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Introduction

Let M be a compact, strongly pseudo-convex (s.p.c.), real
hypersurface of a complex manifold M'. By Lewy [16] there is defined
on M the (tangential) Cauchy-Riemann operator d". The operator

d" can be extended to yield the (boundary) complex {Cp’q(M}, d}
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due to Kohn-Rossi he notion of (tangentially)
holomorphic k-forms on M, thus obtaining the holomorphic de Rham
complex {sk(M), d} . Let Hp’q(M] (resp. HE(M)) be the cohomology
groups of the complex {Cp’q(M), d"} (resp. of {Sk(M), da} ).

1) and 2)

The main purpose of the present note is first to make

a differential geometric study on the cohomology groups Hp’q(M) and

1) Some of the results in this note have been already announced in
the P.J.A. note [31].
2) This note is based on the lectures given at Kyoto University,

Nagoya University and Tokyo University, during the years 1971-74.



HE(M), based on the harmonic theory for the complex {Cp’q(M),.d"}
which was developed by Kohn [13], and second to try to clarify the
the meaning of the cohomology groups in connection with the study of
isolated singular points of analytic spaces.

Let us now proceed to the descriptions of the various sections
and explain the main results in this note.

§1 is preliminary to the subsequent sections. Let M be a
partially complex manifold, which is the abstract model of a real
submanifold of a complex manifold. We first introduce the notion of
a holomorphic vector bundle E over M and define the associated

complex

0 % 1 q o
A, By sl B) —> ... —> 09, B) —B5 ..,

where the starting operator is the Cauchy-Riemann operator of E.

We then introduce a relevant filtration of the de Rham complex of M

and let Ez’q (M) be the associated spectral sequence. The cohomology
groups E?’q(M) and ES’O(M) are of particular importance, which we

denote by Hp’q(M) and HE(M) respectively. In 82 we specialize a



partially complex manifold M to define the notion of a s.p.c. manifold,
which is the abstract model of a s.p.c. real hypersurface of a complex
manifold. Note that the cohomology groups Hp’q(M) and HE(M)
mentioned at the outset may be defined in the manner as above. In

§§ 3 and 4 the canonical affine connections Vv of a s.p.c. manifold

M and the canonical connections D of a holomorphic vector bundle

E over M are discussed.

§8 5 and 6 are devoted to the analysis (the harmonic theory) for
the complex {Cq(M, E), EE} » where E 1is a holomorphic vector bundle
over a compact s.p.c. manifold M. We first describe the Laplacian
DE in the harmonic theory, in terms of the covariant differentiation
D which is induced from the canonical connections V and D stated
above (Theorem 5.2). We then prove subellipticity for DE by
utilizing Theorem 5.2 and state the main theorem essentially due to
Kohn [13]. In §7 we apply the general harmonic theory to the
complex {Cp’q(M), d"} and prove a duality theorem (Theorem 7.3)

on the cohomology groups Hp’q(M). In 88 it is shown that the



holomorphic de Rham cohomology groups HE(M) are finite dimensional for
all integers k. The proof of this fact is based on the analysis for
certain cohomology groups HE—I’I(M) (Theorem 8.5). In §9 we study the
properties of a differentiable family {Mt}tEQ of compact s.p.c.
manifolds. Above all we prove a stability theorem (Theorem 9.4) for

N

holomorphic imbeddings of the s.p.c. manifolds Mt in €.

In 8§10 we discuss isolated singular points of complex hypersurfaces
Let f be a polynomial function on Cn+1, n > 3, such that £(0) = 0
and such that the origin 0 is an isolated critical point of f£.
Consider the intersection M = f-l(O) n Se of the complex hypersurface
f_l(O) with the e-sphere S€ in Cn+l centred at the origin.
For € sufficiently small, M is proved to be a compact, s.p.c.,
real hypersurface of f—l(O). Let u be the Milnor number of the
isolated singular point, the origin, of the complex hypersurface.

Then we prove the inequality

0<u <dim Bl + dim HO (M)



(Theorem 10.5). Thus we see that the singularity has a considerable
influence upon the cohomology groups Hp’q(M) and HE(M). (Note that
if the origin is not a critical point of £, then Hp’q(M) = Hg(M) =0
for q #0, n -1 and for all k (cf. Theorem 10.3 and Milnor [18]).)
It is expected that the method of our proof of Theorem 10.5 will be
applicable to more general types of isolated singularities. For the
Milnor number 1y, see also Remark at the end of the section.

88 11, 12 and 13 are concerned with the study of normal s.p.c.
manifolds. A s.p.c. manifold M is said to be normal if it admits an
infinitesimal automorphism £ satisfying a certain generality condition
(an analytic basic field). Typical examples of normarl s.p.c. manifolds
are Brieskorn varieties and the U(1l)-principal fibre bundle canonically
associated to negative line bundles over compact complex manifolds
(see §11). To every compact normal s.p.c. manifold M there is
associated a double complex in a generalized sense, {Bp’q(M), 9, 3},

in a canonical manner (see §12). Let Hp’q(M) be the cohomology

groups of the complex {Bp’q(M), 3} . In 8§13 we prove a series of



reduction theorems for the cohomology grouﬁs Hp’q(M) and Hg(ﬁ),
describing these groups in terms of the ''reduced " cohomology groups
KP4 (M) (Theorems 13.1, 13.2, 13.7, 13.14 and the corollaries to them).
These results will be useful for the calculations of Hp’q(M) and
HE(M). Our discussions here have been motivated by Naruki's (unpublished)
theorem on a negative line bundle L over a compact complex manifold
A. (This theorem describes the Dolbeault cohomology groups Hp’q(LO)
of the non-compact complex manifold LO = L - (the zero section), in
terms of the cohomology groups Hq(A, Qp(Lm)), where Qp(Lm) is
the sheaf of local holomorphic p-forms on A with values in Lm, the
m-th power of L. Compare Naruki [23], in which he himself gives a
generalization of this initial result.)

In the proof of subellipticity for the operator DE, Kohn's
inequality ([2], Theorem 5.4.7) or HYrmander's inequality (Appendix,
Theorem 9) plays a fundamental role (see §6). In Appendix we therefore

make some observations about linear differential systems, giving a

simple and geometric proof of HYrmander's inequality. We also prove



a variant of HYrmander's inequality in terms of HYlder norms (Theorem 7)

It should be noted that these inequalities have intimate relationships

with certain estimations (Theorem 5) for the distance function p

associated to a generic differential system  O.

Finally I would like to thank Dr. Naruki for informing me of his

result on line bundles, <cited above. I am greatly indebted to

Mr. Nakajima for his kind help through reading the manuscript.



Preliminary remarks

Throughout this note we shall always assume the differentiability
of class C unless otherwise stated.

Let M be a differentiable manifold. T(M) will denote the tangent
bundle of M. F(M) (resp. €F(M)) will denote the space of real

(resp. complex) valued ¢” functions on M.

Let E be a real or complex vector bundle over M. Then dim E
will stand for the fibre dimension of E. For a point p e M, Ep
will denote the fibre of E at p. Given an open set U of M,

E]U will denote the restriction of E to U. T'(E) will denote

the space of C¢® cross sections of E.

As usual we shall use the notations E¥*, AkE and SkE to
denote the dual bundle of E, the k-th exterior product of E and
the k-th symmetric product of E respectively. For any integers k
and 2, EE will denote the tensor product

E® ... 8 E® E*® ... ® E¥ (E k times, E* £ times).

Now consider the tensor products F ® Eg, F being another



vector bundle over M. Then each fibre (F ® Eg)p of F® Eg may
be identified with the space of f£-linear maps of Ep x ... xE
. 0
£ times to F_. For ¢ (F®E and X ¢ E_, we shall
( ) . § e Fory >
0 .
denote by X | ¢ the element of (F & El—ljp defined by

K@Y, X ) = @O X, X ),

X X e E

1000 X9 p
Suppose that E 1is a real vector bundle. Then CE will denote

the complexification of E, and €E 3 u —3 U0 ¢ €E will denote the

conjugation operator with respect to the real part E of (E.



I. Strongly pseudo-complex manifolds

§1. Partially complex manifolds

1.1 Partially complex manifolds. Let M' be a complex manifold,

and S' the subbundle of C€T(M') consisting of all (complexified)

tangent vectors of type (1, 0) to M'. Then S' satisfies the
conditions :

c. CTM') = S' + §'  (direct sum);

(€. 2) [r(s"), reIl < 1(8").

Let M be a real submanifold of M'. For each X ¢ M, we

define a subspace S_ of CT(M)* by

- 1
SX = Sx n GT(M)X,

and assume that dimmsX is constant for all x e M, (In the case

where codim M = 1, this assumption is automatically satisfied.

In fact we have dimmSX = n-1, where n = dimcM’.) Then the union

S=u Sx forms a subbundle of CT(M), and by (C. 1) and (C. 2)
X
we have
(PC. 1) S n S=0;

10



(PC. 2) [r(S), Tr(8)] < 1(8).

Let M be a real manifold and S a subbundle of CT(M).
Then S is called a partially complex structure (or a pseudo-complex
structure in the terminology of [30] ) if S satisfies (PC. 1)
and (PC. 2). And the manifold M together with the structure S
is called a partially complex manifold. Clearly the notion of
a partially compiex manifold generalizes that of a complex manifold.

Let M be a partially complex manifold. By (PC. 1), there
is a unique subbundle P of TM) such that

€P = S + S  (direct sum),

i.e., P 1is the real part of S + S. Furthermore there is a unique

homomorphism I : P —3 P such that

S={X-/TIX | X ¢ P},
1 denoting the identity : P —> P. The pair (P, I), thus
obtained, will be called the real expression of S.’

Let Mi (i =1, 2) be partially complex manifolds with structures



Si’ A diffeomorphism ¢ : M1 —> M, 1is said to be an isomorphism

2

sends S onto S

. . . . p
if the differnential ) AP CT(MI) —> IT(NZ) 1 x

The notion of isomorphisms naturally gives rise to the various
notions such as automorphisms, infinitesimal automorphisms (or
analytic vector fields ), etc.

The (local) equivalence problem of partially complex manifolds
was completely solved by Tanaka [30], under some natural assumptions.
See also Tanaka [27], [28] and [29] .

1.2. Holomorphic vector bundles. Let M be a partially
complex manifold with structure S, For u e CF(M), we define
d"u ¢ T'(8*) by

(@) X) = X u, X ¢ Sx’
The differential operator d" : CF(M) > u —>d'"u e T'(§*) is
called the (tangential) Cauchy-Riemann operator, and a solution
u of the equation d"u = 0 is called a holomorphic function.

A complex vector bundle E over M 1is said to be holomorphic

if there is given a differential operator

12



9 i T(E) —> T(E & §%)
satisfying the following conditions :

(HV. 1) X(fu) = Xfeu + feXu ;

(HV. 2) [X, Y]u = XYu - YXu,
where u e I'(E), f e CF(M), X, Y e T(S) and we put Zu =
(5£u)(2), Z ¢ I'(S). The operator Sé is called the Cauchy-
Riemann operator, and a solution u of the equation §éu =0
is called a holomorphic cross section. It is clear that the trivial
vector bundle M x € 1is holomorphic with respect to the operator
d'" defined above.

Remarks. (1) In the case where M is a complex manifold, our
definition of a holomorphic vector.bundle is equivalent to the usual
one in terms cf holomorphic transition functions. We can see this
fact, for example, by use of Newlander-Nirenberg's theorem [24].

(2) Consider the case where M c M', i.e., M 1is realized

as a real submanifold in a complex manifold M"'. Let E' be a

holomorphic vector bundle over M'. Then the restriction E = E'|M

13



of E' to M 1is naturally a holomorphic vector bundle : We have
Xu = Xu' for all u' ¢ I'(E') and X ¢ S, where u denotes the
restriction of u' to M.

As for holomorphic vector bundles, we have the notions such as
homomorphisms, isomorphisms, the tensor products, etc, which
are all defined in natural manners. For example, let E and F
be two holomorphic vector bundles. Then a bundle homomorphism
% : E—>F 1is called holomorphic if

X(@ ) = ¢ (Xu), uel(E), XesS,
and the tensor product E ® F becomes a holomorphic vector bundle
by the rule :

Xuev) = (u)ev+ue (Xv), uel(E), vel(F), XeS8.

We now show that the factor bundle

'/l:(M) = CT(M) / §
is a holomorphic vector bundle with respect to the operator
EREREN defined as follows : Let & be the projection :

tTM) — T(M). Take any u ¢ T'(T(M)) and express it as

14



u=3(2), Z e I(ETM)). For any X ¢ I'(S), define a cross
section (Ju)(X) of %(M) by

@Guw & = X zD).
Then we see easily that (Ju)(X) does not depend on the choice of
Z and that 3Ju gives a cross section of %(M) ® §*, Furthermore
we can show that the operator u —> 3u satisfies (HV. 1) and
(HV. 2), wusing the Jacobi identity in the Lie algebra T(CT(M)).
The holomorphic vector bundle %(M}, thus defined, will be called
the holomorphic tangent bundle of M.

