ng) denote the 

eigenvalues of Ng which satisfy  (2.6.1). For an element g
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of type  ha, 2  (Ng) and  “Ng) denote the  eigenvalues of  Ng. 

For an element g of type p in  Bplop , A(g) is  defined by

(2.10.1) and m(g) denotes an element of  OL, such that

 m(g)1f-             is a generator of--7(gT
,T),/r-(gT,)nE.  (  0  1

     2.12. For the sake of later use, we rewrite the formula 

 (2,11,1) in  Th.1  slightly. First  wE, note that if g is an

 -1 
                       101N element of ty

pe e in B, then g'--z(010) gCT(101 is

 0 1. 1 0 1also an element of type e in B. Since  Ng' =(1/43.1_  (;)  Ngq
 0  1and  det(I =  -1  , it holds for some  zo'6 H 

 Ng'z  zo'   ®1   z  zo'   -7(Ng)t(Ng)
 Ng'z  -  .  „                             z  -  0

where  )1(Ng) and  S(Ng) denote the eigenvalues of Ng which 

satisfy (2.6.1). Hence if we denote by  1r((Nd)  5(N) the

eigenvalues of  Ng' which satisfy (2.6.1) for g', then

 zi(M) =  5(  Ng) and  5  (Ni)  EL'). If  Ce is a complete system
of representatives of elements of type e in B with respect to

               01) C
e  (10 -1  D  /-11  , then (10r-01                                  ) is also a complete system  of

them. Hence we see the contribution of elements of type e to 

tr  Ts(T(n)) equals
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                                                                                       K,               1(77E )1-c-1 1-7 
( 2.12. 1)4--Et  (det Ng) 

 g6Ce  L(  gTo-  ) :  EJ  1(Ng)—  5(I  g)

                NK--1ft- 

   +F1Ng)   (det Ng)                                                                  -7 
         gEcegra-)  EJ 5( Ng)-FL-) 

      = _ 1  7  1'?(Ngf—; (ITg)                                            (det Ng)2                                                                    l-           gECeIr(gT, ) :2:E)

Next we consider the difference between the equivalence relations 

 ti and  v . For an element  g of B, the set of the

 (r,E) 
elements in B which is  ti equivalent to g is equal to

 (r,E)

S(g) =  Y-1g0Y  i  E  &E,  'Y  E  r . We consider the number of 

   equivalence classes in S(g). Let  Eo be an element of E 

such as  NrAto = -1. For  E  6-  E with  Npi o, 1, put  ao-  =  E 
then  a, determines a 1 cocycle  TE  0, of  C in E. 

Let , 1 i  ,  E)1, be a complete system of 
                                                       Li) re

presentatives of H1( Crj.au_                     , E) , and put = with  Ei  E E. 

Then we see that each element in S(g) is  Cs_,-equivalent to Eg 

for some element a of f  ei,  to  Ei, 1  1111( a-  ,  E)r)'  . 
For  7,  E  B, suppose  Y-17g(rY =  'g with  Y  E , then 

 E-  r(gTo--). Conversely for  Y  E  n(gT,) and  E. E, there 

exist E  6 E and  E-  E such that  (EY  )-1-Ee-v7) =  'g We

 seeE' is  determined uniquely by  Y, and  Ei if and only 

if Y  r(gTo-)E.  Hence it follows that  S  (g) divides into

2R1( E)%LP(gT..)  :  f-(gT,r)E1 equivalence classes  with respect
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to the relation
r.LetCi, i = v, e, h, p, be a complete 

system of representatives of the elements in B (=  E(mAnGL2(F  )t) 

of type i with respect to For i = p, we take  Ci from 

 BQ1 . Then we obtain the following theorem.

     Theorem  1°. The assumption and the notations being as in 

 Th.1 , we have

               1  K-1 
(2.12.1) tr  T,(T(C1.))  = 

                            2 iH1(01, E)I ----1_,-V(H/tNgT,r)  )  47C-  g0
v 

                        //(Ng)K-1 - 5(Ng)K-1 
- 

2 1;111   (det Ng)l-j'r/2 
     g€8,e iy(gT,)E :  El 17(Ng) -  r(Ng)

 

(  Iiin(1)/(Ng)1,  15(Ng)1) )  1-hy2 
                                  (det  Ng)

         177(Ng) -.S.(Ng)I gECh 

 Ini(g)1  "l(g)2(/11(g)A2(g))s  (A1(g)...Ag_1(g)  )s  \FT   )1+1s 
lim 

S40 ,--  27r  A(  g))
+ lim > 

S40 

 -

where v( 

of  14(gTr)

 H/1-7(gTr)

in H

      denotes 

with respect

the volume of a 

to the invariant
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§3. Twisted conjugacy classes

     3.1. Let  r be a Dedekind domain, and k its quotient 

field. In this section, we denote by F one of the followings; 

i) a cyclic extension of k of prime degree  i , ii) the 

direct product of  J-copies of k. In the case of ii), we 

consider k a subring of F by diagonal embedding. We denote 

by  61- the integral closure of r in F. In the case of ii), 

   r  G r  (;i-copies). In the case of i), we denote by

   the Galois group of the extension F/k, and we fix a generator 

cr in the following. In the case of ii), we denote by  (7- the

k-linear automorphism of F given by

 : (x1,  x2, ,  x,2) >  (x2,  xl)

for  (xl, x2, ,  xi) F, and denote by  5- the group of

k-linear automorphisms of F generated by  T. We extend the 

map  0- to M2(F) by component-wise action, and denote it also

by  a-.

     For a subgroup H of  GL2(F), we define an equivalence 

relation in GL2(F) by 
 H 

(3.1.1) g  2„:„,  g' 1r                         hg'h = g' for  h  E  H  .
 H

For an element g of GL2(F), put 

 Ng  = •

Since gq(Ng)g-1 = Ng , the determinant det Ng and the trace
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tr  Ng of  Ng are contained in k. For g  e GL2(F), we set

 Z6(g) = x  e M2(F)  I  ex = xg

and

       Z(Ng) = x  E  M2(F)  I (Ng)x =  xNg 

Denote by  qg the map from M2(F) to itself given by

  cr,1      g x  gxg 

for  x2(F)° Then we see easily the following.

     Lemma 3.1. Let the notation be as above. 

 (i)  Zor(g) is a k-algebra containing  Ng. 

(ii) Z(Ng) is a F-algebra containing  Zu-(g). 

(iii) For x GL2(F), it holds Z,r(x-1crgx) = x-1Zo__(g)x and

 Z(x-1(Ng)x) =  x-1Z(Ng)x 

(iv) The restriction  1-glZ(Ng) of  '7"g. to  Z(Ng) induces a

k-linear automorphism of Z(Ng) such that the restriction 

of to F  equals  cr. The set of all elements of Z(Ng) 

fixed by  Tg coincides with  Zm(g).

     Remark 3.2. i) If  Ng is not contained in  FX, then 

 Z0-(g) = k kNg and Z(Ng)  = F FNg  , and in particular,  Ztr(g) 

and Z(g) are commutative. Hence if we denote by f(X) the 

characteristic polynomial of  Ng, then  f(X) is contained in 

 kgj, and it holds  Zc_(g)  krXJ/(f(X)) and 

Z(g)  ff  FLXI/(f(X))  kLXV(f(X))  ØkF . The k-algebra  ktX]/(f(X)) 

is one of the  followings; a) k  e k , b) an  unramified extension
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of k of degree 2 , c) a ramified extension of k of degree 

                        = 2 , d) k +  kA with A2-  u  .

ii) If  Ng is contained in  FX, then Z(Ng) = M2(F). If

we put  aT = g, then  aT determines a  1—cocycle  Cr, 

of  t* in PGL2(F), and a class of  Hi(q_,  PGL2(F)). The k—algebra 

 Za_(g) is a quaternion algebra over k.

 3.2. If we take F as in  § 1 and  § 2 , and k = Q, then 

the definition of  Ng and  Zo(g) in this section coincides with 

that in  2.3  ((2.3.1),  (2.3.5)). Here we prove the results on 

 Zo.g) used in  § 2.

Proposition 3.3. Let F be as in 1.1, and k  = Q. Then

        F is  equal to  Q, and it holds the followings. 

i) If g is of type v,  Z,(g) is a quaternion algebra over

    Q and Z(Ng) = M2(F). 

ii) If g is of type e,  Z,-(g) is a imaginary quadratic field,

     and Z(Ng) is a totally imaginary quadratic extension of F. 

iii) If g is of type h,  Z„(g) is a real quadratic field, and

     Z(Ng) is a totally real quadratic extension of F. 

 iva) If g is of type  ha,  Zu(g) is isomorphic to  Q@ Q, and

     Z(Ng) is isomorphic to F -CO F. 

ivb) If g is of type hb,  Zo_(g) is isomorphic to F, and

     Z(Ng) is isomorphic to F  EP F. 

v) If g is of type p,  Z,..(g) is isomorphic to the Q—algebra

Q  ED,  QL , where  2,2 =  0 , and  Z(Ng) is isomorphic to the

F—algebra F  n   F.



 Proof. The first assertion and the assertions i), ii), 

iii) easily follow from the definition of type v, e, h, and the

result of 2.1.

 iv& In this case, there exists h  E  GL2(F)1_ such that 
 h-1eh and  h1Ngh are diagonal matrices. Hence our assertion

easily follows from (iii) of Lemma 3.1.

                                                                  -1      i vb) There exists h 6 GL2(F)+ such thath(Ng)h is a 

diagonal matrix and  g° =  hleil is of the form ( .(,),  'ot)  , 

          1Ngh) . (r)0,. hence Z(h-)Since  Tg°  induces in  Z(h-iNgh) 

the automorphism (Tn.,.(x 0)i ,'(y(:)                                        for(x 0                                                 0 
y)             6.ko y-0 x' 

 Z(h-lNgh). Hence  Z,(g) is isomorphic to F.

     v) We see there exists an element h  GL2(F)4, such that 

 g' =  h-leh = (( "bo,'                   ) with a, b  c  F. Hence  Z(hiNgh) = 

F +  F((c)  36). Since  cg' induces in  Z(hiNgh) the automorphism 

 crg, '0 x)'(crxCry ) for(0 xl)xy6 Z(hhlNg_                                                     )we have 
                      0  'II 

                         0J Zci-(h-leh) =Q+                     ,(0 1) 
                           ,and our assertion is proved.                  ,k(:)

     3.3. We consider to classify  GL2(F) into  4 -equivalence 
                                           GL2(F) 

classes. For a subgroup H of GL2(F), we denote by  -- the 
 H 

equivalence relation in  GI:2(F) defined by 

(3.3.1) g  g' <  g =  h1g'h  for h H  .
H

Then we see  g g' implies  Ng., Ng'. Hence N induces a map

 H  H
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from equivalence classes with respect to to those with

 H

respect to  74. For H = GL2(F) , we can prove the following.

    Lemma  3.4. The map from  GL2(F)  I Ng  4 F  1 / 
                                              GL2(F) 

to (N(GL2(F)) -  ,-- induced by N is bijective. 
 GL2(F)

Proof. Since the  surjectivity is obvious, we prove the

map is injective. Assume  Ng, Ng2 , for  gl, g2 GL2(F). 
 GL2(F) 

As det  Ngi and tr  Ngi are contained  in k, there exists 

an element g of  GL2(k) (  C GL2(F)) which is  (41.0-equivalent 
to  Ngi for i = 1, 2. Namely there exist  xl, x2  E. GL2(F) 

such that  x11(Ng1)x1 =  x21(Ng2)x2 = g . Put  g!  =  , 

then  g.'  ti  g1 and  N(gi') = g for  i = 1, 2. Since 
                     --1,-1%         GL2(F) 

 =  N(g.') and  N(g.')  = =  g.,N(g.,),s1 

g.'iscontainedinZ(g)=Z(.                                Ng„1). And by  (iv ) of Lemma 3.1 

we see that the k-linear automorphisms  °g1' and  °r-g2, coincide 

with  a- on Z(g). Hence  Z0-(g11) =  Z,_(g21) and they are 

contained in M2(k)  (C M2(F)). Since Z(g) is commutative and 

 °Z(g) = Z(g)
,  N(gi') = N(g2') implies N(gll-1g2') = 1.Then 

by Hilbert's theorem 90  for k-algebra  Zor(gi,), there exists 

x  E Z(g) such that  gl'-ig2,  = , hence  gl' =  xg2"-X-1 

This implies  g1' 
 GL2(p) 

 g2' , hence  gl 
G172-(F) g2  , and  our

lemma is proved.



Let B be a commutative finite dimensional k-algebra.

Then we can extend  0- to BOI)cF naturally, we denote it also 
by  cr. For x  E  BOO', put 

     NF/B(x) = x... ,

Then N-(x) is contained in B. We call NB BOF/B 

the norm from  B(2F to B. Then we can prove

     Lemma 3.5. Anelement g ofGL2(F)FXbelongsto 

N(GL2(F)) -  Fx if and only if the characteristic polynomial 

 f(X) of g belongs to  k[XJ, and it holds 

 (3.3.2)  X  6  NF/K  ((1(60F)x) 

 , where K  =  k  DO/(f(X))  , and  X is the element of K 

represented by X.

Proof. As remarked before, the characteristic polynomial

of any element of N(GL2(F)) is contained in  kr.X1. Hence we 

assume the characteristic polynomial of g belongs to  kLX). 

If  N(g)  = g and  g' =  xlgx for  g, x  -GL2(F), then 

 N(xlek) =  x-igx =  g' . Hence if g belongs to N(GL2(F)), 

any element g'  E GL2(F) such that g'  ti g also belongs 
 GL2(F) 

to N(GL2(F)). Now any two elements of GL2(F) -  Fx which

have the  same characteristic polynomials are u - equivalent
                                     GL2(F) 

to each other. Since the characteristic polynomial of g belongs 

to  k[Xl, there exists an element of M2(k) which is

 -equivalent to g . By the above remark, we may assume g 
 GL2(F)
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belongs to  Y,(k) from the first. Put  Zcr = k + kg and

Z = F + Fg , then  Z0-  K and Z  KOF canonically. The 

map N induces a map from Z to Z0-, and this coincides with

the norm map from  K(ZF to K by the above isomorphism. If

there exists an element  g of GL2(F) such that  NM = g  ,

then we see as  in the proof of Lemma  3.4 that  g  E Z and

 z,(g) =  Zm and  ZOO = Z .  Our assertion easily follows from

this. 

     By the above two lemmas, we can determine

 {g e GL2(F) g  E  N(GL2(F)) -  Fx1                                   /GL
2(F)  completely. 

   Now we consider the elements g of GL2(F) such that

Ng Fx  If Ng E Fx we see  Ng  6  kx, and N  defines  a  map 

from g  E GL2(F)  I Ng  -6  F'cl/ to  kx(-)  N(GL
2(F)).                             GL

2(F) 
For  a subgroup H and a subgroup H' of  F)( we  define an 

equivalence relation in  GL
2(F) by                                 (H

,H')

g g'   g  =  E  h1g'h for h  E H,  E  e  .

Then we can prove the following . 

    Lemma  3.6. The map from g  GL2(F)  1 Ng  Fx  V to
 NGL2(F)) induced by N is bijective.  2' 

    Proof. For an element g of  GL,(F)  cuch  that Ng  E

put  am=  g and  ac_; =  acr'a (re-, for  1  5  i 

inductively. Then  )  aTj ,  reg.-, determines a l-cocycle of 

 q in  FGL,M,  and determines  2 class of  HI  PGL2(F)). We
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see this map induces a bijective map from

 g  E  GL2(F)  I Ng  E FX / to H1(O, PGL2(F)). 
                      (GL2(F), FX)

Now the following exact sequence

    1  ---4  Fx GL2(F) PGL2(F) 1 

induces a injective map from  H1(OI, PGL2(F)) to  H2((,  Fx).

And we  fixed a generator a- of  g , there is an isomorphism

                                                              o, from11c-(u-, Fx) to H-(7, FX), whereIIkg,  FX) is the 

modified  0-th  cohomology group of  g in  Fx and is  equal to 

 kX/N  F/k(F)  ( c.f. Oh  VIII,  CO)).  On the other hand N  induces 

a map from g  E GL2(F)  1 Ng  6  FX}/tito 
                                  (GL2(F),FA) 

 N(GL2(F))(-1  kX/NF/k(FX). Then we see the following diagram is

 commutative.

 gE-GL2(F) I Ng E  Fx1/,--N )  N(GL2(F))fl  kx 
 GL2(F) 

 v V

 ig  E G12( Fr NgFX}/ > N(GL2(F))()kx/NF/kFx 
                    (GL2(F),Fx) 

                                                                           r-

                PGL2(F))  c >1-12(ay, F ) —„Hb(0J-9  Fx)  =  kx/NF/kF 

For tow element  gl, g2 of  {g  GL2(F)  I Ng  E  Fx} , assume 

 Ng„ = Ng2  . Then by the above diagram  g„                                                           g2  , 
 (GL2(F),FX) 

hence there exist a  E  Fx and x  e GL2(F) such that 

 g„ = ax-1g2 x . Taking N of the both sides, we see NF/ka = 1  .
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By  Hilbert's theorem 90, there exists a'  & F such that

a =  a' a' , hence  gl = (a'x)-1g2cr(a1x) , and our assertion

is proved.

From the proof of the above lemma we see

Cororally 3.7. The map from g  E GL2(F)  1 Ng  E  Fxj/ 
 (GL2(F),F  )

to N(GL2(F))nkx/N                    —F/k-F                         X induced by N is bijective.

Remark 3.8. i) If F is a field, the cohomology classes

 H1(07., PGL2(F)) are in one to one correspondence with the

isomorphism classes of quaternion algebras D over k such 

that  DkF  is isomorphic to M2(F). Unless  (F: k) = 2  , 

D M2(F) implies  D M2(k) , and  H1(17,  PGL2(F))

consists of only one class.

     ii) If F is not a  field, we see  H1(i4T, PGL(F)) consists 

of only one class, and  NF/kFX =  kx. Hence

 ig  E GL2(F)  1 Ng E  Fxj/ consists of only one class.                     GL2(F)

3.4. Let k and r be as in 3.1. Let B a finite

 dimensional algebra over k. A subset  /1 of B is called an 

r-order if firstly it is a finitely generated r-module such that 

 40k = B , and secondly it is a subring of B containing the 

unity. If F is  a  field,  6-order of  a  finite dimensional 

F-algebra  is defined in the same way as above. For g  E GL2(F) 

with Ng  Fx, let  C,(g) denote the set of all elements of 

GL2(F) which are  -equivalent to g, i.e.
 GL2(F)
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 (3.  4.1)  00_(g) =  xig°1  I x  F  GL2(F) 

 and for  an  r-order  A of  Za(g) put 

 (3.  4.2)  C6 (g,A) x-lerxxGL2(F),2(F ) , zo_(g)nxm209- )x-1 =A }

Then  Ccr-(g) is the disjoint union y.C,(g, A) , where A runs 
through all r-orders of  Z„...(g). Let U be the subgroup  GL2(  (9-) 

of GL2(F), then  crU = U , and let be a union of U-double 

cosets in GL2(F).  For g  E  GL2(F) with Ng  4-  Fx, A and  ,

put

 (3•4.3)  MaXg,  E) = x  E GL2(F)  I  x-ig`rx  E  3

 (3.4.4) , A) = g  GL2(F)  x-lerx  E

 Za-(g)(1x1M2(0)x1 =  4  • 

Then  Tit(  g  7) is the disjoint union  y  Attr(g,  U  ,  A). For 
g  GL2(F) with Ng e  Fx, we define  C,r(g) and  (117,(g, ) by 

 (3.4.1) and  ( 3.  4.  3)  , and we modify the  definition of  C  u(g,  ii  ) 

and  rri,(g, , A) as follows. For a quaternion algebra D 

over k, we define in the set of all r-orders of D an  equivalence 

relation by

 (3.4.5)  A'   >  A  =  ,x-1/11  x , for x  Dx 

 for  6--orders A and  ,1'. And for an r-order  A  of  Z,(g), put

 (3.4.2),  Ccr(g, A)  x-lerk  I x  E GL2(F),  za_conx.m2(6,_)x-1,43 

 (3.4.  4)' incr(g, 2 ,  .4) = x  E GL2(F)  , 

 Zo.--(g)n  xmp)x-1,  /13
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Then  Co-(g) =  AY,  C,(g, 4) and  racr(g, =  rncr(g, ,  it
are  disjoint unions. In any case, we see it holds

 Zcr(g)x  )U =  )110-(g, ) and  Zr(g)xragg,  C ,  /1)U 

=  nr(g, ,  /1) . Hence  )71,-(g, ) and  Wt  -(g, E ,  /1) divide 

into double cosets with respect to Z-(g)' and U. We can

easily verify the following.

Lemma 3.9. Let the notation be as above.

(i) The map from C,(g)n7-_, to  Z,_(g))4\  177_,(g,  ) induced by

the correspondence

(3.4.5)  -1  g  x    Zinr(g)x

     is bijective. 

(ii) The correspondence  (3.  4,  5  ) in  (1) induces a bijection 

 Ccr(g,  n  Zz„_(g)  nig  g,  E,  A)

(iii) The  correspondence  (3.  4.  5)  induces  -a bijection

C,r(g,  A)na-,/ Z,,r(g)  trEgg,  /1)/U  .
 U

(iv) For x  E GL2(F),  x-1/1m. is  an  r-order of  x1Z,„(g)X

and it holds

 Vicr(x-ig`rx, ,  x371x) =  ,  4) • 

   _- 

The correspondence Zcr(g)gll--->Zcr(x-1gq-X-1g)TI

induces a bijective map

                                                                -2,/ Z(g)x\Cr(g(=" /1)/U-10-x)\L,(x1g0r.2x,E,x/ .1X)/Q.
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     3.5. In the rest of this section, we assume,  besides the 

assumption  in  3.1,that k is a p-field of  characteristic 0 in 

the sense of  r21) and that r is its maximal order. In this 

section we denote by p the prime clement of r, and in 4 and 

5 we use p to denote a prime. Let v be the discrete valuation 

of k determined by v(p) = 1 . Then F is one of the 

followings; i) the direct product of  &copies of k, ii) the 

unramified extension of k of degree  P  9 iii) a totally 

ramified extension of k of degree  L. In the case of iii) 

we assume F is a tamely ramified extension of k. In the case 

of ii) and  iii), let  o be a prime element of  6 , be the 

maximal ideal of  6, and w be the discrete valuation of F 

determined by  w(z) = 1  . For a non-negative integer  r, we 

define the finite union  L:::,(r) of  U-double cosets as follows. 

If F is of type  i), put

 L'-(r)  =  g  E-1\02(e'-) det g e  (prr')  x  rxx  °  Arx 

If F is of type ii) or  iii), put

 =-7..(r) = g  d  M
2(  61-)  I det g  7r1,' 

In the following, we calculate  Ilecr(g,  n  /  1 or  tho number 

of double cosets Zo_.(g) \fri,kg,  /1)/U for  = 

When F is of type iii),  i.e. a totally ramified extension of

k, we assume r = 0 .  We note  if the set  incr(g,  .E1(r),  /1) is 

not  emPt ,  • Ng  E  4,  hence Ng is integral, since "Ljjr) C  M
2(6)  •
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     3.6. First we treat the case where Ng 4 F. Let 

f(X) =  X2 - sX + n be a polynomial in  REX], g an element of 

GL2(F) with the characteristic polynomial f(X), and K(f) the 

k-algebra  kEXJ/(f(X)). Then there exists a natural isomorphism

 ff
g from K(f) to the k-algebra  k[g] given by  Tg(X) = g  ,

where we denote by  k[g] the k-algebra k + kg . Let /1 be 

an r-order of K(f). We define a non-negative integer  cT(f, r, /1) 

for f, r, and /1 as follows. If g  4-N(GL2(F)), we set 

 ccr(f, r,  /1) = 0 . If g  6  N(GL2(F)), put g =  Ng with some 

 g  E  GL2(F). Since  za.(-g) =  krg3,  Tg is an isomorphism from 

K(f) to  Za.(2). Put

 r,  /1) =  IZ,()X\ITLocg,  :7;:(r),  T(A)vu  ( 

Then by iv) of Lemma 3.9, this definition of  cu.4f, r,  /1) is 

independent of the choice of g and  g. And by iii) of Lemma 3.9,

we see  cir(f, r,  AD =  I  Tg(A))r)  I . As noted 
in  3.5, if  ino-rg,  2-7,(r),  VA)) 4  c1;  , then  4 =  Ng  . 
Hence  ccr(f, r,  /1) = 0 for  /1 which does not contain g. If 

there exists  -g"  E  cl(r) such that  Ng, v(n) = r„,er, or r 

according as F is of type 1), ii) or iii) in 3.5. Hence we 

may compute  cT(f, r, /1) only for such f(X).

