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Preface

These notes contains the contents of my doctorial thesis.

In these notes, I give a result on an arithmetical relation between

Hilbert cusp forms over totally real algebraic number fields and cusp

forms of one variable.

H. Saito

February 3, 1975
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sfutomorahnic forms and algebraic extensions »f nusber “iclos

by

Hiroshi SAITO

§0. Introduction

0.0. The purpose of this paper is to study an arithmeticel
relation between Hilbert cusep forms over « totally real =zlgebraic
number field and cusp forms of one variable by using the theory
of Hecke opersters,

Let ¥ be a totally real algebraic number field, and ¢ be
its maximal order. For an even positive integer r, let S.(7)
denote the space of Hilbert cusp forms of weight k with respect
to the subgroup = GL2(6)+ conceisting of all elements with
totally poeitive determinants in GLE(Gi. For & place (archimedc-n
or non-archimedean) v of F, lct F, e the completion of F
at v. For a non-archimedean place Vv (= ;), let C? ve the

ring of lg—adic integers of Fv. Tet F)A be the esdele rin~y of

F, ané considecr the adele group GIQ(FA). Tet qu be the open
[ £
cubgroug TT‘ Glz(f?} X .Tr }IZ(FV) off ng(pg}'
P viimcdenn vierckimedesn
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Then we can coneider the Hecke ring R(WLF, GLZ(FA)) and its
action T on Sk(/7) ac in G.Shimura 0E]. I':;r some technical
reasons, we shall work with a certain subring RO(?’LF, GLZ(FA))
of R('Z"LF, GLg(FA)). It's precisc cefinition will be given in
§°.1, but roughly speaking RO(‘Z’(F, GLQ(FA)) is the subring
consisting of all elements of R('J’ZF, GLQ(FA)) which are relatively
prime to the discriminant of the extension F/Q. |

For the ordinary modular group SL2(Z) (= GLZ(Z)+) , we also
consider ite adelization 'n,;2 = TTGL2(ZP) XGIZ(R) and the Hecke
ring R(’)’LQ, GLZ(QA))' The latter is acting on the cpace S,L(SL2(Z))

of cusp forms,

0.1. The space (). Suppose F is a cyclic extension

of 4 of degree [. Fixing a generator o of the Galois group
Gel(F/Q), we define an operator Ty on S,(/7) by the permutation
of variables, namely T¢f(zy, ... , 2p) = f(zz, A zl) .
Using this Ty, we define & new subspace L, ([ of <,.(7, to

be called "the space of symmetriec Hilbert cusp forms", ucs follows:

T(e)Tef = T-T(e)f Tfor any e'e‘R(’l’LF, 5I.(F,

B = et oFy

Cbviously ,(/7) is stoble under the sction of R(Z’ZF, GLZ(F;)),

and we get o new reprecentotion T, of the Mecke ring |

[
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R(Ws GL,(F,)) (or R°(U,, GL,(F,)) ) on the space ().
Now we assume
C) The weight K 24 .
1} The degree £ = tF: Q) is a prime.
2) The clace number of F 1is one,
3) & has a unit of any signature distribution.
4) P is tamely ramified over Q.
As a consequence of 2) and 4), the conductor of FE/Q 1is a
prime number q.
The purpose of this paper is to show that the reprecentation
1. of RO(?JZF, GL,(F,)) on ,(") can be obtained from the
spaces of cusp forms SK(SLz(Z)) and SK(FB(Q)’ 2) for various

x
cheracters X of (Z/qZ) of order £, where of course
»] = a b c = ,
M(a) = { (0 q) € SL,y(2) c=0 mod.qg } .

To give a meaningful description for the above, we chall

)Yy —m4m>

o , T . o)
define a "natural" homomocrphism A : R QEF, 312(_A, 2

RO(%Q, GLZ(QA)) in the next section 0.2. Here ROGWQ, GLQ(QA))
ie defined ae a subring consisting of 211 elements of RCmQ, GLQ(QA))
which are relatively prime to the conductor g of ®/Q. Then

ROQQQ, GLE(QA)) is acting not cnly on SK(SI2(Z)) but aleo on
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Sn(rB(Q)’ X) via natur:l injection

ROy 6L,(3,)) ¢ R(L(a), 61,(2) , hence it has
representations T; on Sk(SLE(Z)) and Tx on Sh(Fb(q),‘Z).
Thus SK(SLQ(Z)) (resp. Sm(Fb(q),II) ) can be viewed as a
ROQLF, GLE(FA))—module by the action Tloﬂ (recp. Ty+A ). Now
our main result (Th. 3 ) claime that there exists a subspeace

S of @ SK(TB(Q), x) such that
p?
$,(7) o 5,(8L,(2)) @ S
(end (?Sm(l"c(q), A) ~ s@¢E )

&s ROGMW, GLG(FA) ~-modulee, where in @ , ¥ runs throush all
_— [ 2'
, X .
the charccters of oracr € of (Z/qZ)Y . The above result will
be derived by etondurd arguments from the following equality of the

traces of the operators:

Theorenm

1

(*) trn(e) = tr 1(A(e)) +

no I

1 ( ;w Tx(A(e))

for enry ¢ € ROQEF, GL,(F,)) .

The prooi of tries lret enuality will occupy the most part

oi thie paper,



0.2. The howuworphism A: RO(?/LF, C—LE(FA))—)RO(WL , GL,(Qy)).

ILet ot (resp. n) be an integral ideal of F (resp. a
positive integer), and T(ot) (resp. T(n) ) be the sum 6f all
inte(gral element in R(WZF, GL2(FA)) (resp. R('M_Q, GI‘E(QA)) ) of
norm ¢t (resp. n). For a prime ideal 39 of F (reep. a prime
p)y let T(3,3 (resp. T(p, p) ) denote the double coset
M U (resp. wchx z‘%), where the 9 -component (resp. p-commonent)

(75 7(2) (resp. (8 g) ) with a prime element 7« of

of a is
(9}, and the other component of « 1e the identity. ‘e define
elements U(gm) (resp. U(p™) ) of R(?/LF, GLg(FA)) (resp.

R(WLQ, GLQ(QA)) ) for e prime ideal 3 of P (resp. & prime p)

and & non-negative integer m by

(&) = 2 ()
(resp. U(1) = 2 T(1) )
U(?m) = i T(}) sy o= 1
T(3") - N3 (3, 3) TETY) L, m o> 2

H

~ m m
resp. U(p™) é T(p) y o= 1

(p™) - r 2p, p) T(P™F)



y where N3 1is the cardinality of ﬁ/} . Then the correspondence
U(gm)-—7 U(Ngm) can be extended to a homomorphism [ from

Ry, GL,(Fy)) o Ry, GL,(Q,)).

E&;& We give an outline of each section. In &1, we
define the space 5,.(") and make some preliminary consideration
on the representation TS . In © 2, by using Selberg's trace
formula, we chows that tr TS(TQHJ) can be expressed as a sum
extended over twisted conjugacy classes (e.f. (212.1)). In & 3,

we study the twisted conjugacy classes and in particular

X etermine

[l

the numbers c,(f, r, A) and cg(a, r, A) explicitly (c.f.

§ 2.6, §3.12 ). In §4, by meking use of the results of
$2 and &3, we give an explicit formula for +tr TS(T(UQ). In
§5, from the explicit formula for tr Ts(i‘(ﬂ)), tr 1 (2(n))

and tr T}(T(n)), we deduce our main result.

0.4. Applicetions. Our result is related to the recent

works of the following authors.

(I) 1In their joint work L 2], K.Doi and Il Waganuma rtvdied

g relation between curp forms with respect to #L1,(2) and

Hilbert cusr formes over real gusdretic fields. I.ore precisély,
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let <@ (s) = Z a, n®, a; = 1, e the Dirichlet series

associated with a cusp form of weight K with respect to SLZ(Z)
which is & common eigen-function for all Hecke operators, and
let X be the real character corresponding to a resl quadratic
field F = Q(/D) 1in the sense of the class field theory. If we
$
T+ P -

put  P(s,X) = 2X(n) a_ n s then @(e)P(s,X) can be
expreesed in the following form with suitable coefficients Cg

which are defined for every integral ideel OL in F
-5
P(s)P(gX) = 25 CuNOU
0t
For a Gr8ssen-character ¥ of F, we set

(s, 9, %X,8) = Eﬂ:;(m Ca NOUTS

In (23 , XK. Doi ond H. Naganums tried to prove a functionsl
equation of D(s, @, X, %) , and proved it for the cace where

the conductor of Z is one, and showed that if the maximsl order
of F is an Euclidean domsin, thé Dirichlet series ¢P(s)¢(s,X)
is zctually associated with a Hilbert cusp form over F and

the function

h(zl, zg) = Z- Cot Zexp(?xf‘( OZ;_‘:) )

ot=(u) € E,
E e

-7-



on the vroduct X H of the complex upver helf planes is a
Hilbert cusp form over F . Moreover in [14] H, Naganumz showed
thet a2 similer rcsult holds also for cusp forms of "Neben'" type
(in Hecke's sense) with a prime level. lNow, from our present
result for g = 2, it can be vroved that ((s) ¢(s, X ) is the
Dirichlet series asvociated with a Hilbert cusp form over a real
quadretic field 7F , and that Doi-Naganuma's construction is
"injective" (see text Th.3, Cor2) under the condition for F

in this paper. In fact, an effort to show this injectivity is

the msin motivation of our study.

(11) 1In (127, H. Jacquet studied the similar theme as
Doi-Nagenuma's, in a more general (adelic and representation-theoretic)
point of view, hence this result should have a close connection

to ours.

(TII) F. Hirzebruch [9][10] and R. Busam [l] gave a dimension

formula for the subspace SK(f) of Sg(7) consisting of elements

f euch thet Taf = (—l)K&f. Since there is an obvious relation

sim 5 () = 5 ( air (F) + (-1)*%aims: () ),

ovr recult cunrr be viewed weg ¢ gencrilization of thelr Tormule.



C.5. Hotation. As ucual, Z, Q, R and C denote

4

respectively the ring of rational integers, the rationsl number
field, the real number field, and tke complex number field. For
a rational prime p, Zp and Qp denote the ring of p-edic
integers and the field of p-adic numbers, respectively. For
every element 2z &€ C, we denote by 2z and Im(z) the complex
conjugnte and the imazgsinery pert of =z, respectively. We denote
Ty ¢; the empty set, and for a set S by !S) the cerdinelity
of & (however if =z & C, 'z’ denoteg the ordinary :beolute
value of 2z). TFor a ring § with thke unity 1, we denote by Sx
“he multiplicetive group of the invertible elements of &, and
by LS(S) the ring of 2 by 2 matricec over S, and ve put
GLQ(S) = Kg(i)x . If £ di¢ commutative, we denote by det s
(resp. tr s) +the determinint (resp. trece) of ¢ for ¢ e KZ(S)
and identify the center of PZ(S) with . For scubsets Sij

(1< i, ;<€ 2) of g, YC T, ()Y denotes the set

™

1

The suthor would like to express ris herrty thunlrs to

Iret, ¥. Dod ané¢ lrof, K, Hijikats Tfor their voluckle



suggestions and encouragement.
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§1. Definition of the space SS(T).

1l.1. Let F be a totally real algebraic number field,

which is a cyclic extension of the rational number field Q of

a prime degree £ . And let @ be the maximal order of F, E the

group of units of F and E+ its subgroup of totally positive

elements of E., We assume that the class number of F 1is egual

to one and that the index [E :E+] is equal to 2£. Moreover we

shall assume that F 1is a tamely ramified extension of @ later

We denote by ¢} the Galois group of the extension F/Q.

We fix a generator of ‘? , and denote it by ¢ . If we fix an

embedding of F into R and identify F with its image, then

all the distinct embedding of F into R 1is given by

a —> Gia for 7 = gt . let H be the compleX upper
2

half plane and H~ TDe the product of £ copies of H. ILet

GLZ(R)+ be the subgroup of GL2(R) consisting of all elements
g such that det g5 0 , and let GLQ(R)fZ be the product of £
copies of GLZ(R)+¢ Then GL2(R)f acts on Hz’ by

D
gz = (g2, ..... , &2y,

) @ i (i i
zY o+ vt at bt

s s a .
QY (1 _
gz = Do ) ’ g = ( i d(i)) ’
[§e] ¥
R e ¢

1 @n. ¢ M N .
for g = (8, ... , ga')‘GLgiR?% wnd zo= (£ 2? ¢’ as an

2o vy

analytic transformation group. Let GLQ(F)+ be the subgroup of

@

GL2(F) consisting of all element g such that det g is totally

~13-~



positive. With ¢,'s , we can embed GLQ(F)+ into GLZ(R)f by

g — ( 78y «v. 5 *g)

T3 i, i a b
where g = ( a ) for g =( : ) € GL,(F), . With
T3 T o/ c 4
c d
this embedding, we concider GLQ(F)+ as a transformation group
on HQ. Let K Dbe an even positive integer. Put
Y2
o i f2
iCgy z) = 11 (%% + a7 Flaet g
i=1
for g = (éi) e GLZ(R)E', z e Hz. Let [’ be the subgroup:

GL2(19)+ = GL2((9) N GLZ(F)+ of GLQ(@—). We denote by Sk(/7)

the space of all functions f(z) on ut

satisfying the following
conditions.

(s1) £(z) dis holomorphic on Hz.

(s2) £(1z) = (1, z)7 E(z) for ve[7.

(s3) f(z) is regular at every parabolic point x of [’

and the constant term in the Fourier expansion of f(z)

at x vanishes.

Let % be a fundamental domain of [~  in %, In the space

Sik(T7), we have an inner product given by

‘ —_ -k
L1 <ners [T for £, e s
N
. .. . dﬁiﬁfi’ .
where Z' = x+ + {=1y> , dz =TF“ 1,2 , and g(z) denotes

the complex o7t of g(z).



1l.2. TFor a place v of P, we denote by Fv the completion
of F at v. We shall use ? to denote finite places. ILet 6&
be the ring of » -adic integers in F}. And let FA and FAX
be the adele ring and idele group of P respectively. We denote
the subgroup EGL2(6‘+})><1T GL,(¥ ) of GLy(F,) by Vg Then
for any element « of GLE(FA), 2QF and aZEFa_l are commensurable
with each other, hence we can define the Hecke ring R(ZQF, GLQ(FA))
as in G.Shimura [187]. Namely R(?ng GLZ(FA)) is a free
Z-module generated by all ’z}z?w?/ZF (o e GZ2(FA) } with a
structure of ring ag well. And in our case R(?QF9 GL?(FA)) is
a commutative ring. Now we define a representation of R(?IF, GLZ(FA)>
in the vector space Sk([7). TFor a @QFndouble llFQZHF, by the

assumption on F, lﬂFa P%,f\GLg(F)+ is a | -double coset. Let
d
ZQFGZQF/”\GLZ(F)+ = 3;4 gyr7 be a disjoint union. TFor f of

Stc( [—?)? put

d
(e V) (2) = 53 3Cey ™, )0y 2)
V=

then T(?[FQYZF)f ic also contained in Sg([7), and T can be
extended to a linear mapping of R(;QF, G12(FA)) into the ring

of endomorphisms of Sy([7). It is actually a ring homorphism,
and gives a representation of R(?iF, GL2(FA)) in Sep{[7).
T(?iFaZQF) is a normal operator with respect to the inner product
given by (1.1.1) and R(2%, GLQ(FA)) is a commutative rin.:,
hence there exicts a basis of Sk(f7) concisting of conmmon
eigen-functions for all T(?QFQ7HJ (Es]).

Now we define another linear operator Tg in Sg([7). Iet



T be an automorphism of HL given by

] ¢ (1
(= oo, 28 = (52, cee 20 2

(élz cee 9 2k3 S HI. Then as elements of the transforma-

for z =
tion group of HQ, T, and g ¢ GLg(F)+ satisfy the following

relation,

(1.2.1) T,g = “al, ,

a
a b
where ‘g = (ob "d) for g = (i 3) of GLZ(F)+. For f € Se([7),

we see easily f(T,z) is also contained in Sy([”). In fact,
the condition (£1l) in the definition of Sp(]”) is ocbvious. As

to (s82), for Y e[’ we have

o7 1 GFa
(T~ Yz) = £(2.( “v2Y, ... , "FvZY))

(222 L., 9yt

1l

T (%Y o« dWye(#2) 22 ..., 3D

i (v, z)7 (T 2)

Hence T(T, z) also satisfies (S2), The condition (S3) is easy
to see in our case., Actually, by the assumption on F there
exists only one cusp up to [ =~egquivalence and we may take

(1o, ... ,V-fes) as a representative. ILet & be the @ifferent of
the extension ¥/Q. Then f(z) has the Fourier expansion of the
form

f(z) = Z;(NUG S exp(QﬂFﬂ(wﬂxir + ...+ %™y
ct Qg =0 ‘ :

Mo

-14—



y Where in the summation, ({ runs through all the integral ideals
of F and f& runs through all totally positive elements of F

such that 0t/g

(NJ. Aand  ¢(r)'s are the Fourier coefficients.
Then the Fourier expansion of f(T,z) is of the form

f(Tpz) = %; c() m}Z: exp(ZKJ:T(qu£2;+ . +Otﬁtélﬁ)

G
My e

Hence the condition (S3) is obvious. For f e Si([7), put
(Te-f)(2) = £(T,2)

, then T, defines a C~linear operator in Sp([7), and T,
obviocusly induces an automorphism in Sk ([ 7).

¥eking use of this operator T and the operators T(ITFGZHF),
we define the subspace Sg([7) of Sc(/7) as follows. We
denote by S(]”) the set of all elements of Sk([7) which

satisfy
(1.2.2) T-T(e)f = T(e)T,f ,

for 211 e ¢ R(?lF, GLZ(FA))‘ Then it is easy to see ()

is a subspace of Si([7). We show that Sr([7) 1is stable under
the action of R(?IF, GLZ(FA))' Extend the automorvhism o to
Fpo GL2(FA) and R(@QF, GL2(FA)) naturally, and denote it also

by ¢~ . Then by (1.2.1) we see easily

O,*I

(1.2.3) TT(e)f = T(C e)T f

for f e S(]7) and e ¢ R(?ZF, GLZ(PA))' If f 1is contained

in 8,.([7), then for any e and e' ¢ R(?ZF, GLQ(FA)),

-15~



To-T(e' )(T(e)f) = ToT(e)T(e')f

(% )T T(e" )f

(> e)T (et )Tosf

I!

T(e')To(T(e)f)

Hence T(e)f is also contained in SSi(]7), and we obtain a
representation of R(ZlF, GLZ(FA)) in the space Sg([7). We
denote this representation by TS‘

In the rest of this sectioun, we give some preliminary

consideration on this representation.

1.3. First we make some remarks on the representation T.
It is known that the Hecke ring R(?QF, GLg(FA)) is isomorphic
to the t T juct of the Hecke rings R(GL,(&), GL,(F3))
o} e tensor product of e Hecke rings { 275 GLy(Fp))

with respect to GLz(éé) and GL,(F3) by the correspondence,
2/7::(1 ?71,1_; > ® GLg(é*y)a;GLg( 0?) ,

where 2z denotee the p-component of geGLQ(FA). And it is also

knovn that R(GLE(Gy), GL2(F;)) is generated as a ring by the

BL,(€g)-Gouble cosets  GL,(E3) (T £)6T,(8,), GL(E) (T ,)6T,(0))

;[“I
and GLT(@j)( Tﬂ)GLE(éF) , Wwhere X ig a prime element of
c {

&;. We see easily that the double coset of the form 7I1Tl,as,

with achx
Y

£

tation T 1ie determined by the restriction of it to the subring

acte on Li([”) as an identity, hence the reprecen-

RI(QZF, GLZ(FL)) of R(?TF, GLZ(FA))’ which generated by the

16—



double cosete »ypaly such that the right MZ(&F)—ideal
/'\ai}\';g(éf) is integral. For an integral ideal ¢l of F, we
denote by T(rt) the sum of all the double cosete U.a? such
that the right M,(¢)-ideal N a3M,(€3) is integral and of the
norm 9L, Then by the well-known formula for the Hecke ring
R(?/TF, GLZ(FA))’ T is determined by the action of T(U for all
integral ideals (1.

Now we will describe the space Sl([”) using T(v. We
note that TS(T(n)) and TS(T((}OL)) are equal to each other as
operators on Sy([7) for any integral ideal ¢z. This is easily
seen by (1.2.3) and the definition (1.2.2) of S(I7). As
remarked before, there exists a basis of Sg([”) consisting of
common eigen-functions for all T(e), and for a rcomrson eigs=n-func:i- T

for 2ll T(e), we have the following,

Lemma 1.1. TLet f be a common eigen-function for all
operators T(e). Then f ©belongs to S([7) if and only if
the eigen-value a(pr) of £ for T(T(r)) is equal to that
aC®n) for T(TCrz)) for all integral ideals g7 .

Proof. TIf £ TDbelongs to S,(()“’), then by the above remark
a(tl) idis equal to a(yl). On the other hand, if a(s) is equal
to a(%t), then by (1.2.3) f satisfies the condition (1.2.2)
for T(T(P)), hence also for all T(e). And f Dbelongs to
S x(]7). |

Corollary 1.2. Se(T”) is the cubspace of Sx([7) generated

by the common eigen-functions for =211 T(e) such that the

-17-



eigen-values for T(T(v) and for T(T(%r)) are equal to each
other for all integral ideals (L.

Proof. We note that there exists a basis of 5,([7)
consisting of common eigen-functions for all Ts(e) in the same
way as in the case of Sg([”). Hence our corollary easily follows

from Lemma 1.1.

Let f Ybe a common eigen-function for all T(e). Then we
see easily that f satisfies the condition a(mn) = a(®m) for
all the integral ideals ¢7 if and only if f satisfies the
condition a(;) = a(f?) for all prime ideals 7 of P such
that 3 #°? . For a prime number p which decomposes by the

extension F/Q, let p = ;l .o ?ﬁ be the prime ideal decomposition

in P. Then the azbove condition is eguivalent to that £
satiefies a(®y) = ..... = a(y) for all p which decompose

by the extension F/Q. This fact shows that the definition of

EBK(f’) does not depend on the choice of a generator ¢ of %L .
‘The operators TS(e) in S4([”) are normal with respect

to the inner product (1.1.1), hence they generate a commutative

semi-simple algebra of operators over C. Hence the representation

Ty 1is determined by all traces tr(TS(e)) of TS(e), and also

by all the traces tr To(T(/2)) of T (T(D)). On tr T4(T(0D)),

we can prove the following.

Proposition 1.3, Por an integral ideal pr of F, we have

(1.3.1) tr(Tg(T(01))) = tr(%I(T())) = tr(T(T(0V))Te-) .

Proof. First we note that in the space Sn(r’) ‘a common

-18~



eigen-function f for all T(T(s1)) is determined by its
eigen-values {a(m)} up to a constant. This follows from a
general result Th.2 of [I3], and can be proved easily in our case

in the following way. Let

£(z) = Yo Y, expCua(S b))

oL W =r/9
M>>0
be the Fourier expansion of f at the cusp (Fico, ... s yT100 ).

For an integral dideal Z}, let {C'(mj} be the Fourier coefficients

of T(T(H))f. Let EBCG)A be the union of all double cosets in

2 - . U @ o
T(&). We see that :;LE)A(\\GLQ(F)+ = () (D=5 b med.d 0O a
ax»0, d>»0
is a disjoint union. Here a and b are totally positive
elements of & such that (a)(d) =& and run through a complete
system of representatives of the equivalence classes with respect
to the relation X~ X' & x = X'e for some e &€ E. And

b dis an element of & and runs through a complete system of

X . — 5 P(b
representatives of @ mod.d. Since g exp(-=2wrF1)  (+—))
d
b mod.d

is egual to N(d) or O according as (M/a)§ is integral or

ct, we obtain

=]

22 L G
TTe R ST S E ) -
rltng O yooort

In this formula taking 0T to be (1), we obtain

¢ (1) = N T .

-19-



If f is an eigen-function for T(T({)) with the eigen-value

a(&), then this value is equal to a(>)C(1l) and we obtain

(1.3.2) C(&) = N2 a)e(1)

Hence if f is a common eigen-function for all T(T(ot)), all the
FPourier coefficients are determined by the eigen-values a(%)

up to a constant, hence f is determined up to a constant. Now
if f & Sg(]’) is a common eigen-function for all T(T(P1)) with
eigen-values a(fl), then by (1.2.3) T-f is also a common
eigen-function for all T(T(f)) with eigen-values a("fL). Hence
by Lemma 1.1, f Dbelongs to Sg(/7) if and only if f and T,.°F
have the same eigen-values for all T(T(o1)), and then by the above
remerk I and Tof differ only up to a constant. From this it
follows that f is an eigen-function alsc for To, and that To
transforms SSi([7) dinto itself. On the other hand, if a common
eigen~-function for all T(T(s1)) does not belong to Si(]7),

then Tef Dbelongs to a eigen-space different from that of £
with respect to the representation T, and it is obvious that

T,-f* also does not belong to SSi([7). Hence the traces of the
restrictions of the operators T(T())Ts and T.T(T({1)) on the
orthogonal complement of SS,(/7) in S,(/[7) with respect to

the inner product (1.1.1) are both egqual to zero. Since a common
eigen-function f e Sg(/7) for 211 T(T()) is also an
cigen-tunction for T¢ and T.;e is an identity operator in

Sik([7), there exiets @ £-th roct of unity ¢ which satisTies

Tef = 3f .
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If it is shown that § is equal to 1, then for a common
eigen~-function f for all T(T(,k)) with the eigen-values a(/)

of SSk([7), we have
Ts(T(JL)>Ta'f = T(TTs(T(VL))f = a(ﬂ)f

and our proposition will be proved. Hence we show § = 1.

Actually 1let

1N 1\ — U3 (1) .
f(z) = 2, clon) £ expenii( ) ')v\z“ ))
o (o =1/
Mo> e

be the Fourier expansion, then

TE(z) = 3, o) ), expCrm T e L TPy
48 (,U:ﬁ/'}
H>>0
= Z, c(%) Z exp (- 7 Z.U'T{‘ﬂ'z(i’ 3 .
& Qo= 0y
pmo>e

If f is an eigen-function for T4 with the eigen-value % .

then it holds the following
o) = ¥ clon

for all ideals such that °pL = 0L Taking (L to be (1), we
obtain c(1) =§C(l). Now if f dis a common eigen-function
for all TS(T(Ol)), we see by (1.3.2) that C(1) is not equal to

zero. Hence § is equal to 1 and our proposition is proved.

As a corollary of the proof of Proposition 1.3., we obtain

the following



Corollary 1.4. If f & Sx(/7) is a common eigen-function

for all TS(T(D'L)), then f is an eigen-function also for T/

with the eigen-value 1. And we have

(1.3t ng(2e0) = (e R(T(0)) = tr(R(nE)T)

Thus the calculation of the trace of the operator TS(T(O'L))
in the space Sp([”) is reduced to that of the operator
T(T(p) )T or TeT(T(s7)) in the space Sk(f7). Tn the following

three sections, we ghall compute the trace of TS(T(DD) in Sg([7).



§2. Selberg's trace formula

2.1. As to the detail of what is stated in 2.1. and 2.2,
we refer to (16] 63, 4 , [17J§2 , and (6] Exposé 8, 10 .

For 2z, z! e.H[, put

—ﬂ. Zti) _ E,(i))—h’/
—_———— ’
2y-1

k(z, z')

I

then we have

k(z, z') = k(z', z)
k(gz, ez)ilg, 2)ilg, z') = k(z, z') .

We denote by HE((ﬁ) (resp. He ([') ) the space of all functions
on ut satisfying the conditions (S1) and (S2) in the definition

of Sp([) and

£l , = [Lluz, z)l‘llf(z)l?dz]l/2 < oo

Z)|—1/2

(resp. [Ifll, = SupZe]'ik(Z’ ‘f(z)! <o0 ) .

Then Hi(rﬂ) (resp. HY ([7) ) forms a Banach space with respect
to the norm || ”2 (resp. || lla ). The space Hy ([7) is a
closed subspace of Hi(fﬁ) and coincides with Sn(rﬂ). For
Z, Z' ¢ Hﬂ, put
K(z, z') = 2{: (z, ¥2')3(¥, 2') .
Ye[7, ¥ mod.E

Then X(z, z') converges absolutely and uniformly on any compact

set in Hfx HY. We have
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¥z, z') = 1(=z', z)

K(YZ, Yrz') J(Y; z) j(y'v Z') = K(Z, Z')
for ¥, Y'el| . And
K(z, z')

le(z, 2)| Y2 [k(zr, z0)[1/2

is bounded on I—sz He, and 1t holde

f(z) = dz’

<hﬁ—-1)£ ¥(z, z') f(z')
47 . k(z', z')

for every f € ,? . Tet _'-:(m_)A be e union of all the

double coscteo whick appears in T(00, and let  Z(00, AGL,(F),
;

= U ]'7 e = digjoint union. Plien we huove
y=1 7

Ll g -1 -1 -1

1 n-1 ¥(Te ey 2y 2) iz, 2)
tr(0(T (o) )Io) =\ d
r(T(7 (1) )Ty (4/1. ) jg (2, 2) §
j;

_ ()( Z (17 Y, 1) 301, 2) 35T, 7)

k(z, 2)

dz

k(z, z)

, a —
ﬂ—l)k he k(z, g,VTz) i(g,¥, Tgz)
- 4 Z Z e
V=1 YelI”, mcd.E ,

Congeouently we nave by (1.3.3)!
(2.1.2) 7

(0 (200)) = br(o ()T




We will calculate this integral explicitly following the method
of H.Shimizu ([16], [17)). In the case where (=, the
calculation of the above integral has been treated in R.Busam [1].
But there, the explicit calculation of them was carried out only

in the case where f= 2.

2.2. As we noted before, all the parabolic points of [~
are P—equivalent to the infinite point (@Fjeo, ... ,F129). We
take it as a representative of the [ =-equivalence class of
parabolic points. TLet F;)l) be the group of all Y e ]“7 leaving
(Floo, ... sficc) fixed and [ » be the group consisting of all
parabolic transformations in [“’021), Put Ve = {z € HE [ Im z(i)> d} ’
where 4 is a suitable positive number. ILet V. be a fundamental
domain of {"’O(Ol) in Uk . Then we may assume that % is of the

form

F o= 7 U v,

£ (Qf3). We note

where ? is a relatively compact set in H
that  |log(y%/y?)|  is bounded in V,,. This is easily seen
by the section 9 in {67,

In the following we write B = E’-'(‘YZ)AHGLz(F)Jr for the
sake of simplicity. We denote by ¢ GLZ(F)+, To > the group
generated by GLE(F)+ and T4, with the relation (1...1 .