Remark. Consider the case where M c M'. First we note that
%(M‘) may be regarded as the holomorphic vector bundle S' of tangent
vectors of type (1, 0) to M'. Let E be the restriction of %(M‘)
to M. Then the natural map : CT(M) —> €T(M') induces an
injective homomorphism of %(M) to E as holomorphic vector bundles.
Therefore if dimm%(M) = dimCM' (e.g., if codim M = 1), then %(M)

may be identified with E.

1.3. The cohomology groups Hq(M, E). Let E be a holomorphic

15



vector bundle over M. We put

¢, E) = E & 0N95*,

ct, B) = r(ci, E))

and define differential operators

3¢ A, B) —> o, By

E
=q < o - il S 2 -
by Gp ) (Rpseees Xpq) = g DR (P Ry Ryuees X))
i+j - - - z = -
+ _2.(-1) ¢ (X, xj], L xj,..,, Xp+l)’
1<j
for all ¢e ct(M, E) and Xisenos Xp+1 e T(S). Just as in the

case of the exterior differentiation d, we can show that 5%30

gives an element of Cq+1(M, E) and that I+ o ﬁg = 0.

E
Thus the collection { Cq(M, E), 5% } gives a complex and we
denote by Hq(M, E) the cohomology groups of this complex.

1.4. The spectral sequence { EE’Q(M) }. Let { Ak(M), d }
be the de Rham complex of M with complex coefficients, and Hk(M)
the cohomology groups of this complex, the de Rham cohomology groups.

If we put

aKan = akerany =,

16



we have Ak(M) = F(Ak(M)). For any integers p and k, we
denote by FP(AN(M)) the subbundle of AX(M) comsiting of all

¢ < (W) which satisfy the equality :

P Xpseees X s Vyses Y ) = 0
for all Xl""’ Xpwl € dJT(M)x and Yl,..., Yk—p+1 € Sx’ x being
the origin of ¥. Then we have

FPafay - P akan),

k

rOakcony = afon , PPPraPon)y = o

Furthermore putting

FP Ak o) rePak o),

we easily find that

arPakony PP oy

Thus the collection {Fp(Ak(M))} gives a filtration of the de Rham

=

complex.

t+

e {Eg’q(M)} denote the spectral sequence associated

with this filtration.

The groups E?’q(M) and E;’O(M) are of particular importance,

which will be denoted by HP*3(M) and Hg(M) respectively. We

17



put as follows :

APdan = FPaPMan), AP0 - rcAp’ch)),‘

P = APy /AP, P 0n = re o).
Then the groups Hp’q(M) are the cohomology groups of the complex
{ Cp’q(M), d" }, where the operator d" : Cp’q(M) —_ Cp’q+l(M) is
naturally induced from the operator d : Ap’q(M)-—e> Ap’q+1(M).

Now EP = AP(T(M))* is a holomorphic vector bundle by the

rule :

TP yseens u) = V(Plu,ens w))

n
4

A

+ g (—1)1'@(Yui, Uppunes Ugsenns up),
where g’e F(Ep), Ugsenns up € F(%(M)), Y ¢ S and
T9= Gee) M), Yo = (Fyu) @),
Proposition 1.1. CP’%(M) may be identified with C%M, EP) in
a natural manner and we have
g =D Fp ¢, PRNGIOR

Proof. Define a map L Ap’q(M) - Cq(M, Ep) by

P ~ ~ . v
(1 f)(w(xl),---, w(Xp) R SRR Yq)

18



= ceey YO,
P Xpseens Xy Ypueens YO

for all ¢ ¢ Ap’q(M)X, Xpsooes Xy € CTOD, and Y Y €S_.

10" 10000 Y X

(It is clear that WP is well defined.) Then we have the exact
sequence of vector bundles :

P
1
0 —saP* a1y s APy 5 M, B —s0

whence Cp’q(M) = Cq(M, Ep)° Furtheremore we can easily verify
the equalities
% Py = -DP Pap = (DFaPy, g aP %,
proving Proposition 1.1.
The groups HE(M) are the cohomology groups of the complex
{ Sk(M), d } , where we put Sk(M) = E?’O(M). Note that
Sk(M) may be characterized as the space of holomorphic k-forms,
i.e., holomorphic cross sections of eP, Thus the complex
{ Sk(M), d } (resp. the groups Hg(M)) will be called the holomorphic
de Rham complex (resp. the holomorphic de Rham cohomology groups ).

Since dAp’q(M) c Ap’q+1(M), the collection { Ap’q(M), d }

becomes a complex, which is usually known as the complex of ''the

19



mapping cone ". We denote by Hg’q(M) thé cohomology groups of this
complex.
Proposition 1.2. We have the natural exact sequences of

cohomology groups :

k-1,1 k

- K
0 —> iS00 —> iy o B e s i

Lon —s ..

Proof. The short exact sequences

k-1,qg+1 k-1,q+1

0 —s A9 —s A M) —> M) —> 0

induce the exact sequences of cohomology groups

B Om —s v lany bty — Sty —s L
We have

H%0m = { pesfan | dp -0,

% o aa¥ 1% = as o
From these facts follows immediately Proposition 1.2.

Remrks. (H Consider the case where M < M' and codim M = 1.

Let { g?’q, d"} be the complex in the sheaf category, associated

with the complex { Cp’q(M), d"} . Then it is easy to see that

the complex { g?’q, d"} coincides with the (boundary) complex

20



{ §P’q, §£ } introduced by Kohn-Rossi [15], P.465. We

note that they erroneously expressed §P’q as the sheaf of germs of
local cross sections of APS* e 795+, However we shall be also
concerned with a complex {BP>9M), T}, where BP’Iqn) =

F(APS* ® Aqg*), under the assumption that M is a normal

s.p.c. manifold (see Chapter III), and clarify the intimate
relationship existing between the two complexes { CP’9(my, dav }

and { BP9y, 3}

(2) Suppose that M 1is a complex manifold. Then the groups
Hp’q(M) (resp. HE(M)) are nothing but the Dolbeault cohomology
groups (resp. the (usual) holomorphic de Rham cohomology groups),
and 1M, B) = Hhm, 00(E)), where 9°(E) denotes the sheaf of

germs of local holomorphic cross sections of E.

21



§2. Strongly pseudo-convex manifolds
2.1. Contact manifolds. Let M be a manifold and P a
subbundle of T(M). Put
Pt =TM) / P
and denote by {5 the projection of T(M) onto P' . For any
X, Y e T(P), put
olX, ) = &([X, YD) .
Then we have wX, Y) = - (Y, X) and w(fX, Y) = fuX, Y)
(f e FM)). Hence  gives a cross section of P' ® AZP*.
The subbundle P is called a contact structure if dim P' =1
and if Wy is non-degenerate at each x ¢ M, i.e., the condition
"X e Px and (X, Y) =0 for all Y ¢ Px” implies X = 0 .

And the manifold M together with the contact structure P is called

a contact manifold. Note that a contact manifold is necessarily odd
dimensional.
Let M be a contact manifold of dimension 2n-1 . A vector

field X is called an infinitesimal contact transformation if it

22



leaves the contact structure P invariant or [X, T(P)] < I'(P).

In what follows we assume that P' and hence (P')}* are
trivial. Let 6 be a trivialization of (P")*, by which we mean
a cross section 6 of (P')* such that ex # 0 at each x ¢ M.
Since (P')* <« TM)* 1in a natural manner, 6 is a 1l-form on M.
Since d6(X, Y) = - 6([X, Y]) for all X, Y ¢« T'(P), we see
that the restriction of dex to PX is non-degenerate at each
X ¢ M. This clearly means that the (2n-1)-form 6 a (de)““l
gives a volume element on M or in other words, 6 1s a contact
form. As is well known, it follows that there is a unique
infinitesimal contact transformation £ such that

6(8) =1 and & | de = 0.

We notice that the assignment 6 —> £ gives a one-to-one
correspondence between the set of all trivializations 6 of (P")*
and the set of all infinitesimal contact transformations & such that

gx ¢ PX at each x ¢ M.

23



2.2. Strongly pseudo-convex manifolds. Let M be a partially
complex manifold. Let S be its partially complex structure and
(P, I) its real expression. By (PC. 2) we have [IX, IY] -
[X, Y] ¢ T(P) for all X, Y ¢ I'(P), meaning that
w(IX, IY) = w(X, Y), X, Y e PX.
For each x ¢ M, we define a P;-valued hermitian form LX on Px by
L (X, Y) = w(IX, Y).
The hermitian form LX is usually called the Levi form at x.
Especially if P 1is a contact structure and if P' is trivial, we
have
L (X, Y) = - do(IX, Y)&(E,),
© and & being as before.
We say that S 1is a strongly pseudo-convex (s. p. c.) structure
and M is a s.p.c. manifold if dim P' = 1 and if the Levi form
LX is definite at each x, i.e., the condition " X ¢ PX and
LX(X, X} = 0" implies X = 0. It should be noted that a s.p.c.

manifold is a contact manifold, because P becomes a contact

24



structure under this situation.

Let M be a s.p.c. manifold. Then we can easily prove the
following
Proposition 2.1. P' is trivial and there is a trivialization

8 of (P')* such that the hermitian quadratic form - de(IX, X),
X e Px’ is positive definite at each x ¢ M.

A trivialization ©& of (P')* will be called a basic form

if it satisfies the condition in Proposition 2.1. And an infinitesimal

contact transformation & on the underlying contact manifold will be
called a basic field if gx ¢ Px at each x ¢ M and if the

corresponding trivialization 6 of (P')* is a basic form.

Let © be a basic form. Then a 1-form 6' 1is a basic form
if and only if 6' = f6 with a positive function f£. It follows
that every s.p.c. manifold is oriented : 6 being a basic form, the

volume element 6 A (de)n_l gives the orientation.

25



2.3. S. p. c¢. real hypersurfaces. Let M' be an n-dimensional
complex manifold, and S' its complex structure. Let f be a
real valued function defined on an open set U of M' such that
dfx # 0 at each x ¢ U. For each x ¢ U, define a subspace S(f)x
of Si by
S(f), = {X ¢ S1 | df(X) =0 1},
and a hermitian form L(f)x on S(f)X by
MﬂXM,Y)=(waMX,ﬁ, X,YeSCﬂr
Assuming that f_l(O) ¢, let ﬁs consider the real hypersurface
M= fal(O). Let S be the partially complex structure of M, and
(P, I) its real expression. Clearly we have SX = S(f)x, X e M.

Define a 1-form 6 on M by

6 = v-1 1* d"f = - /-1 1* d'f ,

where 1 denotes the injection M —> M'. Then 6 1is a real form
and gives a trivialization of (P')*. Furthermore we have
L(H), (X, ) = - vy-1T de(X, V), X, Y esS,.

Thus we know that M 1is s.p.c. as a partially complex manifold if

26



and only if M is s.p.c. in M' in the classical sense.

Let M be a s.p.c. real hypersurface of a complex manifold M'.
Then we shall say that an open set V of M' Iies inside M if
it satisfies the following conditions :

1) M 1is contained in the boundary 3V of V ;

2) V is s.p.c. at each x ¢ M, i.e., there are a neighborhood
U of x in M' and a real valued function f on U such that 1°
df # 0, 2°: VaU={yeU]| f(y) <0}, and 3° ¢ L(f), s

positive definite (cf. Gunning-Rossi [4] ).

27



§3. The canonical affine connections
of strongly pseudo-convex manifolds.

3.1. The basic notations. Let M be a s.p.c. manifold of
dimension 2n-1, and & a basic field on M. Our discussions from
now on will be concerned with the pair M, £&).

Let S be the s.p.c. structure of M and (P, I) its real
expression. We denote by P' the 1-dimensional subbundle of T(M)
spanned by £ : Pi = Rgx, X € M. Clearly we have

T(M) =P + P! (direct sum).
® denoting the basic form corresponding to £ , we put
w = -df
Note that & _J w = 0. Let us now extend I to a tensor field of type
( i ) in such a way that If = o. Then we have
IZX = -X + 8(X)E , X e T(M)X
and

w(IX, IV) = o(X, ), XY e TOD .

We define a tensor field g of type ( g ) on M by
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g(X, Y) = w(IX, Y).
Then g is symmetric and
g(IX, IY) = g(X, Y).
Furthermore, for each x e M, the restriction of 8y to Px is

positive definite. (g 1is never a Riemannian metric,  because
£ ] g=0

3.2, The canonical affine connections.

We shall prove the following

Proposition 3.1. There is a unique affine connection

v o I(TM)) — T(TM) o T *)

on M satisfying the following conditions:

1) The contact structure P 1is parallel, 1i.e.,

VXF(P) c I'(P) for any X ¢ T'(T(M).