Let g and f(X) be as above. Then g  E N(GL2(F)) if and

only if the condition (3.3.2) is satisfied for f(X). As to 

the condition (3.3.2), we give some remarks in the following. 

If F is not a  field, the condition is satisfied for all f(X).

Next assume F is a field. If K(f) is of type a) or d) in
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i) of Remark 3.2, there exist a,  p  E kX such that 

f(X)  = (X - a)(X -  p) . And the condition (3.3.2) is equivalent 

to that  a,  P  e  NF/k(Fx)  . This is obvious if K(f) is of type 

a). If K(f) is of type d), put a + then  222  =  0 . 

If XNK(f)0F/K(f)                    ((K(f)0F)x ), it is obvious aNF/k(Fx). 

If a  6-  NF/k(F)4), put  NF/kW = a , and let  0 be an element of 

F such that  912/k(-0/a) = 1 . Then  « +  L1  E(1.((f)0F)x 

 satisfies(U +NI) = a + d . In the case where              .1.CfRF/K(f)

K(f) is  of type b) or  c) in i) of Remark 3.2, the condition

 (3.3.2) is equivalent to that n  Nr/k(e) if  K(f)OF is a 

field. This is nothing  but  ((21.1,  Ch  X1E,  Th.  4,  Cor.  3). If 

 K(f)®F is not a field, the condition (3.3.2) is satisfied for 

all such f(X).

 3.7. We quote the following result of  H.Hijikata from  [8]. 

Let R be a discrete valuation ring, TT a prime element, 

P  =  TrR its maximal ideal, K its quotient  field. (Our notation 

differs from that of  E8]) Let g be an integral element of 

 M2(K)' not in the center K, with the characteristic polynomial 

f(X)  =  X2 -  sX + n . Let /1 be an  R-order of K + Kg containing 

 g,  F a non-negative integer such  that  (/1:  R  +,Rg) =  CR  :  PIP  .

For g, put

 C(g,  /1)  =  x-igx  I (K +  Kg)()  xM2(1)x-1  =  . 

We denote by               GL(R) the equivalence relation in GL2(K) given 

2

by
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      g GL
2(R)  gb  g=lg,x , for x  6 GL2(R) 

Then by  Th.2.2 and  Cor.2.6 of  [8] , we have the following lemma.

 Lemma  3.1r. (Hijikata) The notation being as above, then 

 C(g,/1)nm2(R) /  GT  (R) 
 2consists of only one class, and a

representative of it given by

 N 

        -1T-Ff()                 / 

 , where is an element of R which satisfies 

 f(i)  == C  mod.P2F and  2"  ==  s  mod.PF  .

     In thefollowing we applythislemmataking K=F. or k. 

     3.8. Let  I be the direct product of k-copies of k. For

f(X) =  X2 -  al_ n with s, n  E r, and an  r-order  /1 of K(f) 

containing X, by Lemma 3.12 there exists g  6  r2(r) with the 

 charuteristic polynomial f(X) such that  kLg7f)M2(r) =  g(A)  7

where  cr, is the isomorphism from  K(f) to  kfg.] given by 
 41

g(7.)  = gas.in 3.6. We consider g as an element of110.2(6-) 

 )

 by the  diagonal embedding, then  kLg]r)M2(M =  V4) . For
 sucL  r, there exists an element  g of  21(r) such that  17-g = g 

if and only if  n  G  prix. For, only if part is obvious, and if 

 r x  n  p r ,  put  -g =  (pl(g), 1,  ...7 1)  , where  pi(g) is the 

projection of  g  6  L2(61-)  (=  Tvi,(r)  .  .  .  T)  M2(r)) to the  let

 ccmTonent. Then it is obvious that  -g  C  2:(r)  ,  N(T) = g and

 Zc(67;) =  kEgl . For  this  -g and  an element x =  (xl, ,  xp..)
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                                                            - 

 GL2(F), x17g.°X E(r) , then X21X3' ... ' 

 1-31-a-r-   x
e_.1xl , xLE M2(r). Hence if xgx(r), there

exist x'  E GL2(k) (  CI GL2(F)) and u  E  U such that x = x'u  .

Assume  krg7r)(xiu)m2(6)--)(xi-u)-1  =  cig,(A0  , hence

 k[g]nx'brI2(6)x'-1 =  Ig(A) . Projecting this equality to the 

1st component, we see  k  g.lf-)x'152(r)x1-1  =  L(4) . Since ) . Since

 1/12(r)  is maximal order, by Lemma 3.10 we seegx'  GI
2(r) g 

and  x' is contained in  k[g]xM2(I)x  , hence 

777,-(.,2:1(r),cfg0.)Cz,„..(u Convesely Z,-(d(U is  obviously 
contained in  pl,q,  7(r),  cf)g(/1)), hence we see  ca...(f, r,  /1) = 1
Thus we obtain the following proposition.

 Froposition 3.11. Let F be the direct product of  £-copies

of k, f(x) = X2-sX+n a polynomial in  rtXj with n  prrx.

Then we have

 ccr(f, r,  J1) = 1 

for any r-order  /1 of K(f)  containing 3L

3.9. Now we consider the case where F is a field. For

 GL2(F) with  Ng  FX and  an  r-order /1 of  z.(g) 

containing Ng, assume  in  T-(-  (  r  )  ,  /1.) 4 . Then there exists

x  e  GI2(F) such  that  Z,u(g)n  xM2(6-)x-1  = . For this x, 

 z(Ng)nx.m2(6-)x3- is an  O.-order of  z(N-g), and if we denote it

by  /1, then  A  satisfies

             /11-1Z04g)  =/A 

(3.9.1) 

 A  &CM



 , where  64E4] is the B=order generated by  /1. Define  c(Ng,  AL) 

in the same way as in 3.7, namely, put

 c(Ng, =  x-,-N(g)x  I  x  E  G12(F),  z  (N-g)nxivi2(o)x1  . 

Then N induces a natural map from  errg,  44-)a(r)  to 

 U

 Qc(Ng,  2i)r)m2(6) /  U, where runs through all  6—order of

Z(Ng) which satisfy (3.9.1).

In the rest of this section, we denote the k—algebra

kEXJ/(f(X)) by K for the sake of simplicity. Let f(x) = X2—sX+n 

be a polynomial in  rfX] as before and put L =  K()kF . We 

define  r—orders  /11,(m) of K (resp.  6—orders  AI(m) of L)

as follows. In the case where K is of type a), b), or c) in 

i) of Remark 3.2, then for a non—negative integer  m, put

 (3.9.2)  /1F-(m) =  I +  PinAK

            (resp.  /11(m) =  6-  +.7[DI4L  ) 

 , where  AK  (resp.  /10 is the maximal order of K (resp. L). 
In the case of d), for any integer m, put

 (3.9.3)  /1K(m) =  r +  Pmra]

           (resp.  /11(m) =  (+  7cra(9[2]  ) 

Then we see that  /1K(m)  (reap. AL(m) ) is  r—order (resp. 

 0—order) of K (resp. L) and any  r—order  (resp.  6--order) of 

K (resp. L) is  AK(m)  (resp. /11(m)) for some non—negative

integer m in the case of a), b), and c), and for some integer
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m in the case of d).

     For  f(X), let  (fl be the largest integer such that 
 1/pi--1 is integral and  j'2 be the integer such that 

 xIicipc)1 =  AK( . Then we see  /II) =/1K(~l+  c51)  , and an 

r-order  /11,c(m) contains  5t if and only if  (71 +  (5-2  m  =3-0 

in the case where K is of type a), b), or c) in i) of 

Remark  3.2, and m +  02 in the case where K is of type 

d) in i)  of Remark  3.2.

 3.10. Let F be the unramified extension of k of degree 

 L. Let f, K and  L be as in 3.9. Then for  an  "-order A of 

K, an  6--order  A of L satisfying the condition (3.9.1) is 

uniquely determined by  /1, more precisely we can prove the 

following.

Lemma  3.12. Let F be as above, and  /1K(m) and  4L(m)

be as in  3.9. Then

 i)  AL(m)  K  =  A.K(m) 

ii)  &i4K(m)J  =  41(m)

     Proof. First we prove  i) under the assumption of ii). 

 Assume  /11,(m)r)K  =,AK(m1) for some integer m'. Then 

 AL(m)  D  6rAK(mi  )3  , hence  AL(m)  D  /11,(m'  ) by ii), and  m  . 
But  A.K(m')=DAT(m) , hence m = m', and i)  is proved. If 

ii) is holds for m = 0, then it is obvious that it holds also 

for any integer m. It is enough to prove that  0i/100))  =  Al(0)  9 

but this follows easily from the fact that F is an unramified 

extension of k.

                                       - 71-



     Let g be an element of  GL2(F) with the characteristic 

polynomial f(X) =  X2-sX-En with v(n) =  J  r . Assume there exists 

an element  7 of GL2(F) such that  Ng = g.  For an r-order 

of K containing  X, denote by  -A the  6-order  6[A] of  L. 

Then by the above  lemma, N induces a map from C„_(--g,  A)  n=  (r)/
 IJ

to  c(Ng,  A)ny,2(6) . By Lemma 3.10,  c(N-g,  Tg(71))nm2(&)/  <6

consists of only one class. By Lemma 3.10, there exists g' of

 GL2(k) which  has the characteristic polynomial f(X) and 

satisfies the condition  k  1g')  nM2(r)  = . Then we see 

 F[g3r)Y2(6) =  (f
g,  (71) , where we extend  Te,, to the isomorphism 

from L to  F  Lg.) naturally, and denote it also by  /g,.  Hence 

 we may take g' as a representative of  C(N,  T.,(71))nm2(m  / 

Let  g, be an element of GL2(F) such that  Ng, = g', then by 

Lemma  3.1, we see  -67.1e  Z(g') and N  coincides  with the norm map 

from Z(g' ) =  rz,(g.)GaF to  zoo , since g'  E  M2(k) .  We show

the following relation.

(3.10.1)  C,(g,  (14(4))n2:-.(r)  n  17"  GL2(F)  Erg" =  g'

        =  1  xez(g,)  , x lg.x cT(n) 1 

                                             T 

                                                         gi 

since  g g' , we see C,(7:1, 4'(A)) = Ccr(g' ,T(1))  . 
 )ggl

 If  Ng" = g' for  g"  e  GL2(F), by Lemma  3.4 there exists  x  E  GL2(F) 

such that  7-"  =  x-1g1crx . Since  1:7.'=  Ni", it follows 

x  e  Z(Nly  ) =  Z(g'  ). For  x-3-7;''rx with  x  e  z(g,  ), we  sec' it holds

z(g-,)n-,,x2(6-)x-1=  (A)
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Hence

         yA))r) --g" EGL2(F)  I  Ne=  g'} =  [  xEZ(g')x}  . 
By  the way  for  x  lg'  x with x  F  Z(gi  ), we have

 __ xig"-X  =7(r) <   x-1g,crx  6  M2c9) 

             <   x  E M2(&)  r) Z(g') =(A) 
                                                              gi

 , since v(n)  =t r. and  '11Z(g°) =  Z(g°)  .

 Put

 cic(g, (71-) ) =  x—l-geTx x  E  Z(gi)X,  x-r-gcrx  E-  cfg,  (A)}  . 

 , then  00.g.'„  c7g,(//1)) is a subset of  C,_(g,  vo)r)  21(r) and
the  inclusion map induces the following bijective map.

                                       (4))nE(r)                                                00-Q, rg 

 

(  3.10.  2) 00E' ,(A) )(Cy  

In fact, it is obviously  surjective by  (3.10.1), and we show it

                                     is injective. For two elements x1ig'Tx x2  gOk2 of 0K(-g''T
g(N)),

assume there exists an element u of  U such that

  1--0-Q-----c- ux
ig°xi u  = x1                   2g'x2 . Then  n  iNgiu =  11-1 , hence u is 

                                  — __...,——T  Contained in7,(Ngt)nU=%,(,/,)x,aild,X1, _LWa---X1 Tg/-Ng.X21g,x2  . 

                                                           )

    For an element X of L such that Nyi0F/KM= X , put 

(3.10.3)  r,  /1) = x  x  6  Lx  =  61{/11

Then we see in the same way as in  Lemma  3.9 that

        gt 
         (A))// T(A)x is in one to one correspondence with 

 gi
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the double cosets  Kx\Y(L r,  4)/Ax with respect to  Kx and 

 /Ix. We note if  Ma, r,  10 4  0 , there exists  71e  A  =&-bl] 

such that  7' =  x-17PX with  x and  for such  57', we have 

 IKx\M(7% r,  /1  )// I =  I  Kx\  , r,  AWN(  I Hence by Lemma  3.5 

and (3.10.2)

Lemma 3.13. Let the notation be as above. If X k  NK@F/K(A),

then  c7(f, r,  /1) = 0 . If there exists an element X of  /1 

such  thatF/K(7) =  2 , we have 

 c,(f, r,  /A) =  1Kx\M(Y, r,  A)/Ax

where  M(X, r,  A) is given by  (3.10.3).

In the rest of  we denote X by g and use the

notation  g to denote an element of L such that  N  (-F\ --0- 

                                                                            -

We will determine the number of the double cosets

 Kx\Y(E, r,  /A)/ X.                      First we prove some results on the unit groups 

 of  &-orders of L. For a non-negative integer m, put

       t61X m  =  0 ,  m=0             Ur  (3.10.4)(M)  =  Uk(m} 

            1 +, m1 1+ pmr , m -; 1

Then UF(m)  (resp. Uk(m)) is a subgroup of  61-x  (resp.  _rx). 

When K is of type a), b), or c) in  i) of Remark 3.2, for 

a non-negative m put

 AL(0)  I  11=0  /1K(0)x  ,  114=0 
 (3.10.5)  u  (m)  =  UK(m) 

                   1 + 7-cm/1L>(0)1 + pra4K(0) ,,,,›,1 . 

                                                       -
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If K is of type  d  )  , there exist  a  E  r and  d  F  K such that 

g = a +  d  and  d2 =  0 , and put for any integer m 

 (  3.10._6) UL(m) = 1 + ,7r1110,dUK(m) = 1 +pmrd . 

Then UL(m) (rasp.  UK(m)  ) is a subgroup of  4/(m)"  (rasp.  /1K(m)"  ) 

and satisfies  /1L(m)x =  (9-"UL(m) (resp. /1K(m)x =  (9)<UK(m)  ). For 

 a  -module A, put  il°(  ej.  , A) =  A67/NA , where 

 =  a  a-  A  Pra  =  a  } and  NA  =  afra,  01-la  I  a  A 

 (c.  f.  f15]  Ch  VIII). Then we can prove

Lemma 3.14. Let F, K, L,  AR(m), and AL(m) be as in

Lemma  3.  12,

i)  CP(0,7.,  AL(m)x) = 1  , i.e.  Arc(m))' =  Nuic(41,(m)x) 

ii)  1-11(  AL(m)X) =  1  .

 , where m is a non-negative integer if K is of type a), b) 

or  c), and an integer if K is of type  d) in i) of  . 

Remark 3.2.

Proof. First we show the following  Sublemma.

 ublemma. Let  UF(m) be as above, then

i)H"0        ( 0"j,  UF(m)) = 1 and  '1-1-7(0j.., UF(m))  = 1

for every non-negative integer  rn.

ii)  f/?°(  ,  yin) =  0 , and  H1(  , =  0

for any integer m.

Proof. i) The assertioni-P(o-_,  Tyra))  = 1 is nothing
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 but(j1 .1,  Ch V,  Prop.1). Since  HI(c, Fx) = 1 and it epe3x , 

                                                                                                                                                       , we see H1,  UF(0)) = 1 . For  m  )1, we prove H1(y,  UF(m)) 

by induction on m. Assume  Hi(g,  UF(m-1)) = 1 . From the

exact  sequence

1 UF(m)  ---5JJF(m-1)   >  UF(m-1)/UF(m) 1

 , we obtain the exact sequence

 11°(q,  UF(m-1)/UF(m))---->H1(q-,  UF(m))   >H107)-9  UF(m-1)) 

Since  1-11(7-i,  UF(m-1)) = 1 , it is enough to show that 

 2°07},  UF(m-1)/UF(m))  = 1 . By the way  UF(m-1)/UF(m) 

for m = 1, and  UF(m-1)/UF(m)f=  6/y for m 2. Since  (94 

is a finite field, we have  H  (G)J.,  UF(m-1)/UF(m)) = 1  .

ii)  Since  s  TT!  6L- as  g-modules, we may assume m = 0  .

Then the first assertion follows  from((2ll,  Ch VIII,  Prop.4). 

since  &/y_ is a cyclic extension of r/pr of degree , we can 

show easily that there exists an element a such that

(.°-=G-lar +(7-2ar ++i-1                        ar , where. =. The assertion 

easily follows  from this.

     Now we prove our lemma. If K is of type d), we see 

 L(m)x  x  Ul(ri) and  UL(m)                                            as  4-modules, hence 

 the assertion follows directly from the  sublenmia. If  K is of 

type a), b), or c), we consider the following exact sequence

        1  --->  Prlym)    6-xx  UF(m)  --->  //li(m))(  > 1 

 esee  C..cxn177(m)  = UF(m) , and we  have the following exact
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sequence.

 -1°(01.,  AUL(m))  ---4  1--°(7,1-9/1L(m))()  Up(m)) 

 H1(0j,  6"x  UL(m))  H1(ig  ,  AL(m))  H2(.7,  up(m)  ) 

Since  H°(07,  Up(m))  ====  H2(7,  UF(m)) , by the sublemma it is 

enough to prove  11°(019  UL(m)) =  H1(q9 UL(m)) = 1 . We prove

this by induction on m. First we prove for  m = 0. If K is

of type  a), ALs(0)a-xx , hence our assertion follows 

from i) of the  sublemma. If K is  of type b) and  £ 4 2, 

or K is of type c), L is an  unramified extension of K, and 

our assertion can be proved in the same way as i) of the 

 sublemma. If K is of type b) and  L= 2, L F F and 

we may assume o- acts on F F by

 0-  : (a, b)   >(crb,  ca)

for (a, b)  E F , and  A_L(0) = x  La  . Hence our assertion

is obvious. For  a positive integer  m, we consider the exact 

sequence

 1  >  UL(m)   >  UL(m-1)  ---...›,U1(m-1)/UL(m)   1 

Assume  11°(  102-  UL(m-1)) =  H1(  9  UL(m-1)) = 1 . Then to prove 

 2°(0,1_, UL(m)) =  H1(4,  Tyra)) = 1 , it is enough  to  :show 

 o H UL(m-1)/UL(m)) =  H1(qT,  UL(m-1)/ur(m))  = 1 . We show this

separately. We see  UL(m-1)/UL(m) (AI44L) for  m = 1  ,
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and  AD/341  for m 2  . If K is of type a), 

 ALI/OL  0)  0/g , and if K is of type b) and .2 2, 

 Al/341,  is a finite field. Our assetion for this cases is well 

known. If  K. is of type b) and  ,Q= 2,  /1l(7/11 is isomorphic 

to  6V,y  Q  CVg and  cr acts on  (4)(9/ by

 : (a, b)    (°I,  7a) 

for (a, b) E  64  ED  i01/ . Hence our assertion for this case is 

obvious. If K is of type c), we denote by  p the maximal 

ideal of  AL and consider the exact sequences

o P/sAd, /1173 AL A1/12 

 1+  (P/11-  --->  (41144.1)))(  V117(j  )x  ̀ -.% 1

Since  CC2/
,,TAL  a_ , and  1+('/1-q/11,  AL4  ,  our 

 assertion easily follows from the fact for finite fields as in 

the  case where  K is of type a) or b). Thus our lemma  is 

proved.

As a corollary of the proof, we obtain 

Corollary   3.1").  The notation being as in  Prop.3.14, we have

H(cj, PL(m))=1,and H1 U1(m)) = 1  .

 Doing this lemma, we can determine  c7.(f,  r,./1) for r = 0.
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     Proposition 3.16. The notation be as above, let F be 

the unramified extension of k of degree  I, and f(X) = X2-sX+n 

be a polynomial in  r[X _1 with v(n) = 0. Then we have

 c  (  f  ,  0,  A) = 1

for all  r-order A of K containing g. 

                                                                           Ax      Proof
. Since r = 0, g is contained in/1 . Hence by

Lemma 3.14, there exists  g of arA]x such that  NL/K(g) = g 

Let's consider the set  MCg, 0,  M. For x  xENI(g, 0, /1) 

                                                           E if and only if x-1°-xE E0-[A] . Hence we have x1°xe  (Y[A]x 

and NL/K(xx) = 1 . By Lemma 3.14, there exists x' of OL6[/1]" 

such that x11)-X = x'®1-rr                             x' . From this, it follows 

 M(g, 0,  /A)  =  Kx0L/17x and  co_.(f, 0,  /1) = 1  .

     In the following we treat the case where r  0. Let F 

be the unramified extension  of k with  LF  a k3 =  I as above, 

and f(X) =  X2-8X+n be a polynomial in  r[XJ with v(n) =Jr  . 

We denote the k-algebra  kt/j/(f(X)) be K as before. Let  Fl 

and  (5-2 be as in 3.9. Then if K  is of type a), we have the

following.

     Proposition 3.17. Let the notation be as above ,  assume K 

is of type a), i.e. K  n=  k  k , and let a and  0  be two 

elements of r such that  f(X) = (X-a)(X-p) . Then, 

i) r,  /11,(m)) 4 0 only if  £Iv(a),  v((3)  .

ii) If  I v(a),  v((3) , then
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 c,(±, r,  AK(m)) = 1 

 Ns-m(1—

 

,  m  =  0

 Npm(1—Np)
 , 0 <  m  5-1/

 3-ife 

 Np  /e

 0

 <  m  6'0  c5-2

 

•  Si/12  +  F  2  <  in

 , where  N and Np denote  10/s1 and  Leprf respectively.

Proof. By assumption, K is isomorphic to F  Q F , and by

this isomorphism, we may identify g with (a,  p) of F 0)F  . 

If we put (a,  p) = v) with u, v 0-, then one of u 

and v is a unit of  0- and v(u—v) = . We see (a,  f3)E-NL/K(e)

if and only if  elv(a),  ilv(p), and i) is proved. Hence we 

assume  flv(a) and  /1v(p). Then we see  T1 =  Min(v(a),  v(p)) 

and  ilYi . Let  (Tf,  TT) be an element of  AL(m) such that 

NL/K((d, 0)) = (a,  p) . Then we see that  (a, -0) is of the form 

 p81  /e  (rf,  Tr) with  11,  -17  6  0-, and that

 m +  w(  )  gi +  v  (  u—v  ) =  Jig  +  12  .

Hence 

If  m 

 (u,  v) 

(u, v)

by Lemma 3.13,

 ji/i +  j-2  , 

 E  41_,(--2) such 

 E  /1K(  e•

 c  f,

that 

v(a)

r,  /1/((m))

 we

 N  K(ri'

=  v(P)

 =  0 for  m  ,  m  >  +  .

 see there exists 

   = (u, v) For, if 

 this follows from Lemma 3.14,



and otherwise  c7„, = 0 , and the assertion is obvious.  Fut

 (7ä,  T) =  p"(u,  Tr) , then Ni/K(a,0) = (a, 13) and 

 (-a,  ()  E +  '0-2)  . Let's consider the set  M((-a, r,  4(m))  . 

An element (x, y) of  if = (F  e  FY is contained in 

 M((id,  0), r,  AK(m)) if and only if (x,  y)-1(a, y)  AL(m)  . 

 Lince one of  Ti and  v  is a unit of  (5- and  w(11---V) =  0-2  ,

 we  see

(x,A-1(77,  TjQ-(x,  y)  AL(m)  <,== -  y-la-yV) -  cri/i

                             

c    w(x-10-X —  y-11-y) m  cri/X  . 

Hence for  in m  Fi/i ,  3), r,  /117(m)) =  ExAT(C))'  . 

For  in,  370  <  m  J1/.t +  2  , we see 

w(x—l'rx — Y-1_y)  m  (7-17k  (  (x,  y)-17(x, y) E  AL(m — Ji/i) . 