Then we may consider the group (GLg(F)+, Te> acts on _HE.
R )

o9

Tet B;,l) (resp. (BT,) the set of all elements in B (resp.

BT-) leaving (Fw, ... 400 ) fixed, where we consider BT,

as a subset of (GLQ(F)+, To-> .Then we have (BT,,)D:,I}—_- BI;)l}T,.

25~



In fact, if an element gTy of BT. leaves ([0, ... ,5i1c0)
fixed, then since T, leaves (Fico, ... ,{F00) fixed, g also
does. On the other hand if g 1leaves @Fieo, ... ,{co) fixed,
then gT, also does.

To exchange the integral and the summation in (2.1.1), we

proceed as in [16) and 07). From (7), we quote the following

o] . 1 (&
lemmas. For g e GLZ(F), put g = &Y= 21) 21) Then we
d
have
Lemma 2,1. (Shimizu)
1) PFor ¢ >0, we have
&

1 1

L
o<
Z ﬂ @) dan | @ () <
g i

¢ /det g7) \c Jdet g7 + 1
\ /

Q) —

g running over all the representatives of ]”Ao\ B 0o o

2) TFor E)O, we have

jaet dV/2 1
Z., ﬂ- ( I(l) d(l)l <
€ running over all the representatives of B(U/ [—'

Using the above lemma, we can prove the following lemmas

which are analogues of Lemma 13 and 14 of 077.

Lemma 2.2, If m >4, the integral

e — e dg

Voa géB Bl} k(Zy Z)
¢ g mod. E

Z k(Z, T;Z)J(g’ ,I:;Z)
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is termwise dintegrable.

Lemma 2.3. For Z & Hz, put I(z) = [] Im ZY . Then for

Ik 2 4, we have

Z k(z, glz)ilg, Tz)

dz
v, geB‘b x(z, z)
2 k(z, g%z)ils, %2)
- 1im \%Sy ﬂ; < dz .
530 geBk}’ Vi I(z) k(z, z)
g mod.E 7

The proof of the above two lemmas proceed in a quite similar way
as that of Lemma 13 and 14 in [7], if it is noted that

|10g y¥/#9' | is boundea in V, eand that (B1y) Y= B e . ana
we omit the proof.

On account of Iemma 2.2. and 2.3. we obtain

(2.2. 1)( 'Tftr To(T(01) )= (;j;)ﬂ tr(T(T(m))Tofl)

§ i k(z, gq‘oZ)j(g’ T;Z)
- Z
g mod.E k(z, 2)

geB-B& ¢ F

x(z, gTz)ile, Tz)
+ lim ZZ: ' 8% ® - dz
s0 g mod.E k(z, z)
geBY e

k(z, g%z)a(g, i(g, T2)

+ e - -—— 47
v, I(z) k(z, z)
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2.3. Before going further, we study some properties of the

transformations of HY of the form gf, For g e GL,(¥) , put

oy, O G;
1 v
(2.3.1) Ng = g 2g ve. Eg

£
Then by (1-2y%(gﬂr) is equal to Ng as elements of the

transformation group of HQ. The elemerit Ng 1is of one of the

following types; i) Ng ¢ ¥*, i) Ng is elliptic,  ifi) Ng
is hyperbolic and no fixed point of Ng is a cusp, ir) Ng is

hyperbolic and one of the f xed points of Ng is a cusp,

v) Ng is parabolic, vi) Ng is mixed. Let 'ﬁl be the

)y (u)]
z ’

2 with P e o, Im

set of all f-tuples z = ZV % 0

Y [}

2

. _ L
or ﬁl'=Fﬁm. The set Hl - H is called the boundary of H .

If an element =z = (517) of H* be a fixed point of gT+

o o5 G W ¢
i.e. ( 'gégl lgzd), cee , EgdY) = éll cee z&ﬁ , then we
obtain

ad uy 27 _ 93 gy 400 “‘ngﬂ}

(2.3.2) 7 = Ngz— , z°= ‘?g ... 877 4 aee

Conversely we consider Ng e-GLQ(F)+ as an element of GLQ(R)+
by the.embedding o, cf F into R and assume Ng has a fixed
point 21 in T ac such. Define 2z for iz2 by (2.3.2),
then the element z = (27) of HY is a fixed point of gTy. .
Hence the set of fixed points of gT, in ﬁL is in one to one
correspondence with the set of fixed points of Ng as an element
of GL2(L)+ in H. And we see eaéily that the set of the fixed
points of gT, in Tt e contained in that of Ng in ﬁi. If
Ng is of type i), then the set of the fixed points of gl in

~
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G T
2 2
e o a EZy oo

HY consists of all the points of the form (z,
for some 2z € H and is holomorphically isomorphic to H. ITf

Ng is of type ii), the set of the fixed point of Ng conesists
of a unigue inner point of ﬁg. Hence gT.- also has only one
fixed point in ﬁQ which is the same point as that of Ng. If
Ng dis of type ii), the set of the fixed points of Ng congists
of 2£ points contained in the boundary of ﬁﬂ, and they are not
cusps., The fixed points of gT,. in ﬁ& are two points of them
and are both not cusps. If Ng 1is of type iv), the set of the
fixed points of Ng consists of 22 points contained in the
boundary of H-, and two of then are cusps of [~ . And if

7 = (ﬁm) is one of its cusp, then the fixed point 2z' = (ﬁp')
of Ng with 27 & 2Y for all i (15i¢() is also a cusp.

The fixed points of gT, are two points of EQ fixed points of

Ng. If one of the fixed point of gT~ 1is a cusp, then the other

is also a cusp. In fact, let z5 = (z;D)
@ @) (&7« £ Db Ay = .
= (zj y & ...Q“zj s eea 9 g”zg ), 25 «¢H-H, j=1, 2,

1) i
1% 72
for all 1. Hence if zq is a cusp of [7 , then z, also a

be the fixed points of gT, , then it holds that 2z

cusp. We show gT, fixes two cusps of [ if [% 2. Actually,

let 2

there exists an element h of GL2(F)+ such that

and Z5 be the cuspsof the fixed points of Ng. Then

h(o, ... , 0) = z, and hiew, ... 4560 ) = z, . Since h—lNgh
leaves (0, ..., 0) snd (@FA» ,..., i) Tfixed, it is a
diagonal matrix, The cet of the fixed pcints c¢f h_lgrhT7 is

contained in that of h—lNgh, hence it hold one of the followings;

ez)



i) b gTh(Ee) = Fio) , hTh(0) = (0) ,

ii) h_lgThQEOO) = (0) , h_lgfh(o) = {FHGoo) . fccording to

- * * .
i) or i), h lgTh is of the form (, 2) or (2 O) . Since

N(h-lgrh) = h-lNgh, in the case where /(% 2, h—lg“h must be of

the form (2 2). Hence the fixed points of h"lgTth- are

(0y..oy 0) and Fi0,...,fc0), and the fixed points of gTg

are two cusps of [, In the case where £ = 2,
. -1 . o * . .
it can occur that h ~¢h is of the form ( O) and in this

case, the fixed point of h_lgUhTyA are (0,Fica) and (Fico, 0).
Hence neither of the fixed points of gl are cusps of | . If
Ng is of type v), the set of the fixed points of Ng consists
of a unique cusp of |’. Hence gTy also has a unique fixed
point which is the same as that of Ng. We show that the case

vi) does not occur. In fact, we see by the definition of Ng

fo ey —
'Ng = Ng , ’Ng =g T(Ngg ,

O—ZNg - Ui-|g-l O_z-o.g—l . 9 -1

|
[0)e]
—~
=
®
joie}
V
N
0]

This show that Ng is not of type vi). Summing up the above

results, we obtain

Proposition 2.4. An element gT, of GL2(F)+T€» is of one

of the following types.
i) Ng ¢ F* and the set of the fixed points of gT, in H~ is
holomorphically isomorphic to H.

i) Ng is elliptic and the set of the fixed pcints of gl in
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H” consists of a unique inner point of H'.

iii) Ng is hyperbolic and none of fixed points is a cusp of [ .
The set of the fixed points of gT, in 'ﬁ¢ consiste of two
boundary points, which are not cusps of |7 .

iva) Ng is hyperbolic and one of its fixed points is a cusp.
The set of the fixed point of gT, in EQ consists of two
cusps of [7.

ivb) Ng is hyperbolic and one of its fixed points is a cusp of
[7- The set of the fixed points of gT,. in ﬁﬁ consists
of two boundary points, which are not cusps of .

v) Ng is parabolic and the set of the fixed points of gT.-

in ®! consists of a unique cusp of [ .

The type ivb) can occur only in the case where £ = 2.

We will czll an element g e:GLZ(F)+ is of type v , e, h,
h_, hy or p accordings as gl is of type i), ii), iii), diva),

ivb) or v) in the above proposition.

Now we define two equivalence relations ( E:J’E) and r
?

in GL2(F) by

(2.3.3) g T g e e=L17%Y, for 1el, few

(2.3.4) g e, for ve[T .

The condition (2.3.3) (resp. (2.3.4) ) is equivalent to that
gTg- = €Y 1gT, v for vel” , ¢ eE (resp. £ =1) in

(GLZ(F)+, Te7 - Let [7(gTly) (resp. [7(gT,) ) be the groun of
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all Ye [  which satisfy €Y 7Y = g for ¢e¢ E (resp. £ = 1).
Then we sece easily fx(gTv)E is a subgroup of [7(gT,) of
finite index, cince the 1ot Galois cohomology group HI(Q}, E)
of E is a finite group. For g e~GL2(F), put

(2.3.5)  Zo{e) = | x eny(F) | &% = xg }

then Zg(g) 1is a L -algebra and f;(gT) = Z¢(g)f\r7 . We will

study in §3 the equivalence relation

zo(g).

i)

ii)

N
~
7

and the Q —algebra

Here we give a direct consequence of Prop. 3.2., which

is needed for the later calculation.

Proposition 2.5. The notation being as above, let g
be an element of GLZ(F)+.

If g 1is of type v, fx(gTT)/l:%gT¢)f\E is a Puchsian

group of the 1t kind as a subgroup of GLZ(E)+.

If g is of type e, f¥(gTT)/ ﬁkgTo)(\E ig a finite cyclic

group.

If g is of type h, h,, or b, fz(gTG)/Ig(ng)(\E is a

iii)

free abelian

group of rank one.

type by, [(ele)/ Flete)nE = {1},

Before the computation of the integral (2.2.1), we prove the

iv) If g is of
following.

Lemma 2, 6.
in =,

v

o 0N

Let B
-

5;7

g\ 'V[\BO\W

be the set of all elements of type v

Then the integral

T\:r jat )

k(z, gT@Z)S-(gy
e —e—— dz

b k(z’ Z)

mod, E



is termwise integrable.
Proof. TFirst we show that the set vaBo‘Ql) divides into
a finite number of classes with recspect to the equivalence
relation ?%, given by g ﬁi) g' & 8= ™ 1er %y, for e ri”,
An element & c BVmBJ}’ is of the form (§ g) with a, b, d &€ @

and the ideal (ad) is fixed. Hence by considering the element

- A - SR
Y 1gﬂ3‘}y for a suitable ¥ = (o& 89) (el

we may assume that a and d are contained in a finite set.

with €, &' & E,

a b) 1)

For fixed a and d, g = (O a is contained in B~ By

if and only if Ny, (&) =1 and @, (j}) = 0, where
a
b b 0y,,2,.05,b oy a, 0, a J;.. a2, 0p,b
Topala) = ) - )G - R R T TR

Hence we may assume NF/Q a = NF/Q d , and for such .a and 4

we cee easily that the elements b of & which satisfy
30a/d(_d—) = 0 form a free Z-module M of rank (- 1. Now for
b'e , we have

a b+a’b'-b'd

' -1 '
& P T = br-vtey,

0 o 1

we see that the set % a’b' - b'a b € &L} is a Z -submodule

of M of rank ¢-1, hence it is a submodule of M of finite

index. From thig it follows that Bvﬁ Bé;l) divides into a

~
finite number of ~7u) —equivelence classes. Hence to prove
oy

our assertion it is enough to prove that
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N k(z, gT;z)i(gy, Toz)
g -1 o k(z, 2z)

is integrable, where the sum runs over all the elements g' of

the form v~ 1%y for some 71 ¢ T_f,él) modulo E. For g ¢
(Wl
B, M Bw s DU
[Mo(gly) = { ve Y | 1ris =g ]

, then we see that

Me(eny) = § (68 | =11, v'e6 , a% = braf

and that all b''s. of & which satisfy a%b' = b'd form a
free Z-module of rank one, And it is enough to show that the
function

k(z, 2z)

is integrable on a fundamental domain Uy / [4(8T¢) of [(gTs)

in U, . This can be verified by explicit calculation.

2.4. We classify all the elements in B with respect %o

the eguivalence relation = ((2.3.3)). We denotc the class
(PyE) ‘

containing g by [g). Let [7(gT,) be as in 2.3.,. Let igo}

be a complete system of representatives of the above equivalence
clacses in B, and for each 841 {é‘} be a system of representatives
of J7(g,TA\[7. We set
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?go=yf}

, then Eﬁgo is a fundamental domain of r7(goT¢) in Hl. And
we set

?; * _ ?F - Ldj «1»<¥Vas -

T €o by gofre-Bw

In notice of the fact that I(z) = I(z')lj(g, z')lS for z = gz' ,

by (2.2.1) and ILemma 2.6. we obtain

(2.4.1)

. 0 .
( 4Kr> tr 1(2(00) = ( 4r > s ((T(D )T,

-1

=1

A k(z, g, Trz)ilg,s Toz) .
— ————— 4z

‘g, Lgojm(BD:l)— B, )=} 7, ®(z, z)
(o]

K(z, g,%2)i(g,, Te2)

+ lim * ( ) dz
S0 . < ‘ k(z, z
801 [8,] (B =By )P\ ?:fgo
k(z, gOTq-Z)j(gO’ TO’Z)
+ s —ZLMw s-— 4z
- ( j k
s7ls e s, I(2)7 |35, 2)|Tk(z, 2)
In the following, we calculaté the integrals in (2.4.1).
2.5, 8, is of type . Let oi, ..+ 403 Dbe as in
. . a by 5 o3 O'Ta o‘| b
1.1., and for g = (C ) é-GL2(F)+’ put Y= g = (G}c T;d) .

By J7s We may consider Tﬂ(goTvQ as a subgroup of GLZ(R)+,

and then by Prop.2.5. [7(gOT¢) is a Fuchsian group of the lst
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kind., Let \C%ro be a fundsmental domain of r’(goTy) in H,
then as a fundamental domain of l—’(gng-) in HQ, we can take

the set FxHX...xH. Put

k(z, gOTV*Z )—J—( &y Ty-2 )
k(z, z)

dz

I(s,)
?I"go

kx(z, gOTcrz)j(gov TO—Z)
k(z, z)

dz

1

J FX X X H

-
z - z!

We set for z, z'€¢ H k (z, 2') = |[——— and for
© 201

e
g= (2 E) € GL2([R)+ s, z ¢ H, jo(g, z) = (cz + d)_K}det gl 72 .

And we consider the following integral 12 .

(17 |y (2) ) . (1 . t 20 ()
kO(Z“l, golz(‘?))ko(zz, gofzz@)ao(g Y, zQ’)JO(g 2 2 ax%ay?

| I, = 2 @ > — (2
JE k (2%, = ) v
, where zl2’= %2 . J———lytz). We see
k (é}flél’ P (82 @233z, (2 D) ah?
I = o) ’ o] v &2 )8, 1 2 NGy 2 -—X——%X
2 . k (22, 49) 2

As a function of 2© , f(z(Z)) = ko(zfz), go(ziza)) satisfies the

condition
£, = [ SH %y (zs 2)7 22(2)] 2 az} 1/2

Hence by Th. 3, kxposé 10, [€1, we have
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4 -1 ——
D (2 . (L Ay 2)
= —— k(g5 g2 N (et T, 2 (60 2

[
|

2 g1 ©°° 0
Ar (1) 1 (23 ] é}'ﬂ"E
- K——]_ ko(z 1 8o & 2 })J(go € 1 2 ))

By the same calculation for i »3, we cbtain

47 >£‘1§ x (2V, Ng 2M)j(ng,, 27) atlay”

I =
Py x (4%, 4Y A
JFo °
Since Ng € F’\, we see
s AT dxdy
I= « ) >
-1 v
Fo
47T £-1
- ( ) V(B (1)
=1
where v(H/[7(gT,)) is the volume of a fundamental domain of
M(eTe) din H with respect to the invariant measure fi_X_gl
y
2.6, g, is of type e. In this case, by Frop.?2.5.

7(gTs)/E is a finite group. We consider [”(gOT\T) as a
subgroup of GL,(R), by oy, and let ?o be a fundamentsl
domain of P(go’I‘O,) in H. Then by the same calculation as

2.5., we obtain

in



- 1 2y Dy o (D, D)
(4ﬂ )E:L k(2" Ngz )i(Ng,, z) dxdy

v .2
K—l ?o ko ( Z(l), Z(l)) . yl)

, where 20 = #1' 4 J:Ifl'. Since Ng is an elliptic element,

there exists a unique fixed point z_  in H. Iet 7, C be the

eigen-values of Ng and suppose that we have for 2z €H

Ng z - 2 Z - 2
(2.6.1) —0" "% el FT%
Ngoz - 2, z - Z,
Then we have
sk 1 ch-l 1-£
I= (f——— o (det Ngo) .
rK-1, ergoﬂr):EJ (—g
2.7. g, 1is of type h. Iet J, be a fundamental

domain of f;(gTv) in H. Then by the same calculation as in

2.5., we obtain

k(z, g,T¢2)i(8,» Toz)

I = ( ) dz
k(z, 2
C ?go
- (1’ (AN . (17 . €
<'4ﬁ>l 1 1 - ko(zl, Ngozl)J(Ngo, zl) dxldf
) » . 2
=1/ [Mleto) s Peg20)E] o k(41 1) b

) | J——
, Where Ao + J—lfl’. Ther exists an element h E—GL2(8)+

such that n t

Ng,h is of the form (2 g) with a, 4 ¢ RX, and
~ ~
then obviously a ¥ d&. By Prop.Z2.5., ]”(gOqu/ FTgOTv)(\E is
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a free abelian group of rank one, hence we may assume
‘7;0=h 3@0', where 3?0'={z=x+\ltiyeH|—oo<x<00,1<y<A}

with a positive number A. Hence we see

- 65 ) 6
= ~ —) —————7 dxdy
K-l) Mg, T) : (g Te)E] < (d) (z - &237)

[ o) lva o a ]_M<X<M a

1<y <A
= 0 .
2.8. g, 1is of type ha’ By Prop.2.5.,
f%(goT¢)/r%(gngJ(jE = 3 1} and HY is a fundamental domain

of [“(g,T,) in HE'. We may sscume that g T, is of the form
* * 3 .
(o «)Ts s since every cusp of [~ is T’'-equivalent to

(Fitoy, ... 5410 ) and then the fixed points of g Tg are

(Fleay, ... ,F1co) and (G‘a, 0—2a, eer 5, %a) with a e Fo. et

'l’o be an element of [~ such that YO(Floo, eee gilbo) =

(oTa, T2q, .., 924), Then the set of 211 Y e [’ which satisfy

-1 _ o7 Q> . . .y o

Y g, ¥ € By is the wnion ¥ [7, Uﬁm . We denote by h

the matrix (5 ) € GLy(F),, then h(Foo, ... ,Fice) = (Feo, ... ,/700)
and h(O, ... , 0) = (9a, ... , “2q), 2nd put g,' = h“lgoo‘h

and ¥ ' = h_l}'oh. Then g, ' is a diagonal matrix and ¥ !
(.J‘Tﬁbos,‘_)f:{(,\):(o)‘.y)O)V' And the

contribution I of the conjugacy class L‘goj to the integral

(2.4.1) is
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k (z, z)

k(z, go'TrZ)j(go'y T52)
I =1im s — dz
N h—-l q:r X o]

K(z, £, 12)3(8, s 52 )

dz
L ) I(z)° i -1h, z)| ®k (zy2)
gerﬂgoxg\nfihoﬁf héﬁvm gy 7%

We see that 2y, g(h™ 1y o) = L

U o =IKdl) and
geh” F’
1, Q@ g(h_ V) = Yo'h—lﬁ(d) = U'(dg) for some positive
g;e?o'h
2
|

numbers a; and d2 , Where U(dl) = f 7z & H

ﬂ'hﬂzi)>dl}
and U'(d2) = % z éIHQ j T Im(zi)/]zi[2 < d2}'. We note

- ~1
i(Yh, z) = 1 and j(YYéh, z) = j(¥', z) for ¥ e et

1
(2.8.1) I=1im - (I, + I, + I.)
830 [[(aly) : HerdE] 1 2 73
where [
k(zy go'TU’Z)j(go'y TG—Z)
Il = : - dz
I(z)sko(z, z)
k(z, g 'T ':'T'
- X (z, g,'2c2z)i(g," ,ﬂf?l o ,
'(d,) (z)%(r ", 2)f°
and .
Rt k(z, &'T Z)J(g ) TTZ)
Iy= q A
JEF=U(d;)-T () (z, 2)

We show the integrals I and

1 I, wvenish. For

= (g d)
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a
put /li = (a) . Then we have
- (€3]
Q) 1)
. y vee ¥ .
= (2\]_1) ]TA [« — K - Ic [.¢ z
1 C R M CSE W) A C sy W)
1 2
U(dl)
y Where 2 = 5, J-1 u'. Now we consider the integral I ',
Q @)

dx ... 4X
= oS o1 4 e (U
1 éb—ﬂlze5 (z Lﬂ ... zdLﬂlﬁu)
. E# 2

We note Trﬂ, £1 and 'Ki > 0, since g, 1s of type h_,

(N 2) 3) e a-
and put uy = )1 y Uy = X -22X 3 oeee 3 Uy = X = gx

then

1 dul ov o duﬂ

S W m+uuyﬂﬂ5)m+rﬂymg%> - (L ()

: _ 0 -1 T
hence I, vanishes. Put ¥ = (1 O) y 8" =Y

go“ is also a diagonal matrix, and we have

K(z, &,"Tq2z)i(8,"s T 2)

I, = dz
2~ =
-1 I(Z)SJ(Yéﬁ , 2)k(z, z)
U(d2)
since  ¥7lu(da,)' = U(d,) and 7Ty is of the form { . )
2 B 2 o = \C %/, we

see 12 =0 by the same calculation as above. Put
W= nb - U(a,) - U(dQ)', then
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TN
ke 1/ 2 (™)
= (2971) (A

D WK Qe dz
; (21-212‘2’) (2‘21;122‘3’) v (258 22Ty

In the rest of 2.8, we write ef[6]= exp(N-1 & ) for the sake

of simplicity. Then
=1 k=2
i/ 2 M9 (Msin &)
- ey I S

| (Gyelo) - Sel-8,1)" (5elby1-1, fer-031F .
Ut

1
X

. (?p_ e [B]]"’/Iﬂfﬂe E_&J_J )'C

af...d4f dby...46,

, where z" = (.e[§], end wl=€o<,91<7c, £i> 0,

Mein 64/, < TP, < ay/Tein &y , 110 | .

Put Yl = ?2/5;1 R
72 = ,?3/())2 R YY_—'l = R@/?l—l ’ and Y, = 3)1...?2 , then
/2 A ) "Mems)

o v.
I, - (2T () o

_ﬁ‘HL—« - W, (e[&l] M 7qel- (9— .(e[® _l‘j—- 1ty _qel ,91])

.
X

- = dY,...4%, 6. ..46
(LI —N(¥y-. 1, ) Fer-oyy )" H T BT

, where W, = §o<(9-i<ﬂ y 1<ish, 7550, 1€3sL-1,

Tsin &i/d2<)’ﬁ<dl/ﬂ'sin§i} . Put Wy= JOCe<T, 1gicd,
Yj>0, 1<3 s_é—l} , Tthen we see
KL /2

(2.8.2) 1. = (&3=I) (7))

37— o i(loe; dyd )Iq0 + 13"}
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~1 K=-2
(Y1...%.) (T sin 6)

I,' =
3 (ec&y - A% er-6,] )K co. (o063 = Ag-i Voo eﬁ—&zj)lc
W3 .
1
X S 3 le. . d?e_‘ d&l. . .d&ﬂ_(
(eE&;j—}lt()ﬂ oto?ﬂ-‘) e[."ﬁ]] )
and -1 s -0
(Yl"”yl-l) (T sin &i) log( Tl sin &i) B
13" - P P
(e[&lJ")«lyl e’:“(}z]) oo (e E&I—-J _Alﬁyg_g eE’QBJ)
s
1
X d‘Yl. e dYﬂ_\ dé‘bl. . d&ﬂ_(

—1 n
(eL6py = (Voo ¥ )" e=6,1)

To compute the integral 13', we consider the following integral

J.
N Ye_Ti(Sin 6[& )/C—2
J = K —1 K d@zdyl"
b o (el6 J= g Yo el=6,3) (el 3= (Y ... Y) " el=6,1)

Put 2z = x + J-1y = Y.y €L6,] » ‘then

00 k-2
J = 4
K Y i dxdy
J et - A7) (2= 2% .o Yy )) e l-6,])
0 -—ea
00 -2
- k-1 ¥’ |
- 2xFI(2r=2)1(-1) e dy

; 2/ I 2h-1
(Ge=1)1)"(Ag.) (24=Ty+el6, I A, = ALY, oo Tpy) Ter=t7)
A |
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(V=T (K-1) (eL63 = A e( ¥, 2. . Y,0) Te 16,1 )

AT !

By the same calculation for ((91, 71-1) , 2<¢ig -1, we obtain

T k=2

- (4775)2—’ (sin (91)
- K (L-i) 2-1 16y
(24=1) (re-1) (et 1= 2.2 €0-6,1)
0

Since '}T/’[l 1, we see

Put
n=2 2

-1 -
(‘ (Yyoou¥gqy) (T sin &j) log(sin &i)
\
)

Ji = / o A . Je { '~
LteLf,J- /.tﬂi eL"&gJ ) eee (€16 1- 2[714 et—s'lj )

o/ W3
1
X ay
. . -1 ke
(er&) — (¥ .. ¥y ) "el-5,7 )

. dY,_ 86y...d6,

1* R

Then we have

£
(2.8.3) I"= Z Jd

3 i=1 i
For Ji s, 122, we set I‘J = Yi+,j—1 y 1gJgL-1i,
Y, .= (v v, )7t Y. = 1-i+2 € <L -1
L-i+1 1°°°fe-1 ’ j j=g+i-1 ? $d% !
é:] = i+j-1 (Tesp- %J = /11"'3_1)’ 1¢ dJ \< f-i+1 ,
&3 = ﬁJ_i_},l_l (resp' 13 - /13_£+i_1)1 £_1+2 $J$£ .



1

Then, Ty = Triﬁ ) (?&...71_1) = v,y and we see
~ ~ -1 N =2 ~ =2
(71"'7£—1) (T sin &j) log(sin &l)
Ji = ~ ~ s ~ K T v ~ o~ ~ 149
(er@,3 - AN e(=6.1) ... (elbp3 = Yo el~841)
W3
1
X K 4Y,...a7, .af,...d8
4'~ ~s ~ ~ — ~ ¢ e — . o0 ﬁ
(er81- 2T, ... M) er-6,,1)  * £-17"1
where W, = {o<§i<7t, 1¢ig<h, 71>o, 1515,2—1} .
By the same calculation as in the case of 13', we see
Jl = eseoe = Ji , and
N At 7 r=2 -2
(2.8.4) I, = (4m) (sin8) log(sin®) N
__k(f-1) 7-1 as
(2v-1) (r-1) (ersJ- MAel-61)
0
By an explicit calculation, we see
i 5 ) 5
log(sink) (sing) = a6
(ers1- MA el~61)
0
' A
, if . > 1
S (27T (h-2) (1- T2, (T A, T
1 o am
(20=1)" (£-1) (T A;-1) i A<l
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Hence by (2.8.3) ond (2.8.4)

s i (det Ng,) if T4 > 1
- Lo Y .
(2v=1)" (e-1)"  |may| —[may]
Iy = ¢ w1
(47{') HTai‘ (d £ N |)l-)ﬁ/2 if TAL <1
7 AN : ev e, . i ’
(2y=1)" (e-1)"  [ay| ~[Tay]
ay 0
where Lgo = ( 0 di> . In any case, it holdse
) k-1 A
" 4T ( Min(l"ITaiI ’ Wdll) ) v 1-12
13 = —( (det’Ngo) .
K-1 | re; - T4, |
Since h—lNgoh = Ng; ’ det Ng, = det Ngé and we see that

Ta. and TTdi ore the ei

sy ", then we obtain by

gen-value of Ngo. We denote them by

(2.8.1), (2.8.2) and (2.8.4),

-
I

, ? -1
1 ATV (win((3l, D)) 1-k/2
- ~ ( ] ) (det Ngo)
[T (g,Ty) :Iﬁ(gOTq)E] K-1 (3 - 1l
2.9. g, is of type hy. Byv Frop.2.5, %(gqup)/f”(goTU-)mE

ie a free abelian group of

k(z, g,

rank one, We can show the integral

Te7) 3(gyy Tgz)
- {2

O(Z’ 7)
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vanishes by the same calculation as in 2.7. We omit the details.

1>
I

2,10, &, is of type p. We may assume 8y € B

since every cusp is [“-equivalent to (-i0y...,{ 0 ). We note

that if  Yg T.¥ € BS®

for Ye[  , then ¥ 1is contained in
rlfb. Since i(Y, z) =1 for Yel™ , we see that the contribution

of the conjugacy classes {go} of type p to (2.4.1) egquals

k(z, g T,z) k(z, g Tz) ‘

lim :Z: [ i v\ dz + g .___LE_QE;__‘ dz
50 k{z, z I(2)°k(z, z)

By ~ JFg R Ul N, /

o o
7 k(z, g T =)
- lin ), e ! 4y

530 . I(z) k(z, z) :

19 §go

Put g, = (8 g) and we consider the following integral I,

k(z, g,Tpz)
I-= dz .