2) The tensor fields £ , I and w are all parallel, i.e.,
vE = VI = v = 0. (It follows also that vO = vg = 0.)

3) The torsion T of Vv satisfies the equalities

T(XJ Y) = - w(X: Y)g ]
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T(E, I¥) = -IT(E, ¥), X, Y eP .

Let X, Y ¢ T(CP). We denote by [X, Y]P (resp. by ([X, Y]p,
the €P-component (resp. the CP'-component) of [X, Y] in the
decomposition :

CTM) = CP + €P!' (direct sum).
Clearly we have

[X, Y]P,_= w(X, Y)E .
We also denote by [X, Y]S (resp. by [X, Y]gj the S-component
(resp. the S-component) of [X, Y]P in the decomposition :

CP = S + S  (direct sum).

Uniqueness. Let v be any affine connection satisfying the
conditions in Proposition 3.1. Let us extend V to a differential
operator of T(CT(M)) to TI(CTM) ® (CT(M))*) in a natural
manner. By 1) and VI = 0, we have

Wrs) < T(S),

vxr(é) c T(S), X eT(ETM).
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Lemma 3.2. Let X, Y, Z ¢ T(S).
(1) vgY = [X, Y]g.
(2) w(VXY, Z) = Xwu(Y, Z) - w(Y, [X, Z]g).
(3) vgY = LEY + TgY, where Lg denotes the Lie derivation and
T, 1is given by T, = - i—I-L I.
g € 2 £
Proof. Since T(X, Y) = -w(X, Y)£ , we have
vgY - vYX = [X, Y] + T(X, V) = [X, Y]P.
Hence VgY = X, Yl and VYK = [y, i]é, proving (1). (2) is clear
from the facts Yw = 0 and VXZ = [X, Z]g. Since V& = 0, we have
VgY = [, Y] + T(g, Y),
VE(IY) = [E, IY] + T(g, IY).
Since T(g, IY) = -IT(&, Y) and VI = 0, it follows that (LEI)Y -
2IT(E, Y) = 0. Hence T(E&, Y) = TEY’ proving (3).
We have V£ = 0 and WEW': vzw for all Z, W e T(CT(M)).

And the condition "

X

implies 0. Th

uniquely determined.

X eS and w(X, Y) = 0 for all Y e S

erefore we see from Lemma 3.2 that V is
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Existence. We first prepare two lemmas.

Lemma 3.3. (1) ITE = - TgI'

(2) If Y ¢ I'(S), then LgY + TEY e I'(S).

(3 ng =0

4) w(TEX, Y) + w(X, TgY) = 0, X, Y ¢ T(M)X.

Proof. We have IZX = - X + 8(X)¢ and Lge = 0. Hence
(Lgl)I + I(LEI) = 0, which means (1). Let Y ¢ T'(S). By
using (1), we see that I(LEY + TEY) = Lg(IY) + TEIY =

Y- (L,Y + T,Y). Hence LY + T.Y ¢ I'(S), proving (2).
S S

£ €

We have ng = —dLge = 0, proving (3). Finally, (4) is easy
from the facts : L,w =0 and w(IX, IY) = w(X, Y).

Lemma 3.4. For any X, Y, Z ¢ T'(S), we have

X w(Y, 2) + Y w(Z, X) + @, [X, YD) + oX, [Y, Z]g)

+ w(Y, [Z, X]g) = 0.
This is easily obtained from the fact : dw = - dze = 0.
We are now in positicn to prove existence. We define a bilinear

map v : T(CT(M)) x T(CT(M))—> I'(CT(M)) in the following
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manner : 1°. For any X, Y e T(S), VR, Y (e T(S)) and VgY
are respectively given by the equalities (1), (2) and (3) in
Lemma 3.2 ; 2°. For any Z e T'(CT(M)), VZE =0 ; 3°. For
any X, Y ¢ I'(S), v,Y=79Y, vV

Then it is easy to see that V is the complexification of an affine

connection and that it satisfies the following : V,w = 0,

T.X and T(X, ¥) = - w(X, ¥) for X, Y e S_. From

T(E, X) = T, .

Lemma 3.3, we get VEF(S) c I'(S) and ng = 0, and from Lemma 3.4,

T(X, Y)

0 for X, Y ¢ Sx’ Thus we see that V satisfies the
conditions 1), 2) and 3) in Proposition 3.1. We have thereby
completed the proof of Proposition 3.1.

The affine connection V in Proposition 3.1 will be called the
canonical affine connection of (M, &).

Let V be the canonical affine connecticn and R its curvature.
Then we have R(X, Y]Px c Px for all X, Y ¢ T(M)X.

Proposition 3.5. Let X. € P (1 <1<4).

1 X

(1) ROy, X,)IXg = IR(Xy, X)X,
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(2) g[R(Xl, XZ)XS’ X4) * g(XS’ R(X;5 XZ)X4) =0,
(3) S R(Xl, XZ)X3 = -8 w(xl, Xz)TgXS’ where S stands
for the cyclic sum with respect to Xl, X2 and XS'

Corollary. Let X, € S (1 <1< 4).

X,)S, < S

(1) R, %08, < S

1,
(2) R, )'(2))(3 = R(Xq, Xz)xl.
(3)  gREX, >'<2)X3, >'<4) = g(R(Xz, >'<4)X1, >‘<2)-

The proof of these facts are left to the readers.

We now define an operator

R, P —> (P
as follows : Let €psecs € be any orthonormal base of Sx(with
respect to g), i.e., a base of Sx such that g(ei, éj) = Sij' Then
n-1 _
R X = -/-1 igl R(e;, e;)IX, X e CP_.

Clearly R, is a real operator, and by the corollary above we

have

I
09
=
<
-~
*
3
~
>~
~<
m
n

g(RX, ¥)
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The operator R, thus defined will be called the Ricci operator.

3.3. Green's theorem. We put
dv = g (d"1,
which is a volume element on M. For ¢ € I'(8*) we define a function
8"y on M as follows : Let x e€ M and let (el,..., en-l) be
any orthonormal base of Sx' Then
(") (x) = - Z (Ve‘u)(éi)-
1 1

In the same way, for R e I'{(S*), we define a function &'8 by

'Ry (x) = - Z (Vg B (e;).
1 1
Clearly we have &'B = &8, where B is defined by R(X) =

B(X) for all X ¢ S_.

Proposition 3.6. Let f ¢ CF(M) and o ¢ I'(S%).

(1) Efedv = d(£eE | dv).
(2) §"oedv = -dd , where @ 1is the 2(n-1)-form defined
by & = g a(éi) e; ] dv.

Therefore if M 1is compact, we have

J Efedv . = J §"gedv = J §'Bedv = 0.
M M M
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Proof. Since L,dv =0, we have [_(f dv) = gf.dv.

€ g€
We have Lg(f dv) = d(fg _J dv), proving (1). We have
ve = vde = 0, whence vdv = 0. Therefore
Lde = - TrAx~dv

for all X e T(CT(M)) ([10], Appendix 6), where Ax is the

(complexified) tensor field of type (i) defined by

AY = - %X -T(X, V), Y e CT(M).

Now define X e T(S) by a(¥Y) = gX, Y) for all Y € S.- Then

T(X, ¥Y) € CP! if Y e C€P_, and T(X, £) e ¢€P_. Hence
X X x
TrA, = - Z g, X, éi) = 8"
i i
Therefore §"asdv = - Lydv = - d(X _| dv) = - d&, proving (2).
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§4. The canonical connections of holomorphic
vector bundles
4.1. Connections in complex vector bundles.
Let E be a complex vector bundle over a manifold M. A
differential operator
D: T(E) —> T(Ee CTM™)
is said to be a connection in E if it satisfies the following
condition
D(fu) = £ Du + u ® df
for all u ¢ T'(E) and f ¢ CF(M). As usual the covariant derivative
(Du)(X) of u in the direction X ¢ ET(M)X will be denoted by DXu.
For any X, Y € T'(CT(M)) and u e I'(E), we put
K(X, Yu = DX(DYu) - DY(DXu) - D[X, Y]u.
Then X gives a cross section of E ® E* ® AZ(CT(M))*, which is called
the curvature of D.

Let us now fix an affine connection V on M. As is well known,

a connection D in E together with the affine connection v gives
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rise to the covariant differentiation :
p: TE o (€T —>1E o €T, )
: s % s 2+17
For example, let jP e I'(E ® (GT(M))E). Then D¢ is defined by

. X

2)

(DY) (X, Xp,.ey Xp) = Dy (P(X .oy X)) - ggp(xl,..., VX

for all X, Xl""’ XQ ¢ T(€T(M)). The covariant derivatives
2 . .
(D?O(X, ...), (D ?)(X, Y, ...), etc. will be also written (DX?)(..J,
(DXDY?)(...), etc.
We shall frequently use the following

Lemma 4.1. For any ¢ ¢ I'(E ® T(M))?) we have the equality

(the Ricci formuia)

(D) (X 5wy X)) = (DY) (Xpsenes Xp)

- Opx, p#) EXpseees Xp)

+

K(X, VP, -y X

§ @ (Xpseees R, VIXg,een, X))

4.2. The canonical connections. Let M be a s.p.c. manifold

and & a basic field on M.
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Proposition 4.2. Let E be a holomorphic vector bundle over the

s.p.c. manifold M, and < , > a hermitian inner product in E. Then

there is a unique connection D in E satisfying the following

conditions:

1 Dgu = Xu (= (Opw (X)), ue I'(E), XeT(S);
1] - 1 11!
2) X <u, u' > = < Dxa, u >+ <u, DXu >,
u, u' ¢ I'(E), X e T(CTM));
3) Let x ¢ M and let (el,..,, en—l) be any orthonormal

base of S .
X

Then

Z K(ei, ei) =0,
i

K being the curvature of D.

Proof.

We first prove uniqueness. Let D be any connection

in E satisfying the conditions in Proposition 4.2. By 1) and

2) we have

(4. 1)

By Lemma 4.1,

X <u, u'> = <Dyu, u' >+ <u, Xu' >, X e I'(S).

we have
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K(X, Y)u = (0%uw) (X, Y) - (D2u)(Y, X) + (Du) (T(X, Y)),
ueI'(E), X, Y e T(CTM),
where the covariant differentiation D should be considered with
respect to the canonical affine connection v of (M, £). If we
put B(X, Y)u = (Dzu)(X, Y) -(Dzu)(Y, X), we have
(4. 2) B(X, u-= (DX(DYu) - DVXYU) - (DY(DXu) - Dv Xu)

Y

Moreover -since

guei, e;) = - g‘*’(ei’ e)E = (n-1) /Tg,
it follows from 3) and the formula above for the curvature K that
4. 3) D.u = —— z B(ei, e
Now we see from 1), (4. 1), (4. 2) and - (4. 3) that D is
uniquely determined. (Note that VXY e T(€P))} if X, Y ¢ T(CP)).
Let us now prove existence. We first define a bilinear map
D' : T(CP) x I'(E) 5 (X, u) —> DXu e I'(E) 1in such a way that,
for any u e T(E) and X ¢ I'(S), Dxu and DXu are respectively

given by 1) and (4. 1). Using this map, we define B(X, Y)u

(X, Y ¢ T(CP)) by (4. 2) and D.u by (4. 3). Now the map
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D' together with the correspondence u ——» Dgu gives rise to a
bilinear map D : T(CT(M)) x I'(E) —— T(E). It is easy to see
that the bilinear map D, thus obtained, defines a connection
in E and that it satisfies 1), 3) and the equality :

X <u, u' >=<Dyu, u' >+ <u, Xu' >, X ¢ I'(CP).
It follows from this equality that

(4. 4) -T(X, Y) <u, u' >= < B(X, Yu, u' > + <u, B(X, u' >,

X, Y ¢ T(CP).
Therefore we see from (4. 3) that
£ <u, u' >=«< Dgu, u' >+ < u, Dgu' >,

Thus D satisfies 2), completing the proof of Proposition 4.2.

The connection D in Proposition 4. 2 will be called the

canonical connection of E with respect to the inner product < , >
and to the basic field g .
Proposition 4. 3. Let X, Y ¢ Sx and u, u' ¢ Ex' The notations

being as in Proposition 4. 2, then we have
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(1) KX, ) = k&, ) =o0.

(2) < KX, Y)u, u' > + < u, KX, YJu' > = 0.

Proof. By 1) of Proposition 4. 2,
and by (4. 4),

< K(Z, Wu, u' > + <u, K(Z, Mu'> =

Hence we get (2) as well as K(X, Y) =0

42

0,

we have K(X, Y)

Z, WeCP_.
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II. The harmonic theory on strongly pseudo-convex manifolds

§5. The Laplacian

Let M be a s.p.c. manifold of dimension 2n -1, and ¢ a

basic field on M. For the pair (M, £ ) we use the same notations
as in §4. Let E be a holomorphic vector bundle over M, and

< , > an inner product in E. D denotes the canonical

connection of E with respect to < , > and to & . The covariant

differentiation D will be always considered with respect to the
canonical affine connection vy .