Hy  Lemma  3.14, there exists (TT",V') /1T.(m ,ye)xouch that 

(x,  Y)-1T(x,  y) =  V')-11(711,  V') . From  this,  e  see easily 

 13),  r,  ii(m)  ) =  K  /11  (m —  )x for  In  cTi4e  c1/17  . 

Hence by Lemma  3.13 we have  crr(f, r,  ,1y  (m)) = 1 for  m = 1  , 

and for  0  <  m  ji/e

 0,77(f, r,  AK(m)  ) =  I  K)(/11(0)x /  e/11,( 

               =  1.4L(  )X  blf  (111r  I /  /Iv(  C  M  r 

               =  Nei(' -  1/NT)/  NPM(1 -  1/Np)



For  m„ S-1/; <  m  ji/j2  (72  v,re have

 co_(f, r,  /1,1,7(m)) =  IleAL(m -  J-1/)x/  E'Al(m)x1 

                                                          , 

             = 1./1L(37,1,„r!,m)) /  IA  .„(rn  ii/f)  r/A.K014 

          =  r/Q/  Np

If K is of type b), we can prove the following. 

     Proposition 3.18. The notation being as in  Prop.3.17

assume K is of type  b), i.e. the unramified  extension 

of k with  LK:  k3 = 2  .

i) If  t 2 , we have

 c7(f, r,  AK(m))  = 1  M = C

 N3-111(1 +  1/NT) 
 0  <  m(51A 

Npm(1 +  1/Np) 9

ii)  Assume

cT(f

 = 2  . 

r,  AK(m)

If

 

I 

 ,  \ 

 \

Np

 0

 r  =  El  is  odd,

 + 1 

    — 2m + 1)

 0 
 -8  2-

then

 Ji/f <  m

 kte  <  m

 we have

 Nm(1 — 1/N4,.)

+ 1/Np)

 M 

 0

 

(  d  -

 c1-2

Npm(1

 0

 V5-1-1)/2 

1)/2  <



If r = (51is even, we have 

 ccr(f, r,  A.K(m)) =  (  5-1 + 1 m = C

 nin  (  1-1/n  ) 
 (11-2m+1)  ,  0<m El/2 

         Np111( 1+1/Np )

 N3-"- 

 y2  <  m  <  di/2 + / 

0  J-  /2 ±m                                       02

     Proof. First assume  f  t 2 , then L  is the unramified 

extension of K with  [L  Kj =  Q . By the assumption v(n) =  , 

there exists an element  -g of  ALM such that  NT/K(g) = g 

By this note and Lemma 3.14, we can prove our result for 2 

in the same way as  Prop.  3.17, and we omit the details. Next 

assume  g= 2  , then L is isomorphic to F , and we may 

assume F is diagonally  embedded in F F and,0--acts on 

 F  F  by

 0- : (x, y) 

for (x, y)  eFeF. Hence for (x,  y)  frF F, 

 NL/K(x, y) =  (fry,  Crxy) and  K  = (x,  a:3c)  x . For g, 

there exists u of such that g = (u,  a-u) , and = r 

As-SUIT-le  (5-2_ is odd. If Tir; = (x,  y)  e  AL(m) satisfies 

 NT/r(g) = g , then w(x) +  vr(y)  =  3  -  1  . Since  cri  is odd,

 -8  3-

 d2



 Yin(w(x), w(y)) -  1)/2  . From this it follows 

•r,  A.y(m))  = C for a, a  >(71 -  1)/2  . If 0 -  1)/2  , 

 out 7; = (p `u, pm) , then Nuy(g) = g and  g  E41(m)  . 

Let's consider the set h(E,--, r,  A(m)). For (x, y) of L,  we 

see easily  tha.t (x,  y)-1-gT(x, y)  e  ili(m) if and only if

O w(x)  v7(y) - 2m  . Hence  Pi(g, r,  Ar(m)) =  V  e(pi,  1)AL(04 

 , where  the union is  disjoint. Since  I Kx 1)/y0)'(/41(m)4" 

         (110)(1I))I = 1.41,( 0 )/, our  assetion for  c71 odd 

is proved. Now assume  cra. is even. If  g =  y) of  41(m) 
satisfies  11'T/1.W = g, then w(x) + w(y) =  c . If w(y) 

then  Blin(w(x),  w(y)) < ry2  . Hence 

•<3-i/2 =,ra/2+.If w(x)=w(y),put = u2) 

with u1,u2.of (."Since w(u1-u2<w(u1 2 -1/u2)) 
                                                =  v(u-'u)  :72 , m  F1/2 +  . Hence it follows  that 

 c,r(f, r,  .1r(a)) =  0 for  In,  m  51/2 +  ;72  . On the other hand,

assume a2Z1/2 +,then thereexistsu2)of /-1..r,(cy 

such that  NL/K(u19 u2) = (u,  rTu) by  Lemma 3.14, and put 

 = p`;'/-2(uu ,) Then N() =Eand(1/2+     l'NI :/I(g)T2 

C  AL(m) . Let's  consider the  set  L07, r,  ./17-(m))• Let (x,  y) 

 be  an element of  L  such  thE:t  v,,(y) . Then (x, y) is 

contained in r,  ,I.K(m)) if and only if 

m -  1/2  w(x) - w(y)  J-1/2 -  m . Let  (x, y) be an element
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of  L. such  that w(x) = w(y) . Then (x, y) is contained in 

    r,  40m)) if and only if  w(x-lulcry -  y-lu{x) m -  1/2  . 

Hence for  m, 0 m  y2 , we have

 <TA  -m

           r, AK(m)) = ( 1(c.(P19 1)/11,0)1                                    i=-(5-1/2-m) 

 , where the union is disjoint. And for  m,  < m .J-32/2 +  62

we have

              r9  41 (m))=  Kx.AL(m -  (y2) 

Our result for  ,71 even follows  ec.sily from this, and our proposition

is  proved.

If  K is of type c), we have the following. 

 Proposition 3.19. The notation being as in  Prop.3.17,

 assume K is of type  c), i.e. a ramified extension of k  with 

 Dc:  ka = 2 . If  Pr is odd, we have

c5,-(f, r,AK(m)) =Nym 

 Npm,  0-.<m (2i5-1+1—i2)/2 

                     0 ,  (2(5-1+1-,e)/2i < m

And if  r is even, we have

 r,/iy(m)) = 
m ° ji4e.

                   Np 
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 N3-- 

 s-4e < m `72  Np 

0 ,  c3-1/IL  c72  <  m

 Proof.  Since K is of type c), L is an unramified 

extension of K.  Assume  Pr is  odd, then  2,7-1 + 1 =  ir and 

 (23-1+1-4)/21/ is an integer. By the assumption v(n) =  )7._r  , 

there exists  g of AL such that  NI/K(g) = g . Then we see

that p—g and p- (2 FI+1-1)/2eg— are prime elements of K

and  L  , respectively. And  g  E  AL(m) if and only if 

 0  m , hence  co_(f,  r,  /1K(m))  = 0 for  m, 

 m >  (23-1+1-i)/  2,6c . Let m be an integer such that 

 0  <  m  (23-1+1-W2C and  g be an element of  /11(m) such that 

 N1/7(g) = g .  Let'  s consider the set  y(g, r,  AK(m)). We see 
                                                                                    -()- that for any element x of LX, x-1gx is contained in  41(m). 

Hence  m(g,  r,  /iK(m)) =  leAL(Of . From this we see 

 c  (f, r,  /10m)  ) =  I  AL(  0  )x/Al(m)x  I  //  'A(  0  )x7/10m)xl =  Nf/Npm  . 

Assume  er is even. Then there exists u  ei1K(0)'' such that 

g =  p"3"  u  . An element  g. of L such that  NT/7(g) = g is 
of the form  g- =  p5."ea with  a . By the definition 

ofJ-2, u  e /11(0-X but  k  A(  0-2-F1ix  . Hence if  r.y1L(m)

then  m  ji/e +  (5-2  , and  c,(f, r,  /1K(m))  = 0 for m  7  (51/e  +  J-2 

By Lemma 3.14, there  exists  fl of  AL(J-2)x such that  NL/K(U)  =  u 

Put g = pu , then  -g  e  AL(m) if 0  m  J5./2 +  .



 Let's consider the set  M(-g, r,  /1K(m)). For  m, 0  m  0-1/12  , 

we see vice, r, AK(m)) =  W<AL(0)x  . Hence if 0  m  s-C 

 c7_(f, r, AK(m)) =  14L(0)x/AL(m)x  I  /  14K(  0  )x/AK(m)X1 =  Nym/Npm  . 

For  in,  31/0 <  m , we see 

x E  M(g, r,  4K(m)) < >  x-1°"Xp`31/iii E  AL(m)  >  x-19-x  E  AL(m  cy.2) 

Hence by Lemma 3.14, we see  mrg, r,  aK(m)  =  Kx/A-L(rn  51/J2) 

and  c  f r,  4K(m)) =  N  "/Np

If K is of type d), we have the following. 

Proposition 3.20. The notation being as in  Prop.3.17,

 E  Lune K is of  type  d), i.e. K k + kA with A2 =  0  . 

Let a be an element of r such that f(X) =  (X-)2  . 

(i)  c,r(f, r,  AK(m)) 0 only if  Qiv(a) 

(ii)  If  Q  I  v( a) , then we have

 co.-(f, r,  /1K(m)) =  N5?5-/i/Npi-'71 , m  —  (  ,e  —1  )  c)-1/ 

               0  ,  -  (f  —1)  ciite < m

    Proof. Put g = a +  A , then  A2 = 0  and K  = k +  kA  . 

For any integer  m,  /Om) =  61+  07traZ, and  AK(m)  = r +  rpnlA

As noted in 3.6, g E  NiiK(Lx) < > a  E  Nr/k(Fx) , and 

a  E  NF/k(Fx)     )2_  I  v(a) in this case, hence i) is proved. 

Assume  k  I  v(st)'. and  NI/K(g) = g with  g  E  L'x, and put
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 = x + yA , where x,  y66,. Then we see  NF/k(x) = a and 

           = 1 Since v(a) = , it  follows that 

w(x) = and  w(  y/x  )  -  (.1-1 , hence  w(  y  )  -(  )1-1) 

This implies  cT.(f, r,  Ay(m)) = C , for  m,  -(0-1)J3z/i < m  . 

 Let x be an element of  6' such that NF/k(x) = a ,  j:  en there 

exists  y-  (e-Dc7,// such that  TrF/k(y/x)  = 1/a Put 

 E = x +  y.6 , then = g and  E  6  /II(-(  e--1),7-1/12)  . 

Let's consider the set  M(d, r,  Ay  (m)) for m,  m  -(2-1)67-1AQ  . 

An element x'+  y'd of  Lx belongs to  M(E, r,  47(m)) if and 

only if (x'+  VA) -1'3(x1+  y'Ll)(x  yd)  e  /1L(m) by definition.

We see

 (x'+  y',A)-17;-(x1+ y'L)(x +  yz.S) 

               (x'+  yl.z.1)-1(x1+ y'L)  AT(m - c.`"3-1/-e))(  •

By Lemma  3.14,  vie obtain  M(g, r,  Ay(m)) =  Kx/Vm - 5-3/10X, 

                    3vv92 and  c,(f, r, AK(m))  = NY/IT-oc)- .

3.11. Let F be a tamely ramified extension of k of 

degree . In this case we assume r = C. Moreover if n N(-R?)        F/k' 

_. it is obvious ca(f,r,AK(M)= 0 , where f(X) = X2-EX+n  . 

Hence assume v(n) = 0 nd n F/k(Fx) . First we proi.re thehence assume v(n.) = 0 nd n NF/k(F's ) . First we proi.re the 

result corresponding to  T.emma 3.12.

 Lemma  3.  21. Let F be a  tamely ramified extension of k 

of degree  .0 ,  and K,  I,  Ay(m),  .'1T(m) be as in  3.9.
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1)  If'  K 

 AL(m)  n  K

 and

 '1(n)j

is f

 /iL(m),nK

and

 G/IR(n)]

of type  E: 

=  AK(  0  ) 

   AK(n)

=  (in)

type  ), or b)

 of  type  c)

 /1.E(  0)

=  ( +
 2 

c)

if 

if

and

if 

if

 If  E:

 ,11  (m)  f-)K

and

 CCV-K(n)i 

iii) If K  is

 A(r1):--

 na

 L/1(n)

of  tyne c 

 lK(0) 

 K(n)

 AL(  2n+1) 

of  type d)  , 

 =I-7(n)

=  /Yin)

 )

 and

if 

if

 

, then 

 rn  = 0 

 fn  -(P-1)

   2  ,

 0  rn 

 in  +-

 m  tri

 1= 2

2n

then

 (f  -1)/  2

  -  -1) m +

m

 M

then

 if  in-(k-1)

then 

 1

 2n+1

 m

 -
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     Proof. First we prove the second assertions. It is enough 

to prove them for  n = 0 as in the proof of  Lemma 3.12. We can 

easily verify them separately, and omit the details. As to the first 

assertions we can prove in the same way as  Lemma 3.12. For 

example, assume K is of type a), and for a non-negative integer 

m, put  /1L(m))K  =!AK(n) with a non-negative integer n. 

Then  01.11 ,(m)r}K]  =,41,(in) , hence  m  in . If  m  e(n-1)

then  /LL(m)  /1„(n-1) , and  /1K(n)  /1K(n-1) by the assumption 

on n. This is a contradiction. In the other cases, we can prove 

the first assertions in the same way and omit the details.

     We define  UF(m), Uk(m), UL(m), UK(m) as in 3.10 by 

(3.10.4),  (3.20.5) and (3.10.6). Then  UF(m) (resp. Uk(m)) 
is a subgroup of le  (resp.  r'(). And  UL(m) (reap.  UK(m)) is 

a subgroup of  /11,(m)x (resp.  AR(m)x) and satisfies 
 /11(m)x  =eUL(m)  (resp.  /1"c(m)x =  Oxym)  ).

     Lemma 3.22. Let F, K,  L,  AF(m),  Al(m),  Uv(m), and  'yin) 

as above. 

i)  H1(  ,  Ze  x  ZX if K is of type a)

 Zj if K is of type  b),  d)  or 

          type c) and  „e  * 2

1 if K  is of type c) and 

 i= 2

 

, where we denote by  ZL the cyclic group of order  !
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ii) H1(  ,  AL(illf )  tiZt , for m 1 if K is of type

a), b) or c) and for any integer m if K is of 

type  d).

Proof. First we prove the following. 

Sublemma. Let  UF(m) be as  above,

i)  H°(2j  ,  UF(m))  le  Z/t , m = 0  

'  1 ,  m  1

 H'(01,  UF(m))  Zi  m = 0 

 1  m  _1 

ii)  H  (g,m)=  131 (  (3.  , = 0 for any integer  m.

    Proof. i) Put  a, =-10-                             7C , then determines a 

 1-cocycle ,  1  6  C3-, of  0,7-- in  At (0)  . It is easily to see

 Kives a generator of  H1(  ,  UF(0)  ) and is of order ,e 

                                                                   o Hence H1( UF(0)  )f=Zg. The assertion for H UF(0)  )

easily follows from the local class field theory. We prove

 1 H ( 
,  UF(m)) = 1 ,  ra 1 by induction on m. First we show 

 1-11(q,  UF(1))  = 1. Assume NF/k(x) = 1 for  x  E-  Up(1), then 

there exists  yeFx such that x =  y-17-y , since  }-0-(q, F') = 1 

Put y =  7G1u with some integer  i and u  E  9x, then 

x  (-717c)1 1  mod.y . Since the extension F/k is tamely 

ramified, it follows that  K divides i. Since  7E12  e  p(9x, we 

may assume y = u with  u  e6})`. For u, there exists  rx 

 such  that uu' mod. . Put y' =1, then  y'  -[.JF(1)

-91-



                                  land x = y'.Hence H1(,()) = 1 .  '."Te assume 

 1(  (m))  = 1 for  a  >, 1 , and  prove  hh ,  U__,(m+1)  ) = 1  .

By the exact sequence

1  >  Up(m+1)  UF(m)  uF(m)/ITF(m+1) 1

 we obtain the exact sequence

       H°(, uF(m),/uF(m+i))> H1(, up( m-1-1))  H1,  u,„(m)) 

Hence it is enough to prove  H  (  ,  UF(m)„/U.,,(m+1)  ) = 1 .  But 

this follows easily from the fact (,e ITT-,(111)/UF(m+1)I ) = 1 . 

Nowwe  see(m)61- =  Uk(m/e  )  if  I m and 

UF'4()c-7-=( LirP4               I1) if m . And theassertion 

         m,o()) = 1  for m 1 is an  ea  sy  conseciuence  of  (1=1  1, 

 Ch V, 3,  Cor.  3 of  Prob. ii) The assertion  H°(d7  ,  j).m) =  C 

easily follows from  (r2.1,  Ch VIII,  § 1,  Prop.  4 ).  prove 

 II1(  (-7,  ) C .  1  ut  =  (77C/7-c)in , then determines  e 

1-cocycle  ay ,  T  E  9-, of  J-  in  (Y''.  e consider  &- 

 q--module in the  following way. If we make act on  0- by 

 2-(x) =  arrx , then  ve obtain another  9--module  , and we denote it 

by . Then  s  isomorphic to  as  /Y.—modules by the  map
 i 

 X  ;  >  'X  Lx  for   x . If  (1-  (x) =  C  , for  X  ,

put x3 'x = x +(x) ,,=  x +x) ++u--e-2(x)  ,  2
 -

 and y = x.Then f.,ee(y)-  ix , hence

x  (y/t  ) -  (yA  ) . since  f , it is proved that  H1(  ,  = C.



    Now we prove our lemma.  i) We see  /11,(C)x  Oxx  Ox 
if K is of type a), and  ex  /11(0)x if K is of type d). 

If K is of type  d),L(0)f_t.  (9—  as  °I—modules. Hence the

assertions for such K follows from the sublemma. If K is of

type  b)  , or of type c) and  tk 2 , we can prove the assertion 

i) in the same way  as the sublemma,  since, L is a tamely 

ramified extension of K of degree  L. If K is of type c) 

and  k= 2 , two cases can occur, i.e. 1)  L =  KOF is a field, 

or 2)  == F F In the case of 1), is an  unramified 

extension of  K, and the assetion can be proved in the same way 

as Lemma 3.14. In the case of 2), the assertion is obvious.

ii) For m 1,  AL(m.)x =  O'UL(m) . If K is of type d), 

4L(D)>(O';; UL(m) , and  UL(m)  ym . Hence our assertion 

easily follows from the  sublemma. We assume K is of type a), 

 b), or c).  We consider the following exact sequence

    1  >  c  xi)  UL(m) (=  Up(m))  -->  (9-xx  UL(m)  /ymr  > 1 

In the same way as in Lemma 3.14, it is enough to prove 

                                                       ° 

 H1(03., UL(m)) = 1 for m)1 , since H UF(m))  =  R1(0/,  UF(m)) 

= 1 by the sublemma. Consider the exact  sequence

    1  >UL(m+1)  UL(m)  ---“JL(m)/UL(m+1)   >  1 

Since  (IUL(m)/UL(m+1)1  f) = 1 , we have  i-\10(9. ,  UL(m)/UL(m+1)) = 1. 

Hence it follows from  H1(71,  UL(m)) = 1 that  H1(01-,  UL(m+1)) = 1,

and it is enough to prove it for m = 1 . We see
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 UL(1)  UF(1)x  U  (1) if K is of type a). Our assertion 

for such K follows from the sublemma. If K is of type b) 

or c), we can prove it in a similar way as i), and we omit the

details.

Corollary  3.23. The notation being as in Lemma 3.22, then

we have               UL(m) ) = El(9                            UL(m))  = 1 for  m  1 if  K 

is of type  a)', b), or c) and for any integer m if K is of type  d).

The assertion  111(q,  UL(m)) = 1 is shown in the proof of 

the above lemma, and the assertion Ho(cg.,  yin)) = 1 can be

proved in the similar  say as in Lemma 3.14 by using the above 

sublemma. We omit the details.

     Remark 3.24. If K is of type a) and  m = 0 , a complete 

system of the representatives of  Hi(g-,  4L(m)x) is given by the 

1-cocycles determined by arr=)JElt^ 1C  j  y  -1. In 

the other cases, that is given by the  1-cocycles determined by 

 ao-  =  7ti37C ,  0 i  R -1.

     Now we determine  c0(f,  0, AK(m)) according to the type of

K. Let F be a tamely ramified extension of k with  fF: k) =

and f(X) = X2-sX+n be a polynomial in  rEX) such that 

v(n) = 0  and n  71\IF/k(F)() . We denote by K the k-algebra 

 k(X)/(f(X))  , and by  X the  class represented by X as before.

Let  er and 6-2be as in 3.9,then.5-1= 0 , since we assume 

                                       v(n) = 0 , and  rLDK(3-2 •) denotc
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by  Xi the characters of  kx corresponding to the

extension F in the sense of the local class field theory. 

Since F is a tamely ramified extension of k, they induce the

characters of  (r/pr)X. We denote them also by  -xi  , 1 i 1, 

and assume  2 is the identity character. Then for  xrx, we

have  I

     x  NF/k(F)()  <    >    ( 
 1=1 

 , where  T is the class of  r/pr represented by  x. If K is 

of type a), we have the following.

     Proposition  3.25. Notation being as above , assume K  is 

of type  a), i.e. K k  G k  . Let a and  p be elements 

of  _12 such that f(X) = (X-a)(X-p) . Then, we have

 co-(f,  0,  /1K(m)) =  I.  >-.:  )q(a) =  i  E  -1(13)  9 0 m 
 1=1  1=1 

    0  9  <  m  •

Proof. It is obvious that there exists  X of  I. such that 

 k

11-/  T/K(5ifancloillyifl-"Xi(a)=L7."e) = ., and 
 1=1  d=1

iftheredoesnotexistsuch) = 0 
 i=1  i=1

On the other hand if Xi(a) =f, there exists 
                      1=1' 

                x 
 e/1LLesuch that  N

L/K=, whereTOD                        =FIf      n2 

 2= ,-0this is obvious. If c)--2 >  0 , putxu with xer"
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and  u  E  Ily(E-2) , then x  cc  mod . Hence there exists  x  €6' 

such  that  NF/k();:) x  • By Cor.  3.23 there exists u E=1:'L(1,5"2) 

such that  NI/F(u) u , since  ITIU,52) =  UK-(`2) . Put 

 X = 5-cu , then X satisfies the above conditions. Let  be an 

element of  r such that f()0 mod. (pr)2and 2 5s mod. (pr)S-2. 

 As we may take a.  If  6-2  < m,  /1K(m)  A;X , hence 

 cu_(f,  C,  /),K(m)) = 0 . For m, 0 m  5-2 , by Lemma 3.10  ,

 -m

 / P _ g =  C,5-      ...p2.-mfq) c..is an element of lif2(r) such that 

k(g)nM2(x) =  cyg(AK(m)) and  Fig)nM2(61)  =  (ye(AL(tm))  , 

where  Jg is the isomorphism from L to  F  Lg) given by

 Lf
g(X) = g . Put  g =  <TE(1) , and let's consider the set 

     0,  (1g(/1x:(111)  )  ) Now N induces a map from  C,4)(0)  73 
 to  Uc(N-g,  A)(-)M2(M  /  isf  ( see  3.9) , where  /1 are the 

 6-orders of  Z(Ng) which  satisfy. (3.9.1). If m = 0 , then 

the  &-order of  Z(Ng) which  satisfies(  3.  9.1) for A =  Lie(4K(0)) 
is  9;g(/1L(0)) by Lemma  3.  21. Since  C(NE,  Tg(AL(0)))nM2(6-) / 
consists of only one class, hence for x 0, cf (4 (0))) ,                                                     g 

                                      - there exists u 61Jsuch that N(x-1er-x) =  u1Ngru . It follows 

that  )717-(g,  C,  Lf
g(AK(  0)  ) is contained in  Z(Ng)xU  4--fry.(LnIT  . 

Since      g EK2(k),cf
g' is a  LY-isomorphism from L to  Z(NR). 

For xu with x  E  z(Ng)" and  u  EtT , we see

xu  Eyr,487, 0,  clog(AK(0)))    vAL(0)x) 

   x-1/5c  E  Ig(/11 ,(  0)x  .
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 Lemma  3.  22  and  RemDrk  3...24, there  exist  two integers  i,  j,

 0  j  1-1,  and  u  CU&  that  . x  'x = 

 cu  (7,4,  7d)-1W, ).  We see x  E  Te(Kx(7t1,7Ei)  )u,

hence  ?no-Cg, 0,  T„.(41,::(0))) =  U  1e(e(7[2,  7()))U.  From this 
 i,j=0 
 it follows

 cT(f, 0,  4(0)) = yr?(e)\ U--k.j))u/ u 1 
        E  i 

            =  I  .LJ  ,  j)4(0)"\  / ./Iyi(0)x

=  t2
                                                 1 0 In the case where m 1, for i, 0.<,.=j.-1-1, put  h. =(0-i) . 