1(z)%%(z, z)
S7%

Let M be the set of all element m of & which satisfy

am = md , then M is a Z-module of rank one. And we see easily
that r’(gOT¢) = {i (é T) | m e M} . ILet m  be a generator

of M, and 3% the subset of ngiven by

. . —_— . e . .
T = { (zQ)z P \l—lym) € H O(Xd',< [mo| y —00 <)%1)<oo ',}
2¢igd, ¥Ho, 1gidd
—47-



Then we may teke F, as a fundamental domain of fg(goTT) in

) o (& bi) 3y by
H. Put go—(o a) and /’11——.—, Hi—r. Then
i i i
we have
KL . k-2-s
. (2v=1) (T ™)
- . : i K
[M(8,T¢) & [(g, T )E] (#12 2,52 ) (ztz)_/bﬁelm)
1 @ ¢ Q@ @)
X o .y K dx...dxdy...dy
(z -4% —Hg)

Put Yl =9 Y2 =ﬂ,ly21 cee 9 Yl = 21--—/1(_,3’}7 » and

A= !’(1 + 21%2 + ... + 2’1"')11-1'}{,& . Then we see

KL

1 £-1 o 1 s
(2mFT)  (2071) (1) (L(k=2))t Imf 4 5(A14,)%. .. (Aq

. '/'11—|)S

(-1 [(e,2,) : e, 2,)E]

po o0 2—-s

-
(Tyy)

ay,..

. dy, .
Lk-1)+1 Y TE

Joo Yo (2FT(¥ 4. 4Yp) - A)
By come calculation, we see

& 00 )K—Q—S

W_STT Y,

A J, (2»Fi’(Yl+...+Y ) - 4)



= Te=1)+1

(2v=1)

/i
]];B(n-l—s, (£-1)(K-1)+1+is) (—2J?i>l+fs
' A

where B(x, y) 1is the beta-function. We note

(2(k-1))t & _ 1
im 7 . B{k~1-s5, (L-1i)(K=1)+1l+is) = —F5 .
530  ((K=1)1)" i=1 (e-1Y
Hence we see that the contribution of the conjugacy classes [go]

of type p to the integral (2.4.1) eguals

47 \ﬁ 1 1
lim (6———/ S e lmo(goﬂ
520 \jp-1 (g, 2% [r’(goTcr):r’(goT,r)E]
—V:i 1+fs
X A15(8,) (A (g ) A8 )% (A (g) e (8,007 <A(g ))
[0}

where for a representative g, of the form (g g) of a

. o
conjugacy class [g], Ai(go)=(ﬂ(a/d), Mley) = ‘(b/d), and

(2.10.1)  4(g,) = My(g,) + /’ll(go)ix42(go) +oeee + A8 Ap (8 ) Mele,)

And m(go) denotes an element of & such that ( 1 m(go)\
0 1

is a generator of (f*(gOTG))/lgIgOT¢)(\E

2.11. TFor i=wv, e, hy, py, we denote by Ci a complete
cystem of representatives of elements of type v, e, ha’ p in

B { = EIDfA{wGL2(F) 7 with respect to thc eauivalence

+

—49-



~

relstion ~ ((2.3.3.)).
(I ,z)
For i = p, we take the representatives from B,f,l). Then by

2.5, 2.6, 2.7, 2.8, 2.9, and 2.10, we obtezin the following

theorem.

Theorem 1., J} 1is even and Kk » 4 , the trace of TS(T(M))

in %K(f") is given by the following formula.

k-1
(2.11.1) w2 (200) = —— D, v(H/[ (1))
AT geC,,

1 Kl 1- &
+ Z S(Ng) (det Ng) e
geC, [[M(8Tq) ¢ B] (Ng)-Sig)

RN . o1 i
Z 1 (Min( | 2(5e), [{iNg))) -

1~
= (det Ng)
geCy [I(8lq) : [(gTy)E] |7(ng)- SiNg)]|

rim Y 1 lm(g)lﬂl(g)s(zl(g)ﬂgig))s e (Ag(8)e e A (eN)®
530 geCy 2T (M(&le) = [P(8T0)E]

_ 1+fs
( A(g)
Here v(H/|7(gT,)) denotes the volume of a fundamental domain of
M(gTq) in H with respect to the invariasnt measure axdy
yQ
For an element g of type e §(Ng) and 7(Ng) denote the

eigenvalues of WNg which satisfy (2.6.1). TFor an element g
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of type h_, 7 (Ng) and 6(Ng) denote the eigenvalues of Ng.
) . .

For an element g of type p in 3;1 , A(g) 1is defined by

(2.10.1) and m(g) denotes an element of & such that

(é ?(g) is a generator of f;(gTv)/f:(gTr)ﬂ E.

2,12, For the sake of later use, we rewrite the formula

(2.11.1) 4in Th.1 slightly. First we note that if g is an

-1
. _ /0 1 ro 1 .
element of type e in B, then g' = (3 O) g ( O) is
. . 0 1,7t 001
also an element of type e in B. Since Ng' = (l O) Ng(l 0
o 1 .

and det(l O) = -1 , it holds for some 1z 'e H

Ngtz - z_! —_— 3 2z - Z_'

0 -1 0
—— =7 (Ng){(Ng)  ——
Ng'z - zo' & z - zo'

where 71(Ng) and §(Ng) denote the eigenvalues of Ng which
satisfy (2.6.1). Hence if we denote by 7(Ng) S(Ng) the
eigenvalues of Ng!' which satisfy (2.6.1) for g', then
n(Ng) = ¢(Ng) and S(Né}==7[(Ng). If ¢, 1is a complete system

of representatives of elements of type e in B with respect to

.
S, then (g é) Co (g é) is also a complete system of

-~
(7,E)
them., Hence we see the contribution of elements of type e to

tr To(T()) equals
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1 (e )t 1- %

(2.12.1) & 2. (det Ng)
geC,  L(8Tg) : B] M(wg)- S(mg)
5 1 7 (mg)* ™ - &
+ —— e (det Ng)
geC, [[(gl¢) : E]  §(NWag) M(1e)
1 Y-l (T K1 1- K
- _-!2_. ?(Ng) ;U ,) (de'[; Ng) P .

60, [Mem): 81 20 &) -3

Next we consider the difference between the eqguivalence relations

~

~ and =~ , For an element g of B, the set of the
(r,e) r

elements in B which is =~  equivalent to g is equal to

(Ir,E)

S(g) = {Ey_lgﬁ! |‘ ¢ ¢E, },/ﬁ':,r’} . We consider the number of

N\,

%‘ equivalence classes in S(g). ILet Eo be an element of E

such as NF/QF,O = =1, For €¢E with NF/Q5= 1, put a.=§¢,
then a, determines a 1 cocycle %a-c}, Te0, of 0] in E.

Let {ad-é} , 1gig IHl(o}, E){, be a complete system of
representatives of Hl(O}, E) , and put a‘;L_) &i with &i & E.
Then we see that each element in $S(g) is %—equivalent to £g
o 1€isiE (g, BT .
For F, &' ¢ B, Suppose Y g% =fF'g with 7Ye[’ , then

[l

for some element ¢ of E = { Ei, EOE

Y ¢ ["(gTy). Conversely for ¥ € [7(gTs) and § e E, there
exist € ¢ E and E' ¢ E such that (£Y) " Eg%ev) =Frg . Ve
cee ¢' ie determined uniquely by ¥, and £ = £ if and only
if v e (',;(ng)E. Hence it follows thet $(g) divides into
2Hl( e, B)/[7(aly): F’(gTT)E] equivalence clusses with respect

e
=Dl



A~

to the relation ?5. Let C;, i=v, e, h, p, Dbe a complete
system of representatives of the elements in B (= S(NQA(\GLZ(F ) )
of type i with respect to :% . For i = p, we take (Ei from

]3(,(01> . Then we obtain the following theorem,

Theorem 1', The assumption and the notations being as in

1 K1

(2.12.1) tr T (T(D) = : > v B/fery) )
2lH (o3, B)| | 47 s
-1 w-J
1 1 (N ~ Ng) 1-/2
) e Slte (det Ng) "
ged, et)E : E] - m(e) - 5(e)
-1
— N , I 1-k/2
oy o) s ) T
get, [M(wg) - T(we) |
ey (@) M ()T ot (A (). AN [ 7T \ 1+
+ lim -—
S50 2 27 Alg)
P

where  v( H/fQ’J(gTU,) ) denotes the volume of a fundamental domain
dxdy
5 .

2
J

[a %4
of Jﬁ(gTT) in H with respect to the invariant measure
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£3. Twisted conjugacy classes

3.1. Let X Dbe a Dedekind domain, and k its gquotient
field. In this section, we denote by F one of the followings;
i) a cyclic extension of Xk of prime degree { , ii) the
direct product of J-copies of k. In the case of ii), we
consider k a subring of F by diagonal embedding. We denote
by & the integral closure of r in PF. In the case of 1ii),
G=r@®... ®r (f-copies). In the case of i), we denote by
U the Galois group of the extension F/k, and we fix a generator
o in the following. 1In the case of 1ii), we denote by o the

k-linear automorphism of F given by

T (Xl, Xpy eve s gﬂ) —_— (xz, s Xy Xl)
for (Xl, Xoy ove Xl) & P, and denote by q} the group of
k-linear automorphisms of F generated by ¢ . We extend the

map g to MZ(F) by component-wise action, and denote it also
by o .
For a subgroup H of GL2(F), we define an eguivalence

relation o~ in GL2(F) by

s

-1

(3.1.1) g ~ &' h™ g% = g for h € H
H

For an element g of GLZ(F), put

o1

g = g% ... Py

Since gqug)g_l = Ng , the determinant det Ng and the trace

-5 4



tr Ng of Ng are contained in k. For g e GLE(F), we set

24(g) = { x & My(F) | &% = xg }
and

X eMy(F) | (Wg)x = xWg )

z(Ng)

Denote by g +the map from MQ(F) to itself given by

-1
%G x — g%g

for x e—Mz(F). Then we see easily the following.

Lemma 3.1. Iet the notation be as above,
(i) zg{g) 1is a k-algebra containing Ng.
(ii) z(Ng) 1is a F-algebra containing Zg(g).
(111) For x & GL,(F), it holde Zo(x 7g%) = x'Z _(g)x and
Z(X_l(Ng)x) = x“lz(Ng)x .
(iv) The restriction 9g|z(Ng) of 9g to Z(Ng) induces a
k-linear automorphism of Z(Ng) such that the restriction
of Yg to F equals . The set of 2all elements of Z(Ng)

fixed by Ug coincides with 2z (g).

Remark 3.2, 1) If Ng is not contained in FX, then
Zg{g) = k + kNg and Z(Ng) = F + FNg , and in particular, Z,(g)
and Z(g) are commutative. Hence if we denote by f(X) the
characteristic polynomial of Ng, then £(X) is contained in
k(X], and it holds Z,(g) =~ kIXI/(£f(X)) eand
2(g) ~ FIXI/(£(X)) =~ kIX}/(£(X))®,F . The k-algebra k(X]/(f(X))

is one of the followings; a) k@ k , b) an unramified extension
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of k of degree 2 , ¢) a ramified extension of k of degree
2, d) k + kA with AP =0 .
ii) If Ng is contained in F, then Z(Ng) = My(F). If
we put agy = g, then a, determines a 1—c§cycle {at}, Te 0],
of £ in PGL2(F), and a class of Hl(Q}, PGLZ(F)). The k-algebra

Z,(g) is a guaternion algebra over k.

3.2, If we teke F as in § 1 and &2 , and k = Q, then
the definition of Ng and Zg(g) in this section coincides with
that in 2.3 ((2.3.1), (2.3.5)). Here we prove the results on
7z {g) wused in § 2.

Proposition 3.3, Let F be as in 1.1, and k = Q. Then
zA{g) M\ F is equal to Q, and it holds the followings.
i) If g 1is of type v, Z,(g) 1is a quaternion algebra over
Q and Z(Ng) = M2(F).
ii) If g is of type e, Z{g) 1is a imaginary quadratic field,
and Z(Ng) is a totally imaginary quadratic extension of F,
iii) If g 1is of type h, Z{g) is a real guadratic field, and
Z(Ng) is a totally real gquadratic extension of F,
iv_) If g is of type ha, Zgslg) 1is isomorphic to Q@ Q, and
Z(Ng) dis isomorphic to F @ F.
b) If g 1is of type h, Z(g) 1is isomorphic to F, and
Z(Ng) is isomorphic to F & F.
V) If g 1is of type p, Zq{g) 1is isomorphic to the Q-algebra
QA L, where AAZ =0, and Z(Ng) is isomorphic to the

F-zlgebra P @ FA.



Froof. The first assertion and the assertions i), ii),
iii) easily follow from the definition of type v, e, h, and the
result of 2.1,

iWQ In this case, there exists h é—GLZ(F)+ such that
h—lg“h and h_lNgh are diagonal matrices. Hence our assertion
easily follows from (iii) of Lemma 3.1.

iv,) There exiets h € GL,(F), such that h™'(Ng)h is a

diagonal matrix and g' = h_lggh is of the form (8 S) .

hence Z(h_lNgh) = (g g). Since Jg' induces in Z(h_lNgh)
. T, . (X O LTy O x O

the automorphism ELI (O y) —— (O X) for (O ;y)é

Z(hmlNgh). Hence Zg(g) 1is isomorphic to F.

v) We see there exists an element h é-GLZ(F)+ such that
g' = h—lgqh = (2 Z) with a, b € F, Hence Z(h_lNgh) =
. Since YTg' induces in 2(h 'Ngh) the automorphism

[<x -
gt e (g Iy > (X 9 for (g Yy ¢ 7(n lNgh), we have
0 9x X

£
|

= Q + Q(g é), and our assertion is proved.

3.3. We consider to classify GLZ(F) into ~ -equivalence
GL~(F)
2

classes, For a subgroup H of GLZ(F), we denote by ~ the
H
equivalence relation in GLZ(F) defined by

(3.3.1) g ~ 8 = §g-= h"lg'h for h «H .

Then we see g o~ g' implies Ng ~ Ng'. Hence N induces a map
H



from equivalence classes with respect to <« to those with
H

respect to e For H = GLZ(F) , we can prove the following.
Lemma 3.4. The map from { g €GL,(F) | Ng ¢ F } /
GL,(F)

to  (N(GL,(F)) - Y/ ~ induced by N is bijective.
GL,(F)

Proof, Since the surjectivity is obvious, we prove the

Dap is injective. Assume Ng; -~ Ng, , for g, 8, ¢ GL2(F).
GL,(F)

As det Ngi and tr Ngi are contained in k, there exists

an element of GL,(k GL,(T which is &= -equivalent
g o(k)  (C GL,( )) eatp q
to Ng; for i=1, 2 Namely there exist Xy, X, € GLZ(F)

"l - —l — — —l (o
such that x; (Ngl)x1 = X, (Ngz)x2 =g. Put g} = x,7g,9%;,

H

then gy' =z g; and N(gi') g for 1 =1, 2. Since
GL2(F)

TN(g;') = N(g;') and  N(g') = g, Wy )e; Tt = &y 'N(g el
g;' 1s contained in Z(g) = Z(Ngi'). And by (jy ) of Lemma 3.1
we see that the k-linear automorphisms Ugl- and “gg' coincide
with ¢ on Z(g). Hence Zq(gl') = Zg(gg') and they are
contained in Mz(k) (C M2(F)). Since 2(g) is commutative and
T2(e) = 2z(g), N(g)') = N(g,') implies N(gy' 'gy') = 1. Then

by Hilbert's theorem 90 for k-algebra Zq(gi'), there exists

x € Z(g) such that gl'_lgz' = x oy , hence g' = xgg'“k-l .
This implies gq! o '
1 ad g s hence g ~

lemma is proved.



Iet B be a commutative finite dimensional k-algebra.
Then we can extend O to B @&F naturally, we denote it also

by . For x eB@kF, put

-1
NB@WB(M = x%...a X ,

Then NB@F/B (x) is contained in B. We call Ny @F/B

the norm from B®F to B. Then we can prove

Lemma 3.5. A4An element g of GLQ(F) - F belongs to
N(GLQ(F)) - P  if and only if the characteristic polynomial

f(X) of g belongs to k[X], and it holds
jag . . x
(3.3.2) X € Nyow/x ((K®F)")

, where K =k [XJ/(£(X)) , and X is the element of X
represented by X.

Proof., As remarked before, the characteristic polynomial
of any element of N(GLQ(F)) is contained in k[X]. Hence we
assume the characteristic polynbmial of g ©belongs to k[Xj.

If N(Z) = g and g' = x L

gx for &, X é-GLQ(F), then
N(X_lqu) = x_lgx = g' . Hence if g ©belongs to N(GL2(F)),

any element g' € GL2(F) such that g' -~ g also belongs
GL2(F)

to N(GLQ(F)). Now any two elements of GLZ(F) - F* which

have the same characteristic polynomials are AT')— equivalent
GL,(F
2

to each other. Since the characteristic polynomial of g Dbelongs

to k[X], there exists an element of M2(k) which is

~ —eguivalent to g. By the above remark, we may assume g
GL,(F)
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belongs to Nc(k) from the first. Put Z(y.= k + kg and

Z =F + Fg , then Zg=>K and Zx K®F canonically. The

map N induces a map from 72 to Zg, and this coincides with

the norm map from X&®@F to X by the above isomorphism. If

there exists an element g of GL2(F) such that N(g) = g ,
then we see as in the proof of Lemma 3.4 that T « Z and

Z2(8) = 2, and Z(Ng) = Z . Our assertion easily follows from

this,

By the above two lemmas, we can determine

{g € GLQ(F) | g ¢ N(GLz(F)) - Fx} /Gf;?F) completely.

Now we consider the elements g of GLQ(F) such that

Ng ¢ PLo1r Ng ¢ Fx, we see Ng < k©

03

y and N definec o mup

from § g « GLy(¥) | Ng e P}/ =~ to KX\ N(GL(F)).
GL,(F)
For a subgroup H and a subgroup H' of i we define an
equivalenee relation in GL.(F) ~ by
2 (H,H')
JH

g o g8 &= g=f£hlg'h for heH ¢ei

Then we can prove the following.

Lemma, 3.6. The map from {& ¢ GLZ(F) | g ¢ P* b‘* to

k%N (GL,(F))  dinduced by N is bijective. =t
Froof. TFor an element g of GLQ(F) cuch that Ng ¢ FX,

put ag= g and By = uqqéwpq for 4, 1¢i ¢g-1

inductively. Then faz}l , recy, determines a l-cocycle of

¢ in FGL,(T), @nd determines u class of H'(g, FGL,(F)). We
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see this map induces a bijective map from

GL.(F N X ~ t Hi(oy, PGL,(F)).
g e el (F) | Nge P*] /(GLg(F)’Fx) © % 2

Now the following exact sequence
1 —> 7Y —> GL(F) —> PGL(F) —> 1

induces a injective map from H' (4, PGL,(F)) to HZ(GF, F).
And we fixed a generator ¢ of 0], there is an isomorphism
~ ”~
from HQ(Q}, ) to Ho(y_, FX), where Ho(cg, ) is the
modified O-th cohomology group of U7 in F* and is equal %o
X’ .
k /NF/k(F

a map from % g ¢ GLZ(F) | Ng e FX},/ P~ « to
(GLQ(F),F )

*) (c.f. Ch VIO, N5)). On the other hand N induces

N(GL,(F)) M k"/NF/k(F"). Then we see the following diagram is

commutative,

j8 € 0L,(F) | Ng e 7¥] / &~ —F 5 w(er (7)) N k¥

J/ GL2(F) L

{g €6L,(F) | Wg < P}/ == ——— N(GL(F)) N K*/N, ,, F

S (GL,(F),F) [1

Hl(op, POLL(F)) s WA(gp, F ) 22 HO(q, ) = XN, F

X

X

For tow element gy, g, of -{g < GLZ(F) | Ng & FX} s assume

Ng, = Ng, .  Then by the above diagram g = En o
! 2 L (6L, (P),p¥) 2

hence there exist a ¢ F*X and x ¢ GL,(F) such that

= -1, o i ides =
gy = ax "g,"x . Taking N of the both sides, we see NF/ka =1,
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By Hilbert's theorem 90, there exists a'e€ Fx such that

-loy,,

a=a' , hence gy = (a'x)—ngGZa'x) , and our assertion

is proved.
From the proof of the above lemma we see

Cororally 3.7. The map from { g € GL,(F) | Ng ¢ el A
(GL,(F),F )

to N(GLZ(F))(\kx/NF/kFX induced by N is bijective.

Remark 3.8. i) If F is a field, the cohomology classes
Hl(@Z, PGL2(F)) are in one to one correspondence with the
isomorphism classes of quaternion algebras D over k such
that D @ F is isomorphic to M2(F). Unless [F: k)l =2,
D®F = N (F) implies D & My(k) , and H'(F
consists of only one class.

ii) If F is not a field, we see Hl(qp, PGL(F)) consists

of only one class, and N 7 = kx*. Hence

F/k
{g & GL2(F) | Ng ¢ FX} / = consists of only one class.

GLZ(F)

3.4, Let k and x be as in 3.1. iet B a finite
dimensional algebra over k. A subset /1 of B is called an
r-order if firstly it is a finitely generated r-module such that
Ak = B, and secondly it is a subring of B containing the
unity. If F is a field, @-order of a finite dimensional
F-algebra is defined in the same way as above. TFor g & GL2(F)
with Ng & F*, let C4(g) denote the set of all elements of

GLz(F) which are 2 =-equivalent to g, i.e.
GLZ(F)
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(3.4.1) Cq_(g) = {x‘lg("x | x ¢ GLZ(F)} ’
and for an r-order A of 2, (g), put
(3.4.2) Coleyn) = {X_lg‘rx [ x e GL,(F), Zr(g)anz((})x—l =A}.

Then Cg{g) dis the disjoint union L/{Cv(g, A) , where A runs
through a1l r-orders of Zg{g). Let U be the subgroup GLZ(&)
of GL,(F), then "U = U, and let Z be a union of U-double

cosets in GL,(F). TFor g € GL,(F) with Ng & Y, A anda 3,

put
(3.4.3) NMLle Z) = [x €GL(F) | e e 2] .
(3.4.4) Mg, 2, A) = fg eGL,(F) | g% e 2,

Z(g) nay(@)xt = A} .

Then {8, 2 ) 1is the disjoint union \.A/mu,(g, Z,A). For
g € GL,(F) with Ng € FX, we define Cg(g) and (g, 2 ) by
(3.4.1) and (3.4.3), and we modify the definition of C (g, 1)
and M (g, 2, /A) as follows, For a quaternion algebra D

over k, we define in the set of all r-orders of D an equivalence

relation by
(3.4.5) A~ A' — /l=,x"1/_\"x , Tfor x € D~

for &~orders A and A'. And for an r-order A of Z.(g), put

-1

(3.4.2) Colgy A) = {x77g% | x €GL,(F), Zq(g)nxMy(¢)x T A}

(3.4.4)" Moley 2, A) = §x e6L(P) | x1a% ¢ 2,

Ze(g) n o)t~ AT,
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Then Cg(g) = AL/N Colgy A)  and Mg, Z) = /}/ﬂmr(g, 2, N)

are disjoint unions. In any case, we see 1t holds

7(8) Molg, )0 = Molg, )  and 2{g) Mole, 2, AV

= Mqs(gy Z,A) . Hence Mo (g, =) and Mg, 2, A) divide
into double cosets with respect to Zq.-(g)X and U. We can

easily verify the following.

Lemma 3.9. Iet the notation be as above.
(i) The map from Cy(g)N 2 to Zq(g)x\ m g, Z,) induced by

the correspondence

(3.4.5) x~1

g —— 7z (g)x
is bijective.
(ii) The correspondence (3.4.5) in (i) induces a bijection
Coley AANE 2 20(e) \Mele, 2, 4) .
(iii) The correspondence (3.4.5) induces a bijection
Culer MNZ/ B 5 2elel\ ke 2, A/T

1

(iv) For x e:GLz(F), x—%4x; is an r-order of x ~Z (g)x = ZU(X—lgvk),

and it holds
WIV‘(X~18TX’ =, X_JAX) = X_lmr(g9 5’/1) .

- X _ - X -1—
The correspondence 2 (g) 8U —3 7g(x lgvk) (x 1g)U

induces a bijective map

Zq(g)x\'mAg, 2, N)/U ~= ZO(x_lg‘rX)\mv(x—lg"%, Z, xUx)u.
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3.5. In the rest of this section, we assume, besides the
assumption in 31,that k is & p-field of characteristic O in
the sense of f21) and that r ie its maximal order. In this
secticﬁ we denote by p the primec element of r, and in § 4 and

5 we use p to dencte a prime. Let v be the discrete valuation

of k determined by v(p) =1 . Then F ig one of the

followings; i) the direct product of f-copies of k, ii) the
unramified extension of k of degree 2, iii) a totally
ramified extension of k of degree £, In the case of iii)

we assume F 1is & tamely ramified extension of k. In the case
of ii) and iii), let 7 be a prime element of &, 2 be the
maximal ideal of ¢, and w ©be the discrete valuation of F
determined by w(x) = 1 . Tor a non-negative integer r, we
define the finite union Z=(Tr) of U-double cosets as follows.

If F dis of type i), put

Z2(r) = {g el (&) | det g e (pTr ) xxr’x - xr ™}
If F dis of type ii) or iii), put
Z(r) = g eNy(6) | det g en™6” } .

In the following, we calculate !Cv(g,'/i)m[{/ =~ | or the number
U
X
of double cosets  Zg(g) \ Mg, =, A)/U for Z = Z(r).
When F ie of type iii), i.c. a totally ramified extension of
k, we assume p = O . We note if the set M (g, 2(r), A) is

not empty , .Ng ¢ A4, hence Ng 1is integral, since Z(r) C 1\112((9») .
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3.6, First we treat the case where Ng & F. Let

£(X) = x°

- sX +n be a polynomial in rLX]l, g an element of
GLg(F) with the characteristic polynomial f£(X), and K(f) the

k-algebra kIX1/(£(X)). Then there exists a natural isomorphism
gé from X(f) +to the k-algebra k{g] given by yg(i) =g,

where we denote by k(gl the k-algebra k + kg. Let A be

an r-order of KX(f). We define a non-negative integer cq(f, r, A)

for f, r, and A as follows. If g & N(GLg(F)), we set

c{f, r,A) =0. If ge N(GL2(F)), put g = N with some

g € GLZ(F).. Since Z2(8) = klgl, Tg is an isomorphism from

K(f) to 2z4(g). Put

colfy Ty A) = 2B\ M, Z(x), f,)/u ]| .

Then by iv) of Lemma 3.8, this definition of cqif, r, A) is
independent of the choice of g and E. And by iii) of Lemma 3.9,
we see c_(f, r, A) = | ¢, (g, ﬂ%@ﬁ))/”)fﬂ(r»/i? I . As noted
in 3.5, if  MJE Zr), F,) ¥ ¢, then /] sg=1&.
Hence cg(f, r, A) = 0 for A which does not contain g. If
there exists € ¢« 2Z(r) such that Ng, v(n) = r, fr, or r
according as F is of type i), ii) or iii) in 3.5. Hence we
may compute cg(f, r, A) only for such £(X).

Let g and f(X) Dbe as above. Then g é—N(GLE(F)) if and
only if the condition (3.3.2) is satisfied for f(X). As to
the condition (3.3.2), we give some remarks in the following.

If F dis not a field, the condition is satisfied for all f(X).

Next assume F 1is a field. If K(f) is of type a) or 4) in
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i) of Remark 3.2, there exist a, B € k* such that
f(X) = (X - a)(X - B) . And the condition (3.3.2) is equivalent
to that a, B € NF/k(Fx). This is obvious if K(f) is of type
a). If K(f) is of type 4), put X = a + 4, then A% =0.

~ x e s . x
If X eNgopypp/p(e)((K(H)BF)T), it is obvious a € Ny, (F ).

If a ¢ NF/k(FX), put Ny, @ = a, and let B be an element of
F such that 'Trp, (/@) =1 . Then a + B4 e (R(£)®F)S
NK(f)@F/K(f)(a + BA) = ¢ + A . In the case where
K(f) dis of type b) or e¢) in i) of Remark 3.2, the condition
(3.3.2) is equivalent to that n ¢ Ny, (F) if K(£)OF is a
field, This is nothing but (Ll Ch XI, Th.4, Cor.3). If
K(f)®F is not a field, the condition (3.3.2) is satisfied for

all such f(X).

3.7. We quote the following result of H.Hijikata from [8].
let R be a discrete valuation ring, || a prime element,
P= TR its maximal ideal, K ‘its quotient field. (Our notation
differs from that of [ 8]) ILet g be an integral element of
MZ(K)’ not in the center X, with the characteristic polynomial

2

f(X) = X* ~sX+n. Let /A be an R-order of K + Kg containing

g, P a non-negative integer such that, [A: R + Rg) = [R : p1’ .

For g, put
Clag, A) = §xTgx | (K+ Ke)nx,(R)x T =A} .

We denote by GﬁﬂfR) the eguivalence relation in GLZ(K) given
2

by
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g GL;/(R) g = g=x"gx, for xé& GL,(R)
Then by Th.:2.2 and Cor.2.6 of (8], we have the following lemma.
Temma 3.1C., (Hijikata) The notation being ac above, then
C(g,A)mMg(R) / GTTZ/(R) consists of only one class, and a

representative of it given by
: T’
£(%) s-%

, where % ig an element of R which satisfies

f(3) = ¢ mod.PzP and 2% = s mod.PP .

3,8. Let ¥ ©be the direct product of f-copies of k., For

f(X) = X - €4 + n with s, n € r, and an r-order /A of K(f)
conteining ?; by Lemma 3.12 there exists g é~M2(g) with the
char.cteristic polynomizl f(X) such thet k[g][\Mz(gj = f%(d) s
where Wg ig the isomorphism from K(f) to klgl given by

q%(%) = g =g in 3.6. We consider g asg an element of MQ(B)
by the diagonsl embedding, then k[g](\Ng(OJ = ﬂ%(A) . For
suck g, there existe an element g of Z(r) such that Ng = g
if and only if n & p xX. For, only if part is obvious, and if
n G’P%IX, put g = (pl(g), 1, «.., 1) , where pl(g) is the

projection of g ¢ T.C‘Z(él) (= N (x)® ... @1\*12(;)) to the 1et

ccmponent,  Then it is obvious that & ¢ Z{(r) , N(g) = g and
Zg(g) = (gl . Tor this E and sn element x = (xl, cee Xﬂ)
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lgq—x ¢ = (r) y then XElXBy cee 9

eGLZ(F), x
' xf—_tlxﬁ, xz]xleMz(;{)Y. Hence if X—]‘@“Sc e Z(r), there
exist x' éGLz(k) ( C GL2(F)) and w € U such that x = x'u.