In this section we shall make a aifferential geometric study of
the complex { %M, E), §£ } describing the Laplacian O in
terms of the covariant differentiation D.

5. 1. The fundamental operators. Since CTM) = CP' + S + §
(direct sum), the vector bundle Cq(M, E) may be identified with
a subbundle of E @ Aq(CT(M))*, and, for any X ¢ I'(CT(M)) and
¢ < Cq(M, E), the covariant derivative DX? is in Cq(M, E).

For any X, Y ¢ T'(S), we have
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because T(X, Y) = 0. Hence the operator §E : o, B) —>

Cq+1(M, E) may be expressed as follows :

~

— - - L j+l - y =
O Xps-ens Xq+1) = g (-1) (Dij‘f’)(xr'”’ xj,..., xq+1),

q
where 9 C*'(M, E) and Xisenns Xq+1 € Sx'

The inner product < , > together with the tensor field

>

g induces an inner product < , > in the vector bundle
q . q
C'(M, B) : Let 9, Y e CH(M, E)x and let (el,..., en-l) be

any orthonormal base of Sx . Then

| ) .<<f(éi,...,éi),w(éi,...,éi)>’.

11,...,1q 1 q 1 q

The operator 49E' We define a differential operator

< ?, P > =

Q|-

S ¢, B) — B
by

WP Fseens XD = - g (Dei?)(éi, poeens X5

where @ ¢ Cq(M, E). TFor any Qe Cq(M, E) and ¢ ¢ Cq+1(M, E),

we have

(s' 1) <8E?’ w>=<(f’ 3EW>‘5'06,
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where o 1is given by

aX) = <@, X Jy> , XeS_.

X

The operator [J The differential operator

k-
S+ 3% ¢ Cle, B) —— ¢, B)

is called the Laplacian and is denoted by []E. A solution 50

of the equation DESO = 0 is called a harmonic form. We denote

by Hq(M, E) the space of harmonic forms in Cq(M, E).

The Ricci operator R Using the Ricci operator R

*x *

(see 3.2), we define an operator

R, : CYM, ) —> %, ﬁ)
by

(R (X5 oo, >‘<q) = JZg;o’(l,..., R X.,..., X)

for all 9 € Cq(M, E)X and X X € Sx' Since

1,’..., q
g(R,X, ) = g(X, R,Y) for all X, Y ¢ S,» we see that the

operator R, is self-adjoint with respect to the inner product

<, > in c%m, E).
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The operator K. Using the curvature K of D, we define

an operator
K: ¢, B) —> A, B

by

KD &%) = T DIk, X)) 9, & X X))

y 12 q lJ i? J i? 12 serey

By Proposition 4.3, we see that the operator K is self-adjoint

The operator Qq. For any integer q, we define a

self-adjoint operator

Qt: ¢, By —> ctw, B

by
Qd= ks DAl g
n-1 "*°
5.2. The description of DE in terms of D. The main

aim of this paragraph is to prove the following
Proposition 5.1. For any ¢ « c%(M, E), we have the

equalities
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(1) OpP= -2 D, D% -q ,/jngp + K¢+ RY .
1 1 1

(2) O = - g DéiDeigJ + (n-gq-1) /T,DE(P + K¢ .

(3) Upg = - n_—-1 Z De.Dé.? - E%T' Z Dé.De.q) * QQ? :
i ii i TiCi

Proof. (3) 1is obtained from (1) and (2) by eliminating

/-1
/T 9.

Let Xl""’ X e S_. We have
q X

(5.2) O3pP) (Xpoe s X))

<)

SRR TICHS SRR &
1 1

- g (Deinéi@ (Xpseees Xq)

A~

- 1yJ _ @) (5. X .
g JZ (-1) (Deinxjff)(ei, Rpsoon Xpoees X0,

If we put

~

Aj = Z (D, Dy P (ey» Xpuennu K.
i i)

s X ),
j )
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it follows from the Ricci formula (Lemma 4.1) that

A, = A% + A? + ... F Aé, where
J J J J
Al - J (0 D 9, X, NS S
R T U J 4
J ”~
2_ - - - - -
Aj it gw(ei, Xj)(DE?)(ei’ xlﬁ"" Xj’ LR ] Xq)’
A2 = Y K(e., XOPGE., X % %)
j ¢ i? J i? 12 "0 j:"~3 q’
A s TeREe., B8, Kby Koy Ll, R,
J $ i’ 737717 71 ] q
5 _ = - z
AJ I kZJ ]2_: (f(els Xls > R(ei: XJ)Xk’ > XJ,
,r

kth place
A= 7 Ve, X % R(e., X,) X
j 1(>1'49 i? 1 " j:"" i? J k?°

k>3 i1
1\
k™ place

First of all we have

EGSE AJl. = (B AR, e, K.
J

q
Since ) w(e,, X.) e, = - V-1 X,, we obtain
{ LA A j ,
-1 A% - . % %
J2(1) Aj q/—l_(DE(f)(Xl,..., xq).
We have
JZ (-1y7 AJS. = - KPRy, K-
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By Corollary to Proposition 3.5, we have ) Rfe, ij)éi
1

= - R, Xj and hence
GO MERN I [ A S
E j # I Epe B

Furthermore by using the fact that R(e,, Xk)ij = R(e;, X.)Xk
(the corollary, i.b.i.d.), we can easily show

7 (-1)? A? + Y (-n? A? = 0.

J J

We have thus proved the equality:

"

J DT A= B89 a TG KG - RYT L )

j J

and (1) follows from this equality and (5.2).

By the Ricci formula we obtain

g (Deinéi?)(il,...3 Xq)

g (DéiDe;p)(il,..., X)) + Z w(e;, éi)(Dg ?)(Xl,..., X)

q H q
+ g K(eys e)QX e, xq) - g QX 5., Riey, ei)xj,...,xq)
Since ) K(e, , éi) =0 and m(ei,éi) = - (n-1)/-T, it follows
i i
that

) (D D- ¢) =) D;D ¢ - (n-1)V/-I DY+ RG.
i % % 2

(2) now follows from this equality and (1). We have thereby
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completed the proof of Proposition 5.1.

5.3. The fundamental equalities. From now on we assume that
M is compact. We define an inner product ( , ) in the space
¢, E) by

(?} Y) = fM <‘f, P> dv

for all ¢, ¥ ¢ Cq(M, E). By (5.1) and Proposition 3.6, we see
that A9E is the (formal) adjoint operator of 5£.

Let us now define semi-norms | | and || g in i, E)
S

as follows :

s
]

< DéT’ Dé_(f> ) dv ,
1 1

0 N

(N4

KaF =[Mc

o

< De?’ De$> ) dv .
i i
We have
[<Dg9, Dg§>= - 1 <D, Dg ¢.9> - &%,
1 1 1 1 1 1
where o 1is given by
a(X) = < Dgy, 97, Xes..

Accordingly from Proposition 3.6, we get
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K =—f( } <D, D; 9,9>) dv.
S i i i

i
In the same way,
2
lels = - f ( J<D;D, g,p>) dv.
i i1

Therefore by Proposition 5.1, we have the following

Theorem 5.2. For any @ e Cq(M, E) we have the equalities

2

M (G99 = 9l - a0~ TDg, 9) + (K¢ + R, 9).

@) (09,9 = | ¢l + m-a-DOT DY, ¢ + (K¢, ¢).

n - n-1

(3) (O, = 9 ncyu; L el v iy, 9.

As an immediate consequence of Theorem 5.2, we get

Proposition 5.3. Assume that, for some ¢, the
self-adjoint operator Qi is positive definite at each x ¢ M.

Then we have Hq(M, E) = 0.
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§6. The harmonic theory for the complex {cq(M, E), §£}
We preserve the notations in the previous section. For
simplicity we put m = 2n - 1.
6.1. The Sobolev norms (H8rmander [7]). As usual,
o M 00 . .
let COOR ) denote the space of C  functions with compact
support on R™ . For each real number s, we define the Sobolev

norm | “(s) in CE ®™) by

b1 - J S M GTRE I N O

where f(&) 1is the Fourier transform of f, i.e.,

m

2 j e—/¢T’<x, £>

£(8) = (2m £f(x) dx.

Let {Uk, hk} k ¢ K be an atlas of M such that K is a

finite set and such that each Uk is homeomorphic with R".

(We are assuming that M 1is compact.) Let {pk} be a partition of

unity subordinate to the atlas. For each k, take a moving frame

(e?, ey ei_l) of S|Uk and a moving frame (s?,..., si) of

E]Uk (r=dim@E) .
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Now denote by Jq the family of all ordered set (il""’ iq)

of integers with 1 < il < ... < iq < n-1. For any ? € Cq(M, E),

Ic Jq and 2 (1 < & < 1), define a function 3!§ 1 on Uk by

. N N -
Fle; sever &) = Z(fz,l So
1 q 2
wh I=(i i ). By using the functi (oo ¥ ) o nt
ere = 1,---,1q. y using the functions (py 50!@,1 o Ny
in Cg (R™), we now define the Sobolev norm I ”(s) in ¢4, E)
by
Sl -k -1 ,2
byl = ) L g ) e b gy
¥ s bk ¥, sy
6.2. Kohn's harmonic theory. Hereafter we fix an integer q
with 1 < q < n-2. First of all we define norms || | and ||| [

in Cq(M, E) vrespectively by

e 1% = .6,

it

gl =g 1d <1l «1el* .

Note that the norms | | and || are equivalent.

I oy

Proposition 6.1.

e ? < cags 9 + e l™, ¢ e M, B).

This follows immediately from Theorem 5.2, because
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1 <q £n-2 and the operator Qq is of order O.
Proposition 6.2.

gl , < cllell, ¢ ecio B
2

Proof. k being fixed, 1let K be any compact subset of

Uk' Put Cg(K) = {y € Cq(M, E) [ supp ¢ < K }. Now the system
PR k 3 k . .

(Xl,..., Xm—l) = (el,..., € 12 ©scvs © n—l) gives a moving

frame of CPIUk. Since P 1is a contact structure, we know

that, at each x ¢ Uk’ the complexified tangent space CT(M)x

is spanned by the vectors of the form : (Xi)x, [Xj’ Xk]x

i<i,j,k < m-1. Therefore by Kohn's inequality (Folland-Kohn

[2], Theorem 5.4.7), we have

m-1

k 2 i k 2 -k 2
g gty = GO L Ixgp p lgp 1 1700 g e o,
2
Clearly we have
N TGRS Iy zw 12 sl l? . ¢ecli
i,6,1 N bl %1 “2 §etotth

and the functions (DX 9;)£ [ may be expressed as
i s

Q ,1! LY,IY

Kk
(Dxib”)z,l = X% * 3 9, 15°5L'1' > where ay o

2,1

are functions on Ug-  From these it follows that I § | 1 3H]}H|
5‘
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¢ e Cg(K). Thus we get Proposition 6.2.
By definition, the operator DE is subelliptic if we can
find a positive number o such that

1912, = o (g 9 +NglP, ¢ clon ).

Theorem 6.3 (cf. Kohn [13] and Folland-Kohn [2]). The

N =

operator DE is subelliptic with o =
This follows immediately from Propostions 6.1 and 6.2. By
virtue of Theorem 6.3, we have the following important result :
Theorem 6.4 (Kohn-Nirenberg J[14], Kohn [13], Folland-Kohn
[2], and HYrmander [9]). The opérator DE is hypoelliptic.
By Theorems 6.3 and 6.4 and by using standard arguments,
we now arrive at the main theorem in the harmonic theory, essentially
due to Kohn [13].
Theorem 6.5. (1) Hq(M, E) 1is finite dimensional for any

q with 1 £q < n-2.



(2) For each q with 1 < q < n-2;, there are unique operators
H, G : ¢, E) — M, E)
such that
O.H = HG = 0, DEG + H=1.
The operator G 1is usually called the Green operator.
Assuming that n > 3, 1let us consider the case where q = 0 or
n-1. We first define an operator
H: O, B) — P, B

by

S

Hp = - 9G3 g, ¢ e, B).
Then we easily find that H 1is an orthogonal projection of CO(M, E)
onto HO(M, E). In the same way we define an operator
H: P, B — ™, B
by
He =g - WwCRY, ¢ e cn'l(M, E),
which is an orthogonal projection of Cn_l(M, E) onto Hn-l(M, E).

Theorem 6.5 combined with the remark above gives the following
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Proposition 6.6 (cf. Kohn [13]). Assume that n = 3, and
let q be any integer. Then every cohomology class in Hq(M, E)
is represented by a unique harmonic form. Hence

Him, B) = Him, B).