                                                                             ince 
 _T-.fi2-m Ti 

     h-=            -2lij  iu-  , 

 -P-651-M-f(f) 

 by  lemma  ..10, hilghi is  on element  of C(g, 4T(fm-j))(-1M2(6). 

 by  Lemi:T,. 3.10, C(g,A(fm-i))r)L2(6) /consists of only        t_J,LU 

one  clsss, hence in the  same  wsy  2C  above we see 

                                          f_i                  -....

      mo-G7,0,qvi(nim(1.0-1(M11-u. 

                    K 

                                    g 

                                                            X 

 E, Forxh.u.u, where xki.), u U,                                                                     WC see

xhiuE1270--(g, 0,Tg(!ly(m)))  Tl                                    hx-1,707h. ey_(&))( 

                                 1                        h
i xe r.:2.(0-)x
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       -1-1 _      h .xg 7k1 1e((9-)x  i-2 

          --r- 

t  > x1g'x  egVL7(fm-I)  )

By Lemma 3.22 and Remark 3.24, there exists an integer j,

 O  5  j  i-1  , such that x E  cfg(Kx1)U  . 

Hence we see  NLo-(g, 0,  g(4 (m)))= U(Kx4)h.0and 
                     i,jg0 

c,„(f, 0,  /1x(m))=2

If K is of type b), we can prove the following. 

Proposition  3.26. Let notation be as in  Prop.3.25. Assume

K is of type b), i.e. the unramified extension of k with 

• k) = 2 . Then for m = 0, we have

 co_(f, 0,  Ax(0)) =  f

In the case where m 1, let a be an element of r such that 

 f(a)  Ea  0 mod.pr , then

 c,,(f,  o,  Ax(m))  =  xi(a))  , 1 m  c52 

         0  9  <  ra  •

     Proof. By the assumption n  E  NF/k(P) , there exists  T 

of  AL(0) such that NL/K(X)-=X.In the  casewhere,5"-21,

there exists a of r such that  f(a)E  0  mod .pr . Put 
ti 

 = xu , where  x  E  r  and  u  ET7
K(,)"--0) , then x a  mod.pr . If 

there exists  X of  ALT(In) with  m 1 such that N1
/h_,„(X) =



then we see 217,  Xi(a) =  Q . If  7,xi(a)  =-11 , then there 

exists  1-  of  4x such that  NF/k(x) = x  . And by  Cor.  3.  23, 

there exists  u of UL(i2) such that NL/K(-5) = u , since 

 UL( =  UK( . Put  X =  xu , then  NT/Ka) =  X and 

 e  AL(Qa-2) With these facts we can prove our proposition in

the similar way as  Prop.  3.25 and we omit the details.

     Proposition  3.27. Let the notation be as in  Prop.  3.  25. 

Assume K is of type  c  )  ,  i.e. a  ramified extension of k with 

 I:K  k3 = 2  . Let a be an element of r such that  f( a)  L=1 C 

 mod.  pr . Then we have

 e+ 
2;1Xi( a)  9  M

 c„,_(±'  ,  C,  4K(m)) = 

 .e.  (  7,  ai(a))  ,  1 _-.._  m  .,C  cy--2 

 0  '  c5-2  <  m  .

 Proof. First assume  Q  k 2  . By the assumption n  E  NF/k(  Ox), 

there exists  /  e  AL(  0)x such that  NI/OX) =  X , and we see

 Z,  Xi(  a) = We show that if  /7,  X'i( a)  = L , there exists 

 E  /11,(2,72 +  (2-1)/2) such that  Nvic(X) =  X . Let  1-1L and 

 jjK be prime elements of L and K respectively. For a 

non-negative integer m, put

   (K(0)X ,  M=0   ALMx                                                                          ,  m=0 
 LTK(m)  UL(m) =  1 

     1 +  AK(o) , 1 +  7TZ  AL(o) ,
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Then  UK(m) (resp.  Tyra)) is a subgroup of  /11<_(  (resp.  /11,(  0)(  ) 
and  UK(m) =  UK( 2m)  ( resp.  yin) =  filz(  2m)  ). We see 

 Ar(m))( =  rxIJK(m) =  -fix(  2m+1) (resp.  i'lL(m)x =  6"  UL(m)  =  rty  2m+1)), 

since each element of  UK(2m)/iy2m+1) (resp.  y2m)/fiL(2m+1)) 

is  represented by an element of  (resp.  cv'''). Hence 

 10  2,))c  IIK(22+1) and  %1TW2+(1-1)/2)  6)(ty2f/2+10• 

 By(a51, Ch V, 3, Cor.3 of Prop.5),  NI/K(tL(2eJ7+2))=  ifK(2J-2+1),

and our assertion follows from this in the same way as in the 

proof of  Prop.  3.  26. We note there exists  r such that 

f(0 mod. (pr)2(32+1                               and  2  17-.1  s  mod.  (pr)                                                      , since K

 ...,S; 

is a ramifiedextension of  k. Put g = 
-sr5P 

          ( 

 (9 1 

                                                                                                    ' 

                              -p fq) s-/ 

then g is an element of  !'.-2(k) which satisfies 

 k  rgTh1V12(r) =  c-fe(40  0)  ) and  F[g3nY.2(&)  =  (--1-g(41-(  (i-1)/2)  . 

        1- _(1 O.\ , For i, 0zf:- i.,S-2--, put  hi-then h1ghis 
 o7 r1)iian 

element of C(g,  ili(  (Y-1)/2 -  1))nK2(t`-`) . Put -e-_-, =  / ,(17)  , 
-
.-,- 

 X EAI(CcS"2+ (f-1)/2) , then we see ac in the  proof of  Prop.  3.  25 

 (-e--1)/2 
that  nicr(g, 0,  :1j,( 0)) =  L) F.:ithjU and we have 

                        i=0 j=0 

 ccr(f, 0, =  12=  f(k+1)  = .k1 + ", ".2(a) , sinceL7 Xi(a) . 
                            itl 

For m 1, we can deduce our  result in the same  way  as above . 

Next assume  re = 2. By the  assumption n  E  N/,/, ,,:(  CY) , there
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exists  X e  o)x such that  NI/K(X) =  X . For m  1 , if 

there exists  1-  G  Al(m)x such that  NL/y(X) =  X , then 

 xi( a) = 2 . Let  UK(m) be as above, then  AT( =  rxffic(  2J-2+1)

 197-
and A (2,T2+1))(= OxUL(2S-2+1).We see UL(25-2+1)-f-=K2+1)  , 

                                                              hence by  Cor.  3.  23  NI/0UL(  2F2+1) =  17K(  25-2+1) . If 1_,7Xi( a) = 2  , 

by the above fact we can show there existsXeAI(-2+1)s such 

that N.77,1/4/7., =  X in  the  jne  way as in the proof of Prop.  3.25 Using

these  facts,  we easily  obtain our result and omit the  detoils 

    If K is of type  d), we can easily prove the following in

the same way as above and omit the  proof.

Proposition  3.28. Let the notation be as in  Prop.  3.  25.

Assume that  K is of type  d),  i.  e. K k + kA with  L.!,2 =  0  .

Let a be an element of r such that  f(a) 0  mod.pr . Then 

we have,

 c(7-(f,  0,  4K(m)) =  Z  Xi(  a)  )

for any non-negative integer m.

     3.12. In the  following 3.12  ti 3.15, we treat the case 

where  Ng  e  F)`. In this case the k-algebra  Z-(g) is isomorphic 

to a quaternion algebra over k. For a quaternion algebra D 

over k, let be the equivalence relation  (3.  4.5) in all 

r-orders of D as in  3.4. Let a be a non-zero element of k.

Assume a  GL2(F)  ), and let  -g be an element of GL2(F) such 

that  Ng` = a . Then  z(R) is determined by a up to isomorphisms
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over k, and is independent of the choice of  7, by  Tema 3.6.

For a  E7  N(  GL2(F)  )  (-)k)(  , we denote by  D( a) the  quaternion algebra

over k determined by a in the above way. Let a be an

element of  N(GL2(F)  )r)r , r an non-negative integer, and  /L an 

r-order of  D( a). For a triple (a, r, A) we define a non-negative 

integer  c,.(a, r,  ,i) as in 3.6. Let  g be an element of  GL2(F) 

such that  Ng  = a. The k-algebra  Z0(g) is isomorphic to D(a), 

and let  'f be an isomorphism from D(a) to 7,,(g). For  g, r 

and  A, let  Ing  g  51:,(r),  A) and  c,(g,  ,1) be as  (3.  4.  2)  ' and 

 (  3.  4.  4)  ' for =  ?(r) , namely 

 174-(g, r,  A) =  x  GL2(F)  I  xLek  EE(r),  If(A,.)1 
 1, 

ca-(g,  A) = xgc5cxc-L2(F), zcr-ren)dvi2(9)x--1-(:t°(A)  .

We note  M  q-(rj- r, /1) and  c,(g,  4) are independent of the choice 

 of  q  . Put

 c7_(a, r, 4)  =  Za-(g)x\n'tcrrg, r,  4)/  U 

 , then we see  c„(a, r,  i1.) is independent of the choice of 
By Lemma 3.9, the double cosets  ZT(eVino--(E, r, /1)/  IT is in 

one to one correspondence with  c,(g, A)  ()  2(r) /  U. In the
following we will determine  c,(a,  r,  A) according to the type 

of F. When F is a  ramified extension, we assume r =  0 as 

before.

     3.13. Let F be the  ddreet product of  .-copies of k. If 

a E  IT(GL2(F)) and  c,(a, r, A) 0 , we see v(a) = r/2. Hence
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we may assume r is even and v(a) = r/2. Then we can prove 

the following.

     Proposition  3.29. Let F be the direct product of i-copies 

of k. Assume r is even, and let a be an element of  r with 

v(a) = r/2. Then,

(i) There exists  g  o GL2(F) such that  Ng = a , and D(a) 

     is isomorphic to M2(k).

(ii) We have

c(a, r,/1) =1  ,A ----M2(r cr) 

              0  9 otherwise

     Proof. By the assumption, M2(F) is isomorphic to 

M2(k)  Q  .....  (DM2(k)  (Q-co pies). Put  g  (a,  1,...,1) , then 

 Ng = a, and it is easy to see that D(a) is isomorphic to M2(k). 

                                                                                                                                   a- Let x =  (xi) be an element of GL2(F) such that x®1-gxE-(r) 

then we see xl1x2, ,1e  M2(r)x. Hence there exists 

 u  6 U and  x'  6  GL2(k) such that x = x'u. From this, we see 

 7710-(g, r,  /1)  r  .4) only if  /L  ,-,M2(r) and  c,(a, r, 4) = 1

for  =  M2(r).

3.14. Let F be the unramified extension  of k with

 (F: k)  =Q. If a  e  N(GL2(F)) and  co(a, r,  /1)  k 0, we see  ir

is even and v(a) =  ir/2  , Hence we assume  ,Lr is even and 

v(a) =  ,er/2 . First we assume  i  = 2. Let D be a quaternion 

algebra over k. We define r-orders  4(m) of D for non-negative 

integers  m as follows. Let R be  M2(.12 if  D =-2(k)and
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let R be the  maximal order if  D is the division quaternion 

algebra. Let F be a  k-subnlgebra of  D such that  F is 

isomorphic to F and  F'nR is the maximal order of  F. For a 

non-negative integer m, put

       /1(m) = ir1R PmR  • 

Then  il(m) is an r-order of D and the equivalence class with

respect to  (3.4.)  containing /1(m) is independent of the 

choice of  T. By considering the indeces as additive groups of 

 4(m) in a maximal order of  D which contains  /1(m), we see 

easily 4(m)  ;\--  4(m') if m  m'. Then we can prove the following.

     Proposition 3.30. Let F be the unramified extension with 

 IF:  kJ = 2 , a be an element of r with v(a) = r , and  /1(m) 

be as above.

(i) There exists  g e  GL2(F) such that  N-g.  = a, and  D(a) 

     is isomorphic to  112(k) or the division quaternion

     algebra over k according as r is even or odd. 

(ii) We have

 cT(a, r,  /1) = 1 ,  A  4(m),  0  ;  m  fr/2)

 0 , otherwise

     Proof. (i) If v(a)  = r is even, there exists  -6 e  FA 

 suchthat,,(d) = a , and we may take  d  as If r is 
           -1 

 odd', v(ap ) is even, hence there exists  d e  P's such that 

Tv,1   /1,( d)=ap1.Put K••= a) then Ng- = a  .                                                          T • —
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(ii) First we prove the following lemma.

     Lemma 3.31. The notation being as in  Prop.3.30 , let  uo 

be an element of  4 such that  4 = r +  ruo ,  -g- be as in the 

proof of  Prop.3.30,W, and  T be as in  3.12.

(i) If r is even, then the union

GL2(F) = Zg._(g) hmU
 m

is disjoint, where hm= (u , and m runs 

                                    o

through all non-negative integers. And we have

 ZT(g)()hmY2(6)hiTijv  7(4(m))

(ii) If r is odd, the union

GL2(F) =  U ZT(ehmU
m

                1 0 is disjoint, where hm =(0 pm+1) , and m runs
through all non-negative integers. And we have

 Z,(g)rih mY2WhITI-L  y(A(m)) 

 Proof. (i)  Since g  e  Fx,  Z,(g)  =,M2(k) . In this proof,

we denote by the equivalence relation in GL2(F) given by 

      g  ti g'   g'  e  Za--(7)gU

Then we see for an element  geGL2(F) there exist u  e  4K and 

a non-negative integer i such that g(10i). Put 
                           up
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                      1  0                                    ( 
u = a +  buo with a, b  E r . Thengi) , and we see                                     g""lou

oP 

               11 0\  10\ 1  0 g-,..(          pi) uo 1)if v(b)),-i , and g,,, ( uoj  Pi 

if v(b) <  i, where j = v(b) - i , hence the equality holds. 

Note that if h  ,-... h' , then  Zir.(g)nhM2(6-)h1--,--  Zo_(-0(-)h1M2(0)h'-i.

Hence to prove the union is disjoint it is enough to show that

A =  4-(g)rihmM2(0)11;1  (42(4(m)) . Let  fo(X)  =  X2-s0X+no be the 

minimal polynomial of  uo over k, and put 

              b )  
  1(a+bs

o) 
               I(ab)I 

                 a, bk,                                   6:=/
o a+bso)Ia, b  E .

Then F is isomorphic to F and F contains  0- as its

 a  b maxim
al ordpv_Pnr =E. 7 17111.-N        .- \

c d,=,  we see by an

explicit calculation,

g E /14._.3 a +  buo ,  -buo + d ,1--7E( -buo2  +  (d-a)uo  + c)  E  e,
 p

  a, b, d  E r , a +  bso - d ,  bno + c  E  pnr 

Hence we see  j =  pmM2(r) , and  /1  (-F(/1(m))  •

(ii) By the definition of ""g, we have

      20..(g) =( p:10  )  I  a, b  F 

For g  E  GI,2(F) we see that g  „(1 0.)or (u0) 

                                          j 

                 p°\PP

with u  E  Ox and positive integers i, j. Since
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  (T1ai-pi-1) (ui0.,)=(aUu- p-P                                   2i-1 i+j-1,\ 

 -Pu p pJ)0 pill ,) 

 'U 01 0 

 

,  we  see  k i j)^N--,                PCOj), hence the equality holds.   \Pp

To prove that the union is disjoint, it. is enough to show

 /1=  Z7-(g)r)hm1,12(0-)h;1  r^.^  q(A(m)) as above. By some calculation, 

                                       (,a 0\ 
we seeA=65T-+ prriv7(r)where5-=I        -2\O 'a/ I )

 hence  A.,-  q(A(m))  , and our assertion is proved.

     Now we prove the assertion (ii) of our proposition. First 

assume r is even. Then by (i) of the above lemma, for any 

element  g.c),(g), there exists a non-negative integer m such

that  g,  . Then again by  (i) of the above lemma, 

we see  TRoa, r,  /1)  4r  4) only if  /1 A(m) for some

                 1 0)  non-negative integer m.Since hlTal°1 =( -m                                                              ) '                          mp (TU-u )1 
 o  o 

we see

 -1 - 
hm g  nm  (r)   m  r/2  .

Our assertion for an even  integer r easily follows from this 

and the above  lemma. Next assume r  isodd. Then by (ii) of 

the above lemma, we see  VT,(-g, r,  /1)  4  (P, only if /1  "./ A(m)

for a non-negative integer m. Since

 0  PmAL1 
h(0 1 cr        ) h = ( -m   mPO m0  j , we  see 

                P

 -1- a-h 
g h E  (r) <  m  (r-1)/2  . m m
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Our assertion for an odd integer r easily follows from this 

and the above lemma.

     Next assume  j is an odd prime.  For a non-negative integer 

 m, put

 11(m) =  r +  pmM2(r)  . 

Then we see A(m) is an r-order and  /1(m)  AL(m.') if  m  m'. 

As noted before, we may assume  £r is even, hence r is even.

     Proposition 3.32. Let F be the unramified extension of 

k with  (F: k) =  E, where 2. Assume r is even. Let a

be an element of r with v(a) = 2r/2 and  /1(m) be as above.

(i) There exists  g  EGL2(F) such that  Ng = a , and D(a) 

     is isomorphic to M2(k).

(ii) We have 

 c,(a, r, A) = 1  ,  11  c-  A( 0)

Npim-(2-1)(Npa-1)_ 1) /  PGL2(r/(pr)m)  

,  r•/  /1(m),  1  “/2

           0 , otherwise 

Proof. The assertion (i) is obvious. And we may take

from  F. We  fix such  g in the following. Let S be the set 

of all elements x  e  Co-  Which satisfy the condition  x.  AE°x  mod4

                                                   ax+b
For  y = (L2(r) 

       c d)Gand x  E  S , put  Yx =                                                                   cx+d 

then we  Eee Tx is also contained in S, hence  GL2(0 acts on
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 S. For any non-negative integer m,  GL2(r/pmr) acts on 

 IS  mod.i} in a  similar way Then we can prove

Lemma  3.33. The notation being as above, then

   UGL2(F) =UU/Z,C0xh(x)II 
 m=0 x Emod.---i/G1,2(11Pmr)

                             -1 0 

is a disjoint union, where hm(x) = (x pm) .  And we have

 Zo..(Orlhm(x)M2Whm(x)-1  T(1(m)) 

 Proof. Since  -J  E  z,(g) =  M2(k). In this proof, we

denote by the  equivalence relation in GL2(F) given by 

    g g'  Zu_MgU  9  g°  • 

 0

Then for g GL2(F) , we see g                                x  pi)for some xES
and a  non-negative integer i, hence the equality holds. If

    1 O
.1 0    j '(pi) (pj) for any x, x'  E S . To prove

this, it is enough to show

A =  zg7)nhi(x)y2(&)hi(x)-1  cf(4(i))  .

 a  bFor g =  roz  Zo..(E) =  M2(k) , we see 

 ((.;  e  /1  ===).                            a+bx, -bx+d,  p-i(-bx2+(d-a)x+c)  e  0-

Since x  E  S, it follows b c a-d  == 0  mod.pir . Hence
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we see  A  l..  92(4.(i)). To prove the union is disjoint, it is enough

to show that for x,  x'e S

   (1 
x p0.)1 0)          1)(x, pi) (  x Yx'  mod.yi for YeGL2(r). 

(4-==) Since  GL2(r) is generated by the elements of the form 

 Co-  (8  ((;)) ,  (°,),                                  we may verify our assertion for such 

elements. This can be done by explicit calculation. 

         (

x p1  0,1 0) 
 (=)  Assumei) ^'(xl pi)for x,  xle  S . Then

there exists an element (ab)  e U such that                      cd 

 /1  0),ab\ ,1 0 \-1 - 1  i  ap-bx' 

 piAc  dAx'  pi)pcpi2i+,                                               kax-dx')pi-xxlb dp+bx 

                                                                                                                                                                             _

is contained in GL2(k). From this, we see b  E  p'r and

ad e 0)".. Put1:0= p-lb  a'= a -  b'x', d'= d +  b'x , and

c'=  cp +  (ax-dx') - b'xx', then a', b', c', d'  er . We see 

 x(a'+b'x') c'+d'x'  mod.y1 . Since  a'+b'x = a ,  a'+b'x  e  rx, 

and we see a'd'-b'c'  a?, ad  mod.pir . Hence if we put

  =  (d'  c'  10,  a,)  Y  e GL2(r)and xTx' mod.t and our 
assertion is proved. 

     Now we return to the proof of our proposition. We see

. 

 

1  IS mod.'yilI = 1 if i = 0 , and = Np21- (1-1)(Np0-1) - 1) 
if i 1 . For x e S and  Y =  1(31)  e GL2(r) ,  Tx  7E  x  mod.i
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if and  only if a—d  77-E b  Ea  c  ER 0  mod.pir . By these facts

and Lemma 3.33, we can prove our proposition in the same way as 

 Prop.  3.  30.

     3.15. Let F be a tamely ramified extension of k with 

 [F:  kJ =  Q. We assume r = 0. First we treat the case where 

 Q.4 2. For a non—negative integer m, we set

A(m) = ( f  1:

Then  A(m) is an  r—order of M2(k). If a  e  N(GL2(F)) and 

 cm(a, 0, A) 4 0 , then v(a) = 0 , and we assume r = 0  . Then

we can prove the  following.

     Proposition  3.34. Let F be a tamely ramified extension 

of k with  LT':  lc) = where  /  4 2 , a be an element of  r'(  , 

and  /1(m) be  as above.

(i) There exists  g  E  GL2(F) such that  NE = a if and 

    only if a  (-  NF/k(e) . If a  E-  NF/k(r) , we have 

        D(a) M2(k)

(ii)  Assume a  E  NF/k(P) . Then we have

 A) =  ,  A  A.(o)

 £(t-1)

 2 //1^J/1(1)

0 , otherwise
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Proof.  If there  exists  7 such that  Ng` = a, then

a2  E  NF/k(F)').  Since  [F:  kj = is odd, a e  NF/k(6''). The 

converse is obvious, and we may take  g from  (r. In the 

following, we assume  g  E  r, hence  Z,(-J)  = M2(k). If 

xgxe.c7(0)  =U  for xE-GL2(F), then x-1„7xeU. If we 

put  a„-=  x  x , then  a, determines a 1-cocycle  fad , 

of  Q. in U. And we see the correspondence  x-i-g-ck   >

gives a  bijective map

 ca-(g)nu  / 'T.1)   >  H1(0J,  U)

 For  a  pair (i,  j)  of integers such that 0 put

 i 0
10- xij0 J.j=74),and acr(i,j)=x.21,,i.x4.. Then az(i,  j) 

determines a 1-cocycle ar(i,  j),  Te  /g , of  01- in U. By 

the assumption that F is a  tamely ramified extension of k, we

see the set  f  j)} 1 0 gives a complete 
system of representatives of  H U). For such i, j we see

 Zzr(g)nxii1112(6)xi3' r  cf(A(0)) , if i =  j 

 Li(;1(1)) , if i < j

Our assertions easily follow from this. 

     Next we treat the case where  I = 2. As in the case where

 Lt 2, we  may assume v(a) = 0. For the quaternion  2  (k) and

a non-negative integer  m,  we  put

       (71(m) =rmr r
 - ' -



as 

we 

of 

as

in the case where  fk 2. For the division quaternion algebra 

denote by  /1(0) its maximal order. 

  Proposition  3.35. Let F be a tamely ramified extension

k with  (F: k) = 2, a be an element of  rx, and  /1(m) be

above.

 (i) There exists  E  GL2(F) such that  Ng = a. If a E  NF/k(e)

D(a) is isomorphic to  12(k), and if a  4-  NF/k(e), 

D(a) is isomorphic to the division quaternion algebra

over  k.

(ii) If a  E  NF/k(0'), we have

 c0-(a,  0, 4) =

If a  4NF/k(  (  ), we 

 cv.(a,  0,  /1) =

Proof. (i) If a = N1 

a and  z,(g) =  M2(k).