Assume kL’g]m(x'u)Mg(Q—)(x'u)_1 = ‘fg(/l) , hence
k[g]hx'Mz(G)x'_l = ‘j’g(/l) . Projecting this equality to the
1st component, we see kfg]nx‘Mg(;)x'"l = fg(/l) . Since

. s ‘ -1 P~
M2(;‘) is maximal order, by Lemma 3.10 we sece x' Tgx! GLQ(;‘_) g
and x' 1is contained in k[’ngMQ(g_)x, hence

_ - PO . r o AX ~ - ” Y S a rinnalsx
Mo, Z(r), 9,00)) C 2{e)U . Convesely 2q(g) U is obviousl

contained in M (B, =Z(r), ‘fg(/l)), hence we see e (f, r, A) = 1.

Thus we obtain the following proposition.

Proposition 3.11. Iet F TDbe the direct product of Z-copies

of k, f(x) = XP—sX+n a polynomial in rfX] with n ¢ p'r~.

Then we have
c(fy, v, 1) = 1

~S
for any r-order -/ of K(f) containing X.

3.9. DNow we consider the case where TF 1is a field. For
g eGLZ(F) with NZ & ¥ and an r-order A of Z, (&)
containing Ng, assume [, (g, Z(r), A) #% ¢ . Then there exists
X & GLZ(F) such that Zo(e)n XMQ((;)X;l .=_/1 . TFor this x,
z(Ng)anQ(&)x‘l is an O-order of Z(NZ), and if we denote it

by A, then /A satisfies

ANnzde) =N
(3.9.1) {
A D BLA)
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, where @[1] is the G=order generated by A. Define C(NZ, A)

in the same way as in 3.7, nemely, put

c(Ng, A) = § xIN(@)x | xecy(F), 2(Ng) Nuy(8)xt =AY} .

Then N induces a natural map from CV(E"A)[\Ei(T)//¢¥ to
U

\/_{/C(Ng, A)AM,(8) / 7§ » where A runs through all d-order of
Z(Ng) which satisfy (3.9.1).

In the rest of this section, we denote the k-algebra
k[X1/(£f(X)) by X for the sake of simplicity. ILet £f(x) = X2—SX+Il
be a polynomial in x[X] as before and put L = K®kF . We
define r-orders .AK(m) of X (resp. G-orders AL(m) of 1)
as follows. 1In the case where K is of type a), b), or ¢) in

i) of Remark 3.2, then for a non-negative integer m, put
_ m
(3.9.2) Ap(m) = + pAg
(resp.  Ap(m) = &+ )

» Where A (resp. AL) is the maximal order of K (resp. L).

In the case of d), for any integer m, put
(3.9.3)  Ag(m) =z + p"rIX]
(resp. /lL(m) = &+ 706IXT )

Then we gee that AK(m) (resp. AL(m) )} is r-order (resp.
f-order) of X (resp. L) and any r-order (resp. (-order) of
K (resp. L) is /lK(m) (resp. AL(m)) for some non-negative

integer m in the case of a), b), and c¢), and for some integer
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m in the case of d).

" For f£(X), let ‘)\1 be the largest integer such that
X/p"  is integral and §, be the integer such that
r[lr\f/paj:l =AK(‘)\2) . Then we see <x[X] = /lK(é\:L + (5\2) , and an

r-order AK(m) contains X if and only if 51 + 52 > m >0
in the case where X is of type a), b), or ¢) in i) of
Remark 3.2, and m < ‘91 + f2 in the case where X is of type
d) din i) of Remark 3.2.

3,10, Let P be the unramified extension of k of degree

L. Let f, K and L be as in 3.9. Then for an r-order /1 of
K, an &~order A of I satisfying the condition (3.9.1) is
uniquely determined by A, more precisely we can prove the

following.

Lemms 3.12, Let F be as above, and AK(m) and /lL(m)
be as in 3.9. Then

i) AL(m) M K = /lK(m) )
11) 64 n)] = Ag(m)

Proof, First we prove i) under the assumption of ii).
Assume /LL(m)mK = AK(m') for some integer m'., Then
/.\L(m) D (SL[AK(m' )]l , hence AL(m) D /\L(m‘ ) by ii), and m<m'.
But AK(m')D/LK(m) , hence m =m', and i) is proved. If
ii) dis holds for m = O, then it is obvious that it holds also
for any integer m. It is enough to prove that &[AK(O)] = A (0)
but this follows eacsily from the fact that F i1s an unramified

extension of k.
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Let g Dbe an element of GLQ(F) with the characteristic
polynomial f(X) = X°-eX+n with v(n) = dr . Assume there exists
an element 7§ of GLQ(F) such that Ng = g. For an r-order A
of X containing 3(/, denote by A the G-order G[A) of L.

Then by the above lemma, N induces a map from  Cy(g, /\.)ﬂ:-_—:(r)/%\’/
to  C(NE, AINM,(6) /. By Lemma 3.10, C(Ng, §,(A))NM,(8)/ 5

consists of only one class., By Lemma 3.10, there exists g' of
GLE(k) which has +the characteristic polynomial f(X) =and
satisfies the condition  k([g" (\Mg(;) = <fg,(/l) . Then we see
F[g]ﬂMQ(&) = ‘?g,(/_\) , where we extend lf{f, to the isomorphism
from L to Flg] naturally, and denote it zlso by "-fg,. Hence

e may take g' as a representative of  C(Ng, ?g(/“l))ﬂh’fz(&) /’;3 .
Let &' be an element of GLE(F) such that Ng' = g', then by
Lemma 3.1, we see B'e¢ Z(g') and N coincide; with the norm map

from 7(g') = Z24(8)®F to Zv(g') , since g'eM2(k) . We show

the following relation.

(3.10.1) Co(E, ¢ (ANNE(r) M {E c6L(P) | vg" = &'}
= % X_lg'rx 1 X&Z(g') ’ X_lgavx < (fg.(;\_)}

Since g GL;\(F) g , we see C(g, ‘f"g(/l)) = C,(g', ‘;}}g.(/l)) .

If HE" = g' for g"eGL2(F), by Lemma 3.4 there exists X-GGLQ(F)

such that 7" = x 15'"x . Since N&'= Nz", it follows

[
x ¢ Z(Nz') = Z2(g'). For X—J‘é':r}: with xe€7(g'), we gec it holds



Hence

Calg, (A~ |E €BL(F) | NE"= &'} = {x'&'%x [ xezle) ) .

1

By the way for x ~g'9x with x¢Z(g'), we have

g ox e 2(r) & xTlETx e My(0)
& x‘l‘g"’"x €M, (8) n2(g') = Cfg.(/—X)
, since v{(n) =/fr and 9z(g') = Z(g")
Put
Cp(8's 4, (1)) = fx1E%% | xen(g Y, xlg%x GCFg.(/—l)} .

, then CK(E;'9 fgiQﬂ)) is a subset of Cy(g, 9%04))f\53(r) and

the inclusion map induces the following bijective map.
= _ ~ — o~
(3.10.2) Cr(B'y g (A)) /C?g,(h_)x — Colg, g, (M) E2(x) /5

In fact, it is obviously surjective by (3.10.1), and we show it

. A . -1 = -
is injective, For two elements x; g'qkl, X, gﬂig of CK(g', gé(A')),

assume there exists an element u of U such that
. R

u Xy g'Uquu = xglg'qkz .  Then u—lNg'u = Ng' , hence u is
>< ~
shined S FOWELY ~TT — X i Ll 0 -1-, 0
contained in z_:\Ng'/[ \U = éj) ,(/\a) 5 and Xl g' Xl ?gﬁ)x X2 g' X2 .
For an element X of I such that NK@F/K(X) = X , put
- X ~1= —_
(3.10.3) M(L, v, N) = x| xel, x X% e A =£9[/U} .

Then we see in the same way as in Temma 3.9 that
c(g, ?‘,OX)L/ A is in one to one correspondence with
g <fg| (/’\)
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the double cosets KA\NV(X, r, A)/A" with respect to &” and

A%, We note if M(X, r, A) ¥ ¢ , there exists Xre A =6LA)

such that X' = x *X% with xeT” , and for such X', we have
X\ o —x‘ _ IKX 7z, —xl . .
| \n(X, », A)/A%] = \m(x*, r, A)/AY| . Hence by Lemmz 3.5

and (3.10.2)

Temma 3.13. ILet the notation be as above., If )?e; NK@F/K(Z)’
X

then c¢(f, r, A) = 0. If there exists an element of A\

such that (% = X% , we have

Nywr/x
C(T(f’ r, NA) = |KX\M(§§9 r, A)/Zx ’

where M(g\i‘, r, A) is given by (3.10.3).

b2

- 4~
by & and use the

In the rest of 3.10, we denocte

=

notation g to denote an element of such that NL/-K(’g) =g

We will determine the number of the double cosets
K\M(g, r, A)/A*. TFirst we prove some results on the unit groups

of &-orders of 1. For a non-negative integer m, put

Ix y m=0

et , m =0 )
(3.10.4) Up(m) = { Uy (m) = {

1+ym,m21 l+me,m>1

Then UF(m) (resp. Uy (m)) is a subgroup of & (resp. r*).
When K is of type a), b), or ¢) in i) of Remark 3.2, for

a non-negative m put

AL(0) m=o Ag(0 m=0

(3.10.5) Up(m) = Up(m) = 5
1+ 7L (0) myg 1+ pNg(0) sy |
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If X is of type 4), there exist e¢r and AeX such that

g =a+ 4 and Az = 0 , and put for any integer m

(3.10.6) Up(m) =1 +7%04 , Up(m) =1 +7p"ca .

Then UL(m) (resp. UK(m)) is a subgroup of AL(m)x (resp.,AK(m)x)
and satisfies ,4L(m)x = 0XUL(m) (resp. AK(m)x = 6“UK(m)). For
’\O 0}_
a J-module A, put H (¢}, A) = A“/NA , where
A% = {aenr |"a=a] and NA= {a%... " a | aeh }

(c.f. (157, Ch VIII). Then we can prove

Lemma 3.14., Let F, K, L,,AK(m), and /QL(m) be as in
Lemma 3.12.
1) (g, Ayl =1, den Agm) = Ny p (@) .

i1) B (g, Af@) = 1.

s, where m 1is a non-negative integer if K is of type a), b)
or c¢), and an integer if X dis of type d) in i) of .
Remark 3. 2.

Proof. First we show the following Sublemma.

Sublemma. Let UF(m) be as above, then
. [ 1. P -
i) ﬁo(lz}. Up(m)) =1 and ‘H:(g3, Up(m)) =1
er every non-negative integer m.
- 0
ii) H(O},}m)zo, and Hl({]},gm)=0

for any integer m.

Proof, 1) The assertion ﬁo(Q}, UF(m)) = 1 is nothing
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but((1°), ¢ch v, Prop.1). Since Hl(cl}, F*) =1 and wepsd”,
we see Hl(q , UF(O)) =1. For m2>»l, we prove Hl(ty, UF(m)) =1
by induction on m. Assume Hl(t}, UF(m—l)) =1 . TFrom the

exact segquence

1 —> Up(m) — Up(m-1) — Up(m-1)/TUp(m) —> 1
, we obtain the exact sequence

4o 1 1

1l , it is enough to show that

Since Hl(q-, Up(m-1))

Ho(cp, U(m-1)/Uy(m)) = 1 . By the way  Up(m-1)/Up(m) = (6/p)
for m= 1, and UF(m—l)/UF(m)ii Q{y for m » 2. Since @/y

ie a finite field, we have HO(u}, Up(m-1)/Up(m)) =1 .

ii) Since gm:@— as OJ-modules, we may assume m = O .
Then the first sssertion follows from({21l Ch VIII, Prop.4).
Since @/; is & cyclic extension of x/pr of degree l., we can
cshow easily that there exists an element a ¢ such that
G = Nar + %ar + ... + “far , where oy = qi—l .  The assertion
easily follows'from this.

Now we prove our lemma. If X is of type d), we cee

.dlhny o~ @xin(m) and UL(m):Z ™ ac QY-modules, hence

tle essertion follows directly from the sublemma. If X is of

type a), b), or c), we consider the following exact sequence

1 —> AU () — #*xUp(m) —> Ap@) —— 1

e ree GX(WFT(m) = UF(m) , end we have the following exact
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sequence.

B(ep, o%ug(m)) —> (3, Ag(m)") —> B (4, Up(m))

—s g, Fxuy(m) —> v, A @) ) —> B, Up(m))

since H°(%, Up(m)) 2= H2(s3, Up(m)) , by the sublemma it is

enough to prove ﬁo(o} , UL(m)) = Hl(v}, UL(m))

1. We prove

this by induction on m. First we prove for m = 0. If K 1is
of type a), AL(O)X o~ 6 x 3" , hence our assertion follows
from i) of the sublemma. If X is of type b) and (% 2,
or X is of type c¢), I is an unramified extension of K, and
our assertion can be proved in the same way as i) of the
sublemma. If K is of type b) and f= 2, L >~ F@ F and

we may assume o acts on F @ F by

g (as b) “___*9(Uh! Gé)

X
for (a, b) e FP@F , and /\L(O) =& x &. Hence our assertion
is obvious. For a positive integer m, we consider the exact

sequence

1 — UL(m) — UL(m—l) ———-a,UI(m—l)/UL(m) — 1

Assume ﬁo(q}—, UL(m-l)) = Hl(IZ}, UL(m—l)) = 1 . Then to prove
ﬁo(o}, UL(m)) = Hl(D}, Ui(m)) =1, it is enough to show

50y, U (m-1)/Up(m)) = H (g, U (m-1)/U(m)) = 1 . We show this
separately. We see UL(m—l)/UL(m) o~ (Al/g/lL)X for m=1,

~T77-



and 2~ AI/S‘AL for m» 2. If K is of type a),
A3y, 2 €/ @6@ , and if K 1is of type b) ana L% 2,

AI/SAL is a finite field. Our assetion for this cases is well
known., If K is of type b) and L= 2, AI/?AL is isomorphic
to &/g @ O/y and g acts on l5‘/3 @(9/y by

’a)

[ (a’ b) ame— (Q—bo a

for (a, b) ¢ 05 @ 0/3 . Hence our assertion for this case is
obvious. If K idis of type c), we denote by 75 the maximal

ideal of /LL and consider the exact sequences

1 —> 1+R/1+34;, —> (A1/3/1L>x — /e ’ :

Since (p/j/\L ~ Ayp s End L+@/l43Ap X Agfp , our
assertion easily follows from the fact for finite fields as in

the cage where - XK. is of type a) or b). Thus our lemma is

proved.
As a corollary of the proof, we obtain

Corollary 3.15. The notation being as in Prop. 3.1l4, we have

'ﬁo(cg, UL(m)) =1, and Hl(o}, UL(m)) =1

Ueing this lemma, we can determine cq_(f, r,A) for r = O.
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Proposition 3.16. The notation be as above, let F be

the unramified extension of k of degree £, and f(x) = X2—SX+n

be a polynomial in r[X] with v(n) = 0. Then we have

ce(f, 0, A) = 1

for all r-order A of X containing g.

Proof. ©Since r = 0, g 1is contained in A%, Hence by
Lemma 3.14, there exists & of OIA]" such that NL/K(g) =g.
Let's consider the set M(Z, 0, A). For x ¢I*, xeM(E, 0, N)
if and only if quwxg'é 6LA] . Hence we have x 0% e oIA)F

and NL/F(XNIOX) =1 ., By Lemma 3.14, there exists x' of @IAS

such that x 1% = %' 10%* . From this, it follows

M(g, 0, A) = K*GLAT" and cq(f, 0, A) =1 .

In the following we treat the case where r > 0. Let F
be the unramified extension of k with [F: k] =4 as above,
and f(X) = £°-sX+n  be a polynomial in rlX] with v(n) =/t .
We denote the k-algebra k(X]/(f(X)) be X as before. ILet Ii
and Jé be as in 3.9. Then if K is of type a), we have the

following.

Proposition 3.17. ILet the notatién be s above ;y assume K

is of type a), i.e. K > k@ k , and let a and B be two

elements of x such that f(X) = (X~-a)(X-8) . Then,
i) c{f, r, AK(m)) £ 0 only if 2|v(a), v(B) .

ii) If & | v(a), v(B) , then
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e (fy, vy Ap(m)) = 1 ym =0

N3B(1- =)
P , 0K m g &/2
Npm(l-N—%)
Ng&/z
};jﬁﬁ“ y 7L< m LRI+ S,
P
0 y ﬁ/“ +5, < m .

, where Ny and Np denote |[6/3| and |r/pr| respectively.
FYroof, By assumption, K is isomorphic to F @ F , and by

this isomorphism, we may identify g with (a, B) of FO@®F.

If we putb (a, B) = in (u, v) with u, v & &, then one of u

and v is a unit of & and v(u-v) = &2 . We see (a, B)GNL/K(L"()

if and only if ¢|v(a), £]|v(B), and i) is proved. Hence we

assume £ |v(a) and [Z|v(B). Then we see Xl = Min(v(a), v(B))

and /¢ H\l . Let (4, B) be an element of AL(m) such that

NL/K((E, B)) = (ay, B) . Then we see that (@, B) is of the form

51 /4

P (w, v) with ©, V¢ &, and that

mog &4+ w@T) < 54 + v(u-v) = 5/0 + d, .

Hence by Lemma 3.13, c.(f, r, AK(m)) =0 for m, m> aE/Z + 0y

T m < Hu o+ do s we see there exists

(uy, v) ¢ AL( 5'2) guch that NL/K(‘Q‘, ¥) = (u, v) . TFor, if

. ,
(u, v) e/lK(J‘g) y i.e. v(a) = v(B) , this follows from Iemma 3.14,
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and otherwise &, = C , and the assertion is obvious. Put
<

(3, B) = p"#(4, ¥) , then N ,(a, B) = (a, B) and

(o, B) ¢ AL( (5‘1/12 + 0’2) . Let's consider the set M((w, B), r, _AK(m))
An element (x, y) of 1% = (F@F) is contained in

M((g, B), T, ,AK(m)) if and only if (x, y)—l(‘d, 'B")O‘(x, y) € /xL(m) .
cince one of W znd ¥ ig a unit of & and w(W-—7) = 52 y

we gcee

_107

(x, v)7 (g, B %x, ¥) € N(m) &= w(x™ 72 -y loyw) > m - 5/4

1

&= v - 3Ty > on - g/

Hence for m , O {m § &/¢ , ¥((a, B)y Ty, Ap(m)) = KXAT’(C)X

-1 - “17
w(x "% -y Y) »y mo-~ &5/ &= (%, ¥) * (%, y) € Ay(m - &/2)

By Lemma 3.14, there exists (qr, v+) é/lL(m _ ‘E/Z >>< cuch that
(x, y)_lg\(x, y) = (u', V')_1¢(ﬁ', V') . Prom thie, ve gec eacgily
E((@, B)y 7y Ag(m)) = B (m - 5/ for m, /4 <m< &8 T .
Hence by Lemma 3.13 we have c (£, /1]5(111)) =1 for m=1,

and for O <m g §/4 ,

| AL (O / KA (m)* |

CT(i'9 r, /XK(m))
= 1AL (0 /A (T |/ A (O /g (m )|

Np™(1 - 1/np) / w1 - 1/mp)

5]~



For m, /i <m & &/¢ + &, , we have

Cg—(fr r, AK(m)) |KX,AL(IH - C."l/f)x/ KXAL(m)x'

1AL (m = 3 A3/ IA (= /0 T (|

N:;:;Yl/f/ Np&/ﬁ

If X is of type D), we can prove the following.

Propogition 3.18. The notation being as in Prop.3.17 »

assume K is of type b), i.e. the unramified extension
of k with [K:k]=2,

i) If L% 2, we have

C,:'.(f, Iy /lK(m)) = 7 1 . ] m = C

L Ve N

N (1 + 1/M7)

0<m £ &/8
No™(1 + 1/up) - vl

P

Powpirt

i S N T AR
i NP

\

ii) Assume f=2 . If r = & is odd, then we have

Cg—-(fs I, AK(m)) = . o7 * 1 , m=0

Ny™(1 - 1/N3)
(69 - 2m + 1) "Qm A , O<m\<(§i—l)/2
Np (1 + 1/Np)

0 y (0, -1)/2<m
-82-



If r = ‘5‘1 is even, we have

colfy vy Ag(m)) = ¢ 5 + 1 , m=0
Ny (1-1/N3)
(b‘l—-Zm-rl)———E———————-— O(m S 371/2
Np (1+1/Np)
Ngé_l/z
NpS/2 y &/2(m§/2 + 5,

O

, éi/2+6,‘2<m

Proof. First assume f% 2 , then 1L is the unramified
extension of K with [L:K]=( . By the assumption v(n) = fr ,
there exists an element g of AL(C‘) such that NL/K(‘g‘) =g .
By this note and Lemma 3,14, we can prove our recult for L% 2
in the same way as Prop.3.17, and we omit the details. Next
assume f= 2 , then L is isomorphic to F @ ¥ , and we may
assume F is diagonally embedded in F @ F and G acts on

F@PF by

o

g (x, y) — (%y, 9x)

for (x, y) e P@® F . Hence for (x, y)eF @ F,

NL/K(X, y) = (x%, %xy) and K = {(x, ax) | XéF} . TFor g,
there exists u of & such that g = p‘r' (u, 9u) , and g o=r.

Assume Jl is odd. If Z=(x, ¥) GAL(m) satisfies

Ny p(8) = & , then w(x) + w(y) = d; . Since Jy is odd,
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Vin(w(x), w(y)) < (5, - 1)/2 . TFrom this it follows

cy(f, T, Aﬁxm)),: ¢ for m, m >~(§i - 1)/ . 1f C<m ¢ (éi - 1)/2 ,

S —i

— m =\ _ . 5
put  E = (p"'"u, p) , then N ,(g) =g and & <¢Ap(m) .

Let's consgider the set ¥(g, r, Ay(m)). For (x, y)y of 1, we

see easily thut (x, y)—1§31x, ¥) e_AI(m) if and only if
Cﬂ—2m

0 Sw(x) -~ w(y) € & - 2m . Hence ¥(Z v, A(m) = (J K»%, 1)A(0f
- i=0

y, where the union is disjoint. Since

K\r*(p?, 1)4;(0) /A ()]

[AL(O)X/ALOnV( /’LﬁK(O)X/AK(myl , our assetion for Ei odd

is proved. Now ascume J. is even. If g = (x, y) of /ﬁl(m)

1
catisfies Nr/y(g) = g, then w(x) + w(y) = gy . I wiz) ¥ w(y) ,
then Nin(w(x), w(y)) < 51/2 R . Hence

m < &/2= 5/ +5, . If wix)=vw(y), put B = w2y, u)

4

3 N - , _ < w _ 9
with u;, u, of ¢*. Since w(ul u2) < V\(ul/u2 (ul/ug))

= v(u-"u) = Fo s m < 51/2 + 5, . Hence it follows that

c LT, r,,xK(m)) = 0 for m, m )-51/2 + (p . On the other hand,
Y i 1ot o / R - X
assume m < ﬁl/2 + &, 5 then there existe (ul, ug) of ;xl(éz)

such that NL/F(ul’ u2) = (u, Tu) by lemma 3.14, and put

= ‘;\i/: \ =) = o na sl oo 5
g=17 (ul, uz) . Then RI/K(g) = g and sy e,\I(‘l/Z + az)
(:,&L(m) . Tet's consider the set U (E, T, Ay(m)). et (x, ¥)
be an element of I cguch thet w(x) ¥ w(y) . Then (x, y) is
contained in M(7, r, AF(m)) if ¢nd only if

mo- §i/2 < wi(x) - w(y) S»Ji/Z -m. Jet (%, v} be an element

~B A~
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of I such that w(x) = w(y) . Then (x, y) is contained in

_ . . -1 -1
L(E, vy, Ag(m)) if and only if  w(x Wy -y u,x) > oo 3&/2 .
Hence for m, O £ m < 5i/2 , we have

Sy/2-m

(8, T, Ay(m)) = x(p*, Dag(0))

i=—(5,/ 2-m)

, Where the union is disjoint. And for m, 51/2 <m g 5i/2 + 52 s

we have
W(Z, v, Ag(m)) = KA (m - &1/2)"

Cur result for even follows ezsily from this, and our proposition

21

is proved.
If ¥ is of type c), we have the following.

Proposition 3.19. The notation being as in Prop.3.17,

cgsume K is of type c), i.e. a ramified extension of k with

[K:x] =2 . Iffr is odd, we have

el T, T, AK(m)) = Ngm

m ?

Np

\ o

0<m < (2,yl~+1—¢)/2z

, (251+l—ﬂ)/2f <m
ind if fr is even, we have

cvﬂf, r,,qk(m)) = Ngm

,
Npm



o1/ L

N3

W‘ ? ﬁ/ﬁ<m<§l/£+o"2
1Y

0, 5 +s,<m

FProof. "Since. K  is of type c¢), L' is an unramified
extension of K. Assume lr ie odd, ‘then 25 + 1 = fr and
(251+1—ﬂ)/2£ is an integer. By the assumption v(n) = Lr ,
there exists Z of A; such that NL/K(E) = g . Then we see

that p—b‘n »” (201 +l—£)/2fg

g and are prime elements of K

and L, respectively. And g e AL(m) if and only if

C gm ¢ (2a\1+l—1)/2£ , hence c(f, T, AK(m)) =0 for m,

-— ~

m > (2dl+l—£)/cﬁ . Let m be an integer such that

0

I

m g (231+1=Q)/ZQ and g be an element of AL(m) such that
NL/K(E) = g . Let's consider the set WN(Z, r, Ag(m)). We see
that for any element x of I, X'lé‘yx is contained in AL(m).

Hence M(g, ry AK(m)) = K"./XL(O)X . From this we see

- . - xi m,. M
e (£, Ty Ap(m)) = (AL(OY /AL (m)*] /1RO /Ag(m)™l = mgt/mp™ .
Assume {r is even. Then there exists u éAK(/O)K such that
g = pa_' u . An element g of I such that NT_/F(g') = g is
E/ﬁa

of the form &= p ~with T €A (0)Y . By the definition

—~ x - . — ™
of 5, me AK(52) but ég/lK(a‘2+1)x. Hence if & « AL(m),,
then m gg"l/,z + &p 5 and e, (f, 7, AK(m)) =0 for m > ()"l/i +J, .
B - 3 oy ' N (T =
y Lemme 3.14, there exists U of AL(")2) such that NL/K(u) =u.
N/l — '

Put g =7 u , then éeAL(m) if 0 <m ngl/_QJr(}‘z.
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Let's consider the set MN(Z, r, Ag(m)). For m, O < m < /4 ,

we see M(Z, r, Ap(m)) = KXAL(O)X- Hence if 0 < m < 5/¢ ,

Ngm/ Npm .

e ol £, 7, Ag(m)) = ALY /A () |/ ARl /Ag(m)™]

For m, §/¢ < m , we see

x € M(g, T, Ag(m)) & X oxp® € A (m) &= X1y € Ap(m - &7/2)

Hence by Lemma 3.14, we cee M(Z, 1, Ap(m)) = KA (m - 5,/2)

and cq_(f, r, AK(m)) = N}‘ﬁ/’e/Npé\‘/ﬁ‘ '

If K - is of type d), we have the following.

Proposition 3.20. The notation being as in Prop. 3.17,

asgume K is of type 4), i.e. K 2~ k + k4A with A = 0 .

Let a be an element of r such that H(xX) = (X—oz)2 .
(i) cq(fy T, AK(m)) £ 0 only if [ |v(a)

(ii) 1f [flv(a) , then we have

ool £, T, Ag(m)) = i Wttt m g =(-1) /e

0 , -—(,ﬁ——l)ﬁl/f < m

" Proof. Put g =a +A , then A° =0 and K=k + kA,
For any integer 'm, ‘AL(m) = @+07i4 and AK(m) =r +rpl
As noted in 3.6, g ¢ NL/K(LX) = a ¢ NF/k(Fx) , and

a eNF/k(FX) &> L]|v(a) in this case, hence i) is proved.

Assume { | v(a)’' and NL/K(@) = g with Zel*, and put
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g=x+y4 , where x, yeé&. Then we see NF/k(x) = q and

a®™r. . (y/x) = 1 . Since via) = o it followe that

w(x) = Ei/i and w(y/x) < —Ji , hence w(y) < ~(i—1)51/f .
This implies c £, r,,&K(m)) = ¢, for m, —(d—l)éi/i < m.

Let x Dbe an element of ¢ euch that NF/k(X) = a , ‘hen there

- (=D& 1/a . Put

It}

exists y €3 such that TrF/k(y/x)
g =3x+ yA , then NI/K(g) = g and g ¢ AL(_(E-I)éi/Q> .
Let's consider the set (g, r, Ay(m)) for m, m < —(ﬁ—l)ﬁi/ﬁ
An element x'+ y'4 of I* belongs to (g, r,,dK(m)) if and

only if (x'+ yk&)-lqix'+ va)(x + y4) éuAL(m) by definition,

We see

(x4 7'2) (x4 7A) (x + yA) € Ag(m)
= (x'+ ' A) %%+ yA) € Aplm - 51/2 y*

By Lemma 3.14, we obtain N(g, r, Ay(m)) = K‘AL(m - Si/ﬁ)x,

znd cqe(f, T, A}r(m)) - N?J,/'i/ﬁrp&/l .

3.11. Let F be a tamely ramified extengion of k of
degree g . In this case we assume 1r = C, WVNoreover if n 4—NF/k(FX),
it is obvious ¢ (f, r,/dK(m)) = 0 , where (X)) = ¥oocXan .
Hence azssume v(n) = O and n'éNF/k(FX> . TPirst we prove the

result corresponding to Temma 3.12.

Lemma 3.21. Iet F be a temely ramified extension of k

of aegree &, eznd 7, 1,;4K(m), AI(m) be as in 3,9,



i) If K is of type a), or b),

Ag(m) MK = { Ap(0)
i Ag(n)
and
ElAR(n)] = A7 ({n)
ii) If K is of type c¢)
Ay (m) K =g,ﬁﬁ0)
Ag(n)
and

(/(‘[/LK(H)J = ‘/ﬁ_L(L‘n + _’(_5__];

If ¥ is of type ¢)

A (m) K = L (0)

and

@lAK(H)] = /lL( on+l)

iii) If K dis of type 4)

Ap(m)AK = A (n)

ond

then

if m= 0
if
and

t

if

if 0

if 2n

hen
An-(
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Proof. First we prove the second assertions. It ic enough
to prove them for n = O as in the proof of ILemma 3.12. We can
easily verify them separately, and omit the details. As to the first
assertions we can prove in the same way ac Lemma 3.12. For
example, assume X is of type a), and for a non-negative integer

m, put  Ap(m)NK =/¢K(n) with a non-negative integer n.
Then éLD&L(m)f\K] =,4L(ln) , hence m <4{n . If wm £ ¥Un-1) ,
then /1L(m)‘D.AV(n-1) , and /ﬁy(n):)/lK(n—l) by the assumption
on n. This is a contradiction. In the other cases, we can prove
the first assertions in the came way and omit the details.