Remark. In the proof of Theorem 6.3, Kohn's inequality
played an important role. We can also arrive at the subellipticity
by utilizing HYrmander's inequality (Appendix, Theorem 9). In
Appendix we shall give a simple and geometric proof of H8rmander's

inequality and argue about some related problems.
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§7. The cohomology groups Hp’q(M).
Let M be a compact s.p.c. manifold of dimension m = 2n - 1,
and £ a basic field on M.
7.1.  The complex {Cp’q(M), dm }. We define a Riemannian

metric h on M by h=g+ 62 or in other words,

h(g, &) =1, h(g, X) =0,

hX, Y) = g(X, V), X, Y e P .

The Riemannian metric h induces a hermitian inner product < , >

in the complexified tangent bundle €T (M)

<X, Y> = h{X, 1), X, Y e €T(M)_ .
And this inner product in turn induces an inner product < , >
in the vector bundle Ak(M) = Ak(CT(M))* : Let ¢, ¢ ¢ Ak(M)x and
let (el,..., em) be an orthonormal base of ET(M)X. Then

. 1 .
<Y, o= 7 ) ey s e ) U(e; Lo e )
SEERERPEN 1 k 1 k

Furthermore h together with the orientation of M gives the

* - oOperator
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« ¢ oafan A"k,

We have
dv = (n-1)! *Al.
These being said, we now define an inner product ( , ) in
the space Ak(M) by
(3 s P) = J <y,,w>dv = (n-1)! J&‘A ?X@_,
for all 4,y ¢ Ak(M),
We have
CT(M) = €P' 9 S o S,
where the symbol @ means that the sum is orthogonal with respect to
the inner product < , > . Accordingly we may identify %(M) =
CT(M)/S with the subbundle €P' ¢ S of €T(M), and hence
Cp’q(M) = Ap%(M)* ® Aqg*(M). More precisely Cp’q(M) is a
subbundle of Ap’q(M) and we have the decomposition :
AP Aoy = APy o Prlqyy.

Let 1P be the projection of Ap’q(M) onto Cp’q(M), which just

corresponds to the natural map Ap’q(M) —> Cp’q(M) given in the

59



proof of Proposition 1.1.  Then we have
ny = 1pd‘j, G e CP,Q(M)_

If ¢ e ) and y o ¢T°M), then 4 Ay e T and

d"(gap) =dvg Ay o+ (—1)p+q G A dp .
Now consider the anti-isomorphism

NE N%M);&:-—a ¢ Eﬁmk@u.

Lemma 7.1. For any (p, q), we have

n-p, n-q-1

P>y -
#,cP%0n = ¢ ™).

Proof. We have

(]
o]
Q
~
=
p—
]
@

) B(r,s,q),
T+5=p

where
B(r,s,q) = AT(€P)* » A°S*e A%5*.

It is easy to see that #A B(r,s,q) = B(l-r, n-s-1, n-g-1). Hence

#2900 = o ] B(-r, n-s-1, n-q-1) = ¢h-Ps-n-q-1

T+5=p

™).
Lemma 7.2. Let ¢&" be the formal adjoint operator of
d" : Cp’q(M)h-*e Cp’q+1(M) with respect to the inner product

«C 5, ). Then we have
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" ,q+l
" - P amy e T an.

Proof. Let ¢ e 29 and v e 9. Then

d( g A #,9) = d" (¢ A #,0)

il

dan § A #Aw + (_1)p+q ¢ A an #Aw

and d”#Aw = # #A da" #Aw . Therefore it follows from the Stokes

A
theorem that (d"¢, ¢) = (%, (—1)p+q+1 #A d”#A y), proving
Lemma 7.2.

7.2. The harmonic theory and the duality. Let us now consider
the complex {Cq(M, Ep), S'p} and apply the results in §8§5 and

E
6, where the holomorphic vector bundie P = AP %(M)* should be
equipped with the inner product < , > as a subbundle of Ap(M).
By Proposition 1.1 we have Cp’q(M) = Cq(M, Ep) and d'" = (-1)P§ o’
E

It is clear that the inner product in Cq(M, Ep) induced from the
inner product in EP just coincides with the inner product < , >

in Cp’q(M). Hence

§" = (-1PF .
EP
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We put as follows :
A o= gtdr o+ 4.
H A = {ge P | a9 =01 .
Then A" = DEP and Hp’q(M) = Hq(M, Ep). Therefore by the general
theory developed in 86, we have dim Hp’q(M) <ew if q # 0,
n-1, and HP*9n) = #P: 90wy,
By Lemmas 7.1 and 7.2, we have the following
Theorem 7.3 (cf. the Serre duality). For any (p, q) we have
# H 0 = yPoPon-a-logy
Hence
wPr Ay = gt PRy
Finally we add the following

Proposition 7.4. Assume that the Ricci operator R, 1is

positive definite, i.e., the quadratic form g(R,X, X), X e Sx’ is
3

positive definite at each x ¢ M. Then we have Ho’q(M) = 0 for
any q with q # 0, n-1.

Proof. Apply Proposition 5.3 to the trivial holomorphic
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vector bundle M x € (with the usual inner product].

For example, consider the unit sphere SZn-l in Cn, which is

a compact s.p.c. real hypersurface. Let & be the vector field on

SZn-l induced from the l-parameter group of transformations

2n-1 t/-1 2n-1

R xS 2 (t, x) » e X e S . Then it can be shown that &

is a basic field and that the associated Ricci operator R, is

positive definite. Hence HO,q(SZn-l) = 0 for any q with q # 0,

n-1 by Proposition 7.4. Moréover since T(Szn_l) ( = T(Cn)lszn_l)

is holomorphically trivial, we have Hp,q(SZn—l) = 0 for any

(p, q) with q # 0, n-1 (cf. Theorem 10.3).
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§8. The cohomology groups HE_I’I(M) and H%(M)

We use the same notations as in the previous section.

8.1. The complex { Ap’q(M), d} . Since Ap’q(M) =

AP+1,Q‘1(M) o CP°4(M), we have the decomposition :

q ..
APy = ) PPVt
i=0

Let $ e cp’q(M). Then d? € Ap’q+l(M) or more precisely

dp ¢ 2o o Pl o P .

Consequently dY can be written uniquely in the form :

dp = Ag + d'y + d"o,
where Ay « Cp+2’q_1(M) and d'gp « cp+1’q(M).

In general let ¢ e Ak(M) and Xl’”

have

A

@0y, Xy) = ] DMy 9I X
A
+ 7 phterl

(T, XYy Xyserny Xesunes X pons
W PO, X))y Xy A

u

Now we know the following (see Proposition 3.1) : 1°.

o X e CT(M)

. Then we

s Xk+1)

s Xk+1)'

T(X, Y) ¢ §

X

if X, YeTM, ; 2°. TX, V) € TM), if X e T(M)  and
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YeS ;3% TR, ¥Y)=0 if X, Y¢S . Therefore, for any
? € Cp’q(M), AP, d'¢@ and d'"¢ may be described respectively as

follows : (In the following, Xl’ X2,... (resp. Yl’ Y2,... ) denote

any vectors in T(M)x {resp. in SX) at any x ¢ M.)

(8.1) (AP Xp,-ees X Yoeeos Yq_l)

1+)+1 PTOG, X0 Xpaeees Xpueoos Xjoonns X

= (—l) 3
iZj 1 J p+2

Voo Yo )

(8.2)  (@'P(Xp,ees X s Vpueens ¥ )

= T DT R @Ky Xy X T, T
1 1

(8.3) (@' Xps.eey Xoo Yysenos Yq+1)

j*1 —

= (-)P LoD O )Xo Xoo Tpoenes Y.,..., Yq+1)
i j

G LE AN

PTCG, To)s Xpsenos Xyones X,
i,j

In particular, we see from the first equality that the
operator A : ¢’ — Cp+2’q—1(M) is of order 0.

*
Let &, §' and A respectively denote the adjoint operators



of the operators :
1
d: AP0 — A2 0,
ar %y —s %,
Psq +2,9-1
A Pl — P M) .

Clearly we have § @ = np q_l(A*iy +8'¢ + §"g) for all § < Ap’q(M),

T, q-1 being the orthogonal projection : Ap+q—1(M) _— Ap’q-l(M).
3

Let X ¢ M and let (el,..., en—l) be an orthonormal base of
Sx' Put ey = gx. Then (eO,..., en—l) gives an orthonormal

base of T(M) .
Lemma 8.1. For any 9 e cP+l’q(M), 6'9) may be described as

follows =

§'9) (Xyyeeey X, Yoyurn, ¥
(8'9) (X, o ¥ o
n-1 _ _
= - - 9)(eys Xpheews X, Touenn, ¥,
AZO (vg $Ilen X p’ 1 7

Proof. Define ¥' e Cp’q(M) by the right hand side of the
fi P,q
ormula above. For any ¢ ¢ C (M), we have
<@, d'y > =<t >+ ) (v5 a)fe),
A A

~ *
where ¢ 1is the cross section of T(M) defined by oq(X) =
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<x | ?, v > for all X ¢ %(M)X. Since
n-1
(vz a)(e,) = & a(g) + (vza ) (e.),
{ (7, Ly gt

we see from Proposition 3.6 that the integral of ( ; (Véla)(ek))dv
over M vanishes. Hence ¢' = 6'? , proving Lemma 8.1.

Lemma 8.2. The operator A' = §'d' + d'§' : 9 P T
is strongly elliptic.

Proof. Let Y e Cp’q(M). Then we have

(8'4'¢) (X 5oy X, ¥uue, T)

= - ) (V2 V_ P X, X, Vo, T)
§ ey ey 1 P 1

q
i+l 0 v G
+ ) (-1) (V- vV, @ (e, Xipeves Xowoooy X Yoo, Y,
i ey Xi? ATl 1 P 1 q
(d‘&'@)(xl,..,, Xp, Yiseeos Yq)
i X y y
= Z(—l) (v v-(p)(e,x,...,x.,...,X,Y,...,Y).
. X,
Asi i Cx A7 1 i p’ 1 q

Therefore by using the Ricci formula, we obtain

Ap=- ) (V29 _§) + WG,
X O
where W 1is an operator of order 1. Since €gre s € 1o

form a base of CT(M)X, it follows from this formula that A' is

strongly elliptic.
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Lemma 8.3. The operator &'d" + d"§' i) —s cp-l’q+1[M)

is of order 1.

Proof. Let 9 < Cp’q(M). Then we have

(814"g) (X P, evs X gs ¥paeees Yoo

- P 1 os oo _ v 7
= (-1) Xz.( 1) (vexij? Yoy, Xpsenoy X Yoo Yoo

J

+ (W (Xysenes Xp_l, Yiooeos Yq+1),

(d"8'9) (Xqsevs X35 Yyuenss Yq+l)

p-1
-1 j - 2
= DPT Y (D g vz @) ey, X, Xy, Youaa, Y.
. . -1 1
A3 YJ ey A 1 P J
P s X s Vs Y0,
where both W, and W, are operators of order 1. Therefore from

1 2

the Ricci formula we find that ¢§'d'" + d"§' is of order 1.

8.2. The finiteness for the groups Hﬁ_l’l(M) and HE(M).

this paragraph, we assume that n > 3. Let k be any integer.

k

H*—l’l(M) was the cohomology group of the complex :

k1,1 4 k1,20

A% s 4

Let us consider the Laplacian :

p=sd+ds: AN lan —5 DT,

68
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We also consider the operator
K = §'d" + d"g' + A*d' Ck’O(M) __._>Ck—1’1(M),
of which the adjoint operator is

K* §tdt + d'8" + §'A Ck'l’l(M) —-—-)Ck’o(M).

i

Lemma 8.4. Let (¢ =@ + ¢ A lon, where g &0
and ?1 e Ck_l’l(M). Then we have

WP, P = (8 Py ) + (B"F, $) + 2Re(KYy, 9.

Proof. We have

1t

Y,

(Alyo + gngn ?0) + K?O’

Ay = Kx@ o+ (87d'F + AP + AXAR).

Hence
O §) = (', 9 + (64", $) + KFyu §) + (K*9, $0)
2 (81a'Q, ¥+ (A"G, ) ¢ (ARAYL ).
Lemma 8.4 1is now clear from this equality, because (K*?&, 90) =
K9Gy, 90, (8"d"9,, ) = (4", d"¢) = 0, etc.
Now the spaces cP*3M) (= ¢%M, EP)) are equipped with the

Sobolev norms || ”(s)' (See §6.) These norms yield the product

69



norms H in the spaces Ap’q(M). We also consider the

norm || | in AP*3(M) defined by H?l|2 = (9.

Theorem 8.5. The operator A : Ak_l’l(M)'———a Ak_l’l(M) is

subelliptic or more precisely
2 k-1,1
lel?, <cieg. o) 191, e Ao,
)

Proof. Since A' is a self-adjoint, strongly elliptic

operator (Lemma 8.2), we have
2 2 k,0
CllPoliyy = @ g ¢ +IFI% Fp e Can.