 NE  = a. We see

Z,Fga     )  =         (arb  a

 Z  (-g) is the division

2 ,  /1  /1(0) 

 1  , A  A(1) 

 0 , otherwise 

 ve 

1 ,  /•-•  A(0) 

 0 , otherwise

-
c) with  a  E  (5'1`, put 

f a  k  NF/k(  0  x)  , put

)  I  a,be-F

quaternion algebra over
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and

have

 NP/k(

 If

g

 =

k.

 Et

( °a

then

1) 
0  '



(ii) The assertion for the case where a E NF/K/-,(C)x) 

in the same way as  Prop.3.34. Assume a  NF/k(P), 

x  F  GL2(F), we see

 x-lgFx  (  ) =  U <   x  Er  z  ,(7g)x  u  .

Our assertion easily follows from this.

can be 

 then

 proved 

for
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  4. Explicit formula for tr  T  (T(0-0)

     4.1. We will lead the formula (2.12.1) of  Th.11 into a 

more explicit form. Let F be as in  § 1, i.e. a totally real 

 algebrgic number field which satisfies the following conditions;

(1) F is a cyclic extension of Q of prime degree 

(2) The class number of F is equal to one.

(3) The index  CE:  E+7 is equal to  2e,

,where E is the group of all units of F, and is its 

subgroup consisting of all totally positive elements of  E. Hence 

the conductor  q of F/Q is a prime. Moreover in the following

we assume

(4) F/Q is a  tPmely ramified extension

 , and the conductor q and the degree are prime to each other. 

We denote by  6- the maximal order of F, and let  Fv,  Fy, and 

04be as in  § 1, where we denote by v (resp.archimedean 

(resp.  non-archimedean ) places of F.

    For a prime p, put  F = F QP'P =Zpand= FpR . 

Then  F  (resp. ) is one of i), ii) and iii) of 3.5. 

Let  r be the generator of the  Galois group  4 of the extension 

 F/Q fixed in  § 1, then  cr can be extended to  FD (resp.  F,o )

as  Q  (resp. R)-linear automorphism of  F (resp. ). We

denote it also by  o-. In such a situation, we can apply the 

results of  § 3.

     Let  FA (resp.  QA) be the adele ring of F (resp. Q). 

Then  T can be extended to  FA, we denote it also by cr. Let
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 vq, be the subgroup  TTGL,(  02) x  JT  GL2(Fv) of GL2(FA) as in 

 §1, and  2% be the subgroup  T!  GL2(Zp) x GL2(R) of GL2(QA). 

 p For an integral ideal  at of F, let  2  (oz )A  A be the union of all 

 2/Z-double cosets in  T(07.-), where  T(07-) is the element of 

 R(7)z,F'  GL2(FA)) given in  1.3. In the following, we assume that

 OZ is prime to the conductor  q, and that CL is divided by at

most one prime factor of p if p decomposes in F. Then  2(ct.)A 

is of the form fl E(G1)
PxITGLo(Fv), where E(trOp is a union      p v' 

of GL2(t9-p)-double cosets,and we may assume'21.(oz.)
p is of the 

form `==,
p(r) for some non-negative integer r, where=7-P(r) 

               z__ 
                                          — 

is the union of GL2((
p)-double cosets7.-_,(r) defined in 3.'-. Put

 4=( -)= E_=,(0-t)AnGL2(F)  (reap. =E-,-(e-L)AnGL2(F)± ), then 

 r2-(-z-) (resp.  cr(trt.) ) is a union of  GL2(6')  (resp.  r)-double

cosets. Let g be an element of  GL2(F) +, and let  Z0-(g),  00-(g)
and )7.- L) be as in  3.1 and  3.4. Put

 7710-(g,  2(ret)+) =  x  GL2(F)  I  xig‘rx  e  '2-2070+1 . For a Z-order  j

of  Z--(g), let  C,.(g,  ,) and  r(g,  set),  /1) be as in 3.4 

and put

 g  511-4, A-)  = x  E  77Zo{  g  fi(n)  , A)  I  xlex  6  FL  (0-) ± 

Then  Co-(g)  =  A)  (resp.  ,(g)  n  (01)+ =  LA?C,(g,  /1)  .(01) 
 , where /1 runs through all the Z-order of Zo-(g). Here we note 

Cc-(g, /1)n 7-:-_(cL)  (reap. Co-(g, /On sciro+ )4)only if  /3. 
contains  Ng.  Hence  C,(g)  n  (  =  yc,_(g,  /1)  nz  (01) 

 (reap. Co.(g),,-1 -L'(EL)+ =  yco-(g,  /1)n  a-  )  , where A runs
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through all the Z-orders of  Zff-(g) which contains  Ng.

 4.2. Now  let's consider to classify  C,-(g, /on 2_-_--(0-0+ 

into  -equivalence classes.  Vie will reduce the computation of 

the equivalence classes  C,(g, A)  n / to the results

of  3.5  3.15. In the notation of  4.1, put

      E(0-)A) =  {x EGL2(FA)  I x-1g1rx  e  :E.:(n)A  .

For x GL,(FA), we denote by xlVi2(50-)x-1For x G-L,(FA), we denote by xlVi2(B-)x - the maximal order of 

                                             , M2(F) given by xlVI2(&)x-1= n))c1 , where is the

 3  -comp  on  en  t of x. If Ng  4- put 

 M0-(g,  (M)  A,  4) =  x  EGL2(FA)  I  x-le-x  E  F__-,(ITL)A,  Z,„-(g)nx.M2(6)x-1 
                  = ,

If Ng E Fx, put 

MT(  g, ,'"-7----(0/-)A, A)  =  x  E  GL2(FA)  I  x-lex  E  all  )A,  Z,(g)nxivi2(o-)x-,-/i 

 , where denotes the equivalence relation (3.4.5). Here we 

note the following. For a quaternion D over Q, we denote by 

 DA the adelization of D, then for a Z-order A of D the type

number 7 of A is by definition

 =  I Dx\ DAITN
P(4)x D„ol 

 p 

 , where  AD = Aq)zZrj  pc.° =  D  ®QR , and 

Np(Ap) = x  e (D Q Qp )  I X X  Ap  )  • If the type number
       -117-



is equal to one, a Z-order  /0 of D which satisfies Alp 4 

in  D =  D
13 for all  primes p also satisfies  A'  ,,A

in D. 

     Lemma  4.1_. Let the notation and the assumption be as above.

(1)       The equivalence classes  C,r(g,  A)  na(a0 /  ^- are in

one to one correspondence with the double cosets

Z,..(g)x \-171c,-(g,  Zjo-L)  +,  /1)  /r'.

(ii) Put =  {  x  1  1 det x = 1 . Then the canonical
map

 ztrce\iiLcgg,  -50„)+,  Zcr(e\  1170-(g,  a(0-),  /1)/GL2(&) 

is a  2/W :  /11 to 1 correspondence.

   (iii) If Ng  e-  Fx, we assume the type number of  A is equal 

to one. Then we have the following canonical bijection.

 za-(ex\ln,(g,  L(0-0,  A)/GL2(0-)  zo-(g)x\  A)PilLF

Proof. The assertion (i) is obvious. (ii) By the

assumption  LE:  E+) =  2-, the natural map from 

 Zo._(g)\  )770-(g,  E(00 +,  A.)/r to  Zo-(g)x\  //74-(g,  E(01),  ./1)/GL2(66) 

is  surjective. For x  a(at) +,  A), we have 

 Zo._(g)x  xGL2(6-)n  yrici(g,  a(CO  4,,  /1) N..(0)( xr7L-bv..(g)x xq_ 30-  . 
And we see  Zu_(g)xx  r =  Z.-(g)x  x(10  01)r if and only if there

exists a E  A such that det a is totally negative, i.e. det a =

hence if and only if  LA:  n1J = 2. By this, we obtain (ii). 

(iii) By the assumption on the class number of F, we have

 -118-
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 GL2(FA) =  GL2(F)VIT . We see  7,(g,  4)AnGL2(F)  mcgg, a 

for g with  Ng  4  Fx,  and by the assumption on the type number

of  /1 for g with  Ng  6  Fx, hence the map is surjective. For 

 xl, x2  Efiz{(g,  /1), if there exist Y  E GL2(F)  and u  E  VLF 

such that  Yxiu =  x2, then  u  E-GL2(F)nR, =  GL2(O-). Hence 

 4(g)xx1G-L2(8) =  Z7_(g)x  x2GL2(6") , and the map is  injective.

Hence our assertion is proved.

Corollary  4.2.

 10o-(g)(-)  E0714/P1=  (2/LA.:  A-])  I  Zo..(g)x\Yrtg-(g,  2(0)A,  /1)/24F 

Let  rik be the natural map from  Zo-(gf  \M (g,  E(n)A,  /1)/ 

to  Zir(g)Ax  17/0.(g,  a(0-0A, 4)  /27LF  , where  Ztr(g)A is the

adelization of  Zc,(g). Let K be a Q-algebra and /1 be its

                X K  Z-order. Put T7.-(A) = )I /1px K„,9, where/t= /1(DzZioand  PP 
 K,,=  K  QQR . We define the class number h(K,  A.) of  A as the 

number of the double cosets  K  1KA/21L(/1) , where  KA is the

adelization of K. We note that if K is a  quaternion algebra 

and /1 A' for Z-orders  n and  A: of K, then 

h(K, A) = h(K,  )  .

Lemma  4.3. Let the notation be as above. For a coset

  =  Z1._(g)Ax  WLF  E  Z0-(exAV/71(g,  a(Crt.)A,  A)/  241, , the number of
 /11-1(c) is independent of  a/ and is equal to  h(4(g) , /1) 

    Proof. By definition, we have  1171(30 =  1Z0-(g)` Zo..(g)xAx
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We  see

 zry-(g))'\27-(aAx  211„/  721-,  I =  I  z,(g)'(\z,(g)Ax  Tz_Fx  -1/x  AEx 

                        =  Zajgr  Zo-{e.p/Zo_(g)kAn  x  7Q.Fx-11  .

                                                                          

,•^• From this we obtain 11.;-1(x)=  h(Z0-(g),  /1)  .

Corollary  4.4.

 co-(g,  /1) n ai.(a)±//=-7-1 = (2/  r/1  :  )  izo-(4\  ir6(g,  A)/21FI 

                        x  h(z0-(g), A)  .

For a prime p, put

 TIT,(g,  L(01) p) =  x  6-GL2(Fp)  x-lgox6  a  (a)

Let A''..Pdenote the ZP'-order AZpof Z0-(g)P9 and put        CZZ 

 pr4(g,  2-(0-)p,  410) =  x  E-G-L(Fp)  I  x-lex  6  ̀(o  )10,  Zo-(g)pr)  XM2(0-10)X 
 .  A  P  i

Let r be the non-negative  integer such that  (Mp =  27:13(r)  , 

f be the characteristic polynomial of  Ng if  Ng  4 and a 

be the element  Ng of F if  Ng  e Fx.  Then 

 

I 7,„(g);\ inp-{ g,E(n)D,Ap)/Gt2(0-p) I is nothing  but  c,(f, r, /-1;1M 
or c,j_(a, r,V(4 ,)) in the notation of  §3, and is completely
determined. In particular, by  Prop.3.11, 3.16, 3.29, 3.30, 3.32, 

we have

 zo-(g)x
l,\N7-(8-,  '2(cOn9  /110  )/GL2(0P)1  = 1 

for almost all p. Since  E(e-1.)p  =  TT  (co_ x  GL2  (  7v), we see 
 P  v
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 Vq,(g,  2-Jr09 /1)  A  4  /71,-(g,  2(171)P  AP) for all p.

By this, we easily obtain the following.

Lemma 4.5. Let the notation be as above. Then the natural

map x  E GL2(FA)   (x,)e  TrGL2(Fp) induces a bijective 
                 r  p

map

 Z,r(g)\A\  FL(  )A,  A)/2rLF  T(Z,(g);\Tr4(g, A_p)/G1,2(&-p) 

 D

 , where we denote by  x the p-component of x considering

GL2(FA) as a subgroup of  TGL2(Fp)  xGL2(Fc.,)  .

Corollary  4.6. If Ng  FX, or  Ng E  Fx and the type

number of A is one, then we have

     A)n 1-=-.(a)±/p-", I = (2/  LA  43-) )  ITIzT(g);\in,(g,  2-(tri)p,  /1p)/GL2 

 p

x  h(Z,(F,),  /1)

4.3. The equivalence classes GI.2(F)/                                                       is determined

by Lemma  3.4 and  3.5. For elements g with g  Fx, we can 

reduce the condition (3.3.2) to a local one.  Namely we can prove 

the  following.

     Lemma 4.7. Let K be a comutative  Q-algebra of rank 2. 

Then for  x of we have

x e  Niw/K((h-DF)x)  <  x  E  I\Ty_F  /KRQ  ((lC®F

for all p.
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                                                                                                  . 
    We note the condition x E. NT,.)is always 

              .(:(Wx                                               N/h99R 

satisfied, since we assume F is totally real. If both  Pand 

 1(5)F are fields, this lemma is not other than  Has-se's norm theorem. 

In general cases, we can easily reduce this lemma to  Hasse's norm 

theorem for cyclic extensions, and we omit the  proof.

     Let a be an element of  FX such that a  e  N(GL2(F))()Qx. 

Then a determines a quaternion algebra over Q as in 3.12, 

and we denote it by D(a). Then for g with  Ng  e  Fx, we can

prove the following.

Lemma 4.8. Let the notation and the assumption be as above. 

(i) If  t 2, we have  N(GL2(F))()Fx =  NFn(Fx) . For

an  element a  e  NF/(F''), the quaternion algebra D(a) is 

isomorphic to  P2(Q).

     (ii) If  r = 2, we have  N(GI2(F))rAFK =  Qx. For a  E 

the quaternion D(a) is not ramified at the archimedian prime 

and is ramified at a prime p if and only if a  4 NF/Q(F;)  . 
                                           PP

 Proof. (i) By Remark  38, for g  6  q12(F) such that  .

 Ng  E  Fx', there exists x  F  F.x and h  e  Gi2(F) which satisfy 

g = . Then  Ng =F/Q(x) . Hence we obtain 

 N(GL2(F))/-1Fx =  NF/(Fx) . The second assertion is  7Lready  mc:ntioned 

                                          0 1, i
n-TIernrk      _3.8. (ii) For a  E Q,  put) a 0)                           =• Then  Ng  = a. 

 From this we obtain  H(GE2(F))nFx =  Qx. The  second assertion easily 

 follows from the  -proof of  Lemma  3 .7.

As to the Galois cohomology  gronp1(4,  E) of  F, we have
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the following.

Lemma  4.9. The notation being as above , then we have

IH1(o-1,  E)I =

     Proof. The group  El_ of totally positive units is a free 

abelian group of rank  2-1. From the exact sequence

1   >  E    E  E/  E+  >  1

 

, we obtain the following exact sequence

Ao,      H(a}, E/E+)  > H1(q, E+)  > H1ku,F, E)  > H1(0j.., E/E+) 

                                                             o By the assumption  LE: E+3 =  2E, we see easily H(q,  E/E+) = 1 

 and  1-11(q,  E/E+) = 1 . Since  q- acts on  Ei_ non-trivially, 

we  see  H1(9-,  E
+) a cyclic group of order  Q . Hence we

obtain our result.

 4.4. After these preparations, we give an explicit formula 

for tr  T  (TWO) . As remarked before, we may assume there exist 

non-negative integers  r
p such that T-_-_(o-L)A =  TTE.p(rp)  X  GL2(Fc.o), 

 p where '2=P(r
P) is the union of GL2(0-.p)-double cosets defined in 

- 3.5. Let  Cv,  Ce,  Ch,  Cp be as in  Th.1', i.e.  d- (i = v, e, h,

is a complete system of representatives of the set of elements of

type v, e, ha, p in the sense of 2 .3 in  `(o10+ with  respect 

to the equivalence relation  , .  We denote by  t
v,  te, th and 

 t the contribution of  6
v,  d'e,  O-1, and  a' to tr  Ts(TW)
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respectively.

   12_tv*Firstwe assume2.We see ev *(19only    21. 

if  r  LS even for all p, i.e. at is a square of a integral

ideal. This condition implies that  NOT- is a square, where

 Nat_ =  1010-1 . Assume  r is even for all p and put  Not a2

with a positive rational integer a. Then by the assumption on

F, a  e  NF/Q(F)') and by Lemma 4.8, there exists g  E  GL2(F)

such that  Hg  = a. Then by lemma 3.6 we see the set of elements

of type v in 2",(c0+ is  CT(g)r)2(07)+L)Ca*gW(0-)+ . It is 
easy to see that the  contribution of  Ccr(-g)n  E(C1-)+ to  tv 
is equal to that of  C(7_(g)c--7(01).4_ . Hence by Lemma  4.9, we have

    IC —1N-' v( H/z0--( g' )nr ) 

 v 

 =  

, 
      4-irkZ____  g,  ECcr(g)nE(01-)+/1=-: 

 _  c-1  E T ,v(vz,(g, )nri) •       4ri ./1,/,,g.'e Ca-(g,MnE(01-)+/F,

 For a Z-order /1 of  Z,(g), if  C„.(g,  /1)r)2 .,(0-10+  k  4, , then 
 337.04g,420(r

P),  A )  k 4, for all p. By  Prop.3.39, 3.30, 3.34, 

 if  mr(g,  2p(rp),  Ap)  *1) ,  q51(410).  z,  p1112(Z10) or 

 Z 

 P 
               for some non-negative  inter  er m, where  cf is a 

isomorphism from  D(a) =  m
2(QP) to ZP(g)PFrom this we see 

that the type number of 4 is one if  C7_(g,  A)/12(C0+  t  4) • 
Hence by Cor.4.6, we obtain
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               2 

t =-_  lz (F)x\171.0-(g,(r))/GL(e9) v4";LPPP2P           'Ya," L/1: /1) p

              x  h(Z7-(g),/1)  v(H/4) 

Let  /10 be a maximal order of  Zq--(g) which contains  /1. Then 

it is known that  h(Z,(g),  /10) = 1 and 

 h  (  Z,(  g) /1) =71/(140)(= (frixop :0/1x0                    :P 

We note  v(H/410) = v(H/SL2(Z)) and  L/Ix0  A10] = 2 For a 

prime p, we denote by /1P(m)and c(r ,p(a, rp, /1) the Zp-order 

/1(m) of  D(a)p and the number  cr_(a,  rp,  /1) given in 3.12

3.15 respectively. Then we obtain

 it-1 
 t  v  4id IT c(a, r10'A (mP) ) [Ap(OK  :Ap(mP)xj  ().)  m

P.,<rP/2 ptr'PP 

                        x  v(H/SL2(Z))  .

     Nextly we assume  Q  = 2. We see that  rp is even for all 

p which decomposes in F, if  6;  4 . Hence  NOL is a square, 
and put  Ntst= a2 with a positive rational integer a. Then by 

 Lemma  .4-8, there exists g  E GL2(F) such that  Ng = a. Let E 

denote a unit of F such that NF/QE =  -1 , then N(gE) = -a  ,

and D(a) and D(-a) are isomorphic to each other. We see the 

set of the elements of type v in  F...(01)+ is 

Co._(g)n•E(Ut.)+UC7-(gE)ni.--(01.)+  . The contribution of  C,(g)n-2(01)+ 

to  tv is equal to that of  Co_(gE)/(6-1_)± . Hence
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 ft-1 

t                        v(vz,(w)nr)     47L2 g  e cv_(+/T-4-

We denote by  n(a) the unit group with the reduced norm 1 of 

a maximal order of D(a). And we denote by  4(m) and 

cT
9P(a, rP" 4) the Z-order /1(m) of  D(a)and the number 

 cv_(a, rp,AO given in 3.123.15. Then in the  same way as

above, we obtain

 ^.-1 

tv41C . 2=  T 7Cr9p(c(a,rP, /1(mP)PP) L/1(0)x: /1(mPP))(j ) 
           0,�mP(rp/2] p 

 0  m,,< m(a)
 X  v(H/r(a)) 

 , where m(a) is 0 or 1 according as D(a) is a division 

algebra or not.

    4.6.  te. Let g be an element of  a(10-0 of type e 

and f(X) =  X2 - sX + n be the characteristic polynomial of 

Ng. Then we see n =  Nat and s2 - 4n < 0 . We denote by  SW)
 e

the set of all elements g of  GL2(F) such that Ng has the 

characteristic polynomial  f(X) =  X2 - sX +  n‘Z[X) with  n  =  Not 

and  s2 - 4n  < 0 . Then we have 

t=5-7dT(Ng)K-1 - c(Ng)k-11-                                         (det Ng) e geSWe/GMF)  Yl(Ng)  S(Ng)  2

 g,60,(g)n,,(0_)+//p  L(zcr(g,  )r)  r)E :  Ej 

 , where  5.(Ng) and  I(Ng) are the roots of the characteristic
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polynomial  f(X) of Ng. We  denote  Zu-(g'  )n  r  nE =  ±11
by EQ. Then we have

t = _ 1 7,q(Ng)K-1 - C(Ng)K--1(det Ng)1-ic 2 e 4,  g S(Ct)e/G,(F)-ONO C(Ng) 

                      2 

                  g'  6  Cer(g, A)n2:-.(01)+/r-,  {Z°-(g'  )n  r e  EQ1

  where  Al runs through all  Z-orders of  Za._(g) which contain 

Ng. By  Cor.  4.  6, we have

                                                     IC 
t= -7/(Ng)s(Ng) (det Ng)1-2 e  2 

g  ee               )/GF)(Ng)  C(Ng)

 h(ZKr(g),  A.)-r-rr 
 HZrr( g)x Mg(g, rPP)/GL2(0-p )  I  . 

 LA  :  EQ1  p 

Let f(X) =  X2  - sX + n be an element of  Z[X] such that 

n =  N  OL and  s2  - 4n < 0 . By Lemma  3.  5 and Lemma  4.  7 

there exists g  GL2(F) such that Ng has characteristic 

polynomial f(X) if and only if there exists an element  gp  F  GL2(Fp) 

such that  Ng has the characteristic  polynomial f(X) for all 

p. For a prime p. we denote by cp                                        ,(f, r,A.) the number 
 cr(f, r, A) defined in  3.5. Then if f(X) is the characteristic 

polynomial of Ng for g  6-  GL2(p), 

 ccr,p(f,  rp,  /1p) =  I  Ztr(exp\racr(g,  rp,  qg(Ap))/GL2((;) I  •
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Here we denote by  efg the natural isomorphism from 

 K(f)  =  QrX)/f(X)C0  Q to  Z_(g) given by  /-49 g(I) = Ng  , 

where  X is the class represented by X. For a Z-order /1 of 

K(f), if it holds  ctr ,p(f,  rp,  413)  4 0 for a prime p, there 

exists  gpEGL2(Fp) such that  Ngp has the characteristic 

polynomial f(X). Hence if c17910(f, rP' /L  )40 for all p, 

there exists g  E GL2(F) such that the characteristic polynomial

of Ng is f(X), and we have

  ocr,p(f, rp, /1p) = TT  lz,(g);\ino.(g, rp, Lig(,t))  GL2(6iD  )  I

For f(X), put

                                                 ±- 

(4.6.1) coe(f)— 5/17—s) n

 , where  3" and  q are the roots of f(X). Then we obtain,

     1hoc(f), 
     =5-,co(f)2 , TT c(f,  r

p' A)            f e   2j.T,P  A 1.4x: EQ] 

 , where f  runs through all the polynomials  X2 - sX + n in 

 ZIX) which satisfy n =  Not and  s2 - 4n < 0 , and  /1 runs 

through all the Z-orders of K(f) which contain  X.

    4,2 th'Let g be an element ofE7(nr_)of type  ha, 

and  f(X) =  YX2 -  sX + n be the characteristic polynomial of 

Ng. Then n =  No-c. and  s2 - 4n is a non-zero  square. Let 

f(X) be such a polynomial. For a prime p, we denote

by c
T,P(f,  rP,AP) the number c(r(f, rP,AP) defined in 3.5.
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Let  7/ and  5 be the roots of f, and put 

                           -1  1- 
(4.7.2) GOh(f) - , 

                                                                                                                                           •  

I  -  5  I 

Then in the same way as in the case of  te, we obtain 

 h(K(f),  /1)
   t = Ec4)(f )   

            phcToP(f, rp,Ap)                              L'AxE
Q 

 , where f runs through all the polynomial  X2  -  sX n in

 ZI,X] which have two distinct roots in Z and satisfy n =  Nat., 

and  /1  runs through all Z-order of K(f) which contains  5

             If C 4, we see  FL is a square of some  4.8.  tP

 2
integral  ideal. Assume  trt is a square, and put  Nctr a- with

a positive integer  a. Let  Xi,  1  i be the characters  mod.q 

which correspond to the extension F/Q, and  X, be the identity 

character. Since  EXi(a) , by Lemma 4.7 and the result 

of 3.12  rN., 3.15, we see there exists  g  E-GL2(F) such that

Ng =3a ,-) and fix such an element g in the following. Let 

 2, be an element of E with  NF/QE  = -1. If  CQ_(gt)r)E(M)+ 

for g'  E-GL2(F), then it holds  C,(g') =  ctr-(g) or  c,(gi) =  C,(Eg). 