We define UF(m), Uk(m), UL(m), UK(m) as in 3.10 by
(3.1C.4), (3.10.5) and (3.10.6). Then UF(TH) (resp. Uk_(m))

LNRN

is a subgroup of & (resp. r*). And UL(m) (recp. Uy(m)) is
a subgroup of AL(m)X (resp.}AK(m)x) and satisfies

Ap(m)® = 9*Ur(m)  (resp. Ap(m) = ¢XUp(m) ).

lemma 3.22. Iet P, K, L, Ap(m), A (m), Uy(m), and Uy (m)
as gbove.
1) H(g, A(0)) ~ [ BexZg if K is of type a)

Zy if X is of type D), d)’or

type ¢) and £ % 2

1 if X is of type ¢) and
£= 2

y Where we denote by Zg  the cyclic group of order £ .
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1) HY(gp, Agm)) ~ 2, , for m>1 if K is of type
a), b) or c) and for any integer m if K is of
type 4a).

Proof. TFirst we prove the following.
Sublemma., Let UF(m) be as above,
o]
i) H'(a, UF(m)) o~ Zg , m=20
Y1 , m > 1
Hl( U {m)) =~ 7 m= 0
O;C 9 F — { _xﬁ 9 =
1 , m>.1
. oo my _ 1.5 (R " .
ii) H (g, 3 ) = H (9, ;@) =0 for any integer m.
Proof. i) Put &, =7 %%, then a, determines a
l-cocycle f{ar} , 7€¢%G, of J in /QL(O)X. It ie easily to see

yac)
Hence
easily
2 (g,
Hl(a},

Up(m))
U(1))

there exists

Put u

ramified,
mey assume

guch- that u

y

follows from the local clacs field theory.

=1 ,m>1
= 1, Assume
y €F* such

with some

1 mod.® .

it follows that

u with

u' mod.y .

zives a generator of Hl(Q}, UF(O)) and is of order £ .

A,
(g, Up(C)) & 7 . The assertion for HO(%, Ug(0))

We prove

by induction on m. First we show

b
NF/k(X) =1 for x:éUF(l), the?

that x = y“lfy , since Hl(tg, F¥) =1

integer i and u € &% then

Since the extension F/k ic tamely

£ Qdivides i. Since x*

uel”.

e pl%, we

there exists
1

y

For wu, uter”

Put y' = uu' then y'é.UF(l)
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-]
*Ty' . Henc

and x = y!'
Hl(ﬂf}-, UF(m)) =1 ifor

Ry the exact seguence

e Hl([} , U}‘(l)) =1 . ‘e assume

m2 1 , and prove Hl(u}, UW(H.+1))

1 — UF(erl) — UF(m) —_ UF(m)/UF(nHl) — 1

we obtain the exact seque

100, Up(m)/Up(mel)) — HI(F, Up(mel)) — B (G, Ug(m))

Hence it is enough to pro

this follows easily from
Now we cee I,'F(m )7 =

UF(“‘/ = .Uk LIIA/i] + 1)

¢ch Vv, &3, Cor.3 of Frop.©%

eacily Tcllows from ([:7],

Hl( eI, }m) =C ., Tut a., = ("% /)™, then ¢, determines

l-cceyele laz}, Te,

& <J-module in the follow
T(x) = arrx , then we obtuin another

o - T . .
by ¢ . Then 737 e isom

-1

X i—> 7T X for xe¢ ym

put };].—_\,};2:}L+v
i~

ena y = 2, x; . Theu
i=1

nce

A\
ve  HO((F, Up(m)/Up(ms1)) = 1 . 3ut

the fact (£, ‘Ui,(m)/UF(HHl)H =1

Uk(m/g) if Zim “and

if ¢tm . And the assertion

m.2 1 is an ecsy conseguence of(L'.Z 1,
.- . 20
). ii) The ascertion H (3, 3
cn vizi, §1, Prop.4 ). e prove
P
of ¢ in ¢*. Ve congider ¢ us

ing way. If we make J7 act on & by

orphic to & e {l-modules by the mup

1 3 gi(x) =C, for xel,
5=
(x) , . y X = x +o(x) + ...+ ofX
ve gee  g(v) =y - £x , hence

™)

}-module, and we denote it

x)

7(y/4) . tince Je¢”, it ic proved thet H'(g, FU) =

b4



Now we prove our lemma. i) We see ,QL(O)X;Q: G x 0°
if X 1is of type a), and X 6"‘x.AL(o)" if ¥ is of type d).
If X is of type 4d), AL(O) ~ as Y -modules. Hence the
assertions for such K follows from the sublemma. If X is of
type b)’ or of type c¢) and L% 2 , we can prove the assertion
i) in the same way ag& the sublemma, since I is a tamely
ramified extension of K of degree L. If K is of type c)
and A= 2 , two cases can occur, i.e. 1) L = K®F is a field,
or 2) L = FDF ., In the case of 1), I. is an unramified
extension of K, and the assetion can be proved in the same way
as Lemma 3.14. In the case of 2), the assertion is obvious.
ii) For m > 1, AL(m)x = o*Up(m) . If ¥ is of type 4),

X m

Ar(m)Y ~ ¢*x U, (m) , and UL(m)»ﬁz ? Hence our assertion

L L<

easily follows from the sublemmz. We assume K 1is of type a),

b), or c). We consider the following exact seguence

1 — ¢ NU (@) (= Up(m)) — 6% x Up(m) — A (@) —> 1

In the same way as in Lemma 3.14, it is enough to prove

H'(eg, Up(m)) =1 for m>» 1, since H°(gp, Up(m)) = (g, Uy(m))

=1 by the sublemma. Consider the exact sequence

1 ————)UL(m+l),———9 UL(m) ———9U1(m)/UL(m+1) — s 1

Since (lUi(m)/UL(m+l)l, £) =1 , we have ﬁO(WA, UL(m)/UL(m+1)) = 1.

!
[

Hence it follows from H' (g, Up(m)) = 1  that HI(%, Up(m+l)) =

and it is enough to prove it for m =1 . We see
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Ul(l) = Un(1) x UF(l) if X is of type a). Our assertion

for such X follows from the sublemma. If KX is of type b)
or ¢), we can prove it in a similar way as i), and we omit the

details.

Corollary 3.23. The notation being as in Lemma 3.22, then

we have HO(g, U (m)) = #Hg , vp(m)) =1 for my1 if ¥

is of type u), b), or c) and for any integer m if K is of type d).

The assertion Hl(qq Ui(m)) = 1 is ghown in the proof of
the above lemma, and the assertion ﬁO(Q}, UL(m)) = 1 can be
proved in the similar say as in Lemma 3.14 by using the above

sublemma. We omit the details.

Remark 3.24., If K is of type a) and m = 0 , a complete

system of the representatives of Hl(Q}, AL(m)X) is given by the

l-cocycles determined by a g
the other cases, that is given by the l-cocycles determined by

ag=70, 0g igl -1,

Now we determine c¢ff, O, AK(m)) according to the type of
K. Let F De a tameiy ramified extension of k wifh IFe k) =4,
and f(X) = X°-gX4n  Dbe a polynomial in r[X] such that
v(n) = C eand n eNF/k(F"') . We denote by K the k-algebra

k{X1/(f(X)) , and by X the class represented by X as before.

Let 5i and '§é be as in 3.9, then §i = 0 , since we assume
v(n) = 0, and rIX] :'AK(éé) . Te denote
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by X; , 1 E1ig I, +the characters of k™ corresponding to the
extension P in the sense of the local class field theory.

Since F is a tamely ramified extension of k, they induce the
characters of (r/pr)‘. We denote them also by X 01 sisd,

and assume x is the identity character. Then for xegr*, we

have
x ¢ N (1) &) B2y = g
1=

, where ¥ is the class of r/pr represented by x. If X is

of type a), we have the following.

Proposition 3.25. Notation being as above ; assume K is

of type a), i.e. K >=2k@®k. ILet a and B be elements

of r such that f(X) = (X~a)(X-B) . Then, we have

£ £
L2 xg(a) = £, X (B) 5 0<m<s,
i=1:

i=1  *

CO'(fy O, AK(m))

O 752<m-

Proof. It is obvious that there exists X of I  such thaet

= ~ £ £
N (X) = X if and only if Sox(a) = ¥ x.(B) = £, and
/K S i=1 ?
~ £ £
if there does not exigt such X, then > X (a) = 3 x;(8) =0 .
- i=1 i=
J4
On the other hand if’ Zl x;(a) = £, there exists
1=

274

€ A (€35)  euch that NL/K(X) =%, where I = K®F . 1f

9o = 0, this is obvious. If J, >0, put X = xu with xer”
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and ueUY({*z) , then x = a modPL . Hence there exists XeOF

such that NF/k(X) = X , By Cor. 3.23 there exists u GUL(Za~2)

ey . o
such that NL/K(U‘) = u , since UI_(-a”g = UK(SZ) . Put

=~

X = xu , then X satisfies the above conditions. Iet § Dbe an
. ' 45
element of xr such that f(3) = 0 mod. (p_I_‘)zyz and 2§ =s mod. (pr) 2,

As § we may take a. If §,<m, AK(m) $ X , hence

c(f, C, /\.K(m)) =0, For m, O <m 55‘2 , by Lemma 3,10 ,

[ 5

F T )

k(g1 AM,(x) = G,p(m))  and  FlednMy(®) = G (Ap(m)) ,

8, —m

1Y
: ) is an element of MZ(_I:) such that

where Gj’g is the isomorphism from I to TFilg) given by
Lfg(s(f) =g. Put g = <'fg(§0 , and let's coneider the set
mlg, 0, %g(QK(m))) . Now N dinduces a map from C (g, /l)m:—:(o) /%
to LKJC(NE, Z)mh’iz(&) //I‘J' (see 3.9) , where A are the
O-orders of Z(NZ) which satisfy (3.9.1). If m= ¢, then
the C-order of Z{NZ) which satisfies(3.9.1) for A= qg(AK(o))
. . A L . : - . . ~
is ‘,Jfg(/ll,(o)) by Iemma 3.21. Since c(Ng, gfg(/lL(O)))nMZ(&) / 3
coneists of only one class, hence for x e A&, Oy ‘-f'(,(/lK(O))) ,
; g\ 'K

there exists wueU such that N(x_lé""x) = u_lNgu . It follows
that  M(E, C, 9,(1,(0))) is conteined in Z(NEY'U = & (1)U .

a o
Since gel\‘;z(k), <f:g is a Y-isomorphism from I to Z(Ng).
For xu with x €Z2(Ng)" and u €U , we see

e MAE 0, £U(0)) & x 3% € F(4,(0))

= X 1% e g (Ar(0))
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By femma 3,22 wnd Remerk 3,24, there exist two integers 1, j,

0< i, ¢f-1, end ueA(e)  cveh that . x % =
i jy~1 07 1 iy =
G (mhy )T, 109 ). We sce x e P X (xt, 7)),
O

[ .

hence M(g, 0, lfg(/l},:(o))) = U <fg(I{)‘(7[ , IJ))U. Fror this
i,3=0

it followe

Cv<fs O’~AK(O))

i

[ 9,9\ U g0, 29/ v |
1,0~
| K"\K”in(?fL, A0 [ Apo) |

il

i
™
N

1 0
In’the case where m 2 1, for i, 0 £ i < l-l, put hi = (O 721‘.)
Cince » % p&—l. T
-1
hi ghj = 5 ’
p Tl (g) - §

“lon,  is an element of Cce, AT(ZTT‘,—j))ﬂI‘\".Ez(B')-

by  Iemma 3.1C, hi gh;

Ly Iemss 3,10, clg, AL(ﬂm—i))mmg(&) / T - coneicte of only

one cleoes, hence in the same woy ce above we see

Mo(E, 05 §,(Ap(m))) C U 9, (1*)r,0

;_J

For xh;u ¢ WE(LX)}liU , where x ¢ q’g(Ix), u ¢ U, vic cec
xbou € Mg, O, ‘}’g(/lK(m))) & hglpl lEU'Q—h € I.,((})

e—  nIIE%e (05T7h,) € 1.(6)
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~1 -1
&= h X TEXDL, € m2(8)"

= x &% e <7°g(/l\ (fm=1) ) .

By ILemma 3.22 and Remark 3.24, there exists an integer J,
0<3j <=1, such that x € cyg(K"r&)U .

Hence we see Nlo(8, O, Cfg(/lK(m))) =

: x 1
o F(K*T)n U and

c(f, 0, Ap(m)) = 22,

If X is of type b), we can prove the following,

Proposition 3.26. Let notation be as in Prop.3.25., Assume

K is of type b), i.e. the unramified extension of k with

[K: k) =2 . Then for m = 0, we have

»C,T(f, 07 AK(O)) =

[
L

In the case where m > 1, let a ©be an element of r such that

f(a) = C mod.pr , then
el £y 0y Ap(m)) = £ (3 x5(a)) , 1 $m <&
0 | ’ 3‘2 < m .
Proof, By the as’sumption ne Nﬁ/k(&"') , there exists X

X ~ E 2
of A;(C) euch that Npp(X) = X. In the case where 4, > 1,

there exists a of xr such that f(a) = C mod.pr . Put
X = xu , where xe¢r* ond u eUK(é‘Q) , then x = a mod.pr . If

there exists X of A (m) with m > 1 scuch that NT/K(?E) = X,
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then we see > Xﬁﬂa) = f . 1If Eliki(a) =f , then there
existe X of &% such that NF/k(i) =x , And by Cor.3.23,
there exists U of UL(ﬂéé) such that NL/K(u) = u , since
Up(£83) = Up(sy) . Put X = X , then NL/K('f) =X and

X GJAL(ﬂéé) . With these facts we can prove our proposition in

the similar way as Prop.3.25 and we omit the details.

Proposition 3.27. et the notation be a5 in Prop. 3.25.

Assume K is of type «¢), i.e. a ramified extension of k with

[K: k=2 . ILet « be zn element of r such that f(a)= C

mod.pr . Then we have
¢+ £ T x(a) , m =0
i%l
Cv(fv Cy Ax(m)) =
2 (3 x;(a)) , 1 m <45
0 9 oo < I .

Proof, First assume (% 2 . By the assumption n ¢ NF/k(CV),

there exists X € AL(0)"  euch that NL/K(’f) = %, and we see

I

ﬁ., there exists

jiAXi(a) ={ . We show that if E:)Xi(a)

X enp(goy, + (£-1)/2)  such that NL/K(i—”() =% . et T, end

'ﬁK be prime elements of I and K respectively. TFor a
non-negative integer m, put
X ’ /
Ng(0) , m=0 N (0) , m=0

1+ MpAg(0)  , m>l 1+ TP AL0) , m>1
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Then ﬁk(m) (resp. ﬁi(m)) ig a subgroup of .4K(O)‘ (resp.,dL(Of )
a =T = U ) kY S
and UK(m) = UK(2m) (resp. UL(m) UL(Qm/). fe see

XX X . ) X X X
AK(m) = UK(m) = UK(2m+l) (resp. AL(m) =6 UL(m) = @ UL(2m+1)),
gince euach element of ﬁK(Em)/ﬁk(2m+l) (resp. ﬁL(Em)/ﬁL(2m+1))
is represented by an element of r* (resp. ¢”). Hence

N

p(5) = rU(2m4])  and AL(EE+(8-1)/2)" = 67T (205,+4).

A
By(05)}, ¢h V, &3, Cor.3 of Propn.5}, NL/K(ﬁi(zggé+i)): ﬁK(ggé+1),

and our assertion follows from this in the same way as in the

proof cf Prop.3.26. We note there exists § ¢ r such that

P D241 .
f(g) =0 mod. (pr)°9**1  ang 2f=-e mod. (pr)***" , eince K
ra - -«5\2
S B
is a ramified extension of k. Put g = ( _& )a
-p f(5)  e-g

then g 1is an element of ¥2(k) which satisfies
klglnly(r) = .04 (0)) and  Flainky(6) = (A ((£-1)/2) .

1 0
0 =

ror i, 0 <1i<2%5, put ny = (

-1 . L
5 i/) » then hi gh, is an

element of (g, Ap((4-1)/2 = i))A¥,(¢) . Put B = 4 (%),

X G,AL(ﬁéé + (£-1)/2) , then we see ac in the proof of Prop.3.25
-1)/
\/

£

-1 ( 2
that Wle(g, 0, A (0)) = (U KxﬂlhjU and we have
= 120

[
(@)

(T, 0, A(0)) = F2(4+1) = p+4 Y A (a) , eince T X (a) = { .

For m > 1, we can deduce our recult in the same way ac above.

Next assume { = 2. By the ascumpticn n € Nw/k(ﬁx) , there
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exists § G-AL(O)X such that NL/K(X) =X. For m>»1, if
there exists X ¢ A.L(m)x such that NL/K(Q) = X, then

Ej:xi(a) =2 . Let ﬁk(m) be as above, then /QK(SE)X = rxﬁk(255+l)
and AL(2§2+1)" = 0*U(285,+#1) . We see UL(2,72+1)”7': ﬁK(2X2+1) ,
hence by Cor.3.23  Np p(Up(25,+1)) = Up(25,+1) . 1f T x;(e) = 2,

= X
by the above fact we can show there exists X G'AL(§é+1) such

that N, ,{¥%, = X in the cume way as in the proof of Prop. 3.25. Using
/K & £ o

these facte, we easily cobtain our result and omit the detsils .

If X is of type d), we can easily prove the following in

the same way as above and omit the proof.

Proposition 3.28. Let the notation be as in Prop. 3.25.

Assume that X is of type 4), i.e. K =~ k + k4 with A% =0,
Let a be an element of r such that f(a) = 0 mod.pr . Then
we have,

eolf, 0, Ap(m)) = £( & x;(a))

for any non-negative integer m.

3.12. In the following 3.12 ~~ 3.15, we treat the cese
where Ng;eEJ. In this case the k-algebra Zg¢{(g) is isomorphic
to a quaternion algebra over k. For a guaternion algebra D
over k, let ~~ Dbe the equivalence relation (3.4.5) in all
r-crders of D as in 3.4. Tet a be a non-zero element of k.
Assume « &N(GLQ(F)), and let § be an element of GLZ(F) such

that N = o . Then Z.(Z) is determined by a up to dicomorphisms
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over k, and is independent of the choice of & by Temma 3.6.

For «a eN(GI,Q(F))mkx, we denote by D(a) the guaternion algebra
over k determined by a 1in the above way. Let o be an

element of N‘(GLZ(F))mg , T an non—negat'ive integer, and /A an
r-order of D(a). For a triple (a, v, A) ‘we define a non-negative
integer c¢q(a, T, A) as in 3.6. Iet & be an element of GLg(F)
such that NZ = a. The k-algebra 2.(g) is isomorphic to D(a),
and let ¢ be an isomorphism from D(a) to Zs(g). For g, r

and A, let We{g, 2(r), A) and Cq(g, A) be as (3.4.2)' and

(3.4.4)' for = = =(r) , namely

Me(B, =, A) = {xealy(®) | x18% € 2(r), 20(B) X~ (1) ]
= \ -1_ s | , — -1 , 1

Co(8y A) = §XT7E% | x€GL,(F), Ze(B)NXM,(8)x ~ ~ F(A) ]

We n_o_te Me(g, ry A) and Cy (8, A) are independent of the.choice
of ¢. Put

Cq—(a9 ry, A) = [Zcr(g)x\:mo-(gy r, /l)/ u. l

, then we see c¢ {a, v, A) is independent of the choice of Z.
By Lemma 3.9, the double cosets zv(g)"\'m,cr(‘g, r, A)/ U is in
one to one correspondence with Cq (g, A) N ZE(r) / r’g’ . In the
following we will determine év_(a, r, A) according fo the type
of F. When F is a ramified extension, we assume r = C as

before.

3.13. Let F . be the direc¢ct product of {-copies of k. If

@ € H(GL,(F)) and cgla, v, A) ¥ O, we see v(a) = r/2. Hence
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we may assume r is even and v(a) = r/2. Then we can prove

the following.

Proposition 3.29. ILet F Dbe the direct product of f-copies

of k. Assume r is even, and let a be an element of r with
v(a) = r/2. Then,
(i) There exists g ¢ GIE(F) such that Ng = a , and D(a)
is isomorphic to M2(k).

(ii) We have

P - A i
cla, vy A) = 1 » A~ l(r)
0 , Otherwise .

Proof. By the assumption, MZ(F> is isomorphic to
My(k) @ ..... ® M,(k) (L-copies). Put Z = (a, 1,...,1) , then
NZ = a, and it is easy to see that D(«) is isomorphic to Mz(k)=

1

Iet x = (Xi) be an element of GLQ(F) such that x g% e =(r) ,

then we see XXy eeen XZ}XA € Mz(z)xo Hence there exists

ue U and X’e~GL2(k) such that x = x'u. From this, we see
Mg, v, A) % ¢ only if A A/Mz(;) and cgla, ry A) =1
for A= MNy(x).

3.14. Let F Dbe the unramified extemnsion of k with
(F:k}=£. If a e N(GLZ(F)) and c_(a, Ty A) ¥ O, we see [Lr
is even and v(a) = fIr/2 . Hence we assume  £r is even and
v(a) = £r/2 . TFirst we assume L= 2. Let D %be a quaternion
algebra over k., We define r-orders A(m) of D for non-negative
integers m as follows., Iet R De Mz(gj if D = Mz(k)) and
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let R Dbe the maximel order if D 1is the diviegion guaternion
zlgebra. ILet F Dbe a k-subslgebra of D such that T is

isomorphic to P znd FNR is the maximal order of TF. TFor a

non-negative integer m, put
A(m) = FAR + "R .

Then A(m) 1is an r-order of D and thé equivalence class with
respect to (3.4.%) containing A(m) is independent of the
choice of F. By considering the indeces as additive groups of
A(nm) in a maximal order of D which contains A(m), we see

easily A(m) + A(m') if m £ m'. Then we can prove the following.

Proposition 3.30. Tet F ©be the unremified extension with

[F:kl=2, o be an element of r with v(a) = r , and A(m)
be as above.
(i) There existe T ¢ GLz(F) such that NZ = a, and D(a)
is iesomorphic to Mz(k) or the division gquaternion
algebra over k according as r 1is even or odd.

(ii) We have
cyla, r, A) = ﬁ 1 y A ~A(m), C<m g [r/2]

(¢ , Otherwise

Proof. (i) If wv(a) = r is even, there exists @ ¢ F*

such that /P(E) = a , and we may take d& as g, If r is
/i

NF
ad -1 . . — x
odd, v(aep ) is even, hence there existe @ ¢ P guch that

r - =1
I.‘F//k(a> = ap . Fut

05

=%(, 1), then WE = a .
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(ii) First we prove the following lemma.

Lemma 3.31. The notation being as in Prop.3.30, let ug
be an element of & such that @ =1 +Iu g be as in the
proof of Prop.3.30,(i), an@ ¢ Dbe as in 3.12.

(i) If r is even, then the union

GL,(F) = %1/ 2(2) h U

0

is disjoint, where hm.: (u HQ , and m runs

o b

through all non-negative integers., And we have
-1
Ze (@) N hp Vo (G) ~ ~~ F(A(m))
(ii) If r is odd, the union

: X
GL,(F) = km/ Zo(g) U

1

0
is disjoint, where h = ( m+%> , and m runs
m 0 P

through all non-negative integers. And we have
o (= . -1

Proof., (i) Since g ¢ F*, Z(8) = M,(k) . In this proof,

=

we denote by .~ the equivalence relation in GLZ(F) given by

g& ~ &' = g' ¢ Zcr(g)gU

Then we see for an element gf?GL2(F) there exist u e 0 and

a non-negative integer i such that g ~ (l Oi) . Put
u b
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1 0
w=a + buo with a, b ¢ xr . Then g "’(buo pi) , and we see

1 0 ( 1 O> ) 1 0]
g ~ ) o~ if v(b) > i, and grv( j)
( 1) u 1 z u, »
if v(b) < i , where j = v(b) - i, hence the eguality holds.
Note that if h ~ h' , then Zv(é)nth(&)h—lrv Zo(8) AR'My(e)nt 7L,
Hence to prove the union is disjoint it is enough to show that
A= 2B Ah (O ~ @(A(m)) . Let £ (X) = X°-s Xen_ be the

minimal polynomial of u, over k, and put

— ( a b ) I - a b
F= { —bno a+bso a, b ¢ k} y 0= {(—bn a+bso)

Then F is isomorphic to F and F contains & as its

maximal order. For g = (3
explicit calculation,

geN & a+bu , -bu +a, %ﬁ(—bu§+(d—a)uo+c) ¢ &

& a, by d er, a+bso—d,bno+c é—pn;'

Hence we see A= (8 + pmMZ(g) ,and A~ A (m)) .

(ii) By the definition of &, we have
_ a b
Zv(g)z é(pU'-b V’a) , aybéF} .
For g ¢ GLZ(F) we see that g f\,(l O.) or (u_ O.)
0 d pl pJ
with u ¢ 0" and positive integers i, j. Since
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2i-1 i+j-1

Tu —p‘ ) u 0 - Squ - p -p" )
-p* u pt PJ) ( 0 p’u

1 ¢}
( j) , hence the equality holds.

(u' (0]
y We see \pl ;j) 0 D

P

To prove that the union is disjoint, it is enough to show

A= zv(g)r\hmMQ(G)h;l ~ @(A(m)) as above. By some calculation,

M,
i

_ a 0 -
2(;_-) , where &= {(O cra> ! 860} 5

we see A = &+ p
hence " A ~ @(A(n)) , and our assertion is proved,

Now we prove the assertion (ii) of our proposition. First
assume r is even. Then by (i) of the above lemma, for any
element g*'e G (Z), there exists a non-negative integer m such

1. ¢

that gt f%’ h; g h . Then again by (i) of the above lemma,

we see (8, rs A) ¥# & only if A ~ A(m) for some

1 0
. . ) -1p
non-negative integer m. Since h = ( ~M,g., _ ) ’
by hy p ug uo) 1
we see

hgllg%me Z(r) & m <r/2 .

Our assertion for an even integer r easily follows from this
and the above lemma. Next assume r is.odd. Then by (ii) of
the above lemma, we see W (&, r, A) ¥+ ¢ only if A ~ A(m)
for a non-negative integer m. Since

1,0 1ye, _ P)
h (p O> h, = ( -m g , we see

.



Our assertion for an odd integer 1 easgily follows from this

and the above lemma.

Next assume [ i1g an odd prime. PFor a non-negative integer
m, put
A(m) = v + pmM2(£) .

Then we see A(m) is an r-order and A(m) A A(m') if m % m'.

As noted before, we may assume [Jr is even, hence r is even.

Proposition 3.32., ILet F be the unramified extension of

k with [F;\k] =, where [ % 2. Assume r is even. Let «a
be an element of r with v(a) = fr/2 and A(m) Dbe as above.
(i) There exists g € GLz(F) such that Ng = a , and D(a)

is isomorphic %o M2(k).

(ii) We have
Ccr(a’ r, A) = 1 y A~ NA(0)

WD iy D 1)/ wen,(2/(0x)™)

’ A NA(m)y 1$m$r/2
0 , otherwise

Proof. The ascertion (i) is obvious. And we may take E
from FX, We fix such g in the following. ILet S be the set
of all elements x € ® which satisfy the condition x =% 9x mod.3 .

ax+b

a b
For VY = (C d) € GLg(z) and  x €S, put Yx= ¢ ,

then we cee Y¥x is also contained in S, hence GL2Q§) acts on
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S. For any non-negative integer m, GLz(r/pmg) acts on

%5 mod.?l} in a similar way . Then we can prove

Lemma 3.33. The notation being as above, then
U i
GL.(F) = _ Z5(8) h_(x)U
2 m=0 x e {§ mod.3"}/61,(x/p"r) ’ o

1 0

is a disjoint union, where hm(x) = (x pm) . And we have

2o(8) B (N (h ()T~ @a(m)) .

Proof., Since T e P, 2Z.(8) = M,(k). In this proof, we

denote by .~ the equivalence relation in GLQ(F) given by

g ~ 8 &= Z(8)sU 3 g

-1 0
Then for g é.Glz(F) s We see & ~u (x pj) for some x € S

and a non-negative integer 1, hence the equality holds. If

1 ) 1 0
iz g, (x pi> ~ (X, pﬁ for any x, x'¢ 3 . To prove

this, it is enough to show
A= 2(B) b L@ (0T~ gal1)) .

a b

For g = (C d) e 2(8) = Mz(k) , we see

(a

o g) € A & =a+bx, -bx+d, p_l(—bx2+(d—a)x+c) e & .

since x ¢ S, it follows b = ¢ =ad =0 mod.p%; . Hence
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we see A ~ @(A(1)). To prove the union is disjoint, it is enough

to show that for x, x'e S

1 O' 1 O. i
(x 1) ~/ (x' pl) & x = Tx' mod.? for VY eGLz(;).

(=) Since GLZ(I) is generated by the elements of the form

(é %) , (g g) , (Ol é) , We may verify our assertion for such

elements. This can be done by explicit calculation.

-1 0 1 0
(=) Assume (x pi) ~ (x' pi) for x, x'e€S . Then

there exists an element (i g) ¢ U such that

1 ot 1
{ i

_ / api—bx' b 3
\x ! pl) p ch21+(aX—dX*)p1-XX‘b dpl+bx)

1 0.y
G 590

o
o

)

[¢]

is contained in GLg(k). From this, we see b ¢ pr and

ad €8°. Put b'=p b, a'=a - b'x', d'=d + b'x , and

ct'= cpi + (ax-dx') - b'xx', themn a', b', c', d'er . We see
X(a'-}b'x') = c'+d'x’ inod.gi . Since al+b'x = a , a'+b'x e,
and we see a'd'-b'c' = ad mod.pi_l_‘ . Hence if we put

T = (%: ;:) A A GLQ(I) and x = ¥tx' mod.yi and our

assertion is proved.

- Now we return to the proof of our proposition. We see

|{smod.3} | =1 if i=0, ana = wpli=GD (=D _ g,

if i »1 . TFor x ¢ S and ”(z(iL g) eGLZ(I) y ¥x = x mod.}’iL

-110-



if and only if a-d = b = ¢ = 0 mod.p'r . By these facts
and TLemma 3.33, we can prove our proposition in the same way as

Prop. 3. 30.

3.15. Let F be a tamely ramified extencsion of k with
[F: k) = {. We assume 1 = O. First we treat the case where

£% 2. TFor a non-negative integer m, we set

r

m
L

(I
N—r

A(m) =

Then A(m) is an r-order of Mg(k)e If a ¢ N(GLz(F)) and
cglay, Oy, A) # O, then v(a) = 0 , and we assume 1 = O . Then

we can prove the following.