Since n 2 3, it follows from Theorem 6.3 that

c,ll S"lilil) <@g, e+ 19 15 ¢ e o,

2

The operator K is of order 1 by Lemma 8.3 and hence

1§y 1= o5 I il gy -

Furthermore, for any positive number €, we have

2 1 2
el kg 12 - 2l I s rek, @)

From these inequalities and Lemma 8.4 follows that

2
< @Ap g+ s SR
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Thus, choosing € such that Cl - 2€C§ > 0, we get an equality of
the form in Theorem 8.5.

Above all we see from Theorem 8.5 that A is hypoelliptic
(cf. Theorem 6.4). Thus, as in §6, we hﬁve the following :

1. #Blang = (9 AL lan | 49 =0 ), the space of

harmonic forms, 1is finite dimensional ;

k

*

Llag = tan.

2° H
Therefore, wusing Proposition 1.2, we get
Theorem 8.6. For any k, we have

dim HE(M) < dim HE'

1’1(M) < ©
; P9 - gPsq k _ pk,0
Remark. Since H ™M = E1 (M) and HO(M) = E2 M, a

formal argument on the filtration { Fp(Ak(M))} proves the inequality :

dim HE(M) < dim H(M) + J din HP G (M),

where the sum Z is taken over all the pairs (p, q) with p + q = k-1,

p=20 and q = 1. This inequality combined with (1) of Theorem 6.5

implies that HE(M) is finite dimensional if k # n.
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§9. Differentiable families of compact strongly
pseudo-convex manifolds.

9.1. The upper semi-continuity for dim Hp’q(M) and
dim Hi“l’l(M). Let Q be a comain of the space R of 2 real
variables, and {Mt}tEQ a family of compact s. p. c. manifolds
parametrized by Q. Then the family {Mt} is said to be differentiable
if there is a fibred manifold M over @ with projection 7 which
satisfies the following conditions :

1) The projection w 1is proper ;

2) For every t ¢ Q , T (t) = Mt as differentiable
manifolds ;

3) Let St be the s. p. c. structure of Mt’ where we note
that St c CT(Mt) c CT(M). Then the union u St gives a differentiable

teQ

subbundle of CT(M).

Theorem 9.1. Let {Mt}tEQ be a differentiable family of

compact s. p. c¢. manifolds of dimension 2n - 1 = 5. Then the
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functions
Q > t—> dim Hp’q(Mt) e I, q#0, n -1,
and the functions
0>t —>dinui o) <z
are all upper semi-continuous, where 2Z denotes the set of integers
equipped with the discrete topology.
It should be noted that the functions

0 5 t —>dim Hg(M) .z

do not have upper nor lower semi-continuity in general.

Proof of Theorem 9.1. Take any ty e 9 and let us work around
tO' Since the prejection 7 : M > Q 1is proper, the fibred manifold
M is locally trivial. Therefore we may assume that, for each
t e §, Mt = MtO as differentiable manifolds. In this case the

differentiability for the family {Mt} means that {St} is a
differentiable family of subbundles of CT(Mt ). Let Pt be the
0

real part of S, + S Then {Pt} gives a differentiable family

£

of contact structures on Mt » which is locally trivial by Martinet
0
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[17]. Thus we may further assume that P.= P for each t eeQ .
0

We take a basic field £ for the central s. p. c. manifold Mt
0

which is simultaneously a basic field for every s. p. c. manifold Mt'
Starting with the s. p. c. manifold Mt and the basic field & ,

we difine the inner products ( , ) in Cp’q(Mt), the operators
AN Cp’q(Mt) —_> Cp’q(Mt), etc. just as in §7, which will be
written as ( , )t’ A" etc. We also consider the Sobolev norms
I "(s) in Cp’q(Mto). If we choose § sufficiently small, we

can find a differentiable family of (base preserving) bundle
automorphisms of T(Mt ) {Tt} , such that Ty is the identity

0 0

and 1,S_=S_ . Each Tt_ induces the bundle isomorphisms :
tt to t

Cp’q(Mt) -—a'Cp’q(Mt ) in a natural manner , which we shall denote
0
by the same symbol Ty The norms Hrtso“ (s) ° P e Cp’q(Mt),

will be denoted simply by || ”(s)'
Let X be any compact subset of § .

Lemma 9.2. If q#0, n -1, we have
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I ¢ lI l< Cla™$, 91+ (9, 93,
2
pP,q
g eC (Mt), t ¢ K.

Remark that this estimation is uniform with respect to the
parameter t, i.e., the constant C does not depend on t. The
proof of Lemma 9.2 is easy from those of Propositions 6.1 and 6.2
if we note that the estimation in Proposition 6.2 essentially depends
on the contact structure P only.

Let us now consider the operators A  : Ak_l’l(Mt) ——9rAk_l’1(Mt)
Then from Lemma 9.2 and the proof of Theorem 8.5, we can easily
obtain the following

Lemma 9.3.

2
I ¢1°, =cie9, 9.+ (9. ¢,
)
¢ e kll(M),teK.
Now we have established Lemmas 9.2 and 9.3 , we are able to

prove Theorem 9.1 in a standard fashion, using the Rellich lemma

and the hypoellipticity for A”t and At (cf. Kodaira-Spencer [11]).
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9.2. A remark on holomorphic imbeddings. Let M be a s. p. c.
manifold, and f an imbedding of M in CN; Then we say that the
imbedding f is holomorphic or the s. p. c¢. manifold M is realized
as a real submanifold in GN by fi, if the s. p. c. structure S of
M is induced from f. Let f = (fl,..., fN). Then it is easy to
see that the imbedding f is holomorphic if and only if each component
fi of f 1is a holomorphic function on the s. p. c. manifold.

Recently Harvey-Lawson [5] proves that if M 1is compact and if

f:M _a.EN is holomorphic, then the image (M) of M by £ is
the boundary of a uniquely determined subvariety of EN— M, a solution
of the Plateaux problem.

Theorem 9.4. Let {Mt}ten be a differentiable family of compact
s. p. ¢. manifolds of dimension 2n-1 > 5 and let 7 : M—> ) be the

associated fibred manifold. Asssume that, for some ¢t there is

0’

given a holomorphic imbedding g: Mt —_—> GN
0

and that dim Ho’l(Mt)

is constant in a neighborhood of ty- Then there exist a neighborhood

U of tO and an imbedding F : w_l(U) -3 U x EN satisfying the
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following conditions

1) wo F =1 , W_l(U), ® being the projection of U x EN
onto U. In other words, if t ¢ U and p ¢ Mt’ then F(p) 1is
of the form : (t, ft(p)).

2) For each t ¢ U, the assignment p —> ft(p) gives a

holomorphic imbedding of the s. p. ¢. manifold Mt in EN.

Outline of the proof. As in the proof of Theorem 9.1, we may
assume that M_ =M (as differentiable manifolds) and P_ = P_ .
t tO t t0
. o w . A0,1 0,1
Let us consider the operators A £ - C (Mt) —C (Mt).

Lemma 9.5. Let K be any compact subset of Q . Then, for

any non-negative interger m, there is a constant Cm such that

f ¥ [ 1. =6 I ALY+ ¢ 1.
(m+5) (m-3)
¢ « Co’l(Mt), t ¢ K.
We can prove this fact in the same manner as Kohn [13], based

on Lemma 9.2 or properly uniform estimations for the operators A”t

corresponding to Propositions 6.1 and 6.2. From Lemma 9.5 follows
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the inequalities :

, 2 Cllar e ll2 e @2
0.1 Iy H(m+1 < G (o iy « I 9 ey

2
¢ e Co’l(Mt), t ¢ K.

Lemma 9.6. In a small neighborhood V of td, the Green
operator Gt of the operator A"t : Co’l(Mt) —_> Co’l(Mt) differentiably
depends on the parameter t, that is, if { Tt} ey IS @
differentiable family of elements ?t of Co’l(Mt)(i.e., (Tt ?t)p
is € in the two variables t and p ), so is the family
{6 9.} -
The proof of this fact is based on (9.1), and is quite similar
to that of Kodaira-Spencer [11}, Theorem 5.
We are now in position to prove Theorem 9.4. Let us consider
the operators d”t : Co’q(Mt)-——>(&’q+1(Mt), 6”t~: Co’q(Mt)-—~>

CO,q-l (Mt) and Ht . CO,O(Mt) _9 CO’O(Mt) . (Ht was defined

in 6.2.) We express g as (gl,.., gN) and put

A

[

AN

Z
M

- i _ i i
c=Heg =g - &Gdg , teV, 1
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which is a holomorphic function on the s.p.c. manifold Mt, . Since

Gt differentiably depends on t(Lemma 9.6), .so is fi—' Since
d”t gi = 0, we have fi = gl. Now, for each t, define a map
0 0

, N PN
£, M —>C by f = (f

e e fN). Then ft differentiably

t

depends on t and ft = g. Since g is an imbedding, we can
0

find a neighborhood U of t. such that £, 4is an imbedding for

0 t
each t e U. We have thus proved Theorem 9.4.
Remark. Let M be a compact, connected, contact manifold
of dimension 2n - 1, and let P be its contact structure. We

denote by ~ S(M, P} the set of all s.p.c. structures S on M such
that the contact structure associated to S 1is just equal to the

given P. For S ¢ S(M, P), we denote by M, the s.p.c. manifold

S
with the s.p.c. structure S.

n-1

Let G be the set of all complex contact elements of

dimension n-1 to M, which is a fibre bundle over M. Then an

1

3

(n-1) -dimensional subbundle of CT(M) gives a cross section of G
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and vice versa, In particular S(M, P) may be regarded as a subset
of T(Gn~1), the set of all cross sections of Gn—l, and hence
we have the notion of the Cz-topology in S(M, P).

Let N be an integer with N > n. Let SN(M, P) be the set
of all S ¢ S(M, P) such that the s.p.c. manifold MS can be realized
as a real submanifold in CN. Then it can be proved that the set
{S ¢ SN(M, P) | HO’I(MS) =0} is an open set of S(M, P) w. r. t.

the Cn+4—topology (cf. Theorem 9.4). - Note that every S ¢ Sn(M, P)

satisfies Ho’l(MS) = 0 by Theorem 10.3.

Now consider the case where M 1is the unit sphere s in ¢
Let SO be the s.p.c. structure induced from the injection SZn-l —>
¢" and let PO be the associated contact sturcture. Then we raise

n..2n-1 1

the question : Is it true that S (S » P) = S(Szn- ,P) ?

0
The Brieskorn variety B5 of type (2,2,2,3) 1is known to be

5

diffeomorphic with the 5-sphere S~ (cf. Milnor [18]) and there

is defined on B5 a s.p.c. structure S1 (see 11.2). This will
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imply that there is a s.p.c. structure on S5 which can not be
realized as a real hypersurface in CS. However we do not know
whether the contact structure P, associated to S1 is eQuivalent to

1

the ''standard'!" cantact structure PO or not.
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§10. Strongly pseudo-convex manifolds and isolated
singular points

10.1. The boundaries of Stein manifolds. Let M' be an
n-dimensional complex manifold, where n > 3, and V a relatively
compact domain of M'. Assume the following : 1) The boundary
M = 3V is smooth and connected ; 2) M is s.p.c. in M'; 3) V
lies inside M (see 2.3).

Let us consider the complex manifold with boundary, V =V y M.

k.= s . K ry = k.
We denote by A (V) the restriction of A (M') to V and by A (V)
1 ~ A . -.k:u -k— - .
the space of C cross sections of A (V). (A (V) 1is nothing but
the space of all the restrictions 9|V of Q¢ Ak(M') to V).
. . R k k+1 .
The exterior differentiation d : A (M') —> A (M'") induces the
. koo k+1 = .

operator d : A (V) —> A (V). Thus we obtain the complex
{ Ak(V), d } , the de Rham complex of V. We denote by Hk(V) the
cohomology groups of this complex. It is known that Hk(V) is
isomorphic with the k-th cohomology group of V with complex

coefficients (e.g. Nagano [20]).
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We denote by Fp(Ak(V)) the restriction of Fp(Ak(M')) to V
and by Fp(Ak(V)) the space of c” cross sections of Fp(Ak(V)).
Then the collection {Fp(Ak(V))} gives a filtration of the de Rham
complex {Ak(V), d} and we denote by {Eg’q(V)} the spectral
sequence associated with the filtration.

The injection 1., : M —>V induces, as usual, the morphism of

M

complexes

u s AR, @) — AR, a,

which clearly preserves the filtrations, i.e., 1& Fp(Ak(V)) c Fp(Ak(M)),

induces the morphism of spectral sequences

Thus By
*
. pPs9,9 P4
1y *E - (V) —> E. M.
In the same way the injection 1, : V> V induces the morphism

Vv

* . P,9q 5 P-4
1y ¢ E - 4] —~+~Er w).
Lemma 10.1. (1) (Kohn [12] and HYrmander [8].) The map
* Psq g p,q
ly ¢ El’ vy — El’ (V) 1is an isomorphism for any (p, q) with

q # 0.