And it is easy to see the contribution of  C„(g)i)::(00+ to 

 t
p is equal to that of  C„(gE)r)....4_ . Hence in the notation

of  Th.l', we have
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 t-   1lim5—, Im(gi)U,(g' p
s-W A g,Ecrr(g,A)R.:-_-.(c0+/----- 

           ra

4-7-Isgn(—A(g' ))
 X   

!mg,  )/1+gs  exPW2  is sgn(-A(g1))4--_-1)

 , where  /1 runs through all Z-orders of  Z,( g) which contain 

Ng. For a positive integer m, we denote by  /1(m) the Z-order 

of  K(f) given by 

(4.8.1)  /1(m) = Z +  m-1Z(X - a)  .

Then any Z-order of K(f) which contains  jt is  /1(m) for some

positive integer m. Put  at  Z =  (a'  2) with a  positive integer 

 a'  , and  ao = a/a' . Then by  Cor.  4.  6, Prop.  3.11,  3.16,  3.  20, 

3.28, we see  C,„(g,  crg(A(m))()S(0) .1_  *  cl) only if  ao divides 

m. For  /1(m), we see  AL  (  m)x =  /1(m)1 and h(K(f),  /1(m)) = 1

for any positive integer m. By the above propositions and 

 Cor.  4.  6, we have

 Ccr(g,  4f)g(/1(  ao  )  ))n  a-07o+  Tg(A(aot))),-)2(60+

for any positive integer t. Now we give a complete  system of

representatives of  C  -(  g,  c 
g(/1( aot) ) )r)2070+/.  Any class of 

 CT(g,  ye(11(a
0)))r):::(01.)+ contains an element of the  form 

 (g E  GL2(&) by the assumption on F. We note  ( a2)  =  42) =  01 
and  NF/Qa =  NF/QF  = a . For such a and  X , we define two

Z-submodules  Z(  a  ,  0-) and  B( a,  X) of  (c) by
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Z(a, (5") = ix 60 N((g (a; °a)

     B(a,  6") =  acrx  -  1XE-6-1 

Then  Z( a,  3") contains  B(a,  E), and  IZ( a,  )/B(  a,  F)I is 

finite.  Let g = (g and  g' =  •(gt  [1:, be two elements 
of Cu_(g)na(oi,)+ . Then it is easy to see that g g'  if 

and only if there exist  El,  E2E  E such that  €1  E2 is totally

positive and it  holds

 -1-la- -la- 
 a  =  El TEla' 1=  E2 E20 9  P El E2P° • B(a,  y) 

For  g°  (g  0,(g,  cre,(4,(aot)))n.::(0-0+ and  x  F  Z(a,  (C)  , 
we see N( (ca Tc)) =  Ng', hence (1(:)t (7) is also contained 

in  C__(g,  (fg(A(aot)  ))(-  :7:(t)-0+ . And for  El.,  E2  EE, we have

                                    -17,-  Z(  El1TEla, E210-E2g) =E1c2Z(a'  El 

-G- 
B( Ea'E2I62E) =E2B( a,  n

                                                       (a;04^  From this
, we see that there exist N elements gi = e                                                             0 

, 

 CQ(g,  cfg(A(ao)  )4-);:::(01_)+  ,  1  N  , for some N such that

 ai  pi+x 

                                            is a complete system of 1;i0 xEZ(ai,  FiVB(  ai, 0 ) 

representatives of  Cu_(g,  cf
g(/1(  ao)  )  )n:::(01-4 . For  gi, put
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       a  b  .aitpi-EX)( a tbi) 
 Ng. =,then for x E Z( ai') N  0  a0)=0 a/  '

Since  gi  F  c,(g,  cf
g(4(a0)))n2(0-)+

                     +1/0 bi) 
(Q + QNgi)nM2(6-) =  Z + aoZ0 0

and it holds

   tatb.\„0t 

   0aI00i 

                          b) 
     (Q +1))r-NM2(6) = z + (aot)--Lz( 

                                            a.  tpi+x 
Hence for x Z(ai,  SI), the element 01 ) is  ) is contained

in  CT(g,  cpg  (A(  aot  )  )  )()  2(  01)  . We show that 

                              a  . tp +x 

                                b-±is a complete system       xeZ(ai,.31)/B(ai,cri)01 

of representatives of  Co_(g,  y
g(/1(aot))  nacro  . Assume

  atp .+x   1 (a.tpi+x,) ( 
0 Si)ro ii/for x e Z(a.S-.)                                               a.'a.and 

 x'  e Z( ai'g.). Then there exist E1, E2  e E such that  E1E2  G  E
+ 

 ---

,  ai=E11QEiai ,S-± = E210-E2Fj , and  tpi + x —  E11crE2(tpj +  x,  ) 

 G  B(ai,  (5.1)  . Hence  t( pi -  E117-E20j) is contained in  Z(a1,  (y. 
                                                             Now pi - Ea1crE2pi is an element of 6, hence  P

i -  El0-E2Pj 

is also contained in  Z( ai,  c.7-i). Put  x"  =  Pi - Ei1(i2Pi , 

    (   thenaipi-x"\(aipj\ ,                                  and i = j by the assumption 
      0cri) 1-7  0  ,Ti )
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                (ai13i). on the choice ofIf i = j , then it follows from 
              o Si/ 

              at13.+x a tp.+xt the assumption(i1 ).-.../i 3.)that  x  -  xi          05-i ) r ko Fi i 
                      a,p.1+x(ai13i+x1) is contained in B( a8-.)i.e.('.             i'1' 0 Si )'170  Si/ 

In notice of the fact that  I  Cc,-(g,  epg(4(ao)  )  )r)  2:-(00  4_ / if.-,---_,- I 

 =  icr(g,  T
e(A.(aot)))na(0-0± /p,-_ 1 , we obtain our assertion. 

                                       a
'                             ,1 ) ) = A. ( g. ) 1 m(11tp_+x s r a,tt3_.+x, I By  definition, we have A.( () 

                    0cr.                       3. 3 1 ,  0  (5".                                                                               i 

                   a, pi+x = Im(gi) I , A(('  0Si) )= t A(gi)  . Since  I  m(gi)  I = I  bi/ao  I 
                                       ' and  A( gi) =  bi/a  ,  im(gi)/A(gi)1=  a/ao . Hence we obtain 

  1—1 s( -A( g_i)) -p=274—1 im37Z ( ai'cr.)/B ( ai'F.) (9 1+  tsr--gn                                                                            ps-           _.a  s-,0 li_<1\To Im(g01

                                                     ;?,  1  
  x  Al( gi)s  ..; (Al(g1)...21.1(g1))exp(7r/2  is sgn( -A( gi) )47-1)1, +14-fle 

                                                                  t=1 

                                                             'Si—p. It is easy to see that we may take gt= 11) 
                1in place                                              0 Fi 

of  gi, and that  I  m(gi)  I =  I  m(  )  I ,  (gi) =  ( , and 

 A( gi) =  -A( ) . Hence we have
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   1/a111-isT=Isgri(A(gi))  
   lim,  tp " 

 Z(ai, 51)/E(ail  51) a) 1s 
            s,40=A'                                     Im(gin 

           ' 

           1“0-

 x  k(gi)s u1(gi)...4.1(gi))siexp(K/2/s sgnA(gi)FI) 

                         1  

 -  exp(7V2is sgn(-A(g.1))4-1)1   tl+fs 
  t=1

      1 a 

   =  

    - 41 a  lz(ai, .Y/B(ai, (5-i)1  • 

 o By  definition, we have  I:  IZ(ai,  oy/B(ai,  Yi)I 

= T
g(A(an)))(12001. /?,11 . The characteristic polynomial 

of Ng is f(X) = (X -  a)2  , hence by  Cor.4.6, we obtain

1 a
 t  = - c(f, r,/1(a))            2i 

ao pT,PP                                           op 

 , where f = (X - a)2

4.9. Thus we obtain the following theorem. 

Theorem 2. Let F and  I2 be as in 4.1. For a prime p,

let  Lp(r),  4(m),  cT
,p(f, r, A) and  cT,p(a, r, A) be  if(r), 

 /1(m),  cT(f, r,  A) and  cT(a, r,  ,) in  § 3 for  Qp and  Fp

respectively. Let r be the non-negative integers such that

 a(01)A = IT,yrp)  x GL2(pw) . Ifis even and4 , the 

         A trace tr  Ts(T0-0) is given by the following formula.
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(4.9.1) tr  Ts(T(71)) = tv +  te + th +  tp 

 , where  tv'  te'  th and  t are given as follows.

(1) If  Nal is not a square, 

 tv  =  0  .

If  Nc1 is a square, put  Not= a2 , and let D(a) be

as in  4.3, then

tv= 47ri                          I;"PT(c._(a,  rp,Ap(mp)) [11,(0)x :A (mP)x.J ))      O rtiP;CrP/2], P*cl.P
 (DEri  Wa)

x  v(H/r(a))

Here r(a) is the group of all units of a maximal order of D(a) 

with the reduced norm 1, and  m(a) is 0 or 1 according as 

D(a) is ramified at the prime q or  not.

    (2)  te. We have 

      1h(K(f),  A) 
te =- _,( f)2 , c,p(f,  rp, Ap) 

 A: EQ3 p' 

Here f runs through all the  polynomial• X2 - sX + n in  ZLX] 

such that n = Not and  s2 - 4n < 0 . For f, K(f) = QLXJ/(f(X))

 and  We(f) is given by (4.6.1).  A. runs through all Z-orders 

of K(f) which contain the element  a- of K(f) represented by 

X. For a prime p,  /l =  /1(?)zZp , and  h(K(f), /1) is the class

number of  /1 defined in 4.2.
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(3)  th. Let K(f),  N, and h(K(f),  A) be as in (2).
Then

            1r,____,h(K(f),A),-+ 
   t=- —te)(f)2 _, Hc(f, r A  ) .     h-t

fLihAtAx. :  EQ]  p(r'PP'  lo 

Here f runs through all the polynomial X2 - sX  + n in  ZfX]

such that n =  Not and f(X) has distinct two roots in Q, 

and A runs all the Z-orders of  Zor(g) which contains X. 

 oah(f) is given by  (4.7.2).

(4) If  ot is not a square, 

t  =  0  .

If  at is a square, put  Not= a2                                      with a positive

integer a. Then we have 

           1

 t p  a  Tic,,p(f, rp,  /vamp) 

 , where f(X) =  (X - a)2, and  a is a positive integer such 

that  0-tr)Z =  (a2) .  AL(a/N) is the Z-order of K(f) given by 

(4.8.1) for m =  a/d and  AL(  a/d) =  il(a/d)ZZp

     4.10. We will rewrite the formula (4.9.1) in Th.2 for 

later use with some remarks.

(1)  tv. Assume Not is a square, and put  Not= a2

with a positive integer a. First assume  4 2. Let a be an

element of Z . For a prime p q and a non-negative integer

r, put
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and

 C 
 cr9P

 ( a, r) =

for p = q  ,

co-
,(a,  q

put

0)

We note  for p  

(  4.  10.  1) 

And for p = q 

 ( 4.10.  2) 

 , where  ofi, is 

Using c cr,p( a ,

 tv  =             47r 

 , and c(a,            Q-91)
decomposes in 

 ( 4.10.  3) 

If p remains

 A  (m) a, r
 0-tP

 ra0

0

1 -- 2
_ c(a, 0ci(m)) 

m)0

0

a-9P(a, r)
 =  c  (au, r)

 0-'13

 14p(0)X  Ap(m))<]

 

,  a  EN(GL2(Fp))

 , otherwise

 {4,1(0)x  4ci(r11)x

 

9  a  EN(GL2(Fq))

 , otherwise

for any u E Zx

cr,(1(a, 0) =  c (au, 0) for any u(-N(04)

the prime factor of q in F.

 r), we can write  tv in the following form

 IT cT,P(a, rP) v(H/SL2(Z)) 

 r  ) is given explicitly as follows. If p

F, by Prop.3.29 we have

7-/P(a, r)  =  1  .

prime in F, taking notice of the fact that 
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 p  (  :  AT  (  M)K =  I  F  GL  2  (  Z/PMZ  )  I , we see by  Prop.  3.32, 

 ( 4.10.4)  c (a, r) = 1 +p.fm-0-1) (E-1)                                    (p - 1) 
 ]41“r/2

For p = q , since  0.(0)x :  4(1 = q + 1 , by  Prop.  3.34 we 

have

(4.10.5) c (a, 0)=1+                              (i -1 ) (q.+1)  

                                                                                                                    •

c-, q"2

Next assume  e. = 2. Let a be an element of ZP.For a prime

p  t q and a non-negative integer r, put

./1,7c7- '1D(a, r,(in)) tAp(o)A :  Ap(m)x]
 c

cr,p(a, r) 
                             if  a  E.  N(G-L2(Fp)  ) and r is even.

          r, A
p(m)) Olp(0)x/1p(m)X) (p - )

if a  EN(GL2(Fp)) and r is odd.

0 otherwise

For p =  q, we see  27_,,Xi(a) = 0 if and only if D(a) is a

division algebra, and put

   V' 
 2 / c(1-'4(a, 0,  A (m))1(0)x : 4(mnc7_,q(a,  0)  =1                          if  a  E  N(GL2(Fq)) and  Z/1.'1(  a)  t 0  .

 1 
  c(a, 0,(0))(q - 1) 

2c, q 

             if  a  N(  GL2(F
q)) and  2",  .  (a)  = 0  .

0 otherwise 
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We note c  (a, 0) and c (a, 0) also satisfies the relation 
 0-9P  cr-,q

(4.10.1) and (4.10.2). If the  discriminant of D(a) is

(p1  pn)2 with distinct primes  pi, then 

v(H/r(a)) =  Ti(pi - 1) v(H/SL2(Z)). Hence we see

 t v-cQ.910(arP) v(H/SL2(Z)) 

 , and c,p(a,rp) is given explicitly as follows. If p           o-

decomposes in F, by  Prop.3.29, we have

 (4.10,6) ca-7P(a, rp) = 1  .

 If p remains prime in F, we see that for a positive integer

m  14(0)x  c  A(m)x] =  p2m-1(p  - 1) (resp. =  p2m) if  rp is even 

 (resp, if  rp is odd). Hence by  Prop.3,30, we have 

                     1 +  p2m-1(p 1) if r is even 

 (4.10.7)  cc„,p(a,  rp) = 

                     (p - 1)  2'  2m if r is odd                    if r is odd 
 NlaWrp/2)

For p = q, let  x2 be the non-trivial character  mod.q corresponding

to F, then by Prop.3.35, we see

(4.10.8) c(a, 0)  = X2(a)(1 +Xo())     0-,(12'

    (2)  te. Let f(X) = X2 - sX + n be a polynomial in 

 Z(X) such that n =  Nrt and  s2 - 4n < 0 , and4
0be the 

maximal order of K(f). Put h(K(f)) = h(K(f), , then for



Z-order A. of  K(f),

                     h(K(f))  
(4.10.9) h(K(f), =TrLA:A I                         ' A3

p°P P 

Let  1(X)  =  X2 -  EX +  R be a polynomial in  Z  (X), and for a 

non-negative integer m, let  ,Ap(m) be the  Zp-order  AK(m) 

given by  (3.9.2) and  (3.9.3) for K =  K(f) 0QQP. For a

 Prime p  *  q and a non-negative integer r, put

 co. ,p(1, r) =    c0_,p(T, r,  Ap(m))[4p(0)x  :Ap(m)x]

and for p = q, put 

 1  „

    c ~,q(f, r) =  21c_(?. r. A(m))fA (0)x :(mj     Lmg)q' 4 

For u  4-Z)p , put  fu(X) =  uq(uX) . Then we see for p qThen we see for p q

 ( 4.10.10) r) = r) for any u Ezx

and for p = q

(4.10.11)  c~ ~~(f, r) =  cT,q(Tu, r)  for any  uEN(ü-0) 

By the  definition of  c  (Y, r), we have 
 07P

t--7(-0h(K(f))Trc(f,r  ) 

             t 
e2e'r/

x0 :,xp3,p'pE 3

, where f runs through the same set as in (2) of Th.2 and
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 cc.(f) is given by (4.6.1). The number  c  (f,  r  ) can be 

given in more explicit form by using the result of  §3, but we 

note here only the following as to c
0-'11(f, 0). We denote by 

the symbol given as  follows.  Iet K be aP-algebra of type a),

 b), or c) in Remark 3.2, and  A its  Z  -order. If  A is

the  maximal  order, we set

      =  1,  -1, 0, 
 p /

according as K is of type a), b), or c).  If  /1 is not the 

maximal order, put

            =  1 

Let  eT be the integer such that  Z  131=  A  (S") , then by

 Frop.3.25,  3.26,  3.27,

                            1141(m)1 

                                                       4 

 (4.10.12) c(f, 0) =(I + q )  Xi(a)+xi(P)T,c10:311.3"2 i#12
x  [4g(ox :  Aq(n))(3  ,

where a and  p are the roots of the  equation  f(X) EE 0  mod.q  .

(3)  th. Let f(X) =  X2 - sX +  n.be a polynomial in

 Z[X] such that n =  Not and f(X) has distinct two roots in 

Q, and  /10 be the maximal order of K(f). Put h(K(f)) = h(K(f),  4.)). 

For a non-negative integer m, let  A.  (m) be the  Z  -order  AK(m)

in 3.9 for K =  K(f)O4010 as in (2). Let  cT
,p(f, r) be as
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in (2).  Since h(r(f),  Ac) = 1  ,  and it holds the relation

(4.10.3) also in this case, we have  as in the same way as above.

           (4)11(f)  t
h=-TTc (f, r ) 
        fEpcr-'/3                 o

 , where f runs through the same  set as in (3) of Th.2, and 

 (.01
1(f) is given by (4.7.1). For p = q , we note the following. 

 7 Ai(a) Ai(P)) 7> 
(4.10.13) c.5",q(f, 0) = 1 +   ,EA(0)x: 

 

^  itl 2 / q 

 , where  (5- is the integer such that  Z41X1  =  Aci.(61 , and a

and  p are the roots of the equation f(X) 777.E 0 mod.q .

                                                               9 

(4)  t , Assume a is a square and put  NOT= a-,and

 f(X) = (X  - a)2 . By  Prop.3.11, 3.20, 

       a H cG,1p(f, 0,AL(a/d))  = a

By Prop.3.28 we obtain

 1 1 2 
t p = - 2 (1 + Y1 //`i(a)) a = - -2- a 

 i41

 , since  •.i(a) = 1 for all i,  .

Thus we obtain the following. 

Theorem 2'. Let the notation and the  assumption be as in

Th.2 and let c
T,P(a, r), c0-02(f, r) be  as above. The trace 

tr  Ts(T(r0) is given by
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 tr  T  (T(c))  = t
v + to + th + tp 

 , where  tv'  te  ' th and tp are given as follows.

(1)  tv. If  N  Or is not a square,  tv = 0 . If  N  irc is  

a square,  putNa- =                         -  with a  positiveinteger a,  then we 

have 

 k  -1

 tv =   47,  Ti c
„p(a,  rp)  v(H/SL2(Z))  Pu 

(2) te. Let cu„(f) be as in ( 2) of Th. 2. /1     ( 2) te. Let cu„(f) be as in ( 2) of Th. 2. /1o be the 

maximal order of K(f), and h(K(f)) be its class number. Then

we have 

         \--,h( 
 to=---72 _,cv (f)   
 f T,n) 

                                               P 

                           1/10)<K(f)) :  EQ] pc-'(f, r-

 , where f runs through the same set as in  ( 2) of  Th.  2. 

    (3)  th. Let  Loh(  f  ) be as in  ( 3) of  Th.2 and  /10

be as in  (  2). Then we have 

 Wh(f) 
   th = - ccf,  r  )        fEcp PP

 , where f runs the same set as in (3) of  Th.  2. 

 ( 4)  t  . If at is not a square, t = 0 .at is not a square, tp = 0 . If  crt is a 

 9 . .
 square, put  Mr(  =  a  with a positive integer a. Then we have 

      t
p2= -—a 

 •
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 5.  Main result

     5.1. In this section, we shall prove our main result Th.3 

using the result of  §3 and  ,§4. We use the same  notation as in  §1 

and  §4. In particular F is a totally real algebraic number 

field which satisfies the condition (1), (2), (3) and (4) of 

4.1. Let  R(211F' GL2(FA)) be the Hecke ring with respect to 

GL2(FA) and  2111, as in  §1, and  R°07(1,, GL2(FA)) be its 

subring generated by the double cosets  Vlya  247 with a  6GL2(FA) 

such that a°I-6GL2&'°i-                    ()where ais the op-component of a,                                °I-

and  o is the prime factor of the conductor q. Let

 R(S1Q, GL2(QA)) be the Hecke ring with respect to GL2(QA) and 

 21,, where  WL, = x GL2(R) . We denote as above by 
 P  ` 

 o, R(N, GL2(QA)) the subring of  R(2I(41, GL2(QA)) generated by 

the double cosets  2J  Qa  2y4 with a  E  GL2(QA) such that  a
q  F  GL2(Z(i) 

 , where  a is the q-component of a. Now let's define a 
homomorphism  A from  R(2/Ly, GL2(FA)) to  R(2,1Q, GL2(QA)) in 

the following way. For a prime iedal of F, let  T(  'm) be 

as in  1.3, and let  T(3,,  V denote the double coset  7,10  2't, 

such that a e GL2(e) for prime ideals 4v and 

a=(71 0)      ‘0 xi , where  7E is a prime element of  0  . For a prime 

   we denote by  T(p/M) the sum of all 2/QaVIQsuch that the 

rightM2(Z)-ideal  na ,m2(zp) is integraland of the norm pticia, 

 P and by  T(V,  p') the double coset  7Ir_Qa  7AQ such that  ap€  GL2(Zp)
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for p p' and a
13'=0P°') for p =  p:

 U(m-) for an integral ideal  tn. For a prime 

 L117, we put 

                    ,  2T(0-)

 U(m) 

 TO,m)  114T(y,  )T('3.m-2)

and for a integral ideal  az,  we put 

                                              e.

 U(00 =  U(Jil) 

 0.

 , where CT =  Tr  . For a positive integer

element  U(a) of  R(71Q'  GL2(QA)) as  above,

put 

                            (  2T(l)

U(pm) =            T(
p) 

            T(pm)  PT(P, p)T(pm-2)

and for a positive integer a, put

U(a) = IT  u(p7` )

 , where a = 1314 . Then we see U( 3M) (resp.

the following relation.

We define

ideal  y

a, we 

 Namely

 

9  M  

9  M 

 M

m 

m 

m

an element 

following

 =  0 

 =  1 

 2

 define

 for a 

=  0 

 =  1 

  2

u(pm))

an 

prime p,

 satisfies



(5.1.1) u(f)u(f-) = u(ym+n) +  (NJIT(s,  0)nu(sm-n)

 (resp. U(Pm)17(10n) = U(131114-11) +  (PT(P, P))nU(Pm-n)  )

for  m  n  1  .

If we put  A(T4,  V) =  T(Ni,  14) and  A(ET(e1))  =  U(Nf) 

for a prime ideal of F, then we see that 2 can be extended 

uniquely to a ring homomorphism from  R(2,t,  GL2(FA)) to 

R(VtQ'GL2(QA)) and then 2(0(22F'GL2(FA)))CIR°(T/Q'GL2(0A)) .

 5.2. In  § 1 we defined a representation Ts of  R(TLF,  GL,(FA)) 

in the space  S$  (f We will consider the other spaces of 

cusp forms of one variable and the representations of 

 o, RGL2(FA)) in those spaces.