Proposition 3. 34. Let F be a tamely ramified extension

of k with [F:k} = [, where £ #% 2 , ¢ be an element of 1~ ,
and A(m) be as above.
(i) There exists g ¢ GLQ(F) such that NZ = « if and

only if «a € NF/k(O") . If ac¢ NF/k(é‘") , we have
D(a) ~~ M2(k)

.. - x
(ii) Assume a ¢ NF/k(& ) . Then we ?ave

cela, 0, A) = 2 y A~ A(0)
-1

ﬁ—(g——) , A NAL)

0] y Otherwise
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Proof. If there exisgts £ euch that Ng = a, then
2 X o . 7 x
a” € NF/k(l ). Since [I': k] is odd, a € NE/k(ﬁ ). The
convercse is obvious, and we may take g from 0. In the
following, we assume F ¢ ®”, hence Zy (&) = Mg(k). If
x'1§¢x € 2(¢) = U for x e'GLZ(F), then x 17x €U . If we

“lo,

put a5 = x y then a, determines a l-cocycle f{az} , re,

of ¢} in U. And we see the correspondence x'lgak —_— {at}

gives a bijective map
_ ~ 1
Cgr(g)ﬂU/ U — H (/)J’y U)
For a pair (i, j) of integers such that 0 <1i < j € £ , put

pat

¢ -1 L
Xg4 = (O ,ﬁj> , and g, (i, j) = 53 qkij . Then a (i, j)
determines a l-cocycle aj (i, j), Te¢4 , of v in U. By
the assumption that F 1is a tamely ramified extension of k, we

see the set { tar(i, )} |osi<jyst } gives a complete

system of representatives of Hl(q;, U). TFor such i, j we see
- . -1 . .
ZW(g)ﬂle]?(&)Xlg ~ i (f(/l(O)) y If 1= 3
g (A(1)) , if 1< ]
Our assertions easily follow from this.

Next we treat the case where £ = 2. As in the case where
L+ 2, we may assume v(a) = 0. TFor the guaternion Mz(k> and
a non-negative integer m, we put

)

Y

A = (=

P X

[ o]



as in the case where f% 2. TFor the division quaternion algebra

we denote by A(0) its maximel order,

Proposition 3.35. Let F Dbe a tamely ramified extension

of k with [F:k)= 2, a be an element of xr°, and A(m) be
as above.
(i) There exists g ¢ GL2(F) such that NZ = a. If a € NF/k(O”)
D(a) is isomorphic to Mz(k), and if o & NF/k(dx),
D(a) 1is isomorphic to the division guaternion algebra
over k.

(4i) If a ¢ NE/k(OX)’ we have

Cw(a9 O, A) = 2 s A~ A(O)
1 9 /\A ~ A(l)
0] , Otherwise

If o §& NE/k(dx), we have
cla, 0, A) = il , N~ NA(0)

0] , Otherwise

Proof. (i) If a = NF/k(oT) with @ e 0%, put E = @, then
_ _ ‘ — 0 1
NZ = a and Ze(&) = My(k). Tf « &N, (0%, put &= (, §)

then NZ = a., We see
— a b
Zg(8) = { (arb a) | a, b €F ]

and %_(g) is the divieion quaternion algebra over k.
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(ii) The assertion for the case where a ¢ NF/k(é’X) can be proved
in the same way as Prop.3.34. Assume o & NF/k(&"), then for

X GGLZ(F), we see

1 (0) = U =3 x e 2,(8)0

tn

X TE% ¢

Our assertion easily follows from this.
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§ 4. Explicit formula for tr TS(T(MJ)

4.1. We will lead the formula (2.12.1) of Th.l* into a
more explicit form., Iet F be as in & 1, i.e. a totally real
algebrgic number field which satisfies the following conditions;

(1) P is a cyclic extension of Q Qf prime degree {.
(2) The class number of F is equal to one,

(3) The index (E: E,) is equal to 22,

;where E 1is the group of all unite of F, and E+ is its
subgroup consisting of all totally positive elements of E. Hence
the conductor q of F/Q is a prime. Moreover in the following
we assume

(4) F/Q is a tamely ramified extension
, and the conductor g -and the degree { are prime to each other.
We denote by & +the maximal order of F, and let Fv, Fy and
05 be as in § 1, where we denote by v (resp. 3) archimedean
(resp. non-archimedean ) places of F.

For a prime p, put F_=F ®QQP’ & = 6®,2Z

P P Zp and T, = F(@QR.

Then Fp (resp. F, ) is one of i), ii) and 1ii) of 3.5.

et o Ybe the generator of the Galois group o¢3 of the extension
F/Q fixed in § 1, then o can be extended to Fp (resp. Fu )
as Qp(resp. R)-linear automorphism of Fp (resp. Fy, ). Ve

denote it also by ¢. In such a situation, we can apply the

results of § 3.

Let FA (resp. QA) be the adele ring of F (resp. Q).

Then o can be extended to FA, we denote it aleo by o. Let
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Vip be the subgroup GL,(0p) x HGLQ(FV) of GL2(FA) as in

T
#
$1, and Q/'LQ be the subgroup 'g GLQ(ZP) xGLQ(R) of GLZ(QA)'
For an integral ideal ¢t of P, let Z(M)A be the union of all

?/Z,F-double cosets in T(), where T(sn) is the element of

R(’PLF, GL2(FA)) given in 1.3. In the following, we assume that

o1 is prime to the conductor g, and that 0L 1is divided by at
most one prime factor of p if p decomposes in F. Then E,(m.)A

is of the form TJJ E(n)p X 'ﬂGLZ(Fv), where ,’_:’_.(D’L)p is a union
P v
of GLz(&p)—double cosets, and we may assume E(n)P is of the

form Zp(r) for some non~negative integer r, where Ep(r)

is the union of GLQ(%)-double cosets =,(r) defined in 3.5, Put

Zle = 21, AGL(F) (resp. Z(), = =), (6L (F), ), then

=(v) (resp. E(U'L)+ ) is a union of GL2(0) (resp. T7)-double
cosets. Tet g De an element of GL2(F)+, and let Z,(g), Cqlg)
and My(g, Z(o)) be as in 3.1 and 3.4. Put

Mole, 201),) = { x € GL,(F) l x—lg"'x € E(L1)+} . TFor a Z-order A

of Z,(g), let C{g, A) and Mlg, =), A) be as in 3.4

and put

1

Mele, 20, A = {x eMmds, 2600, A) | x e e 20, }

Then Cg{g) = L/{Ca.(g, A)  (resp. Cels) N E(U'L)+ = L/{C,,—(g, AN E(I)‘L)+
» Where Y rune through all the Z-order of Zo.(g). Here we note
Colg, AN () (recp. Colg, M AZ@D, ) ¥ & only if A

containe Ng. Hence Cg(g)nZ() = %/Cv(g, AN 2oy

(resp. Cq(s) qg(ﬂ>+ = %Co—(g, /l)ﬂ ’5_(01)+ ), where /\ runs
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through all the Z-orders of Z {(g) which contains Ug.

4.2, Now let's consider to classify Cq(g, A)N =(o),

into "F’—equivalence classes, We will reduce the computation of

the equivalence classes Cy(g, A) ﬂE(U‘L)+ / ’F to the results
of 3.5 ~ 3.15. In the notation of 4.1, put

Mole, 20),) = {xe0n(F,) | x e e 20, } .

For x GGLE(FA), we denote by xl\ﬁg(&)x_l the maximal order of

. -1 -1 ‘
M,(F) given by XM2(§)X = @ijz(&j)xg , where x5 is the

o
y-component of x, If Ng & F*, put

“lgox e 20,, Z(r(g)nXMQ(ﬁ)X—l

=A} .

Wolgs Z(e),, A) = {xealy(F,) | x

If Ng ¢ Fx, put

Mg, S0V, A) = {xecny(F,) | g0y € (), Ze(8) Axiy(@)x I ]

, Where ~~ denotes the equivalence relation (3.4.5). Here we
note the following., For a quaternion D over Q, we denote by

DA the adelization of D, then for a Z-order A of D the type

number T of A is by definition

T = | D\n/S N (A )xD
y where A_ = A&)Zzn s Dw=D ®QR , and
N = . D ) x -1 = .
p(Ap) ix e ( ®QQP) ‘ x /pr Ap} If the type number T
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is equal %o one, a Z-order A' of D which satisfies Aﬁ ~ AP
in Dp =D @pr for all primes p also satisfies A~ A
in D.
Lemma 4.1. Let the notation and the assumption be as above,

(1) The equivalence classes Cyl8g, A)IF‘E(FQ+ / ?? are in
one to one correspondence with the double cosets
2,(e) \ Mol =), A /T

(ii) Put /ﬁ': { x €A ] det x = 1 } . Then the canonical
map

zlef \ Mole, 200,y N/ —— Zg(e)\ NMule, (0, A)/CL,y(6)

is a 2/[{n” :/&] to 1 correspondence.
(iii) If Ng e F¥, we assume the type number of A is equal

to one. Then we have the following canonical bijection.

7o (&Y \ W o{ &y Z(00), N)/6Ly(0) ot 2olel\ Mlole, S0V, A/ Yy

Proof. The assertion (i) is obvious. (ii) By the
assumption IE: EJ = 21, the natural map from

2l \Male, 2, A/ to  2g(ef\ Mle, Z0V, A)/GT,(6)

is surjective. For x ¢ Mg, S(m)+,‘A), we héve
Zo.(g)xxGL2(t9)ﬂ Mg, (W, A) = Zv(g)xxr’uzoig)xx(g é)’j :

And we see 2g)yx[” = Zw(g)xx(g %)f’ if and only if there

exists a ¢ A such that det a is totally negative, i.e. det a = -1,

hence if and only if [A: A') = 2. By thise, we obtain (ii).

(1ii) By the assumption on the claes number of F, we have
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GLy(F,) = GLy(F)UL, . We sce Nlolg, E(),, ), AGTo(F) = Mile, Z(), A)

for g with Ng ¢ Fx, and by the assumption on the type number
of A for g with Ng ¢ FX, hence the map is surjective. TFor

X1y Xy € Mfe, =Z(00), A), if there exist ¥ € GL2(F) and u € ’M,F
such that ¥xqu = x,, then u €~GL2(F)r-]’Z/LF = GL2(0—). Hence
Zv(g)xleLz(&) = ZT(g)XngLE(ﬁ) , and the map is injective.

Hence our assertion is proved.

Corollary 4.2,

0ol@) A 200/ B[ = (2/ 1At A1) |2(el \ Miole, 200),, A)/ )

Let Y be the natural map from Zq-(gf\mgr(g, E(D'L)A, /l)/?/LF

to  zg(g)\ Mole, Z(00),, A) /My , where 2Zo(g), is the
adelization of Zg(g). ILet X Dbe a Q-algebra and A be its
Z-order. Put UYUA) = TAY x K’;, , where Ap = A®,Z and

p P Z°p
Kpo = K@QR . We define the class number h(¥, A) of A as the

number of the double cosets K"\KZ/WA) , where K, 1is the

adelization of X. We note that if K 1is a quaternion algebra
and A ~ A' for Z-orders A and A' of K, then

h(Kr A) = h(K1 /X‘)

Lemma 4, 3.  Let the notation be as above. TFor a coset
¥ = ZT(g)ZXXFMF € Zw(g)z\mq(g, E(al)A, AY/ Ny » the number of
W,‘"l(%) is independent of ¥ and is equal %o h(Z4(g)y, A) .

Proof. By definition, we have ‘1}71(3\5) = ]Zr(g)?(\zg.(g)"Ax Ny/ VM|
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We see

| 258 \ 2o (e)yx W/ 7 |

| 20(87\ 2o (&), x P /x V|

i

| 25 (87 \ 2ol eTy/ 20 (&) x Mgx ™|

From this we obtain [P H(E)| = h(z.(g), 4) .

Corollary 4.4.

[ Coler M)A E(0,/F| = (/14 A1) 2V \ Tlle, E(@),, A)/ 2]

X h(zq-(g)’ A) .
For a prime p, put

Mole, E0V) = {xecly(F) | x e e 20§ .

' ! -ord ® of Zy(g) a put
Let Ap denote the Zp order AA,ZZP v(g/p’ and put

Wole, (o), A) = {2 e0n,(F) | e € Z (), Zole) ) xtiy(6,)x

=y } .

Let r ©be the non-negative integer such that jf(ﬁdp = ifp(r) y
f be the characteristic polynomisl of Ng if Ng & P*, and a
X

be the element Mg of ¥ 1if Ng ¢ ¥ . Then

o x ~ i . . o -1
{ac(g)p\lng(g, :(Nﬁp, Ap)/GLQ(ﬁb)[ is nothing but ¢y (f, r, By (4p))
or c,(a, T, 921(4n)) in the notation of §3, and is completely
determined. In particular, by Prop.3.11, 3.16, 3.29, 3.30, 3.32,
we have

I X - .
| 2o () \ Ml e, E(a) y A)/61,(6 )| = 1

for almost all p. Since E(DJA :TTEiU%LpX TTGLZ(T%Q, we see
S ‘ v
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Molgs Z00,, A) ¥ & & Molg, 200, A) & ¢ for 11 p.
By this, we easily obtain the following.

Lemma 4.5. ILet the notation be as above. Then the natural
map x e'GLZ(FA)'_—““_* {xp)e ;fGLz(Fp) induces a bijective
mep

Zo(eV,\ Mole, ()5 A/ My — T (Zela) \Wales 20005 A)/GLy(8,)
) ¥

s Wherc¢ we denote by Xp the p-component of x coneidering

GLQ(FA) as a subgroup of TLGLQ(FP) xGLg(Faa)

Corollary 4.6. If Ng ¢ Fx, or Ng ¢ F¥ and the type
number of A dis one, then we have
~ a2 . . AL x o~
|Cole, AN E,/F| = (2/a:AT) Tp[[zag)p\mo(m Z(e0),, AL)/GTL(6)
X h(zv(g)y /l)

4.3. The equivalence classes GIZ(F)/ = is determined
G, (F)

by ILemmz 3.4 a@nd 3.5. For elements g with g & FX, we can

reduce the condition (3.3.2) to a local one. HNamely we can prove

the following.

Lernma 4.7. Iet KX be a comutative Q-algebra of rank 2,

Then for x of ¥~ we have
BN . X
X €& NK@F/K( (L‘?:)l ) ) —— X ¢ NK®FP/K®QP( (K®Fp) )

for 211 .
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We note the condition x ¢ N ((KG)Fm)x) is always

I'®Fse/ KRR
satisfied, since we assume F 1ies totally real. If both ¥ and
K®F &re fields, this lemma is not other than Hasse's norm theorem.
In general cases, we can easily reduce this lemma to Hagse's norm

theorem for cyclic extensions, and we omit the proof.

Let a be an element of FX such that a 6~N(GL2(F))(\QX.
Then a determines a quaternion algebra over Q as in 3.12,
and we denote it by D(a). Then for g with Ng ¢ F*, we can

prove the following.

Lemma 4.8, TLet the notation and the assumption be as above.

(1) If I %2, we have N(GL(F))AF* = N ,(F") . Tor

an element =a ¢ N
isomorphic to EQ(Q). A
(i1) If €= 2, we have N(GL,(F))nF" = Q" TFor a2 e Q,
the quaternion D(a) is not ramified at the archimedian prime
and is ramified at a prime p if and only if a 4 NFP/Qp(FS) .
Froof: (i) By Remark 3.8, for g ¢ GIz(F) such thét
g ¢ FX, there existe x ¢ F* and h e»GLZ(F) which satiefy

g =xu" T, . Then Ng =

NE/Q(X) . Hence we cbtain
N(GL2(F))[1FX = NF/Q(FX) . The.second assertion is nlready mentioned
- e a - , o 1 '
in fem.rk 3,8, (ii) For a ¢ Q, put g = (a O) Then Ng = a.
From this we obtain H(GLZ(F))[\FX = 9%, The second assertion easily

follows from the ﬁroof of Temma 3.7.

As to the Galois cohomology group Fl(q., E) of E, we have



the following.

Lemma.4.9. The notation being as above , then we have
bonl
Proof. The group E+ of totally posgitive units is a free
abglian group of rank f-1. From the exact sequence
1 ——> E, —> E —> E/E+ — 1
y we obtain the following exact sequence

(g, wE) — (g, B) — v g, B) — B (g, 5/5) .

. Z . No
By the assumption [E: E,] = 2, we see easily H (c} E/E+) =1
and Hl(o}9 E/E+) = 1. Since ¢ acts on E, non-trivially,
we cee Hl(o 5 E+) is a cyclic group of order { . Hence we

obtain our result.

4.4, After these preparations, we give an explicit formula
for wr TS(T(UQ) . As remarked before, we may assume there exist

non-negative integers r such that L(WJA = ﬂ::p(rp)><GL2(Fm),

P
where Ep(rp) ig the union of GL2(6$)—double cosets defined in
3.5. Let c?v, 6“6, ¢y éVp be as in Th.1', i.e. €] (i = v, e, h, p)

is a complete system of representatives of the set of elements of
type Vv, e, h_, p in the sense of 2.3 in E(JO+ with respect

t t and

to the equivalence relation F§~. We denote by ¢ o1 Ty

V,

tp the contribution of 5;, ¢ and C.  to tr T (7(m))



respectively.

4. t.. First we assume L% 2. Ve see @; + ¢ only

—_— v

U1

if rp is even for 2ll p, i.e. L is a square qf a integral
ideal. This condition implies that NJv 1is a square, where

Nov = |O/0t| . Assume ry is even for all p and put Nov = a2
with a posgitive rational.integer a. Then by the assumption on
F, ace¢ NE/Q(FX) and by TIemma 4.8, there exists g € GL,(F)
guck that g = a. Then by Iemma 3.6 we see the set of elements
of type v in Z(0), is Ce)n S0, Uckte)nEWV, . Tt is
easy to see that the contribution of Cq(—g)[\E(NJ+ to  t
is equal to that of Cv(g>f\zun)+ . Hence by Temma 4,9, we have

= > | v(B/ade) AT
oge Colg)nEW /B
= kel /7, (2" .
e > v(1/2(&" A T )

g e Ca’(gr/l)ﬂ E(ﬁ)_*_/%

For a Z-order A of Z.(g), if Cylg, AAZOV, ¥ ¢ , then
Mol e, ip(rp), A) % ¢ for all p. By Frop.3.39, 3.30, 3.34,

i f o, = i L 4
HOMales S0 A £ 4, G ~ 2+ PNy (z,)  or
Z Z
/ Y p
\pmz 7 for some non-negative inteser m, where 9§ is a

P »

isomorphism from D(a)p = MQ(QP) to Zp(g)p . Trom this we see

that the type number of /1 is one if C.(g, M2, = ¢ .

Hence by Cor.4.6, we obtuin
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-1 2 X ~
5, = 7 A/ZN - Elzv@) \Mlay 2,(ry)s A5)/CT,(8)]

x h(Zg(g), A) v(H/A)

Let A, bYe a maximal order of Zg(g) which contains A. Then

it is known that h(Z(g), A) =1 and
n(Zo(g), A) = mpT,Agp : E,A;]/mg s N = ('lg[/l;p t A1)/ I AT
We mote  V(H/AL) = v(H/SL,(2)) and A} : AL} =2. Fora

prime p, we denote by Ap(m) and ¢ (a, T /A)  the Zp—order

T,
A(m) of D(a)P and the number c(a, Ty A) given in 3,12

3.15 recpectively. Then we obtain

-1 X

X V(H/SLZ(Z))

Nextly we assume I = 2. We see that rp is even for all

p which decomposes in F, if 6; +¢é ., Hence NoL is a square,

and put NUL=-a2 with a positive rational integer a. Then by

Lemma 4.8, there exists g € GLZ(F) guch that Ng = a. TLet £

denote a unit of F such that NF/ £€=-1, then N(g§) = -a ,

2
and D(a) and D(-a) are isomorphic to each other. We see the
set of the elements of type v in E(UU+ is

Cole) N2 Vo (g8)\Z(00), . The contribution of  Cglg)nE(0)),

to %, is equal to that of Co(g€)n (), . Hence
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-1
t, = ——— v(H/Z2(g' )7 )
VT g O)n 20V, n

We denote by [7(a) the unit group with the reduced norm 1 of
a maximal order of D(a). And we denote by AP(m) and

c (a, v, A) the Z-order A(m) of D(a) and the number
TyP p p
cola, o A) given in 3.12 ~ 3.15. Then in the same way as
above, we obtain
-1 5
t, = o) :
voo4re? glstrp/ag (e, plas Tps Almy)y) [AO),: Almp)y ] )

0L D
Ogmdg m(a)

x v(H/[7(2))

, where m(a) is O or 1 according as D(a) is a division

algebra or not.

4.6. T Iet g Dbe an element of E(UL)+ of type e

and f(X) = X2 - sX +n be the characteristic polynomial of
2

Ng. Then we see n = N0t and s° - 4n < O . We denote by S(UL)e
the set of all elements g of G»LZ(F) such that Ng has the
characteristic polynomial (X)) = X2 - sX +neZZ(X}l] with n = No&

and s2 — 4n < O . Then we have

K
ges(a)e/Gf:(F) N(Ng) - §(Ng)

1
Ye= - 17

1
g'eColeln 20U,/ % [(Zo(g'))E : E]

y where T(Ng) and T](Ng) are the roots of the characteristic
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polynomial £(X) of Ng. We denote Zg(g')n["NE = {1}

by E Then we have

Q
T nong)t - s(g)* -3
te = - -4‘7 = (det Ng)
S ) /GL (F) n(Ng) ‘ g(Ng)
A g eCole, ANEW /x PNt 5
, where A runs through all Z-orders of Z (g) which contain
Ng. By Cor.4.6, we have
1 k-1 -1 1- &

5 IE(ZV(@ ]/U T [2o(& 5\ W&, =0 A)/CTy(6,)]
A ; Q P

Let f(X) = X2 - s8X +n be an element of Z[X] such that

= NgL and 52 - 4n £ 0. By Lemma 3.5 and Lemma 4.7
there exists g € GL (F) such that Ng has characteristic
polynomial f£(X) if and only if there exists an element ng-GL (F )
such that ng has the characteristic polynomial f{(X) for all
p. For a prime p. we denote by C@,p(f' r, A) the number
c(f, ry A) defined in 3.5. Then if f(X) is the characteristic

polynomial of Ng for g G'GLQ(F),
o(Er Ty A = |2 \Mieles Ty 9(A))/615(0) | -
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Here we denote by q% the natural isomorphism from

K(f)p = QIXI/f(X)® Q, to Zq.(g)p given by zfg(x) = Ng ,

where X 1is the class reprecented by X. For a Z-order A of

K(f), if it holds (f, r , A ) ¥ O for a prime p, there

®o,p p’ 'p

exists gpe:GL2(Fp) such that ng has the characteristic

polynomial f(X). Hence if e¢_ (f, r_, A ) ¥ 0 for all p,
o, P P P

there exists g ¢ GLz(F) such that the characteristic polynomial

of Ng is f(X), and we have
T ey, ol mos A = T |2o(&) \Mlar 0 G (A) /eLy(6)] .

For f(X), put

’_.J
|
Plx

(4.6.1)  w (f) = T -¢™ /y-¢)n

y Where T and ﬁ are the roots of f(X). Then we obtain,

A)

1 n(k(£), A)
fe= =g 4 W) Y Teg (2, A

e T2
£ A TAS s EQ] P
sy where f runs through 211 the polynomials X2

Z1X) which satisfy n = Noo and 2 - 4n < O

-sX+n in
y and A runs

through all the Z-orders of K(f) which contain X.

4.7, . Let g be an element of E(m)+ of type h_,
anag (X)) = X2 - eX + n be the characteristic polynomial of
Ng. Then n = Notv and 32 - 4n is a non-zero square. Iet
f(X) %be such a polynomial. For = prime p, we denote

by cv3p(f, T Ap) the number ¢ (f, T Ap) defined in 3.5.
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Let 7] and § be the roots of f, and put

(0.7.2) w5 = MmQm, g T

|7 - 5|

Then in the same way as in the case of te, we obtain

g

U °g,p{Ts Tpr Ap)

E o

, wheré f runs through all the polynomial X° - sX + n  in
Z1X) which have two distinct roots in 2 and satisfy n = Not,

and /A runs through all Z-order of X(f) which contains <X,

4.8. e T Cy % ¢ , we see 0l is a square of some
integral ideal. Assume ¢t 1s a square, and put Not = a2 with
a positive integer a. Ilet ;Ki, 15isf, bve the characters mod.q
which correspond to the extension F/Q, and Xl be the identity

character, Since Z,}’i(a) =/ , by ILemma 4.7 and the result
of 3.12 ~~ 3.15, we see there exists geGL2(F) such that
Ng = (O 3;) and fix such an element g in the following. Ilet

¢ be an element of E with NF/ng -1. If Cw(g'),/\if(v‘t)+ ¢

for g'e€GL,(F), then it holds Cq{g') = Celg) or Cqlg') = Cy(cq).
And it is easy to see the contribution of Ccr(g)ns(ﬂ)+ to

t. is equal to that of 'C,(g&‘)mz(ﬂ)+ . Hence in the notation

b
of Th.1l', we have
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1

t = w7 lim 32 m(g A (8')° .0 (A4(8")eea 2y (8'))°
p T ea0 A gleColenEen) /5

{-1sgn(-A(g'))

lA(g,)Il-i-eS

exp(n/2 s segn(~A(g'))V=T)

, where A runs through all Z-orders of Z(g) which contain
Ng. PFor a positive integer m, we denote by A(m) the Z-order

of K(f) given by
(4.8.1) Am) = 2 + 12X - a)

Then any Z-order of K(f) which contains X is A(m) for some

positive integer m. Put 12 = (a'2) with a positive integer

a', and a, = a/a' . Then by Cor.4.6, Prop.3.11, 3.16, 3.20,

3.28, we see Colg, qé(A(m))[\E(mJ+ £ ¢ only if a, divides
m. For Alm), we see A(m) = A(m)l and h(K(f), Alm)) = 1
for any positive integer m. By the above propositions and

Cor. 4.6, we have

|Coler g (Ala )N E0, /E]= [Coles G (A2 NEWD, / &
for any positive integer +t. Now we give a complete system of
representatives of  C.(g, qé(A(aot)))(\E(m)+ /fﬁ . Any class of

Cyla, qé(A(ao)))[\S(m)+ /fz contains an element of the form

(g g) € GLQ(OD by the assumption on F. We note (a2) = (32) =0
and NF/Q“ = NE/Q5'= a . For such a and §, we define two
Z~submodules Z(a, §) and B(a, §) of @~ by
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Z(a, &)

B(a, §)

{ a%% - §x | x e 0—}

fxeo | m(@ =@ D}

Then %(a, §) contains B(a, §), and |Z(a, §)/B(a, §)| is
s _/a B - (o' B'
finite, Let g = (O 5) and g' = (O 5,) be two elements
of Cv(g)(\ﬁ(m)+ . Then it is easy to see that g ?g g' if
and only if there exist El’ EZG-E such that 6182 is totally
positive and it holds
—1 -1 . -1
@ = £777gat = 7%, B - €768 € Bla, 5)
ror &' = (5 ) eole, ¢ ala ) (@), end  x € 2(a, S),
a  B+x — a PB4x . .
we see N((O 5.)) = Ng', hence (O CY.) is also contained
in And for El’ EQGZE, we have

2(e7 7 e, €577E,0)

=1 -1 g
B(El Ela, 62 625)

From this, we see that there exist N

Coler F,(A(a))) A, , 1sis

1¢iKN xez(ay, 5,)/B(ay, 53) (o

Cole, R A(ag8))) A2, .

i

I

=10
£1 VEZZ(a, s)

~1 ¢
211 EZB(Q’ &)

(%5 By
= €
elements g5 L Xi)
N, for some N such that
ai Bi+x .
5 ) 1s a complete system of
i

representatives of Cg (g, QE(A(aO)))[\E(MJ+ /?5 . For g, put
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ne, = (o bi) then f ez(as, 5)
gi = 0 a 9 ien or X Qi, 5

é“i 0 a
Since g €Cqla, Cfg(/&(ao)))ﬂf(m)+ ’
0 b,
: _ -1 1)
(Q + QNgi)an((?) = Z + ag Z(O 0
and it holds
a tb., 0 tb,
i _ -1 i
(Q + Q(O a))an(") = 2+ (a,t) z(o o> .
ay tBi+x
Hence for x ¢ Z(ai, 5‘1), the element (O 5 is contained

in  Cy(g, CFg(A(aot)))n E((TL)+ . We show that

! ] o ,tBi+X\
( + is a complete system
151N xez(ay, 5)/B(ay, 8;) 0 &3

of representatives of Cy(g, C}’g(/l(aot)))ﬂf(m)+ /r% . Assunme

ay ’tBi+x aj tp,+x! y
=~ v for x ¢ Z(a., &. and
(O Ji ) r (O ﬁ ) ( i? 1

x! e‘Z(aj, Sj). Then there exist &1, £, € E_ such that € E+

£165

lg, -1lqg-. -1l¢
a; = El vtlaj ’ ‘Yi = 82 %253 , and tBi + X - gq q-&2(tﬁj + x')
€ B(ai, é‘i) . Hence t(Bi - Eil‘r&zsj) is contained in Z(ai, <T:.L).

Now B, - E‘_Elq_gzﬁj is an element of &, hence By - 5519'5263.

is al i i =B, - €700
also contained in Z(ai, :S”i). Put x By £ &sz ’

ay B,—-x" a. B,
then ( - ) = ( J J) , and i=j by the assumption
o 93 Mo &

1
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a. B.
on the choice of ( 1 1
0

5 ) . If i=73 , then it follows from
i

a. tTB.+x a, tB.+x'
1 1)%’(1 1 ) that X - x!

the assumption. (
0 5 0 9

a, Bi+x a. B.+x!
is contained in B(a., &) , i.e. ( 1 1 ) P ( i i ) .
i i o

o &

IR

In notice of the fact that |Cy(g, g (A(a )N A EV), / ? |

= [C(r(g’ cpg(/x(ao‘t:)))ms(m)+ /’F—;' , Wwe obtain our assertion.

o, LBL4+X\ | a. tB.+x, |
By definition, we have  A,( (01 i-_i )) = Aj(gi),lm(o1 2‘1
a. tB.+x ¢
= ute)] » aC( 0 g )) = vale) o since |m(ey)| = |by/a]

and A(gi) = bi/a . 'm(gi)/A(gi)|= a/aO . Hence we obtain

- Z ( )/B( )
t = _ lim Z{a., 6.)/B(a., &
I A R T B i

a

(a 5 T een(-alg;))
o |m(g;)

lﬂs

1
X 711(gi)s S (Al(gi-)...)H(gi))s exp(n/2 [s sgn(—A(gi))\f-_i)tZ_; i+es

a., -B.