83



(2) (Kohn-Rossi [15] and Folland-Kohn [2] )
dim E2°%00) < dim ED*Y(D) + dim E?‘p’“‘q‘l(\'/)
for any (p, q) with q # 0, n - 1.

To accept this lemma, we must observe the following : 1°.
Eg’q(V) (resp. Eﬁ’q(V)) are the Dolbeault cohomology groups of the
complex manifold V (resp. of the complex manifold with boundary V);
2°. E?’q(M) are the boundary cohomology groups P 9(B) of the
boundary M = 3V introduced by Kohn - Rossi [13].

Lemma 10.2. If M' is a Stein manifold, then the map

* k,0 - k,0 . . .
Wy G El’ W) -——9131’ (M) 1is an isomorphism for any k.

This fact follows immediately from Theorem 3-5 of Shiga [26]
(cf. Kohn - Rossi [15]), if we remark the following : 1°. The

k5 F
holomorphic vector bundle A T(M) over the s.p.c. manifold M is
the restriction of the holomorphic vector bundle AkT(M')* over the

complex manifold M' to M ; 2°. E?’O(V) is the space of ™

~ % _
cross sections of AkT(M') [V which are holomorphic, restricted to
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vV ; 3°. E?’O(M) is the space of c” holomorphic cross sections of
~ *

Xron ™.

Using Lemmas 10.1 and 10.2, we shall now prove the following

Theorem 10.3. If M' is a Stein manifold, then we have :

1) #YM) = 0 for any (p, q) withq # 0, n - 1.

k ~ .k

(2) HO(M) =H'(V) for any k.

Proof. M’ being a Stein manifold, V 1is also a Stein manifold
and hence E?’q(V) =0 for ga# 0 (e.g. Gunnning - Rossi [4]).
Therefore (1) is clear from Lemma 10.1. Let k be any integer.

. o k,0,. k,0 .

By Lemma 10.2, we see that the map 1yt E2 {) —> E2 M) is an
isomorphism. By using (1) of Lemma 10.1, we have E?’q(V) =
E?’q(V) =0 for q # 0. It follows that the (natural) map
k,0 5 k o . . .
E2 (V) = H' (V) 1is an isomorphism. Furthermore the map 1
k & K . . .
H'(V) —> H (V) is clearly an isomorphism. Thus we have shown that
k,0 ~ .k .
E2 (M) =H (V), completing the proof of Theorem 10.3.

Corollary. The assumption being as in Theorem 10.3, we have :

(1) The (natural) map HE(M) - Hk(M) is an isomorphism
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for any k <n - 2.

(2)  The map HB_I(M) st

(M) 1is injective.

In the next paragraph we shall treat the case where V admits
(isolated) singular points.

10.2. Isolated singlar points of complex hypersurfaces,

We first prove the following

Proposition 10.4. Let {Mt}t Q be a differentiable family of
€

compact s.p.c. manifolds of dimension 2n - 1 > 5. Given intergers

k and y , 1let Q(k, p) denote the subset of (Q consisting of all
. ) k-1,1 .k

t which satisfy H (Mt) = 0 and dim HO(Mt) = U . If Q(k, w

# ¢, then we have the inequalities :

W < dim Hl,f'l’l(Mt ) < dim

0

k_l’l(M } + dim Hk(M ) for every
tO 0 to

tO in the closure of Q(k, u) (in Q).

Proof. Let t ¢ Q(k, u). Since Hk'l’l(Mt) =0, it

follows from Proposition 1.2 that HE—I’l(Mt) é:Hg(Mt). Hence
. k-1,1
dim H, (Mt) = U for any t ¢ Q(k, u). Therefore we see from

Theorem 9.1 that dim HI:_l’l(Mt ) =u  for every t, in the closure
0

0
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of Q(k, u). Proposition 10.4 now follows from this fact and

Proposition 1.2.

We shall apply Proposition 10.4 to the study of isolated singular

points of complex hypersurfaces.

Let f(zl...., Zn+l) be a polynomial function on Cn+l,
where n > 3. Assume that f(0) = 0 and that there is a neighborhood
U of the origin 0 of En+l such that the differential dfz does

not vanish at each 2z ¢ U - {0} .

Let Szn+1(r) (resp. an+2(r)) be the sphere (resp. the open

ball) in En+l of radius r centred at the origin, and let ¢
be the real polynomial function on €n+1 defined by g(z) =
Now consider a small ¢ with B (e} u S (e) ¢ U,

2 2n+2 2n+1
) lzil .

and let M (resp. V) be the intersection of the complex hypersurface
fnl(O) with the sphere 82n+1(€) (resp. with the open ball an+2(e)).
Clearly V 1is a relatively compact open set of fsl(O) and M = 3V,

Milnor [18] proves that, for e sufficiently small, M is a

smooth real hypersurface of the complex hypersurface f_l(O), that
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is, the differentials dfz, dfz and d;z are linearly independent
over € at each z ¢ M. {He also shows that both M and V are
connected.) Fix such an ¢ from now on.

We assert that M is s.p.c. in f-l(O) and V lies inside

-1

M = 3V, Indeed let Zy be the restriction of 7 to f “(0). Then

M (resp. V) 1is defined by Ly = 52 (resp. by Ly < ez) and the

quadratic form L(zg;), (X, X) = Z |Xzi{2
i

X € S(;l)z, is positive
définite at each z ¢ M, proving our assertion (see 2.3). We have
thus known that V is a s.p.c. domain in the complex hypersurface
f_l(O) with a single isolated singulér point, the origin (cf.
Gunning - Rossi [4]).

Theorem 10.5. Let 1 be the Milnor number (or the multiplicity)
of the isolated singular point ([18]). Then we have the inequality

0 o< din 5 o 4+ din HO (M) .
Proof. Let Q@ be a small open disk in € centred at the origin.
2n+1 1 2n+1

We define an open set M of S () by M=f"(Q) nS (e),

and consider the proper map 7 :M> z —> £(z) ¢ Q. Now the fact
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that the differentials dfz, dfz and dgz are linearly independent
-1 2n+1

at each z€ M =7 “(0), means that the map S ()2 z > f(z) ¢ C

is of maximum rank at each z ¢ M. Therefore for { sufficiently

small, we have : 1°, M is a fibred manifold over the base space Q

with projection g ; 2°. Each fibre Mt = w_l(t) is a s.p.c.

real hypersurface of the complex hypersurface f—l(t). Furthermore

if we put Vt = fﬂl(t) n an+2(e), t e Q, we see that Vt is a

relatively compact domain of ful(t) and lies inside Mt BVt,
The notation being as in Proposition 10.4, we now assert that

Q - {0} ¢ Qn, ). Indeed, let t ¢ - {0} . Then we have
Hn‘l’l(Mt) =0 and HJ(M) =H'(V) by Theorem 10.5. (Note that
there is a neighborhood M't of Ve u M in f_l(t) such that
M% is a Stein manifold.) On the other hand, Milnor [18] proves
that uy - dim Hn(Vt), We have thus shown that t ¢ Q(n, w),
proving our assertiom. Theorem 10.5 is now immediate from

Proposition 10.4.

Remarks. (1) Let t ¢ Q - {0}. Milnor [18] proves that
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0 -~
H (Vt) =C,
k
H(Vt)=0, 1 <k <n-1,
It follows from Theorem 10.3 that

0 ~

n

0, 1 <k <n-1.

IA

Hy (M,)

(2) There naturally arised the question of whether, in
Theorem 10.5, equality " = '" holds in general or not. Concerning
this question, Naruki has recently succeeded in obtaining the exact
expression of the Milnor number . The result is
N, 1) o= dim B o + din HO(M) - dim H3‘1(M)
(cf. [21] and [22]). For the details, see the forthcoming
papers of Naruki.

Note that this equality remains valid even if M 1is replaced
by Mt’ showing that the Milnor number y is an invariant of the
family {Mt}tEQ .

Naruki has also proved the following facts :

(N. 2) H9M) = 0 for any pair (p, q) with p+q#mn - 1,
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n and q # 0, n - 1, and the groups Hp’q(M), where
p+q=n-1 or n and 1 < q < n-2, are mutually isomorphic ;
0 ~
(N. 3) HO(M) =,
k
HO(M) =0, 1 <k <n-2

Note that (N. 3) can be also derived from (N. 2) and the

fact due to [18] : HOM) = € and HY(M) = 0, 1 <k < n-2.
(3) The Ricci operator. For example consider the polynomial
function f(z) = zz + + z2 + 23 (cf. Milnor [18]) Then
{Z 1 n n+l {CL. J .

the origin 0 1is the only isolated singular point of f_l(o) and,
. : S| n+l

for any ¢ > 0, the intersection M€ = £ “(0) n Se is a compact

s.p.c., real hypersurface of f_l(O) (see 11.2). Let £ be the

basic field on Ms corresponding to the basic form 6 =

/-1 g §.dF,, ?i being the restriction of z; to M_ . If

€ > Y2, then it can be proved that the Ricci operator R,

associated to the pair (Mg, &) is positive definite everywhere.

By Proposition 7.4 it follows that Ho’q(ME) =0, 1< qg<n-2, and

this fact reproduces Naruki's result (N. 2) in this special case.



In gensral (N. 2) can be easily obtained, once we have established
(N. 2") K%M = 0, 1<q <n-2.

"1y and  B/T(M)

(This is based on the fact that both E = T(C
are holomorphically trivial.)

(4) In an analogous way to the proof of Theorem 10.5, we shall
be able to apply Proposition 10.4 combined with Theorem 10.3 to the
study of more general types of isolated singularities by considering
appropriate deformations of the singularities. (Before proceeding to
the applications, it will be first necessary to generalize
Proposition 10.4 so that the parameter space Q will be allowed»to
have singularities.) Thus we shall obtain certain results on the

singularities which will generalize Theorem 10.5. We want to take

up this problem at another occasion.
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I11. Normal strongly pseudo-convex manifolds
§11. Normal strongly pseudo-convex manifolds

11.1: Normal s.p.c. manifolds. Let M be a s.p.c. manifold.
Let S be the s.p.c. structure of M, and (P, I) its real expression.
Recall that a vector field X on M is analytic if it leaves the
structure S invariant or [X, T(S8)] < I'(S). This condition is
equivalent to the following two conditions : 1) X is an infinitesimal
contact transformation on the underlying contact manifold, 2) X
leaves I invariant or [X, IY] = I[X, Y] for all Y € T(P). We
also note that X is analytic if andionly if the image of X by
the natural injective map T(M) __4>%TM) is a holomorphic cross section
of T(M).

We say that M or the pair (M, £) 1is a normal s.p.c. manifold
if M admits an analytic basic field ¢ .

Remark. It is known that the Lie algebra ot(M) of all analytic
vector fields on M is of finite dimension < n2 + 2n, where dim M

= 2n - 1 (Tanaka [27] and [28]). Therefore if M 1is normal
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and compact, the set of all analytic basic fields is endowed with
the structure of a finite dimensional manifold as an open set of
oLM).

Let (M, &) be a normal s.p.c. manifold. Then the basic
field ¢ leaves invariant the associated tensor fields 6, w, I,
g and h(= g + 92). It follows that the canonical affine connection
vy is invariant by £, i.e.,

[, wyY] = Ve, X]Y +vyles YT, X, Y e T(T(M).

We have

and hence

Therefore the curvature R satisfies
R(E, Y) = 0.
Furthermore by using Proposition 3.5, we can verify the equality

R(IX, IY) = R(X, Y).

We remark that the collection {I, &, 6, h} gives a normal
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contact metric structure due to Sasaki [25]. Accordingly the
results on normal contact metric structures are applicable to our
study on normal s.p.c. manifolds.
Here are two important classes of normal s.p.c. manifolds:
Class (I): The class of normal s.p.c. manifolds (M, &) such
that & is induced from a U(l)-action, i.e., the toroidal group
U(l) differentiably acts on M (in the right) and & 1is induced

from the l-parameter group of transformations : M xR > (x, t) —>

Class (II) : The class of normal s.p.c. manifolds (M, £) such
that & 1is induced from a U(l)-action and such that the U(1l)-action

is free.

For example, the unit sphere SZn—l in €' is a normal

s.p.c. manifold entering class: (II), where the analytic basic field

£ is induced from the U(1)-action : S2M7! x u() 5> (x, a) —>

ax € SZn-l.
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11.2. Weighted homogeneous polynomials. Let f(zl,..., Zn+1)
be a weighted homogeneous polynomial of type (al,..., an+l)’ where
CERREE 341 are positive rational numbers (Milnor [18]). By
definition the polynomial f satisfies the equality

< i
(11.1) f(ealzl,..., ean+lzn+l) = ecf(zl,..., Zn+1)
for every complex number c. Clearly we have f£(0) = 0. We assume
that the origin 0 is an isolated critical point of f£f. It is then

easy to see that the origin is the only isolated critical point of f£.