     We consider the spaces of cusp forms  SK(SL2(Z)) and 

 SK(ro(q),  i  � 2, given as follows. We denote by  Sic(SL2(Z)) 

the space of all holomorphic functions on H which satisfies the 

followings;(i)f(gz)  =  (cz+d)f(z) for all g =  SL2(Z) 

(ii) f(z) vanishes at all cusps of  SL2(Z). Put

 ro(q)  =  pESL2(Z)  I c  mod.qj and denote  by

 stc(F
0(q),  Xi) for  i  2 the space of all holomorphic functions 

on H which satisfies (i) f(gz) =  X(a)(cz+ef(z) for all

g = ('c d)e  170(q) and (ii) f(z) vanishes at all cusps

of  Fo(q).  Put  GL2(Q)+ = g  GL2(Q)  I det  g 0
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and for a function f(z) on H and g = (ac bd)  GL2(Q)4. , put

                f(z) 
(det g)K/2    fIIg]  =  • 

 (cz+d) 

The Hecke ring  R(  YCQ,  GL2(QA)) acts on Sk(SL2(Z)) in the 

following way. For a double coset  m_Qa  TIQ with a  GL2(  QA),
 d

let  Re  yiQ  n  GI2(  Q),_ =  U  avr be a disjoint  union. For 
                                        .-1

 f  E  SK(SL2(Z)), put

 T1Qa22)f  =  f)  (04v1) 
 V=1 

Then by linearlity T1 can be extended to a homomorphism from 

 R(2)LQ, GL2(QA)) to the ring of endomorphisms of  Str(SL2(Z)). 

To define an action of  Ro(T-L,Q, GL2(QA)) on  Sk,(ro(q),  Xi), we 

 putQ  if GL(Z)Ax GL(R),whereA=qq 
                                 ZZ                              x 

       2' p q2 q qZZ  Pt  q  
q  q 

and we consider the Hecke ring  R(271,Q,  GL2(QA)). If we denote 

by Ro--GL2(QA)) the subring of  R(27-tQ'  GL2(QA)  ) generated 

by the double cosets  7[Qa  N such that  a  GI  E  /1,"1 , then 
 R°(  tit,  Q' GL2(QA)) and R°(Q'GL2(QA))are isomorphic to each 

other by the correspondence "IR Qa 7-7/Q  TIQ  a  vzQ  . Assume

VtQavtQcorresponds toQa,and letiTt_QaFtQn2(Q) 

                                                                               +

 d
=  U  avr7o(q) be a disjoint union. For f  6  SO  no(  q),  2, 

 v=1
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put

                                   1     Ti(TtQai( IJ 
                                1)=1 

             a.  b 

 , where  a = c„)' Then by linearlity Ti can be extended 

        ^ to a homomorphism from  R°( Q,  GL2(QA)) to the ring of endo-

morphisms of  Sit(ro(q), Hence connecting  Ti with A, we 

obtain representations of  0(  S2F,  GIo(FA)) in the spaces 

 SK(SI2(Z)) and  S;t0-0(q),  >I). It is known  T1(e) for 

 e  TEQ,  GI2(Fi)) (resp.  T1(e),  2, for e  R°  (  71t.Q'  GI,2(FA))  ) 

is a normal operator in the space  SK(SL2(Z)) (resp.  Stt.(ro(q),  ;ei)  

,  2), and  Sk(SL7(Z)) (resp.  SK((=,(q),  Z1),  i  2) has a 

basis consisting of common eigen-functions for  oil  Ti(e), 

e ER( aQ' GL2(A) ) (resp. T (e),  i)  2, e E R°( 27-, GI2(QA)) ). 

 5.  3. In  5.  3 and  5.4, we will give formulas for tr  Ts  (U(tm)  ) 

and tr  Ti(A(U(x)  )  ). For a prime ideal  3  t  9.,  , 

 Ts(U(i))  =  Ts(li(7 )) and  TiP(Uq))) =  TiCA(U('))) for i 

 , 1  i  f , hence it is enough to calculate tr  Ts(U(x)) and 

tr  Ti(2(u67-0  )) for integral ideals  at  ouch that  crL is  prime to

 07- and is devided by at most one prime factor of p in F 

for any prime p q. In the following we assume  iq satisfies 

the above condition and let r be the integers such that

27-(c0A =  TrE(r .0)  x  GL2(Fm)  .  For a prime ideal  y, tr  T1(2(U(e1))) 

 P
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is already given in  1113.

To deduce tr  T  (U(0-0) from the formula in  Th.2', first

we prove the following Lemma 5.1. For a polynomial

 f(X) =  X2 - sX + n in  ZOO and a positive integer N, we denote 

 fN(X) the polynomial  N2f(NX). For a prime p, we call f 

primitive at p if  f is not contained in  ZIX).

Lemma 5.1. Let the notation be as above and as in  §4

and for a non-negative integer  r c (a, r) and                                                 T
9P 

T9P(f, r) be as in  4.10. For a prime p different from  q,

let  -a denote a prime factor of p in  F. 

     (i) Assume Ncl-t- is a square, and put Net= 

 9

     (i) Assume Ncl-t- is a square, and put Net=  a- with a 

positive integer a.

       (a) For p  r q with  1, we have 

 c
T,p(a, rp) cT,p(N1a,  rp-2) 

 /1p , rpis even  -(1 p) , r
p is odd

               1  , where we set c0-,P(Na,rP-2) = 0 if r1-2 <0, or NTa 4Z 

(b) For p  q with  rp = 0 , we have

             c
cr-,P(a, 0) = 1

(c) For p =  q , we have

               1 +  q+1  ;:j _(a) ,  1  * 2 

   c(a, 0)  =         a-,q  2  i*2

 k2(a)  ( 1 +q+12  2'2(a)) = 2
   -149-
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    (ii) Let f(K) = -  rX +  n be  e  polynomial in  Z[X] 

 such that n =  N and  c -  4n  V  0  .

(a) For p  t q with  rp  1 ,  we have 

 (  1  , if  K(f)C  Qp  Qp(t)  913
                                           and  f is primitive at p. c

tr,p(f, rp) -cu_,p(flw rp-2) = 

                                   1 - (K(f )/Qt, otherwise ,

where we set cT/P(frP-2) = 0 if r-2  < 0 or f-4ZpIX], 

and r(f)/1 =  1, -1,  0, according asK(f)p = K(f)q)Qp is
of type  a),  b), or c) in Remark  3.2.

(b) For p q with  rp =  0, we have 

       (f, 0) =            [, , 

     c 

  T,p)/oz[AI°

where  Ao is the maximal order of  K(f) and  /1 runs  through

all Z -orders of K(f)which containX.                           -P

(c) For p = q, let  40  be the maximal order of  K(f)ci,

and a,  p be the two roots of the equation  f(X)E-7 0 mod.q  .

Then we have, 

        E(f))/1:)ZCit1 2 )/X1(1 +(a- 4-71)(5-: i(a)+Zi(p)\)x1-40: /1x c(f, 0)= 0-
90i-

     q

where  11 runs through all  Z  -orders of  K(f)
qwhich  contain I.

 Proof. (i) The assertion (c) is nothing but the formula

(4.10.12). The assertion (b) easily follows from Prop.3.29, 

 3.30. We prove  (a).  The'case where  r =  1 can take place
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only for  i= 2. For  i= 2 and  r
p = 1 , by (4.10.7) we have

     cr
,10(a,1) =  -(1-p). 

Assume  r2 . If p decomposes in F, by  (4.10.3) 

    ^ [a,        r) =(Ni-1a, r  -2)=1 

 , hence we have

 c
cr,p(a, rp) - Npv.,p(N*a,  rp-2) =1p  .

If p remains prime in F, by (4.10.7) we have 

                     1 +>.pim-(i-1)(2-1)                                 (P - 1) , r even 
 1,42  P 

    C (a,r ) =    T,PP 
 (P-1)5-,im           p , r odd 

                     OmQV23

                    1 + Ep/m-(/-1)  (p(9-1) -  1) , r even           ç
1.114(ri,-2)/2  p 

c7,P(Nfla,rP-2) =  ) 
 (P-1)  E  Pim , r odd 

           0m[(1-2)i2)P

Hence we have

 

(  1  -  p ,  r  even 
 c  (a,  r) -  c(r,p(I\4a,  rp-2) =  f  -(1-p) ,  r odd

Thus  (i) is  proved. (ii) The assertion (c) easily 

follows from (4.10.12) and (4.10.13), and the assertion (b) 

follows from  Prop.3.11, 3.16. We prove the assertion (a).
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Let  cri and  5'2  be the non-negative integers defined in 3.9 

for k =  Qp ,  that is to say,  Ji is the maximal integer such 

 , that p X is integral, and  S-2 is the integer such that 

     -5"-, 
Z

p1p'Xj = , where  4p(0) is the maximal order of  K(f) 

and  A  (m) =  Z +  pm410(0) for a non-negative integer m. The 

polynomial  f(X) is primitive at p if and only if  31 = 0 , 

and Z
p1XJ =p(S-1+cr-2) . We note that if f(X) is primitive at 

p, then  Si =  (51 = 0 . For if f(X) is primitive at p, then 

we see KMPQp6)Q, or  Y(f)is a  ramified extension of  Qp          -- 

and  v  (n)  = 1. In the former case,  Z  (X) =  Ap(0), and in the latter

case, X is a prime element in  K(f)p, hence  ZpfX) is equal to

the maximal order  A  (0) also in this case. And we have proved

 1=-2= 0 . This shows that our assertion holds if f(X) is 

primitive, since  f114zp[X] and c44-,P(f, r,410(0)) = 1 . Hence

in the following, we assume f(X) is not primitive. We will 

prove our assertion according to the type of  F  . First assume 

 F is the direct product of i-copies of Q
p,then  Ny= p 

and since f(X) is not primitive,  f  (X)  E  Z  {X). By  Prop.3.11,

we have

 c(f, r  ) =  11(0)x :A (m)x] 
 a", P  P  0  .‘11-1“i  +r

a  P

and

c  (fr—2) = >,(0)'`: /Ip(m)`j , r2 
 P 0  ̂ in<(cr,-1)+cjs 

  0  r •
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If r = 1 , f(X) is primitive at p.  Our assertion has been
 IJ

proved in this case, and we assume r 2 . Since 

PI(0)x:A(m)xj  =p(1-1(K(f)/Q))                                             for a positive integer 

                      Pk P

 m, we obtain

 cu_,p(f,  rp) -  Nyc(r,p(flw rp-2) = 1 - (I<--(f)/Q) .                              P l 

Nextly we assume FPis the unramified extension of QPwith 

IFP. QP) =,e . First assume rP= 1. If (K(f)/Q) = 1  9 csr9p(f,  1)=0, 

e 

 P  J 

 or f(X) is  primitive,and  it holds our  assertion  • The case 

where (K(f)/0              1= -1 can occur only if  I = 2. For f = 2, 
 P we see c0-910(f, 1)=2 = 1 -(1")/R)by  Prop.3.18. If 

                              P (K(f)/Q) = 0 , then F1 =L11 for  it 2 andJi= 2 for  P 2

 f=  2. By  Prop.3.19, we see co..,p(f, 1) = 1 =  1  -  (KM/ . 
Now  let's consider the case where r 2 . If  (   KM/Q) = 1
and f(X) does not satisfies the condition in i) of Prop.3.17,

then we see ccr,P(f, r) = ccr,p(f1\T,rp-2) =0,and our assertion

holds in this case. Hence in the following, we assume f  satisfies

the condition in i)  of  Prop.3.17 if (K(f)/Q
)=  1 . Under 

this assumption,  f1 (X) is integral if f(X) is not primitive

at p. First assume it holds neither of the following two
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conditions ; (1)  g = 2 and  (   K(f)/Q)  = -1 , (2)  flr 

 P andK(f)/Q)=  C . Then by  Prop.  3.17,  3.18, and 

 P

have

 ca_,p(f,  rp)  = 1  +  E  Nff,  _1(K(f)/Q))                      Ng p

+  ()7( E.Pm (1  - 1  (K(f")) 
 \  P 

and

c (fr  -2) = 1 +y, Ngm  (1  -1 (K(f)/Q)) G-/P NV P  l‘m: (Si-4 Vi N  P

+ (N) 
    u5--,-iv)? z  pm (1 1 (K(f)/Q)) 

       :14M;c5-2  P

From these formulas, we obtain

 ca_,p(f,  rp) -  N3  co,_,p(fw  rp-2) = 1  - (  IC(f")

In the case  (  i)  , since  1413(0)x  A(m))1 =  pm( 1  + 1/p)

positive  integer m, we have by Prop.3.18

 0Y1  +  1  +(~~1-  2m  +  1)N/m(1 
 1,-m.;(F,-0/2 

c
o-9P(f , r ) = 

                el+1+L (ey1- 2m + 1)Nyra(1 - 
                                         1.111.$- O,/2 

                   /2, T i
Pm(l +  Npa  + 1/p)  , 

 14r.ac5-2
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 3.19,

odd 

 we

 for a

—  1/NS) 

 Yi is odd

 1/Ny) 

0-1is even



and

 (g1-2) 1  ((S1-2)-2m+1)Nel(1-1/N)
 1.111:((j  -2)  +1)/2

c(fr-2)= cr/PPP , Si-2- is odd

     + 1 +  ((S-  -2)-2m+1)Nel(1-1/NO
 1-4m65T-2)/2

                     1 
 1\1  (C7-  2)/2  TIM( -I-  _  1  r  Pven

cr  •  pl  9  °, 

 14-m.;(6-2

 Since we have

 2:  (S1-2m+1)Nfl(1-1/1W - ((S-1-2)-2m+1)Nel(1-1/Ny)
 1.;:m.;1Si/2) 

 =  (SI -  1)(IN7 - 1)

 we obtain

      rp) ccr
,p(fNv rp) = 2 =  1  -   f  )/Q   \

Now we consider the case  (ii). In this case by  Prop.3.19 we 

have

ocr
,P(f, r) = N 

 m 

 2(51+1-  L)/21

and

ccr, PNVrP-2)=1 +Y-1N'ym 
 151“(  0-1-1-0/

 , hence we obtain 

                                       -155-



 cv,p(f,  rp) -  rp-2)  = 1 = 1  - (K(f)/Q). 

                                                   P

Thus (ii) is proved completely.

By the above lemma, we can deduce the following formula for

tr  Ts(U(n)).

     Proposition 5.2. Let the notation and the assumption be as 

above. Let  oZ be an integral ideal of F such that  0-L is 

prime to  07, and is divided by at most one prime factor of p 

for any prime p. Assume  it is even and 4 , then 

tr  T  (U(a)  ) for  eL  6- (resp.  ) is given by the following

 formula.

tr  T  (U(e-E)  ) = t+ t+ t,+ t            ve th

 (resp.1 tr  Ts (U00-0) = tv + to + th + tp ) 
 2  

, where  tv,  te, th and  t are given as follows.

(1)  tv. For a positive integer N, put 1(N) = 1 or  0

according as N is a square or not. Then we have

tv=IF K-1 v(H/SL2(Z))(1 - p)(1 + 0  12c--                                -XiNTFO) 
 47L PINn2 itl

(2)  te. Let 4-1be as in  Th.  2,  Loe(  f  ) be as ( 2)                   )

of Th.2,  and a,  p be the roots of the equation  f(X)  0  mod.q  . 

Then we have
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      ( 
  1 V'K-(1. 

 e t=(f)1 - 

                ( 

   2 f e PI ma\ p 
            (1(( f )/q) 

             p/

 X  T  +  (  1  Ll 5) ( Z_(')-1-Zi(P) 1h(K(f),A) 
 K(f)DADZal2 j4-4                  i*12  2):  EQ)

 , where f runs through all polynomials  X?  -sX + n  ZIX) 

which satisfy (i)  s2  - 4n  <  0 , n =  NOT, (ii) f(X) is 

                                     (primitive at every rrime p such thatK(fI)II= 1 , and i,,runs 

                                     P  , 

 through all  Z-ordersof  K(f) which satisfy (i)  ADZIX] 

 (ii)/lp  =A  OzZI, is the maximal order of K(f)Pfor all

primes p which divide  NiT.

(3)  th.  Let  60h(f) be as in (3) of  Th.2, and let a

and  p be the roots of the equation f(X) -_sE 0 mod.q  . Then 

we have

- 0 , 

th= -7wh(f)+`i(a)+2Ci(P)) h(K(f) 
 aAl 2                                     K(f)DA.D3C  fAk  L)

 , otherwise

 , where f runs through all the  polynomials  X2  -sX +  n  E  ZIXJ 

which satisfy (i)  02 -4n is a non-zero square , , (ii) 

 f(X) is primitive at all p which divide  NOT, and  A runs 

through all Z-orders of K(f) which satisfy (i)

 (ii)  AT is the maximal order of  K(f)p for all primes p which

divide  Nff.

-157-



(4)  tp. We have

 

,  01=  19- 
 2 

t = 
 P                         

,  otherwise 

 Proof, For  a = 0-, we note that any polynomial

 f  (X) =  X2 — sX + n  E  ZI  XJ with n  =  N 1 is primitive at

all primes, and we can easily verify our assertion for  01 = 0- by 

 Th.  2' and the result of  § 3. For an integral ideal  OT  t  , put

 N

UC TT e  =Hwith prime idealsh
_of F and positive integers      i="°l 

 ei. We denote by  pi the prime which divide  N3i, then  pi  t  pj 

if i  4 j by  Lhe assumption on  0L We denote by I the set of

indeces of  s,  i.e. I  =  1, ,  N , and for a subset J 

of I, let p(J) denote the set of primes  t  pi 1  ( J  1 . For 
a subset J of I, we denote the integral ideal  TT  3i also 

 iEJ 
by J. Then by the definition of  U(07-)  ,

u(n) =(-1)IJ1NJT(J,  J)T(RJ-2)  .
 JC  I

Here we put  T(OrJ-2) = C if  4W-2 is not integral  ,  and 

T(J,  J)  =  Ti). Hence we have 
 lEJ

    tr T (U(aL) ) =  2:  (-1)1J1  NJ tr T (T(01J-2) )  . 
 JCI 

We denote the contribution of the  terms  t
v (resp.  te,  th,  tp) 

in  Th.  2' to tr  Ts(  U(o-L)  ) also by t
v  ( resp.  te,  tr,  tp).
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    (1)  tv. For a subset J of I,  Not is a square if and 

 only if N(OLJ-2) is a square.  Hence if  Not is not a square, 

 tv =  O. Assume  Net is a square, and put Nat= a2 with a positive

integer a. Then by  Th.2° we have

 tv  =   c  (aNJv(H/SL2(Z)) E(-1)1jINJ IT-1 

 

,  r  ) 
  47rJCI  p4p(J)

 x TT c (aNJ  -1,  r_  -2) 
 PEP-(J)

Here we put c
cr,P(aNJ-1, rP-2) = 0 if aNJZpor r-2 <O. 

By  ( 4.10.1) we have for  p  p(J  )  ,  q,

cG-710(aNJ-1, r) = cT,P(a,  r )

and for  p = q by (4.10.2) and the assumption on F, we have

 (aNJ-1, 0) = c0-9q(a, 0)  . 

For  pE-p(J), let  T denote a prime factor of p, then by  (4.10.1)

c( 
 crs,PaNJ -1,  rp) =  cr,p(aNg.-1,  r  )

Hence we see

        -1 tv=IL  v(H/SL (Z)) 7 (-1)IJINJ TIc G'-(a, rp)   47r2 JCI POW'1D 

 X  IT  Ny c (aN-i-1, r-2) 
 PEP(J)v--,p P
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   v(H/SL,(Z))  if c(a, r  ) 
 pqp(I)"P 

 X -IT ( c,'(a,  rp) -ccr,P(aN-9-1,  rp-2))  ,    PEP(I)13e

For p  p(I)  ,  r
p = 0, hence by  (i) (b) of Lemma 5.1, 

          c(a, r
p) = 1  P4D(I)7-'1DP 

 Ptcl

 Vie note for  Q = 2,  2'2(a) is 1 or -1 according as the 

ordinary of the set p  I  r
p odd is even or odd. Hence by

 (i) of Lemma 5.1 we have

c
(1fq10P(I)    (a, 0)IT(c(a,  rp) -Nc0_,p(aNy-1,  rp-2))

= Ti (1 —  p)  x (1 ci+1 v  (a)) 
 ifl

Thus we obtain

 tv =K-1 v(H/SL2(7,))  IT (1  - p)  (1 +  11-21 x.(a)) 
 Pep(I) 2  ifl xi 

                                          (a))

  te. Let  We(f) be as in (2) of 

 a)e(f) = weN) for all positive integers N.

 argument as above  and  the relations  (4.10.10) 

we see in the notation of  Th.2',

(5.3.1)      t= -12 ___,coe(f)  TT c (f,r  ) 

                 e 

            2 f pip(I)T P P

       (Cr,p(f,— N c  PE-P(I)

 -16C-

Th.2, then 

By the  same 

and (4.10.11),

             h(K(f))  

 r+n(fT~Trp-2)/Xx  EQ]



 , where f  runs through all the polynomials f(X) =  X2  -sX + n 

in ZIX) which satisfy n =  Na and  s2 - 4n < 0 , and we 

 set
rp(f  rp-2) = 0 if  fNy is not integral or  r  -2  <0  .

By Lemma 5.1, (2), we have

(5.3.2)  IT (c_ _(f,  rp) — ca,,i)(fNv rp-2))          p6p(I) 

            lT  f,  /  f  )/Q  1  \1  4-F.
  m 

         p ))

 0 , otherwise

 , and by  (4.10.9) and Lemma  5.1,  (2), we have

                          1 +17 
(5.3.3) IT co-,p(f'  rp) =/1q1    E        p4p(I) E(f))/1)ZU'Z(3_ + ( 2 

       I

 x(~2(i(a)+i(13)))x h(K(f), /1)x [4:(0:  EQI 
 it XC        2 LA!`  EQ]  h(K(f))

 , where a and  p are the roots of the equation 0 mod.q, 

and /1 runs through all Z-orders of  K(f) which satisfy

(i) A  X and (ii)  Ap is the maximal order of  K(f)p for

 all p  dividing N . By  (5.3.1),  (5.3.2) and  (5.3.3), we 

obtain our assertion for t
 e•

    (3)  th. Let  &h(f) be as in (3) of  Th.2, then it 

holds also in this case that  wh(f) =  eql(fN) for any positive
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integer N.  We can prove our assertion for  t in the same way 

 as for t
e, andwe omit the details.

 _1

(4)  t  . If  0t is not a square, the ideal  oiJ is not

a square for any subset J of I, and we see  t = 0 in this 

 case. If  at  is a square, it holds  rP 2 for all p  ep(I).

By the same  way as  above,  we obtain

 tp= -t1          —H(N3-1 --1)       02 
                 iEI

0  .

Thus our proposition is proved  completely. 

5.4. Let N be a positive integer, the explicit formula

for tr  T1(T(N)) is known by  Y.Eichler L  3J,  L4  1,  0  3 and 

 H.Hijikata  L8).  We quote the result of them in a convenient 

form. Let p be a  prime  and f be a polynomial f(X) =  X2 - sX 

 E  ZIX) with s2 - 4n  t 0 For a non-negative integer m,
 I)

we denote by  A  (m) the order  /I  (m).  .1h: 3.9 for K =  Q  LX)/(f) 

and by  v the valuation of Q given by  v  (p) = 1 . For a

non-negative integer r, put for p  q,

                        tni,(0)':4,(10A
 c  (f, r)

 , where 

roots of

K P

the

 (m)DzK) PP 

  0

=  Q
pt  x3/  (  f  )

equation

 [Alp  (  0  :  (  m  )A

     For p =  q , let 

 f(K) C  mod.q ,  and  but

 -162-

, if  v  (n) =  r

 otherwise

a,  p be  the

n-I-



 plq(0)x  :  *00x]  ,if  v  (n)=0 and 1=1

cl_(f, 0)=ly/1,1(m)DZ450

 T., (1 +h(m)j)O'i(a) + li(19))001(0)( :Al(mfci 
KciD/1,4(m)DZciaiq2 

 7if  v(n)=0 and 2.�..i;11

0  ,otherwise

 , where Kq=aglX]/(f) . Then we have by L  3], I.L. ] and

 L8  I,

Theorem 5.3. Let the notation  be as above. Let N be a

positive integer prime to  q, and put  s =  v  (N)  . Then we have

       tr  Ti(T(N)) =  tv +  to + th +  t 

 , where  tv'  te'  th and  t are given as follows.

(1) tv=()-(47 X-1)  v(H/SL2(Z)) , i = 1 
 471: 

            

.(•11K-1,T)  Xi(417)(c1+1)v(H/SL(Z))                         2, 2- ,"ii 
                  AX

 , where  3(4711---)  = 1 or 0 according as N is a square 

or not.