It is easy to see that we may take gi = ( 1 1) in place
. \o &3

of g;, and that |[m(g;)| = |m(g})| , 2;(g;) = A (8y) , and

A(gi) = —A(g&) . Hence we have
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1 Yo . (2 1rle Fisen(ae)))
i T sag 5/ ) ()

g4 [

4 S50 Wy i i i i a, lm(gi)l s

X

M (8)% e (y(g))ene 7y (&) {exp(n/20s sgnale,) V1)

- exp(n/2{s sgn(—A(gi))\l_-_l")} x ) EYE

1 a
= - T Za. 3’.)Ba. f) .
o |2(ay, &)/B(ay, 53) |
By definition, we have l}:.N[Z(cxi, 5&)/B(ai, 5&)|
gig

= ’Cq(g, q%(A(aO)))flE(m)+ /?E | . The characteristic polynomial
of Ng is f(X) = (X - a)2 , hence by Cor.4.6, we obtain
1

a
'tp = 2" . a gcv,p(f, r

} , A(ao)p)

p

, where f = (X - a)2 .

4,9, Thus we obtain the following theorem.
Theorem 2, Let F and ¢t be as in 4.1. For a prime p,
let E..p(r), /lp(m)’ Cq_,p(fy r, A) eand Cq_,p(av r, A) be Z(r),

Alm), cy(f, ry, A) and cla, T, A) in § 3 for Q, and F

respectively. Let rp be the non-negative integers such that

(v, = ngp(rp) X GL,(Fe) . If Kk is even and » 4 , the

trace “tr TS(T(5ﬁ) is given by the following formula.
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(4.9.1) tr TS(T(O‘_L)) = tv + b+ th + tp

y Where tv, te’ th and tp are given as follows.
(1) If Not is not a square,
tv = 0 .

If Nov is a square, put Not= a2 , and let D(a) be

as in 4.3, then

K—l <7 x X~ \
v = o (OSmps[I"p/Z" p¥q g (CW’P(a’ Tp? Ap(mp)) [AP(O) :AP(mP)J )//
Osmqsm(a)

x v(H/I(a))

Here [7(a) is the group of all units of a maximal order of D(a)
with the reduced norm 1, and m(a) dis O or 1 according as

D(a) dis ramified at the prime g or not.

(2) te' We have

1 h(K(f), A)
Ye =~ 27 Zf: W) ), C Meqo(B me A)

A AY :EQ] P

Here f runs through all the polynomial- X2 -sX +n in Z1X]

such that n = Nou and 8° - 4n < O . For f, K(f) = QLX]/(£(X))
and a)e(f) is given by (4.6.1). A runs through all Z-orders
of K(f) which contain the element X of K(f) represented by

X. For a prime p, Ap = A@ZZP , and h(X(f), A4) is the class
number of A defined in 4.2.
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(3) Ty Let X(f), Ap, and h(K(f), A) be as in (2).

Then
h(K(f), A)

1

t =-——Zw(f)Z Wc. (f, r ) .

h U VRS S B R » "

Here f runs through all the polynomial X2 - sX +n in Z[X]
such that n = Net and f(X) has distinct two roots in Q,

and A runs all the Z-orders of Z2,(g) which contains X

wy (f)  is given by (4.7.2).
(4) If ot is not a square,

If ¢t is a square, put Nor= a2 with a positive

integer a. Then we have

ot
"
|
2|
=
o]

IT)chr,p(f, Ty Al2/8)])

, where f(X) (x - a)2, and & 1is a positive integer such

that oLAZ = (8°) . A(a/Z) is the Z-order of K(f) given by
(4.8.1) for m=a/a and A(a/é)p =_A(a/§)(9ZZp .

4.10. We will rewrite the formula (4.9.1) din Th.2 for
later use with some remarks.

(1) t,. Assume Not is a square, and put No= a’

with a positive integer a. First assume [ % 2. Let a« be an
element of Zp. For a prime p % q and a non-negative integer

r, put
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2o ey play my A m) [4,(0)" ¢ A (m))

m»o T
C(T (ay T) =
' » @ €N(GL,(F)))
0 , Otherwise
and for p = q , put
z c. (a, 0,4 (m)) [A_(0) s A4 (m)*)
(£ 50 2" 7 'a “q !
c (a, 0) =
rsq
’ i s Q éN(GLQ(Fq))
L 0] , Otherwise
We note for p ¥ g
X
(4,10.1) cw,p(a, r) = cq}p(au, r) for any u.eZp .
And for p = ¢
- Xy
(4.10.2) Cqu(a' 0) = cv,q(au, 0) for any u eN(&,)

s where ¢ 1is the prime factor of q in F.

Using o p(a, r), we can write tv in the following form
3

k-1
- ——TT
t, = ax g cq}p(a, rp) V(H/SLQ(Z)):
, and c p(a, rp) is given explicitly as follows. If p
b

decomposes in P, by Prop.3.29 we have

(4.10.3) cr’p(a, rp) =1 .

If p remains prime in F,. taking notice of the fact that
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[AP(O)X : Ap(m)xj = IPGLz(Z/me)I , we see by Prop.3.32,

Nt Im- (L-1> -1
p (g -
lgmsrp/E

(4.10.4) o, plar T) =1+ 1) .

For p = q , since LA(O)X: A(LY) = q+ 1, by Prop.3.34 we

have

(4.‘10.5) Co, q(a 0) = 1+ (f-li(c“l) .

Next assume f{ = 2. Iet a Dbe an element of Zp' For a prime

P ¥ ¢ and a non-negative integer r, put
axd X . X
>, ¢ (a, T, Ap(m))[Ap(O) : Ap(m)J
if aeIQ(GLZ(Fp)) and T is even.
> e (a, T, Ap(m))['/lp(o)x : /lp(m}"] (p - 1)
if « eN(GLz(Fp)) and r dis odd.

0] otherwise

For p = q, we see iji(a) =0 if and only if D(a) is a

division algebra, and put

T2 o (ay 0, Aym) [A(OF ¢ A (m)]

A
Osmgl
CV q(ay O) =
’ if aéN(GLQ(Fq)) and Z}\’i(a) ¥ 0.
e (a0, 4 (0))(q = 1)
Iy orq ? q
if aéN(GLZ(Fq)) and Fx;(a) = 0.
0] otherwise
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We note ¢ (a, O) and c (a, 0) also satisfies the relation
0yp Ty q

(4.10.1) and (4.10.2). If the discriminant of D(a) is
(pg «-e pn)2 with distinct primes p,, then

v(H/r(a)) = ]T(pi - 1) v(H/SL2(Z)). Hence we see

by = E-Cv,p(a’ rp) v(H/SL,(2))

; and ¢ p(a, rp) is given explicitly as follows. If p
9

decomposes in F, by Prop.3.29, we have
(4.10,6) co,p(a, rp) =1

If p remains prime in F, we see that for a positive integer
m JA(OY ¢ A(m)*] = pgm'l(p - 1) (resp. = p2m) if T, is even

(resp. if rp is odd). Hence by Prop.3.30, we have

1+ 2: pzm—l(p - 1) if r_ is even
1<mry/2 P
(4.10.7) ey, plas Ty) =
(p - 1) 2. p2= if r_ is odd
Osmg(xy/2) P .

For p = q, let 22 be the non-trivial character mod.q corresponding

to F, then by Prop.3.35, we see

_ q+l
(4.10.8) cv,q(a, 0) = X,(a)(1 + > Xo(a)) ]
(2) te. Let f(X) = x° - sX + n be a polynomial in

21X) such that n = Nrt and 8° - 4n < O , and A, be the

maximal order of X(f). Put h(K(f)) = h(K(f), Ab) , then for
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Z—-order A of I(f),

h(K(f))

(4.10.9) n(E(£), A) = m‘ymo,p_: Ap)

2

Let f(X) = X° -8X+1n Dbe a polynomial in Zp[X], and for a

non-negative integer m, let ,Ap(m) be the Zp—order ,AK(m)

given by (3.9.2) and (3.9.3) for K = K(F) ®QQP' For a

prime p ¥ g and a non-negative integer r, put

ey o(Fr T) = 2, o (F, v, A (1)) [4(0) : A ()]

m» O

and for p. = q,‘put

cr’q(f, r) = ‘%'ggb cv,q(f’ r, Aq(m))[Aq(O)X: Aq(m)xj
For u ez; , put fu(X) = u_gf(uX) . Then we see for p % q
(4.10.10) cv,p(¥’ r) = Ccyp( " r) for any u ez;
and for p = q
(4.10,11) cw,q(f’ r) = cv,q(%u’ r) for ény ué»N(@é)

By the definition of ¢ (f, r), we have

o, D
- n(K(T))
e = -5 EZ W (f) =l m ey oy )
f [/\O : EQJ p P p

» Where f runs through the same set as in (2) of Th.2 and
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w (f) is given by (4.6.1). The number c (f, ) can be
e TP P
given in more explicit form by using the result of §3, but we

note here only the following as to c_ q(f, 0). We denote by %%)’
?

the symbol given as follows. Iet K be a Qp—algebra of type a),
b), or c¢) in Remark 3.2, and A ite Zp—order, If A is

the maximal order, we set

sé} = 1, -1, Oy
R
according as X is of type a), b), or ¢). If A is not the

maximal order, put

B -

Iet § %be the integer such that Zq[%]= /lq(S) , then by

Prop.3.25, 3.26, 3.27,

N {flq(m)l \
(4,10,12) c (f, 0) = Z 1+ __:_ﬁl.__lz Xi(") + 9(’i(ﬁ)
osq "’ OsmsS 2 i¥l 2

x [Ag0Y s AT,

where a and B are the roots of the eguation f(X)= 0 mod.q .

e _ sX + n ' be a polynomial in

(3) ‘th. et f(X) =X
Z{X] such that n = Nor and f(X) has distinct two roots in
Q, and A, be the maximal order of K(f). Put h(K(f)) = h(XK(f), A ).
For = non-negative integer m, let /lp(m) be the Zp—order /lK(m)

in 3.9 for K=K(I”)®Qp as in (2). Iet O(rp(f’ r) be as
b}
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in (2). Eince n(¥(f), AO) =1, and it holdes the relation

(4,10.3) =also in this case, we have s in the came way as above,

W, (T)

N Bl

6= - ).
f OUQJ

h Tp[ C¢yp(f’ I‘p)

y where f runs through the same set as in (3) of Th.2, and

wy (f) is given by (4.7.1), Por p = q , we note the following.

Xs(a) + x.(B)
(4.10.13) ¢, (£, 0) = (i-+ P x 2, [, (05 1 A (m))
V14 i¥l 2 O¢m¢s @ 4
» Where § is the integer such that ZQL%] =.44(3) , and «

and B are the roots of the equation f(X) = 0 mod.q .

\ o
(4) tp. Assume 0l is a square and put Not= a“ ,and

f(X) = (X - a)2 . By Prop.3.11, 3.20,

a TT c.

L e pler 0y A/ ) = a

By Prop.3.28 we obtain

1 {
tp=—‘§(l+ ig.l)’(i(a)) a=-%5a

L.

A

, c€ince }i(a) =1 for all i, 1< 1i
Thus we obtain the following.

Theorem 2'. Let the notation and the assumption be as in
Th.2 and let C¢3p(“’ r), Cc;p(f’ r) be ac above. The trace
tr Ty (T(er)) ie given by
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tr TS(T(M)) = tv + b+ th + tp

y Where tv, te’ th and tp are given as follows.
(1) tv' If N is not a square, tv = 0. If Ng is
a sqguare, put Net = a2 with a positive integer a, then we
have |
k-1

t, = o TJ e plar 1) v(H/81,(2))

(2) T Let w_(f) be as in (2) of Th.2. A be the
<
maximal order of XK(f), and h(K(f)) be its class number. Then

we have

1 h(K(L))
te = —_2’ %‘_, u)e(f) —[X‘;:—E; ‘E’ C'T,p(f’ I’p)

s where f runs through the same get as in (2) of Th.?2.

(3) th’ Tet u%(f) be as in (3) of Th.2 and .40
be as in (2)., Then we have
Wy (£)
Ty = - — ] cw,p(f’ rp)

o EQ] D

, where f »runs the came set as in (3) of Th, 2.

(4) tp. If ¢t is not a square, tp =0. If ot is a
square, put Not= a2 with a positive integer a. Then we have
£
tp———g—a )
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&5. Main result

5.1. 1In this section, we shall prove our main result Th.3
using the result of 33 and §4. We use the same notation as in §1
and §4. In particular F is a totally real algebraic number
field which satisfies the condition (1), (2), (3) and (4) of

4,1, TLet R(QJ‘LF, GLE(FA)) be the Hecke ring with respect to
. 0 .
GL2(FA) and Ylp as in §1, and R (?/(F, GL2(FA)) be its

subring generated by the double cosets ZlLFa MF with «a 6GL2(FA)
such that aopeGL2( é‘q), where ag is the ¢g~component of a,
and 9] is the prime factor of the conductor q. Let

R(WLQ, GL2(QA)) be the Hecke ring with respect to GLQ(QA) and

PMn~s Where MaA = 1T GLg(Zp) X GLZ(R) . We denote as above by
- o .
P

0, A o . . y ) .
R ( yLQ, (:LZ,(QA)) the subring of R( ’Z/'(Q, GL2(QA)) generated by
the double cosets 'mQa MQ with « eGLZ(QA) such that aqéGLz(Zq)

y Where aq is the g-component of a. Now let's define a

homomorphism A from R(74, GL2(FA)) to R('erQ, GL2(QA)) in

the following way. For a prime iedal ' of F, let T(g'm) be

as in 1.3, and let T(g', 3‘) denote the double coset Viga MF
such that oy EGLZ(@JZ) for prime ideals 3 % 3' and

7 0 . . . .
Ug= (0 7£) y Where 7T is a prime element of 0?, . For a prime
p'y we denote by T(p'M®) the sum of all WZQa VZQ such that the

right 1\’12(Z)-idea1 ﬂapMz(Zp) is integral and of the norm p'm,
P

and by T(p, p) the double coset M 1y guch that apéGLZ(Zp)
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for p x p and @ = (g g,) for p = p. We define an element

U(sr) for an integral ideal ot. TFor a prime ideal 3P, following

2T(6) y m =0

B
i}
—

(3" - N3T(3, 3)T(3%2)

B
A\
n

end for a integral ideal 01, we put

e
v = T Uy
1

e.
, where 01 = || }’il . For a positive integer a, we define an
i

element TU(a) of R(72L., GLZ(QA)) as above, Namely for a prime p,

put
om(1) , m =0
m-s
u(®) 7(p) ym=1
7(p®) - pT(p, p)T(p™?) sy m oy 2

and for a positive integer a, put
U(a) = T u$)
i

€;

;& « Then we see U(gm) (resp. U(p™)) eatisfies

y, where a = TP
i

the following relation.



(5.1.1) u(z™u(gh) = u(F + (3r@g, 3RO

(resp. T(p™)U(p™) U(pm+n) + (pT(p, p))U(P™) )

fer mw>n21.

If we put A(2(3, 3)) = T(N3, §g) =and A(UGE™T)) = v(g™)

for a prime ideal 3 of T, then we see that A cen be extended

uniquely to a ring homomorphism from R(wzF, GLQ(FA)) to

R(2,, GL,(Q,)) and then A(R°(2g, GLo(F,))) C RO(y, 61,(Q,)) .

5.2, In §1 we defined a representation Ty of R(2,, GL,(F,))
in the space Sg([”). We will consider the other spaces of
cusp forms of one variable and the representations of
RO(ZQF, GL2(FA)) in those spaces.

We consider the spaces of cusp forme SKXSLZ(Z)) and
SK(Fb(q), Zi) , 1> 2, given as follows. We denote by Sk(SLg(Z))
the space of all holomorphic functions on H which satisfies the

[

followings ; (i) f(gz) = (cz+d) f(z) for all g= (2 D) € SL,(2),

(ii1) £(z) vanishes at all cusps of SLQ(Z). Put
Pb(Q) = {h(i 2)6 SLZ(Z) c =0 mod.q} and denote by

SK(TB(Q)’ Xi) for i2 the space of &11 holomorphic functions

. . . X
on H which satisfies (i) f(gz) = 2&(a)(cz+d) f(z) for all

g = (2 S)e-Fg(q) and (ii) f(z) vanishes at all cusps
of 7. (a). Put  GL,(Q), = {g€GL,(R) | det gy 0 ),
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and for a function f(z) on H and g = (3 2) GGLZ(Q)+ , put

f(z)
fllgl = T e (det g)K/Z .
(cz+d)

The Hecke ring R(ZIQ, GLO(QA)) acts an Sk(SLe(Z)) in the

following way. ¥or a double coset g %, with « éGLz(QA),

da
let mge ng (\GLz(Q)+ = a,” be a disjoint union. For

Y=
V=1

£ ¢S(ST,(2)), put

a
T (Mg = 3L gl .

Then by linearlity T can be extended to a homomorphism from

1
R(WLQ, GLE(QA)) to the ring of endomorphisms of SK(SLZ(Z)).

To define an action of Ro(iﬂQ, GL2(QA)) on Sh(Fb(q), 2&), we

' z  Z

— - X

put WA= ] GL,(2 ) *A_ % GL,(R) , where A_ = (zq zq)
Q ptq P q q aZ, 24

and we consider the Hecke ring R(ﬁQ, GLZ(QA))_ If we denote

by Ro(iiQ, GL2(QA)) the subring of R(iﬁQ, GLQ(QA)) generated

by the double cosets iﬁQaéiQ such that aqé—A& , then

07 ) o/, ' . .
R (WlQ, GLZ(QA)) and R (QRQ, GLQ(QA)) are isomorphic to each
other by the correspondence @iQarﬁQ — llQa y% . Assume

mQa 'ZJIQ corresponds to "y—L a 7

9 q and let 'ﬁQa ﬁQ r\GLZ(Q)+

d

= J;é ayr;(q) be a disjoint union., For fe Sw(rb(q), }i), iy 2,
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put

5

a
= 3 X.(c iy.—1
Ti(?/'(,Q(l 2QQ)f - = Ai(dv)fllav J

(ay b,

y wWhere a, = ). Then by linearlity T. can be extended
v CV d)) 1

to a homomorphism from RO(QKQ, GLQ(QA)) to the ring of endo-
morphisme of SK(F’O(q),.Xi). Hence connecting T, with A, we
obtain representations of RO(QQF, GLQ(FA)) in the spaces
SK(SLz(Z)) and SK(Fb(q), X). It is known Tl(e) for

e € R(My, GLy(F,)) (resp. T (e), 132, for e eRO(ZTQ, GL,(F,)) )
is a normal operator in the space SK(SLZ(Z)) (resp. Sn(Po(q),_Xi)
, 1>2), and SK(SLZ(Z)) (resp. SK(Pb(q)’ 71), i32) has a

basis consisting of common eigen-functiones for =211 Tl(e),

e € R(Uy, GLy(Q,)) (resp. Ti(e), 132, e ¢R(21,, 61,(2,)) ).

5.3, In 5.3 and 5.4, we will give formulas for tr TS(UQn))
and tr Ti(A(U(m))). For a prime ideal 3 % ¢,
To(U(g)) = TS(U(73)) and Ti(Z(U(y))) = Ti(ﬁ(U(Jg)>) for 1

, 1 <14 SQ., hence it is enough to calculate tr TS(U(MJ) and

tr Ti(ﬁ(U(m))) for integral ideals ot guch that ¢t is prime to
L wand ie devided by at most one prime factor of p in F

for any prime p ¥ g. In the following we assume U scatisfies

the above condition and let rp be the integers such that

2, = yzp(rp) X GL,(Fs) . For a prime ideal 3, tr Tl(){(U(gm)))
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is already given in [111,
To deduce tr TS(U(mJ) from the formula in Th.2', first
we prove the following ILemma 5.1, For a polynomial
f(X) = X2 - sX +n in 2IX] and a positive integer N, we denote by
fN(X) the polynomial N“Zf(NX). For a prime p, we call f

primitive at p dif f = is not contained in ZIX].

Temma 5.1. Let the notation be as above and as in §4
and  for . a non-negative integer T, cq,p(a, r) and
9
o p(f, r) be as in 4.10. TFor a prime p different from q,
b

let 9. denote a prime factor of p in 7.
(i) Assume N¢t is a square, and put Nou= a°  with a
positive integer a.

(a) For p % g with rpz.l, we have

-1
c (a, rp) NgAcvyp(Ng a, I, 2)

T+P
{ 1-0p ’ rp is even
-(1 - p) » Ty is odd
s, where we set c (N —1a, r -2) =0 if r -2<0, or Ng—la.¢z .
TP p p ’ P

(b) For p ¥ q with Ty = 0 , we have

cO’yp(a’ )

1
=

(¢) Por p = g , we have

1+ %-1_2*32)(1(&) , L% 2
1

Q
—~
©
o
~r
i

: : 1
Yo (1v 5 X)), g2
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2

(ii) Let f(X) = ¥° - ¢X + n  be & polynomnial in Z[X]

9]
such that n = Ne and o - 4n ¥ C .

(a) Tor p# g with rpjz 1, we have

1, if K(£)®Q, o2 0@ 4

. - - = and f is primitive at p.
cU‘yP(f’ ]p) N}’ CU':P(fN}, I‘p 2) prim © P

1 - (Eiflég) sy otherwise |,
' p

where we set r ~2) =0 if rp—2 < 0 or ng ¢ Zp[X]’

£
ey Tp

and (Eﬁfﬁ[?) =1, -1, O, according as K(f)p = K(f)@)Qp is
D X

of type a), B), or ¢) in Remark 3.2.

(b) For p % q with r, = 0, we have

(f, 0) = Z . x x - ,
CU”P K(f)p)ADZpLX] [40 A ]

where ,ﬂo is the maximal order of K(f)p and /\ runs throush

all Zp—orders of K(f)p which contain X.

{(¢) TFor p=q, let A, Dbe the meximal order of K(f)q,
and a, B be the two roots of the equation f(X)= 0 mod.q .

Then we have,

c (£, 0) = Z (1 + %(1 +{%})(Z ;{i(a)f;{i(ﬂ)))l/lg: AX],

y:(f)q)ADZQI%] ix1 2

where /) rune through a1l Zq—orders of K(f)q which con%ain X.

Froof. (i) The assertion (c) is nothing but the formula
(4.10.12). The assertion (b) easily follows from FProp.3.29,

3.30. We prove (a). The case where r, = 1 can take place

=150~



only for (= 2. For f= 2 and T, = 1, by (4.10.7) we have
e, (a, 1) = -(1-p)
Assume L 2. If p decomposes in F, by (4.10.3)

-1
c ( T = ¢ 7+ -2} =
vva\a, r ) c ’p(Ng a, r —2)

e

s hence we have

il

H\

i
o]

. 1 .
vap(a’ rp) - N;cv’p(Ng 2, rp—2}
If p remains prime in F, by (4.10.7) we have

1+ 24 plm—tlml)(p<ﬂ—17 - 1) , r_ even

I<mgr,/2 P
C (a T ) = F
T TP
(p-1) 2: plm , r. odad
0x1(r,,/2) P
1 4 plm—(l-]) (pw-v - 1) , r_ even
1 ( 1$mlrp-2)/2 p
T -2 =
c. p(hg as T, ) z l
(p~1) z: " , r_ odd
0<msKzy-2/2) P
Hence we have
. i-09p ’ rp even
c (a, r.) - N3 ¢ (N3 "a, r -2) =
o 2 Tp ¥ Co,pttE Ty ~(1-p) , T, o0dd
Thus (i) is proved. (ii) The assertion (c) easily

follows from (4.10.12) and (4.10.13), and the assertion (b)

follows from Prop.3.11, 3.16. We prove the assertion (a).



Let Jq and Sé be the non-negative integers defined in 3.9
for X = Qp , that is to say, Ji is the maximal integer such
that p~°'Y is integral, and §, 1is the integer such that

7z [p °X] = where 0) is the maximal order of K(f
plP J=A,085) 4,(0) (£,
and Ap(m) = Zp + pmAp(O) for a non-negative integer m. The

polynomial f(X) dis primitive at p if and only if 51 =0,
and zpz?c] = A (5+ J5) . We note that if f(X) is primitive at

py, then §5 = g, =0 . For if f(X) die primitive at p, then

we see K(Ff) ~ Qp(9 Qp , OT K(f)p is a ramified extension of QD

p~ [

[ag .
and vp(n) = 1, In the former case, Zp[X] = Ap(O), and in the latter

~ o~

cage, X 1is a prime element in K(f)p, hence ZpLX] is equal to
the maximal order Jdp(O) also in this case. And we have proved
5i = §, = O . This shows that our assertion holds if f£(X) is
rimitive, since f 721X d f, r 0 = 1 ., Hence

P ) ce fy, 42 IX] and e (f, » A,(0)) :

in the following, we assume f(X) dis not primitive. We will

prove our assertion according to the type of Fp. First assume

Fp is the direct product of f-copies of Qp, then Ny =P

and since T(X) is not primitive, fp(X)é-Zp[X]. By Prop.3.11,

we have

e (f, r.) = 2: A (0): X
L Oﬂm&+&1 p(0) Ap(m)”]

] .
Ty PP Osm <(&-+43

(f,r—2)=§ Yoo 0 A @), x>

O ,I‘:l
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If r =1, f(X) is primitive at p. Our assertion has been
proved in this case, and we assume rp2v2 . Since

Lqp(o)*: Ap(m)”] = pm(i - 3:(235219>> for a positive integer
1Y 14

m, we obtain

K(£)/Q
T - t r-2) = 1 - (2277
op,p{r Tp) = W oo plfygs 7pm2) ( 5 )
Nextly we assume FP is the unramified extension of Qp with
e . . . (K(£)/Q) - -
[Fp. Qp] =4 . PFirst assume r, = 1, If (._};___) =1, Cv,p(f’ 1)=0,

or f(X) dis primitive,and it holds our asgsertion . The case

where (512219) = -1 can occur only if { = 2. For [L= 2,

p
we see - (f, 1) = 2 =1 - (Eﬁflég) by Prop.3.18. If

s P D
(K(f)/Q) = 0 , then Ji = .gié for 4% 2 and Ji = 2 for

D 2
= 2. By Prop.3.19, we see cy p(f, 1) =1=1 - (E£E2£9> .
?
b
Now let's consider the case where rp;.2 . If (§1£l£9> =1
P

and T(X) does not satisfies the condition in i) of Prop.3.17,

then we see c&,p(f, rp) = chp(ng’ r -2) = 0 , and our assertion

b

holds in this case. lence in the following, we assume f gatisfies

the condition in 1) of = Prop.3.17 if (K(f)/Q>= 1. Under
p

this assumption, fN;(X) is integral if f£(X) 1is not primitive

at p. First assume it holds neither of the following two
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conditions ; (1) f{= 2 =znd (K_(f)_/i): -1, (2) Erp is odd

p
and (M) =0 . Then by ZFrop.3.17, 3,18, and 3.19, we
1Y
have : .
¢ (f,r)=1+ ). N‘gml—_l_(K(f)/Q)
TP P 1S1% 8/ N\ 1
é\l/l — J
RC I RS (1 - i(K(f)/Q_))
lemes, p p
and
: K(f)/Q
(fo, T =2) = 1 + e (1 - ))
oyp Np? TP 1<mszc57-ﬁ>/zg (

. (Ng)w‘._;z;/.l me (1 _ _}.(‘K(-i‘“)/Q‘))
: D p /

\

From these formulas, we obtain

. _ K(£)/Q
Co p(f’ rp) - N3 Cfr,p(ng’ rp—z) = 1- (T‘)

In the case (i), since [AP(O)X : Ap(m)"'] = pm(l + 1/7p) for a

positive integer m, we have by Prop.3.18

& vl D (5, - 2m + DNFNL - 1/07)

lsmsi&-ir2

p(f’ I’p) = , §, is odd
S+ 1+ L (5 - 2w+ NP - 1/np)
I€mgd2
‘Y‘ -
+ N3 2 Y, PH1 + 1/p) » &1 1s even
14m<d,
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and
(53-2) + 1+ ) ((57-2)-2m+1)N9™(1-1/N3)

1sm<((5-2)+1)/2
c (f, r ~2) =
sD D

T p , 5]-2 is odd
PR, > \ ~.m, . -
(53-2) + 1+ 5 ((&-2)-2ms1)Ng"(1-1/N3)
lsmg(&~-2)/2
&-2)/2 m 1
+ Nt v (1 + —) 5 S: ie even .
d- L_‘ N p/ 1 o

Since we have

), (§-eme)NFM(1-1/W) - wp Y ((§3-2)-2m+1)Nz"(1-1/Np)
1smgldy/2] 1gmsl§i-2Y2]

= (& - Dz - 1)

s we obtain

- - _ [E(E)/Q)

Crnp(f’ rp) Nz C(r,p(ng’ rp) =2 =1 (T) :
Now we consider the case (ii). In this case by Prop.3.19 we
have

\ - m

c@yp(f’ rp/ =1 + Ny
Igmg(28+1-12)/2¢

and

m

H
=
+

(fNa-Z, rp_e) N?

1smg(2¢oi-)+1-L) /20

6]
TP

sy hence we obtain



- N o - = - N K(f)/2
Cryp(Tr Tp) = Np ey (f, r,-2) 1 0= 1 <__>

Thus (ii) is proved completely.

By the above lemma, we can deduce the following formula for

tr ’I‘S(U((ﬂ,) ).

Proposition 5.2, Let the notation and the assumption be as

above., ILet o0t be an integral ideal of F such that o is
prime to g and is divided by at most one prime factor of p
for any prime p. Assume # 1is even and > 4 , then

tr TS(‘U(H)) for smx ¢ (resp. ot=6) is given by the following
formula.

tr TS(U(R)) = tv + te + th + tp

(resp. L tr Dg(U(W)) = t_+ t_ +
2 e

v +tp)

h

y Where tv, t th and tp are given as follows.

e’
(1) T, For a positive integer N, put JS(N) =1 or O

according as N 1is a square or not. Then we have

ty = 5000 222 v(r/51,(2) T (1 - p) (1 P2 Y x«m))
4T Do 2 41t

aq

(2) T Iet i‘-—} be as in Th, 2, u)e(f) be as in (2)
of Th.2, and «a, B be the roots of the equation f(X) = 0 mod.q .