(2) to = -T we(f)(f, Sp)  h(K(f)) 
  2p 

                                

:  EQ]

 , where  f runs through all  polynomials  f(X) =  X2  -sX + n 

such that n =  NoT and  s2 -  4n < 0  .
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 ( 3)  th = -coh( f)71-f , sp)., 
                       v1./.10•-) ,)

 , where f runs through all polynomials  f(X) 

 6  ZIX1 such that n  =  Naz and  s2— 4n  is a

square.

 ( 4) t=s-( I) \M-    P-- — 
2 

           -cS"-(fiT) Xj(417i)\IT, i = 1                                        , 2  E  i-.  i

 Todeducs-theformulafortrT-0.(UW)) from 

tr  Ti(VN)), we prove the following.

     Lemma 5.4. Notation being as above  , let  f(X) 

polynomial f(X)  = sX n  EZ[XJ such that n 

 s2—  4n  t  0  . Then

(1) For p  t q with  sp  1 , we have 

        c
P(f, sP) — p cP(fP'sP-2) 

           1 . if  (K(f)/-) =  1

 

1  primitive at

 , where 

if f
 p

 f 
 p

4  zixi

 1  - 

  -2
 =  p 

 or

K(f)/C2  

  p 

    /

f(pX) and 

 s  -2  <  0  .
 p 
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if  (E-1  )/  

 p

 primitive

otherwise

we put  c  (f 
 P  P

=  X2-  sX  f n

non-zero

  • 

that for

 hn 

=  NoZ.

and 

 P.

and

f is

 S
p-2) = 0



(2) For p  t q with  sp = 0 and a positive integer u

prime to p

 c  (f, 0) = cp(fu, 0) =i4(0)X :11p(m)X3  . 
 K DA.p(m)DZpIXJ 

(3) For p = q and a positive integer u prime to q,

 c  (f, 0) =  .(u) cq(fu0)

We note  [A Ap(mYj =  pm  (1  — 1rf"))for a 
 P p

positive integer  m. Then we can prove our assertion in the 

similar way as Lemma 5.1, and omit the proof.

     Using the above lemma, we can prove the following in the 

same way as  Prop.5.2.

    Proposition 5.5. Let the notation be as  above. Then, for 

 01  4  6  (resp.  a=  6 ) we have

tr  Ti(A(U(ct.))) = tr  Ti(U(N00) = tv +  to + th +  tp 

(resp. l tr  TiWU(a))) = tv + to + th + tp ) 

       2

 , where tv' te' th and tp are given as follows. 

  (1) t =-  ( ,5--(070K-1 v(H/SL2(Z)) , i = 1 

        v 

                         47c

        1 
 (\INC-1)._L:i_xi(FT60(q+1)v(H/S1,2(Z)) , 2 

        47-c
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(2)  to  te = --  2 _,>We(f) 11 (1 — ( KM/Q)) 
                       plNa\  fk p / 

 ( K( f )/R)                          ) tl  l 
p

 h(K(f), A) 

5-7•     VO•E1

  ( 
            Xi(q)+4(P)) h(K(f), A) 7

A'1 +                   2LAx:  E

 , where f (resp.  .4) runs through the same set as in 

of  Prop.5.2 and we denote by a  and  p the roots of 

the equation f(X)0  mod.  q  .

                        h(K(f), A)                             ".\1-P)  (3) t = X ()
E] 

 h 

                            Q 

                                       h(K(f), .4) 
  (xi(a)+Xi(P)) 

 [4  : 

                          A

 , where f (resp. A) runs the  same set as in (3) of 

 Prop.5.2, and a and  p  being  as above.

                 _                      01=6'= 1 (4) tP1 ( 77

 —  1 
,  cl= ,  2 

0 , otherwise

 5.5.  By  Prop.5.2 and  5.5,  we  obtain, the  following. 

Theorem   rJ-.6. Let the notation and the assumption be

 i  = 1

(2)

2

 as



above. Then we have

                                     1  1 

(5.5.1) tr TS(e)  = tr  Tl(A(e))  ±77tr  Ti(A(e))                                      '  i=2 

 for e of R°(21LP,  GL2(FA)).

Proof. Let  0'1 be an integral ideal which is prime to  q

and is divided by at most one prime factor of p for every prime

p  r q . Then for  U(0)  d  R°(22T,  GL2(FA)) with such  OT,  our

assertion is a direct consequence of  Prop.5.2 and  5.5. As 

remarked before, for a prime ideal  3  4 , it holds,

 Ts(u(f)) =  Ts(u(ym)) ,  TiC2(u(sm))) =  TiMurim)))

and

 Ts(T(y,  y)) =  id ,  TiWT(s,  y)))  =  id• 

By this and  0.1.1), we see our assertion  holds for  11(0-0 with
 e.

an  integral ideal  c  rime to If we  put  T(:,  =Tr  T(aa 1

 e.

for a  frabtionl ideal  73_1  , then any element of 

 R  (  ,  GL2(F1)) can be written  s  a  Z-lincar  combination of

 T(0,t)1J(.0-)  's with  integral  idealsCiprime  to'-2: and fractional 

Hence the  relation-  (5.5.1) holds for all e of  R°(7Eir,  GL2(FA)).

 Remark 5.7. The formula (5.5.1) is a generalization of

the formula (21) in  9  ). In fact we assume  t  = 2 , and denote
 4

by the group generated  by r  and  Tcr .  Let X  (reep.  X) 

be the arithmetic genus of the surface HxH /r (resp. H x(/). 
Then the formula  ( 21)  .reads  as  follows.
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 1  = 
2  ( [

By the  wag, dim  S2(1-1  =  )f- 1 , dim  332(r)  =  (,-l) -  2(X-1)  ,

and Idim 22(ro(q),
4__ = 1 + r1-291for  = f).Hence 2L2J

the above formula is equivalent to

      dim  ^2(r) =  1 dim  S2(ro(q),  X) 

                     2 Here we note dim S2(SL2(Z)) = 0 . On the other hand our formula 

(5.5.1) for e =  T(6) and  = 2 asserts

 dimMi,c(r) = dim Sk(SL2(Z)) + __1 dim  Sit(ro(q), X) 

 2

if  i even and  7  4  .

 5.6.2inceT(e)(resp.T.(1(e)) ) for e  e 11°.(7/ ,GL,(FA)) 

                                                                            2 is a normal operator in the space  FEK(F1 (resp.  SK(SI2(Z)) or 

 Sit(ro(q),  Xi),  2 ), they generate a commutative semi-simple 

algebra over C. Hence the formula (5.5.1) in  Prop.5.6 implies 

that the two spaces  22Sit(r) and  2S,(21,2(Z))  C9 (  e  sx(1-0(q),  Xi)) 
 i2 

are isomorphic to each other as  R°(27F,  1L2(F1)) - modules,

where for a space  S, we denote by 22 the direct product  SG S 

of two copies of  S. Moreover we can prove the following.

     Theorem 3. The notetion being as  above  , let  F be a 

totally real field which satisfies the conditions (i),  (ii), (iii) 

and (iv) in 4.1, and assume  IL is even and  >2 4 Then
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there exists a subspace S of  Q)  St(ro(q),  ;) which is 

stable under the action of  R°(27F' GL2(FA)) , and satisfies 

(5.6.1) 2S  ti  c  S1(1-0(q),  xi)

and

(5.6.2)  SSK(r)  Stf(SL2(Z))  S 

as Oen_GL2(FA))-modules. Moreover we may assume S has a 

basis consisting of common eigen-functions for all e of

 R°('1LQ,  GL2(QA))•

 .proof. For  .f., , it is easy to give such S. In fact, 

for a function f(z) on H, put

 K 

 W  f(z) =  f(zz)z--q---f 

with  7.= to--O1N                We assume -+1for  2  i<        'qi 
    22

Then it is known (  U3),  Th.B,  L191,  Prop.3.55) that W
 q

induces anisomorphism between  Sic(170(q),  Xi) and  SK(ro(q), 

 , 2  i  (t+1)/2 , and that  Wq satisfies

                                                (+1 WT.(TX.     (n)) =(n)T,.(T(n).)W,2--- q1U-IV2+1
2

for a positive integer n prime to q and

 2 W = 1  
.

Hence for a positive integer n prime to q, it holds 
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WqT(17(n)) = X.(n)T(x. -i _,VL-. (U(n))Wq

and

 T.CA(I  (c71))  =(A(            T,.UW))T 

                                                       ,

 since x.(N170= 1 by the assumption on F. Ifwe put

 S =  4)  sic(  Fo  (  q)  , -) 

                                    i 

                i=2 

 , we see easily S satisfies (5.6.1) and  (5..6.2), and it is 

obvious S has a basis consisting of common eigen-functions for

all e  R°(2/Q'  GL2(QA)). For  I= 2, we note that

1 __ dim  skn-2) is an integer, since 
2

 2:dim SK(1-0(q), = dimE8(11 -  dim SK(SL2(Z))  . 

       2 

 , and that if  f  -SK([—°(q),  12) is a  common  eigen-function for 

all  T(e  )  with e  E-R°(wLQ'  GL2'(FA)), then  W  f also has the 

same property. For,  W
q induces an automorphism of  sk(ro(q)  2'2)

of order  -2. and satisfies

(5.6.3) W qT,,(T(n)) ~2(n)T2(T(n))`yq

for a positive  integer n prime to q.  (c.f.  119J ,  Prop.  3.  55  ) 

 Iffe will show there exists a basis  la 1  i dim  sk(r'O(q),) 

                                                      2

 , which consists of  common eigen-functions for all T(e) with 

eeRo(Q'GL-(QA'))and satisfies W
qh=hd+i  ', 

where d =  1 S-it(r
0"2 ) . If this is shown, the subspace 

 2
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S of  Sic(r70(  ci)  ,  2,2)  spanned by  fi'  s , 1 i  _1 dim  SK(  no(  GI),  .1'2)  2 

 , satisfies the conditions (5.6.1), (5.6.2) in our theorem,

since by  (5.6.3) it holds  WolT2(A(U(cr„)))  =  T2(A(U(c))  )Wq 

for any integral ideal  at,  . Let  fi} , 1  i  dim  Mir(r) , be 

a basis consisting of common  eigen-functions for all  TS(e)  e  ) with 

e  R(711,1„ GL2(FA)), and let  C  Lfi] be the  one-dimensional 

subspace of  Mir(r) generated by  fi  . We note the following, 

which holds also for  i  t  2. If two spaces  C  Ifi] and  Cifp 

are isomorphic to each other as Ro('-2/iT,  GI.2(  FA  )  )-modules, then 

by  (  113j  Th.  2) there exists a constant c such that  fi =  cfi 

Hence any two  Rc)(  yuy,  GL2(FA))-modules  C  ffij and  C  Lfi] are 

not isomorphic to each other if  i  4 j Let  gi  , 

 1  i  o dim  Sic(S1,2(Z)), (resp.{hi} , 1  ro(q),  k2)  ) 

be a basis of  Sit(SL2(Z)) (resp.  Ex( 170(q.),  X2)  ) consisting of 

common  eigen-functions for all  T1(e)  with  e  27E,Q,  GL2(  QA)  ) 

 ( resp.  T2( e) with e  R°(  71/2,  GL2(  QA)  )  ). Since 

 2  mK((') =-`-'  2  SK(SI,2(Z)  )  Sx(  roc  q), X2) and CCif.]4.Lf 

                                                           J

for i j, we may assume by  replacihg indeces,

 Cifil  CLgil  , 1  i dim  S,c(SL2(Z))

and

  2 CI:f•.:�-'-C[h.h.        s+)11'd+13 _ , 1i dim  s  K(I-'0(  ci)  ,  /i2) 

   Ci,n1,,1,...-o4-Cjhi)CLhd +i)C(f)
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asRo(cqp,  GL2(F0)-modules, where  s = dim  Sh(SL2(Z)), 

d =  1dim  Sj.c((o(q),  x  2) and  Clhi,  ha+il is the space spanned 

 2 by  hi and  . We show  hd
+i is a constant multiple of 

W hi.First we assume hand WhIre linearly independent. q

Since SK(^(q)'2) has a basis consisting  of new forms in the sense of 

 Atkin-Lehner-Miyake, W
qh. is a constant multiple of  hfor

some j. But as  R°(2ILF,  GL2(F0)-modules we have

 C  1Wghi C  [hi)  2c  C  [ha+  

•  Cihi) , j  k  i,  d+i

 ,hence.Wcihiisaconstantmultipleofhd+i,Next assume 

Wqhi= chiwith a  constant c.If W
qhd+iand  hd+i are

linearly independent, we can  show in the  sane way as above that

Wqhd
+i= chi , andwith a constant c and.Wqh=  c71hd. Hence 

we assume that W
qhi and Wqhd+i are constant multiples of h. 

 0<, 

and  hd+i respectively. Let  h,(z)  =  21  c.(n)  e2ninz                                                              be the 
                                             n=l 

Fourier expansion ofhi(z), and(n) be the eigen-value of 

 h  (z) for T(n) with n prime to q, then it holds

 11,12-  1 ci(n)  =  n  J.2(n)aj(n)  .

By (5.6.3), we obtain
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 cj(P)  =  Z2(P)ci(P) for j =  i,  d+i  ,

Hence we have

 ci(p) =  c(44.i(p) = 0 

for all  p4q with 72(p) = -1. For  •ptq with  X2(p) = 1, 

We have  T2C2(q))) =  T2(U(p)) = T2(T(p)) , where is a 

prime  factor of p. From this it follows that  ci(p) =  cd+i(p) 

for all p  q with  2(p) = 1, since  C[hi]  C[hd+i] 

 , hence we obtain  ci(p) =  cd+i(p) for all p  q. By (  [13], 

Th.3, Cor.2) this implies  hi =  chd+i with a constant c, and 

this contradicts to the assumption on the choice of  {hi}  . 

Hence it has been proved that W
qh. =  chd+i with a constant c. 

By multiplying suitable constants, we obtain a basis of  Sg(r
o(q),

which satisfies the conditions mentioned above. Thus our theorem 

is proved completely.

As a corollary of the above proof for  ! = 2, we have

Corollary 1. Let q be a prime such that  q  mod.4  .

Assume the class number of  Q(4(q) is one. For an even positive 

integer  K larger  than 2, let  f  d  Sit(r
o(q), X) be a common 

 eigen-function of T(n) with the eigen-value  a(n) for all
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 Positive  inte7ers n  prime to  c,  where  A  denotes the cuadratic 

residue  symbol  mod.c .  Then  the  field  Y  ,Tenerated  by  all  a(n) 

over  w is  a  totally imaginary  ivadratic extension of a totally 

real field.

 Proof. The above assertion for K = 2 is contained in

 Th.7.16, of  (19). For  4, by the above proof it is seen  that 

there exists a prime  p such that  c(p)  t 0 and  7(p) =  -1  .

If we denote by a(p)  the complex  conjuEation of a(p), then 

a(p) satisfies a(p) =  7(p)a(p) (c.f.  Prop.3.56,  L19)), hence 

 a(p) -a(p) This implies K is not totally real. From this

fact, our assertion  easily follows by the same argument as in

 D.183  ‘\./  185, of  L191  •

 The assertion  in this corollary is stated in  [21j under a

more general condition. 

 Now we interpret  Th.3 in terms of Fourier coefficients.

 S,z(S=2(z))  i  2) be a common 

 eigen-Iunction for all T(n) (resp. T(n)  with n  prime to q).

We have  the Fourier  expansion of  g(z)  ziven by

       g(z) =   c(n) 
                     n=1 
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Ey multiplying a constant, we may assume  c(1) = 1  . If we denote 

by a(n) the eigen-value of g(z) for T(n), then we have 

 (5.6.4) c(n) =ng/2-1r(n)-1a(n) 

for all n (prime to  q if g(z)  E  Sk((',(q),  2i),  i  2), where 

for g  eSK(SL2(Z)), we  out = 1  .  From the sequence  tc(n)1 

 v:e define another  seTluence  {C(0-01 for integral ideals  cri  prime 

to  /7_  For  ill=  E , put  C(6,--) =  c(1) = 1 , and for a  prime ideal        

,  defirTe

 C(h) =  Cqd = c(p)  7  if  (p) = yi ...

 C(y)  =  c(Ny) - Pi(-1  'i(13)-2)  if  (p) =  - 

For m.�,-2, define  C(m) inductively by

                             -----
m        C(f) -Ny1C(y'ir-2) = c(Nf)  --1o(Ny.P2) 

Then we  see  C(m) satisfies

 C(3m) =  CWC(  m-1) -  N?-1C(ym-2)

                         e.

lastly for  0/ =  TT  yil , put

                                                e.

 C(0) =  (  )  .

 For  F = 2 and  CL prime to ,  this rule for  defining  c(at) from
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 c  (n) is  nothing  but the  rull given  in  L  2)  and  1141.

Corollary 2.  Let the notation and the assumption be as in

Th. 3.

 ( i) Let  f(  z  )  SStt(F) be a common eigen-function for all 

 T(07-) with Fourier coefficients  Cf  (CO such that  Cf  ( = 1  . 

Then there exists a common  e  igen-function  g(  z  ) for all  T  (n  ) 

(with n prime to q, if  g(  z  )  6  Sic(  ro( q),  2.j.)  2) in  SK(SL2(Z)  ) 

or  Sic(  r o(  q)  ,  j'i) such that the Fourier coefficients  cf(a) for 

 tu prime to  Op are identical with  C(OZ) defined from the Fourier 

coefficients  c(n) of  g(  z  ) in the above way.

         Let  g(z)  Stc(  SL2(  (resp.  e  Si.c,(  i.32) 

be a common  e  igen-function for all  T(n)  )  (resp, with n prime 

to q) with the Fourier expansion given as follows

g(z) = c(n)  e2xinz ,  c(1)  = 1  .
 n=1

Define  COM for  c- prime to  (21_ in the above way from  c  (n)  , 

then there exists a unique common  e  igen-function  f(  z  )  6  Mic(F1 

for all  T(01) such that the Fourier coefficients  Cf(ot) of  f  (  z  ) 

 are  giv,.n by  C(00 for all  ct prime to  ty  .

 (iii) In  (  )  , if two  common  eigen-functions g1 and g2 

for all  T(  n  )  (with  11 prime to q for  ,gi  F  s/t .(  ro(  q)  ,  Xj  )  , j  2)
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correspond to the same element of  ESK(r, then and g2 

are contained in  Sh.,(SL2(Z)) and  gl = cg2 with a constant c, 

or and g2 are contained  in C)  sit( I-0( and 

 gl = cg2or gi = cWcig2 with a constant c.

    Proof. Let g(z) be an element of  Sir,(SL2(Z)) or  SK(r(q), 

which is a common  eigen-function for all T(n) ( q) = 1  ) 

with  eigen-values a(n), and let f(z) be an element of  ss,q1 

which is a common eigen-function for all  T(n) with  eigen-values 

 a(rO. If  CIf]  CIg]  as  R°(2,/F'  GL2(FA))-modules, then

 a(E-) =  a(1) = 1 

 a(V =  a(P) if (p) =  •  •  •  yi 

 a(NV -  27i(P)Pa(NYP2) if  (P) =

 , since  Ti(T(p,  p))g =  yi(p)g  . For  m42, we have 

 a(el) -  N  a(;I-2) =  a(Nf)  -7i(P)Pa(Nep-2)

In notice of the relation (5.6.4)  (reap. (1 3.2) ) between 

c(n) and a(n) (resp.  Cf(at) and  a(0-0 ), we easily obtain our 

 assertions (i) and (ii) by Th.3. As noted in the proof of 

Th.3,  s3 ,(r) is a direct product of one dimensional simple 

 Ro(2/1F'  GI,2(FA))-modules which are not isomorphic to each other,
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and a common  e  igen-function  g(z)  E  Sk(SI.2(Z)), or  S  r
o(  q)  , 

for all T(n) (n prime to q if g(z)  e  Sk(  ro(q),  2i) ) is a

new form in the sense of Atkin-Lehner-Miyake. Hence our assertion 

follows from the proof of Th.3.

     5.7. In the correspondence given in (ii) of Th.3, Cor.2, 

our theorem does not give any  imformation on the Fourier coefficient

 Cf(cd. But it seems that there exists some relation  cf(c1) and 

c(q). For  f= 2, the results of  12 j and  114J shows that  Cf(7) 

is related to c(q) in the following way. Let g(z) be as in 

 (ii) of Cor.2.Fora  primeideal y=,define C4m) as 

above, and for  GT  ,  .as in  t  2) and  11147  , put

 C() = c(q) if  g  Sk(S1,2(Z)) 

 c(q) + c(q) if g  E  Sit(  ro(  q)  '112) 

 , where  c(q) denotes the complex conjugate of c(q). For 

 n1)2 , define  C(411) inductively by

 C(ri) =  C(411-1)C(Cp -  NoIC(97.-2)  .

       e.

For  IL =U.1            T ,  put 

 i

e.

 c(et) =  c(  .
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Then we can prove the following by the method of Miyake  [131.

    Proposition 5.8. Let F and K be as in Th.3, and g 

be as in (ii) of  Th.3,  Cor.2. If g corresponds to f  e  SSK(r) 

in the correspondence given in (ii) of Th.3, Cor.2, then the 

Fourier coefficients  Cf070 of f is given by  C(00 for all

 CI. In other words, the function  f on  11)(li given by the 

Fourier series

 f(z) =  C(tn) exp  2v-1 E  z+crE14)z       at = (r-) E 6E+ \ IT1Li_cf2/
 frt

 tp>0 

belongs to  ssk(p), hence to  Sit(`').

 Proof. Assume g is in correspondence with f(z)  6  m,(('). 

We consider the following two  Dirichlet series

 C  Jet)
Df(s) = 

 N Cis

 C  (n)
 D(s) = 

   NOT 

 , where  Cf(cy) are the Fourier coefficients of f(z) . They

have the Euler products 

 -1

 Df(s)  -  TT (1 - Cf(3)N,F+ NyK-1-            -s2s)
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-1

D(s) =IT(1 - C(y)Ns.1-2s

for Re s  >N with some N. Put

Df(s)  = qs(27)-sr(s)2Df(s) 

D*(s) cis(27)-sms)2D(s)

 IE

Then it is known that Df(s) satisfies the functional equation

 4  *

 - s) =  Di (s)

 , and by  [  2] and  L14] , we have 

 IF*

D (PC,- s) = D-(s)

Comparing the above two functional equations, we obtain

1 -  C(9)Ner  Ne1-2s 1 -  c,(00N,r9-"K  Nq2s-K-1 
1 - cf(01)Ntr Noir-1-2s -                              1 - Cf(q)Ne-ic +

 

,  since  Cf() =  C(7) for  y From this, we see 

 C(q) =  Cf(9) , and  C(N) =  Cf(rO for  all  ca.

 (CM

 -16C-



    Note. We can prove a little more general result in the  Fame

 way as  in this  paper. We  c,,n  com:ide•  ;K(T;(q),A ) not 

only as a  RTIJIQ,  GL2(QA))-module but also as a  R(1) /Q,  GI,2(QA))- 

module. In fact , for  eE  GL2(QA)), define the action of 

e as before. For  q , let  GW(cel  (3)._) 1—c(q)  =  U  alL(q) be a 
 v=  1 

disjoint union, and put for  gE  W1-,4),A)

                                                                         1.0.2 

   glif;(01,(1(            .1917,03  =57:Tov)  (det a,),—1                                                      4,,gka,z) 

 , 

 v (—c,z 4-  ap) 

where -0--,-/E-1M'And we define the action of  T(q) and  T(q,q)              kCyUpj 

on  S(ro(q),A) by

 T(q)g  girro(q)(gi  ?)[;(q)] +  giCro(q)ej  -(070(c01)* 
 T(q,q)g  = g

Here T0(q)0- 1°)F,(q)3* denotes the adjoint operator of 

 iro(q)p  Dro(q)..] with respect to the Petersson inner product. 
If we  den.ote this action also by  T,1,  Sk(F(q),)() can be viewed 

as a R(IRF,  GL2(F0)-module by  TA0A ,and we can prove

     Theorem. There exists a subspace S of  0 S (7-0(o),)( ) such

 tba  t

 mic(T)  sk(sL2(z))  e  S

(and  9  Sc(ic(c1),;(  E  6)  S  )

as  R(1)11,,  GL2(FA))-modules, where in  0 , runs through all 

 X

characters of  order  Q of  (Z/qZ)  .
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