Then we have



wr G T (s (100))

pi Nt D

(L)

X Z <l + <_l_;i__ﬁlii)(z Xi(a)+)(i(s)> h(k(£f), A)

K(£)I/2 [X) il 2 A s )

, where f runs through all polynomials X2 -sX + n € Z[X]

which satisfy (i) £° - 4n <0 , n = Nov, (ii) £(X) is

primitive at every prime p such that (JﬁiﬁbﬁgJ =1, and /. rTuns
P
N
through &ll Z-orders of X(f) which satisfy (i) ADZIX1 ,

(ii) Ap = A @Zzp ie the maximal order of K(f)p for all
primes p which divide Nt
(3) th‘ let cﬁh(f) be a2 in (3) of Th.2, and let «a

and (B be the roots of the equation f(X) = 0 mod.q . Then

we have
0 , D=6
(a)+x.(8) h(K(f), A)
b= ) - Yo () <1 Loy AT v 22
¥ ¥l 2 K(£)oA>% [A * Eg]

s Otherwise

, wWhere f runs through all the polynomisls X2 -cX + n ¢ ZIX]
which csatisfy (1) e? -4n is a non-zero sqguare . (ii)
f(X) dis primitive at all p which divide N, and /1 runs

through all Z-orders of K(f) which satisfy (1) Aﬁ)Zl%]’
(id) Ap ie the maximal order of K(f)p for all primes p which

divide Not.
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(4) tp. We have

-t , 0l=0
2
t =
p
(O] s Otherwise .
Proof, For ¢t = (¢, we note that any polynomial
£(X) = X% - eX + n € Z[X] with n=N@=1 is primitive at

all primes, and we can easily verify our aseertion for m =06 Dby

Th.2' and the result of §3. TFor an integral ideal %68, put
N ‘ , ;

e= 1T ?? with prime ideals '31 of F and positive integers
i=1

ej. We denote by Py the prime which divide Ngi, then Py £ p

J
if 14 J vy lhe assumption on ot., We denote by I the set of
indeces of gi's, i.e. I = {l, e s N} , and for a subset J
of I, let p(J) denote the set of primes {pi | ied f For

a subset J of I, we denote the integral ideal ] 34 @also
ied
by J. Then by the definition of TU(m),

() - S e, 9)r@aT?)
Je1

Here we put T(OIJ_2) = 0 if WJ™° is not integral ,and

T(J, J) = ﬂ T(y;» §;). Hence we have
' ied .
tr (V@) = %’ -1)"9"ws tr T (T@ITE)) .
. | JCI - |

We denote the contribution of the terms t, (resp. tes
in Th,2' +to tr TS(U(A‘L)) also by tv (resp. t t

e’ "h? "p
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(1) T, For a subset J of I, Not is & square if and

only if NQRJ_Q) is a square. Hence if ©Not is not a square,
tv = 0. Assume Nd#t is a square, and put Np= a2 with a positive

integer a. Then by Th.2' we have

b =1 assna(z)) Do (1) ¥l ‘ aNg
vt vty Do T, .

x 1T ¢ (ang™1

( , _ , T_=2)
" pep(d) TP P

Here we put (aNJ_l, rp—2) =0 1if aNJ_l¢ Zp or rp=2‘<00

[¢]
oyD

By (4.10.1) we have for pé&p(Jd), # a,

c (aNJ_l

5D D cr,plar Tp)

and for p = q by (4.10.2) and the assumption on F, we have

-1
c ,q(aNJ

) , 0) = ¢ (a, 0)

For pep(Jd), let 3 denote a prime factor of p, then by (4.10.1)

"l
,p(

-1
o 9 rp) = co_,p(aNg y T ) .

p

Hence we see

b= %71 v/sn.(2)) 2. (-1)!9'ws ,
v e v(H/SL,( )) = (1) p;Z&J)C“’p(a rp)

: i -1
N N s -2
X p;ZEJ) 3 cr,p(a ? rp )
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= -l sz (a, r_)
- v(1/81,(2)) p%gkI)CT’P 8y T,

o ; T -1 )
X en(l)( (a, rp) - N;,cq}p(ak; , T L)) ,

For p¢p(I), r, = C, hence by (i) (b) of Iemma 5.1,

c (a, .} = 1 ,
pdo(I) (P SR o

p¥q

We note for [ = 2, Xz(a) is 1 or -1 according as the
ordinary of the set { P | rD odd } is even or odd. Hence by

(i) of ILemma 5.1 we have

-1
c_ (a, 0) (a, r.) = Ngec_  _(alNy —, r -2))
0 Q p(_p(:[)( 0y D el 3 o o} 5 P
= D a-mx (1 2 Toag@) .
pep(I) o i1
Thus we obtain
o .
ty = == vysigm) T -p) (14 2 x x:(2))
47 pep(I) , igl
(2) te. Let <ue(f) be as in (2) of Th.2, then

u%(f) = “%(fN) for all positive integers N. By the same
argument ac above end the relations (4.10.10) and (4.10.11),

we see in the notation of Th.2',

(5.3.1) — £ T,
o Zf:“)e< )p%lD'(I)CU',p( I‘p)

. )y DEED)
) 613‘( JCrpl® B) = g oo ol r2)) Ao+ B)
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, where f runs through all the polynomials f(X) = X2 -sX + n

in Z[X) which satisfy =n = Notl sand s - 4n < 0 , and we

- - i i t int 1 -2<0 .
cq_,p(f; r 2) 0 if fN} is not integral or rp

By Lemma 5.1, (2), we have

set

(5.3.2) pep(l)( ool fr Tp) = Wpep (Fo rp-z))
v /1 /K(f)/Q\\ if £ is primitive at all
SR
(K(f) (942 p with (,.p__)= 1
0 , otherwise

, and by (4.10.9) and ILemma 5.1, (2), we have

+{Aa
(5.3.3) T ceplfr 7)) = Z (1 . (l {qq})

p¢p(I) K(£)>AD2ZIX] 2

xo
x'( Z Xi(a)+7ci(ﬁ)->)x h(Kif), A) S A EQl
il 2 [AS: EQ] h(K(£))

, where a and B are the roots 6f the equation f(X) = O mod.q,
and /1 runs through all Z-orders of KX(f) which satisfy

(i) A3% and (11) A, ie the meximel order of K(f) for
all p dividing N . By (5.3.1), (5.3.2) anda (5.3.3), we

obtain our assertion for 1

(3) th’ Iet q)h(f-) be as in (3) of Th.2, then it

holds also in this case that (,oh(f) = wh(fN) for any positive
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integer N. %e cen prove our asscertion for in the scame way

I
ag for te’ and we omit the details.
(4) tp. If ot is not a sguare, the ideal nJI™t is not
a square for any svbset J cof I, and we see tp =0 in this
case., If vl is a square, it holds r, > 2 for all pep(I).
By the same way ag above, we obtain
[ ey ei—l
= - = - N
tp 2 i”'JI(N?i NyNFT )
= 0 .

Thus our proposition is proved completely.

5.4, Iet N ©be a positive integer, the explicit formula

for tr T.(T(N)) die lknown by I.Eichler £3]; L4313, 151 and

H.Hijikata [8 1. We qguote the result of them in a convenient

form. Let p be a prime and f be a polynomial £(x) = X2 - s8X +n

€ Zp[X] with 52 - 4n £ C, For z non-negative integer m,
we denote by Ap(m)' the order AK(m)‘ in® 3,9 for K = Qp[XJ/(f) .
and by Vo the valuation of Qp given by vp(p) =1 . TFor a

non-negative integer r, put for p % q,

> (A" A Y] i v () = 7
cp(f’ r) = KPDAp(m)DZp[XJ :
0 ' - ' , otherwis
’ where Kp = Qp[XJ/(f) . For P =q ’ let a, B be tle

roote of the eguation f(X)= C mod.q , 2nd out
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Aq(m)] ,if vq(n)=0 and i=1
(s ) Fq:)Aq(m))Z IX\
cCl , 0) =

A (m)
. ¢ o : .})()cim - Xy (8)) 1A, (0F & A ()]
KqD./lq(m)DZq?ﬂ 2
, if vq(n)=0 and 2<ig{

0 ~, otherwise

s, where Kq = QqIX]/(f) . Then we have by [ 31, L41, [51and

Theorem 5.,3. ILet the notation be as a@bove., ITet N Dbe a

positive integer prime to g, and put Sy = vp(N) . Then we have

t..+ t.+ t

tr T4 (T(I)) v e nt tp

, Where tv’ te’ th and tp are given as follows,
(1) b, = ( SOMEL v(/51,(2)) , i=1
47
s L )( (V) (4+1)v(H/ST,(2)) » 2<ig< !/
47

, where S(JN) =1 or © according as N 1is a square

or not.
(2) = -1 Yo, (£) Tey(t, s,) L)
2 %J b NG e E5]

y where f runs through all polynomials .f(X) = X -sX + n

such that n = Net and  s° - 4n < O .
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| 1
(3) %, = ‘%wh(f) ycp(f’ °’ S

, where f 1runs through all polynomials f(X) = X2— sX + n

€ 72Ix) such that n = Not and 52- 4n is a non-zero

square.
(4) t_ =  -s0m IV ,i=1
P 2

- SUT) X, (M) VT ,2sish .

To deduce the formula for +r Ti(;l(U(m))) from that for

tr T,(T(N)), we prove the following.

D
Ay}

Temma 5.4, Notation being as above , let f(X) ©be
polynomial f£(X) = X°~ sX + n ¢ Z[X] such that n = N& and

52 4n £ O . Then
(1) For p % q with sp;l , we have
b - bl 8 -
Cp( ’ Sp) P Cp( p’ °p 2)
1 , if (M):l end T is

b
primitive at p.

1 - (_K_(%) ,‘otherwise

-2
» where . = p “f(pX) and we put CP(fP’ s,-2) = 0

if f ZL =
pq: [X} or 8 2<0 .
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(2) Tor p % q with s_= 0 and a positive integer u

P
prime to p

o (£, 0) = c (£, 0) = ) 5
Kpj% (m )DZPIX]

(3) For p=q and a positive integer wu vprime to

cq(f, 0) = X;(u) cq(fu, 0)

0

d,

(4,00 + A (m)]

We note LAP(O)x: Ap(m)x] = pm (1 - .i.(giflig)> for a
Y

p

positive integer m. Then we can prove our assertion in the

similar way as Lemma 5.1, and omit the proof.

Using the above lemma, we can prove the following in the

same way as Prop.5.Z2.

Proposition 5.5, Let the notation be as above

%% (resp. (1= 6 )} we have

tr T, (A(U(@)) = tr Ti(U(Na)) = b+ b

(resp. % tr T,((0(8))) = b, + b+ by o+

, where t ., %, t, and %, are given as follows.
(1) &, = SHTW 'Z;} v(11/51,(2))

(VTR 2Ly (VTR (04 1) v(H/SL,(2))

e
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. _ iy, o EE)/Q
@) %= -7 Loy pﬂm (2- | . )) |
) (K(?ZQ)H
_, h(K(£), A) .
. A [Ax : ‘EQ] P T
X
— Ay Xa(@)+ X (B)y B(K(L), A) ‘
=) (E ) YOS , 251

, where f (resp. A) runs through the same set as in (2)
of Prop.5.2 wnd we denote by a and B the roots of

the equation f(X)= 0 mod.q .

y n(K(£), A) X
) (Y = )

\ A (AT Eg]

~~
Lo
N
ot
=
I
|
-y [‘/J
&
=g
—~
Hh
R
X

l X (a)+ X (B) ESELLQ y 2
Y (Kl )W:EQ]

, where f (resp. A) runs the same set as in (3) of

Prop.5.2, end -« and § being as above.

(4) t_ = _— , =6, i=1
P 2
-1 , (1=6, 2<si<k
o , otherwise

5.5. By FProp.5.2 and 5.5, we obtain the following.
Thecrem 4,6, Let the notation snd the assumption be as
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above. Then we have
14
(5.5.1) tr Tg(e) = tr 1y(a(e)) + 2 tr Ty(A(e))
| i=2

o .
for e of R (ZQF, uLZ(FA)).

Proof, ILet 7T be an integral ideal which is prime to ¢
and is divided by at most one prime factor of p for every prime

P ¥ g . Then for U(o) € RO(Q&F, GLQ(FA)) with cuch U, our

assertion is & direct consequence of Prop.5.2 and 5.5. As

remarked before, for a prime ideal 7§ % ¢, it holds,

T5(U(3™) = (U™ L 1 RUGEM)) = 1M
and

7

TS(T(y‘i y—)) = did , Ti(/—{(T(i’w g))) = id

By this and (5.1.1), we see our assertion holds for U(s) with

e .
an integral ideal ¢t prime to ¢}. If we put oy, 220 =11 T(yi, 31) *

e.
Tfor a fractionzl ideal $ = TT?il , then any element of
RO(WLF, GL2(Fﬁ)) cen be written oe o Z-linear combination of

T, % )U(cY). 'e with integral idealsO prime to 7} and fractional ideals .

Hence the relation (5.5.1) holds for 2ll e of RO(ZQF, GLZ(FA))'

Remark 5.7. The fbrmula (5.5.1) is a generalization of
the formulé (21) in[9 ). 1In fact we assume (= 2 , snd denote
by ig the group generated by [° and T¢ .  Let X (resp. ? )
be the arithmetic genus of the surface HxH /7 (resp. H xH /]i).

Then the formula. (21) .reads ag follows.
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5 - 1 _ g-17-
x-S (- 2D
By the way, dim $,(7) = ¥-1, dim S,(7) = (¥-1) - 2(2-1) ,

and _é.dj.m 82(r'o(q), Xy =14+ [%:_22] for } = (_

q) . Hence

the above formula is equivalent to

ain $,(7) = = dim 55(Mo(a), X)

Here we note dim SZ(SL2(Z)) = 0. On the other hand our formula
(5.5.1) for e = T(#) and f=2 asserts

GimS (") = aim Se(S1,(2)) + %dim S (7 (2)s X)

if ® even and 4 .

5.6. Since T.(e) (resp. T.(A(e)) ) for e € R%( Wy, GL,(F)))
is a normal operator in the space S ,([7) (resp. SK(SLZ(Z)) or
S ["O(q), ;lfi), i»2 ), they generate a commutative semi-simple
algebra over (. Hence the formula (5.5.1) in Prop.5.6 implies

that the two spaces  25,(7) and  285,(5L,(2)) @ (.@2 Se(lp(a)s X3))
12

are isomorphic to each other &s RO(Z‘LF, GLQ(FA)) -~ modules,

where for a epace &, we denote by 2¢ the direct product S @ S

of two copies of . Illoreover we can prove the following.

Theorem 3. The notation being as above ; lev F be a
totally real field which satisfies the conditions (i), (ii), (diii)

and (iv) in 4.1, and szssume K is even and > 4 . Then
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there exists a subspace S of @ Sm(Fb(q), 2&) which is
iye

stable under the action of RO(‘V{F, GL,(¥,)) , and satisfies

(5.6.1) 28 & S;f(\'"o(q), /1/1)
and
(5.6.2) Sr(l") 22 Sk(SLy(2)) @ 8

. 0 - o
as R (QIF, GL2(FA)) modules. Moreover we may assume S hac a
basis consisting of common eigen-functions for all e of
0
RO(Mgs 61,(3,)).
Proof., For [/ >»3 , it is easy to give such ©S. 1In fact,

for a function f(z) on H, put
- —E
qu(z) = f(rz)z "q 2

. _ (0 -1 ; - R S £ 3 8
with T-= (q O) . We assume 2/”—2‘1+i" X, for 2gig

1 2

Then it is known ( 031, Th.B, 193, Prop.3.55) that wq

induces anisomorphism between SK(PO(q), Zi) and Sn(rg(q), }&-D/2+i)

, 2<i<(€+1)/2 , and that Wq satisfies

for a positive integer n prime to g and
2
W =
q 1 .

Hence for a positive integer n prime to. q, it holds
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W.T.(T(n)) = AX&(n)T. “'”+i(U(n))Wq

11 i-1)/2
and
vom (s = m (3¢ ) b
"lTi(ﬂ([(ﬂ)) = *(z_l)/z_’_i\z-\u(al/))‘[q
s Since Xi(ﬂ?ﬁ =1 by the acsumption on PF. If we put
l":l
5 = B skla)s 4y
1=

-

, we see easily S =eatisfies (5.6.1) end (5.6.2), and it is

<

obvious S has & bzesis consisting of common eigen-functions for
all e ¢R%(2n., GL,(Q,)). For L= 2, we note that

_z.dim Sk(Iy(a), X,)  is en integer, since

%dim Se(Mo(a)y Xy) = QimSSe() - dim 8,(8Ly(2)) .

~) ie & common eigen-function for

» end that if £ e85 ((q), X,

all T(e) with e (-RO(‘Z/(Q, GL,(F,)), then W f also has the

seme prOperfy. For, Wq inéuces an automorphism of Sk(Fb(q), Xé)

~

of order 2. and satisfies

(5.6.3) 2‘J1T2(T(n)) = ?c'g(n)’.PQ(T(n))‘r?‘:'q

for a positive integer =n prime to q. (c.f. [191, Prop.3.55)

We will show there exists a basis {hi} y 1€1 € dim Sg(I7,(a), IE)

s which consiste of common eigen-functicns for all T(e) with

0 . . . .
e € R° (7, GL,(2,)), and eatisfies Why =hgy o, 1<i<a,
where d = _é.dim Sg(Cy(a), X,) . If this is shown, the cubspace
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S of bh(["’o(q), 7(2) spanned by f 's , 1 £ i SEd:Lm o,f(r’o(q), 22)

, satisfies the conditions (5.6.1), (5.6.2) in our theoremn,
since by (5.6.3) it holds W T,(A(U()) = T,A(V(@)W,

for any integral ideal /. Iet (£ 5 1 €1 € ainSk() , be
a basis consisting of common eigen-functions for all Ts(e) with

e €R(7y, GLy(F,)), and let C[f;] be the one-dimensional

subspace of &SK(P) generated by fi . We note the following,
which holds also for [ % 2. If two spaces lei] and C[fj]

are isomorphic 1o each other as Ro(%,F, GLE(FA))—modules, then

by ({13, Th.2) there exists a constant ¢ such that £y = cfj .

Hence any two R°( VL., C—LQ(FA))—modules C[fi] and C[fj] are

not isomorphic to each other if i % j . ILet §g;},

1<1 € dim 8,(8L,(2)), (resp. {hy} , 1 <i<dinm Se(ry(a), ¥,) )
be a basis of SK(SL2(Z)) (resp. Sx( (a), Xp) ) consisting of
common eigen~functions for all Tl(e) with e R(?/LQ, GLZ(QA))
(resp. Tz(e) with e eRO('le, GLZ‘(QA)) Y. Since

23/p(l”) = QSK('SLQ(Z)) ® Se(r (a), X,) and Clf,] A C[fj]

for i % j, we may assume by replacirig indeces,

clf;] XX Clgy) » 1 €1 <dim 5,(5L,(2))
and
g 2 Clf_, ;] 2 clhy, hy,,) v I <1 €dim 8y (a), 4,)
Clhy) 2= Clhg, i) & C[f5)
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as RO(QQF, GLZ(FA))—modules, where s = dim SK(SLZ(Z)),

5 1 .. .

d = E_dlm SK(fg(q), }2) and Clhy, hy ;] 1if the space spanned
by hi and hd+i . We show hd+i is a constant multiple of
thi . TFirst we assume ’hi and thi ¢re lineerly independent.

Since Sn(r%(q), 22) has a basis congisting of new forms in the sense of

Atkin-Lehner-Miyake, thi is a constant multiple of h. for

some j. But as R, GL2(FA))—modules we have

F!

- n -
Clw byl X clh,] 22 Clhy, ;)

ad c{hj] , Jo¥ i, d+i

s hence thi is a constant multiple of hd+i' Next assume

thi = chi with a constant ¢, If thd+1 and hd+i are

linearly independent, we can show in the same way «g above that

- 273 o o A faud _l
thd+i = Chj , with a constant ¢ and Mqhi = C hd+i . Hence
we asecume that thi and thd+i are constant multiples of hi
[e5)
- - . _ 2ninzg
and h, ; respectively. Iet hj(z) = Z: c.(n) e be the

n=1 J

Fourier expansion of hj(z), and aj(n) be the eigen-value of

hj(z) for T(n) with n prime to g, then it holds
_ wp-1 ,
cj(n) = n Xz(n)aj(n)

By (5.6.3), we obtain



CJ(P) 7(2(P)CJ(P) for Jj = i, d+1

Hence we have

cij(p) = ¢4, 4(p) =0

for all p ¥ g with Xg(p) = -1, For p ¥ q with Xz(p) =1,

We have TQ(X(U(?))) = TZ(U(p)) = TZ(T(p)) , where 3 is a

prime factor of p. From this it follows that ci(p) = °d+i(p)
. ~ . _ . ' ~ 1 A )
for all p % q with zz(p) 1, since C[hi] ~ C[hd+1, o~ C[fs+1]

s, hence we obtain ci(p) = Cd+i(p) for all p % q. By ( 133,
Th. 3, Cor.2) this implies hi = chd+i with a constant ¢, and

this contradicts to the assumption on the choice of §hi} .

Hence it has been proved that thi = ch with a constant c.

d+1i
By multiplying suitable constents, we obtain a basis of S”(Fb(q)"ZZ)

which satisfies the conditions mentioned above., Thus our theorem

is proved completely.
As a corollary of the above proof for £ = 2, we have

Corollary 1. TILet g be a prime such that g =1 mod.4 .
Assume the class number of Q(Jd) is one. For an even positive
integer k larger than 2, let f GSK(FB(Q)s X) be a common

eigen~function of T(n) with the eigen-value a(n) for all
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rocitive intezers n rprime to g, where X denotes the guadratic

a(n)

[
et

residue eymtol mod.n . Then the field ¥ gernersted oy al

over 3 is & totelly imaginery juedrati

o

[

¢ extension of & totally
real field.

Proof. The above ascsertion for K = 2 is contzined in
Th.7.16, of [19)., For #x 74, by the above proof it is ceen that
there existe a prime p sucﬁ that c(p) £ 0 =znd X(p) = -1 .

If we denote by a(p) the complex conjusation of a(p), then

a(p) satisfies e(p) = 2(p)a(p; (c.f. Irop.3.56, [9]), hence

a(p) = -z(p) . Thie implies K ie not totally real. From this

The asgertion in this corollary iec ceteted in [27]) under a

more generzl condition.

How we interpret Th.3 in terme of Fourier coeficients.

D

Let g(z)&-Sx(Slz(Z)} (reep. SK(YB(Q), Xj), i32) be a common

eigen-function for &11 T(n) (resp. T(n) with n prime to q).

We have the Fourier expansica of #(z) ziven by

g(z) = ). c(n) <717

(2]
=

]



By nultipiying a constant, we may assume c(1l) = 1 . If we denote
by a(n) the eigen-value of g(z) for T(n), then we have

[ %

(5.6.4)  e(m) = a7 x ()7

a(n)

for 211 n (prime to aq if g(z) € Sp(p.(q), xi), i »?2), where
for g €Sk(8L,(Z)), we put Zl(n) = 1 . From the sequence {c(n)}
e define snother sesuence {C(L’L)} for integrel ideals ¢ orime

to . For =6, put C(&) = ¢(1) = 1 , and for a prime ideal

C(yl) = e = C(?l) = c(p) , if (p) = 3, ce 3y
c(z) = c(p - e T, if (o) = 3

For m 32, define C(j?,m) inductively by

c(3™) - ny™?!

C(3™%) = o™ - o7 2 () ez .

Then we cee 0(3, } satisfies

c@™ = o(PoE™h) -yt

m-2
c(z™ ) .
€1
Lastly for- ¢ = ([ yi ,  put
€1
¢y = To(xh .
i

For ¢ = 2 and (. prire to & , this rule for defining C(ot; from
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c(n} is nothing but the rule given in.[2] and [14].

Corollary 2. Iet the notation and the assumption be as in
Th. 3.

(i) Tet f(z) € Sp([”) be a common eigen-function for all
T(0) with Fourier coefficients Cf(a) such that Cf(é") =1,
Then there existe a common eigen-function g(z) for all T(n)
(with n prime to g, if g(z)e’SK(Po(q), Zi), i»?2) in SK(SLQ(Z))
or Skl [”o(q), Zi) such that the Fourier coefficients C_f(le) for
¢t prime to 0} eare identical with C(o) defined from the Fourier
coefficients c{n) of g(z) in the zbove way.

(i1) Tet g(z) €5,(ST,(2)) (resp. € Se(rp,(a), %), 122)
be a common eigen-function for all T(n) (resp. with n prime

to q) with the Fourier expansion given as follows

(24

glz) = Z.l c(n) e2Fin? , c(1) =1
n=

Define ¢(@) for ¢t »nrime to 0] in the above wey from c(n),
then there existe e unique common eigen-function f£(z) € S, (I7)
for a1l T(fY) such that the Fourier coefficients Cf(ﬂ'c) of T(z)
are given by C(0) for zll ¢t prime to 0.

(iii) In (4ii), if two common eigen-functions gy end g,
for 11- ™(n) (with n prime to q for vgieSK_(F’vo(q), i’j)y iz2)
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correspond to the same element of S5,([7), then g and g,
are contained in Sm(SLz(Z)) and g; = cg, with a constant ¢,

or g; and g, are contained in '§2 SK([‘;(q), /'{’i) and
1/

g1 = c8&, ;)r gy = cwqu with a constant c.
Proof, Iet g(z) Dbe an element of SK,(SLZ(Z)) or Sh,(r’o(q), 2i)
which is a common eigen-function for all T(n) ( (n, q) =1 )

with eigen-values a(n), and let f(z) be an element of ()

which is a common eigen-function for all T{t) with eigen-values

a(p)., If CIf] > Clgl as RO(’)ILF, GL,(F,))-modules, then

a(®) = a(l) =1

t
D)
—
Y

~

a(y) = ia(p) if  (p)

a(Np) - X (p)pallpp™?) it (p)

I
=)

s since Ti(T(p, p)lg = )’i(p)g . For m»?2, we have

a(p™ - Ny a(}m_z) = a(Ngm) - ){i(p)pa(Nymp—?)

In notice of the relation (5.6.4) (resp. (1. 3.2) ) Detween
c(n) and a(n) (resp. Cf(cri) and a(ot) ), we easily obtain our
assertions (i) and (ii) by Th.3. As noted in the proof of
Th. 3, Sk(l?) 1s a direct product of one dimensional simple

RO(?/LF, GL2(FA))—modules which are not isomorphic to each other,
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and a common eigen-function g(z) GSK(SI?(Z)), or Sk(rg(q), 2&)
for a1l T(n) (n prime to q if g(z) esk(rg(q), 2&) ) is a
new form in the sence of Atkin-ILehner-Miyake. Hence our assertion

follows from the proof of Th, 3.

5.7. In the correspondence given in (ii) of Th.3, Cor.2,
our theorem does not give any imformation on the Fourier coefficient
Cf(q). But it seems that there exists some relation Cf(q) and
c(g). TFor (= 2, the results of [ 2 ] and [14] shows that Cf@})

is related to c(q) in the following way. Iet g(z) %be as in

(i1) of Cor.2. FYor = prime ideal §= ¢ , define C(ym) as
above, and for 0;, .as  in [ 2] and [14]) , put
clg) = c(a) if g ¢8,(SL,(2))
c(a) + c(q) if geSc(m(ad, x5)

, where «c¢(q) denotes the complex conjugate ©of c(q). Tor

m»2 , define C(q@) inductively by

oy = e ho - n e E .
_— e
For g1 = U jil , put
1
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Then we can prove the following by the method of Miyake [73].

Proposition 5.8, Iet F and /£ be as in Th.3, and g

be as in (ii) of Th.3, Cor.2. If g corresponds to f € Sg([)

in the correspondence given in (ii) of Th.3, Cor.2, then the
Fourier coefficients Cf(a't_) of f is given by C() for all
0t . In other words, the function f on HxH given by the
Fourier series

f(z) = Z, c(ot) Z exp 27V-1 <£.L_AZ:L + T(f__f}ﬁ)zg>

0T = () £6E+

Q

1S
J'CT>>O
belongs to S5,(]7), hence to Sg([7).

Proof. Assume g is in correspondence with f(z) € k().

We consider the following two Dirichlet series

Cp(60)
D = -4
f(s) Z. Nms
(s) §f oeo
D(s) = —_—
N

» where Ce(yr) are the Fourier coefficients of f(z). They

have the Euler products

-1
De(s) = T (1 = c(mg™® + ny'—172%)
7
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. P
D(s) = ] (2 - c(Puy™® + ng"17%%)

¥

for Re s >N with some N. DPut

Dy (s) 0® (2m) ™% ["(2)“Dp(s)

D" (s) S (em 5 (s)%D(s)

Then it is known that D;(s) satisfies the functional eguation ((77)
* L3
Df(n—— s) = Df(s)
y and by | 27 and [14], we have
*l A Y * AN
D(nw-s) = D(s)
Comparing the above two functional equations, we obtain

1 - c(pNe S 4 Ny 178

2s—k-1

1 - clu ™ 4+ my

f—-1-28

1 - cf(o;)mfs + Nof Cs-r—1

1 - Celq)ig®™* + Ny

, since Cf(g) = C(?) for %0 . TFrom this, we see

Clep = Celep) , and  C(w) = Cp(e) for 21l 0T,
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Note. We caa prove a little more general result in the rame
way as in this vaper. We csn concider £y (TL4),X ) not
o o = , -
only as a R(UlQ, GL,(Q,))-module but also as a R(Yl,» GL,(Q,))
module. In tact , for ee RV, GLQ(QA)), define the action of
2

d
e =ag before. For g , let f;(q)(% g)f;(q) = U a,j;(q) be a

. v= 1
disjoint union, end put for ge S (T(9), X) ,
det )k/z 1
sl (2 9] = S X(a) (2t @) o(a3ls)
A v (=cyz + ay) ’

where ayzli" g:) ind we define the action of T(g) and T(q,q)
y

on SK(};( Q) 3 X) by

r Ve 0] 0Y — *
r(a)e = |l (E 9)T(] + el (E 9) 7o)
T(a,a)g = g .
Here (To(q)(g g)ﬁ(qﬂ ¥ denotes the adjoint operztor of
— g O . .
f/o (q)(6 l)[;(q)] with respect to the Peterscon inner product.
If we denote this action also by Ty Se(T(a)s X ) can be viewed

as a R( WF’ GLQ(FA))—module by Tye) ,and we can prove

Theorem, There exists a subspace S of (3 S (,(a),X ) such
that

BUT) > BdT1y(2) @ €

(and )?SK(/’O(q)Q( ) ¥ £S@®8)
as R( U'F’ GL2(FA))—modu1es, where in @ , runs through all

X
X
characters of order ( of (Z/qz) .
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