We put M' = £1(0) - {0}
Lemma 11.1. Let z ¢ M',

£
z

Q2

I

'(z) z, = 0.
i

Qo

1
O
i i

(2) The differentials dfz, dfz and d;z are linearly
independent over €.

Proof. By differentiating the both sides of (11. 1) in

. 1 2f .

the v = o= = £ =

ariable ¢ at c¢ = 0, we have Z 3. 57.(2)z; = £(z) = 0. This

i 71 Y%

proves (1). Suppose that we have a linear relation :

ocdfZ + Bdfz + ngz =0,
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. Y -
where «a, B, vy ¢ €. Since df = Z . dz, and dg = ) z;dz, +
i %% i
) z.dz it follows that uag-(z) + vz, =0 1 <i < n+l
S i’ Bzi i ’ - -
) 1 2 -
Therefore by (1) we obtain vy ) < Izi[ = 0, whence vy = 0.
i1
Since dfz # 0, we have o = 0. In the same way we get B = 0,

proving (2).

For every positive number r , let M(r) be the intersection
of the complex hypersurface f_l(O) with the sphere 82n+1(r). Then
we see from Lemma 11.1 that M(r) is a s.p.c. real hypersurface of
M*  (cf. 10. 2).

We shall now show that the s.p.c. manifold M(r) is normal.

Define a l-parameter group of holomorphic transformations of Cn+1,

{t,}» by
/-1
a.
- 1 ] | B— ¢« 7
Tt(Z) (z1,..., Zn+1)’ 23 e i z; -
. . . 2n+1
Clearly {Tt} leaves invariant M', S (r) and hence M(r). Let

g be the vector field on M(r) induced from the l-parameter group

{r, | M(x)}
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Lemma 11.2.  The vector field & is an analytic basic field on
the s.p.c. manifold M(x).

Proof. Let ?i be the restriction of z; to M(r). We define
a l1-form 6 on M(r) by

_ /T =
0=5 19149
1

where )\ 1is the positive function on M(r) defined by

1 2
r= )z gl
1 1

n+l

If we denote by 1  the injection M(r) - C , we have Z ?id ?i
i

= 1*d"g . Hence 6 is a basic form on M(r) (see 2.3). Now it is

/=T

v

a. ?i
i

clear that £ is analytic. Since g ¢, = , We see easily
that £ 1is the basic field corresponding to the basic form 8, proving
Lemma 11.2.

Note that the normal s.p.c. manifold (M(r)}, g£) or ekactly

(M(r), c£) with some positive rational number c enters class (I),

because a; are rational numbers. Consider the special case where
%
f(zl,..., Zn+1) = g (zi) s a; being integers > 2. Then the

manifold M(r) is well known as a Brieskorn manifold of type
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(al,..., an+1).

11.3. Normal s.p.c. manifolds entering class (II). Let (M, £)

be a compact, normal s.p.c. manifold entering class (II). Then we
know the following : 1°. The orbit space ﬁ = M/U(1) Dbecomes a
differentiable manifold so that M 1is a differentiable U(l)-principal
bundle over the base space ﬁ ; 2°. The contact structure P defines
a connection in the U(1l)-principal bundle M and the basic form 9
is the connection form. Let M' donote the C*-principal bundle over
ﬁ which is obtained from the U(1l)-principal bundle M by enlarging
the structure group U(1) to C* = éL(l, Q.

Lemma 11.3 (cf. Hatakeyama [6]). (1) & becomes a Kihlerian
manifold in a natural manner.

(2) The C*-principal bundle M' over ﬁ becomes a holomorphic
principal bundle in a natural manner and the s.p.c. structure S of

M is induced from the injection M - M',

Proof. Let 7 be the projection M -» M, Then there are a

unique almost complex structure I and a unique Riemannian metric g
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on M such that M IX = In, X and g(X, Y) = g(n, X, 7,Y) for
X, Y ¢ Px’ X ¢ M. Let ® be the fundamental form associated with

the hermitian structure (I, g). Then we have #*% = ® = -d8 ,
whence. dgy = 0. This shows that (E, ;) is a Kdhlerian structure,
proving (1). As for assertion (2), we shall only explain how to
define the almost complex structure I' on M'. Let ZR(resp ZI)

be the vector field on M' induced from the l-parameter group of
right translations M' xR > (x, t) - x-et e M'  (resp. M' x R > (x, t)
> x-et‘/——T e M'). Then there is a unique almost complex structure

I' on M' such that I' is invariant under the right translations
and such that I'X = IX for X €P , x €M and I'Zi =&, = Zi

for x ¢ M.

Now let F be the holomorphic vector bundle over the K#hlerian
manifold & associated with the holomorphic €*-bundle. Then we assert
that the line bundle F is negative in the sense of Morrow - Kodaira
[19]. Indeed, as we have already remarked, § or preferably /-I§

difines a connection in the U(1)-bundle M over M. The curvature
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of this connection is -1d8 = -/-1 ¢ = -/-In*® . Hence the Chern

. ~ 1.
class of F is represented by the 2-form - s Ll el NI

proving our assertion.

Conversely let F be any negative line bundle over a compact,
complex manifold &, and M' the associated C*-principal bundle.
Then we have a canonical U(1)-reduction M of M' such that M is
s.p.c. in M', (We can see this fact from Theorem 7.4 of [19].)
Let & be the vector field on M induced from the 1-parameter group

Ty,

of right translations M xR > (x, t) + X-e Then we find
that g 1is an analytic basic field oﬁ M and hence that M is
a normal s.p.c. manifold entering class (II).
11.4. The operator N. Let (M, g£) be a compact, normal

s.p.c. manifold. For every k, we define a differential operator

N aRen — K
by

NG =T Y = /T 9 gea 0.

For any ¢, ¢ ¢ Ak (M), we have
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N@, p> = <@, Np> + /-Ig <@,y>
Therefore we see from Proposition 3.6 that the operator N is
self-adjoint with respect to the inner product ( , ).
The operator N. leaves invariant the subspaces Ap’q(M) and
Cp’q(M), and commutes with the operators - d, §, d", §", etc. It

follows that the operator N operates on the cohomology groups,

k-~

Hp’q(M} and H, 1’l(M), as well as the spaces of harmonic forms,

#9My  and H]:_l’l(M)-

The groups H?i?(M) and the spaces H?i?(M). For each
J

A ¢ R, " we define a subspace H%i?(M) of Hp’q(M) by

HY 35 () {9 H°%0 | N9 = 29 ).

n

Every ¢ ¢ H%i?(M) satisfies the differential equation

(" + N g =2

Q.
Since the operator A" + N2 is a self-adjoint, strongly elliptic
differential operator, we see that H?i?(M) is finite dimensional

(for any (p, q) and any 2A) and that the eigenvalues of the operator

N : #29m) — #P*9M)  form a discrete subset (without accumulating
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point) of R. Since Hp’q(M) is finite dimensional if q # 0,
n - 1, we have

P,q = P ; _
HE2R (M) = o ; H(A)(M) if q#0,n - 1.

Since N#, = -#,N and #,HP> 900 - HPs1=A-1yy e have

P,q - yn-p,n-q-1
POy = Fog T D

Now, for each ) ¢ R, we define a subgroup H?i?(M) of Hp’q(M)

by
H%i?(M) = {cet 0 | Ne = ac ).

Clearly we have

Hp’q(M) > Hp:q(M) .

) (A
The groups Hi-tii(M) and the spaces Hﬁ-%i%(M). In the same
way as above, we define the subgroups HE_ti§(M) c HE_l'l(M) and
the subspaces Hﬁ_tii(M) c HE_l’l(M). Then we have
k-1,1 k-1,1
H. 7722 = H.m 220,
<00 =l ™
k1,1 o gk-1,1

= #H .
SR x, 00
Note that if the normal s.p.c. manifold M enters class (I), then

the eigenvalues of the operators N : HP> M)y —— > HP>U(M) and N :
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#ihton — # o on are all integers.

In 813, we shall make a detailed study of the groups HI()iS{(M),

k-1,1

Be )

(M) and HS(M).
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§12. The double complex B2°Ymy, 3, 3}
In this section and the subsequent section, (M, &) will
be a compact, normal s.p.c. manifold of dimension 2n - 1 > 5.
12.1. The fundamental operators. We put as follows
B = Ky ” < Ak,
BP9y = pPs* o 298¢ = BP"Ym) o P
Then Bk (M) 1is equipped with the inner product < , > as a subbundle
of Ak(M), and

BXom) = o 7P .

p+q=k
The operator *B. For each k, there is a unique operator
» o BRan - B2 Ky

B

having the following properties :

1) %3 1is a real operator, i.e., *,@= *,¢;
D <9, P = D1y A T
3 "pp? = -n¥¢, ¢ B*on.

The operators L and A. By using the cross section ¢ = - d8

of Bl’l(M), we define an operator
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L BNy —» B2

by LY =wnrng, ffeBk(M).
Let A be the adjoint operator of L with respect to the inner
product < , >. We have
Ly = (DL, ge BN,
Lemma 12.1.
ALg = LAY + k-1)§, g B QY.
We put as follows :
8 = re o),
80 = rPen).
Then Bk(M) is equipped with the inner product {5, ) as a subspace
of Ak(M).
The operator N. Consider the self-adjoint operator N : Ak(M)
- Ak(M), which leaves invariant the subspace Bk(M). The operator
N : Bk(M) _—> Bk(M) leaves invariant the subspace Bp’q(M), and
commutes with the operators *B’ L and A.

The operators 3, 3, and A3 . Let ¢ e Bp’q(M). As is

106



easily observed, the exterior derivative dy> can be written uniquely
in the form :
d9 = 39 +3¢9 (mod 6 ),
where  3fe Bp+1’q(M) and 5?6 Bp’q+1(M). In this way we get operators
5, 5 : B » B o
with BBP’q(M) IS Bp+l’q(M) and §Bp’q(M) c Bp’q+l(M). Clearly we have
have 34 = 3% . Note that the operators o and 9§ depend on
the choice of the analytic basic field £ .
Let 9 and ,§ be the adjoint operators of 3 and 39
respectively. We have ,330 =59 and & = - *BB*B )
In terms of the canonical affine connection v , 5'9 and 499’,

(f € Bp’q(M), may be described as follows:

G-y X,» ¥,ees Yq+l)
j+1 - 2 -
= (-1)P § -7 (ijgo)(xl,..., X s Yyseos Youunn, Yq+l),
@Y Xpsees X, ¥ueen, ¥

= _.p+1 v - .
(-1 {_(.(VekC})(Xl,..-,X,ek, Yl,...,Yq_l),

where Xl,...,X,Y ey Y e S_.



such

Since

Hence

Since

This

from which follows immediately (1).

{ Bp’q(M), 9, 9 + gives a double complex

it follows that ¢ =

and

Then there is a unique

B+Y -/1ToarNP.

(mod 6 ).

93 + 39 = -/-1 LN.
2 $2=5° =0 and

55+ 5= /T AN,
Proof. Let ¢ ¢ Bp’q(M).
that

d9 = 3+ DY + 6 AQ .
Leg =€ _]d9
(12.1) df =
dg = - w, we find

5 +D%¢ = /TuaNg
clearly means

29 + 329 + (37 + )Y = /TINY,

(2} is is easy from

a e B

= P,q
Leg = /- ING e B0

(1).

The first assertion of Lemma 12.2 indicates that the collection
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where the relation 93 + 00 = 0 is not satisfied.

Lemma 12.3.

(1) BA-A=-/T§, OA-A=/-1A.

(2) L - LJ = -/-19, SL - Ly = /150,

(3) 9.9 +39=0, 3 + 3 =0.

The proof of this fact is just analogous to the case of a
K4hlerian manifold (e.g., see [19]). We also note that L (resp. A)
commutes with 3 and 9 (resp. with ¢ and § ).

The operators [0 and 0. Let O (resp. 0 ) denote the
operator 373 + 3,8 (resp. 30 + 39).

Lemma 12.4.

09+ m-k-1Ng =09, g < BXan.
Proof. By (1) of Lemma 12.3, we have
(93 + 3NA - A(3D + 39) = /IO - D).

Therefore it follows from Lemmas 12.1 and 12.2 that

(D-ﬁ)q)=(AL—LA)N<}7=(n—k—1)N(f.
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12.2, The complex { Bp’q(M),

|

}. In this paragraph we

)

shall observe the complex { g”’%(M), T }. The cohomology groups of
this complex will be denoted by ﬁp’q(M).

For any X, Y, Z ¢ F(S), we have

vg(f2) = fugZ + XfeZ (f ¢ CFOM)),

x(vg2) - vy (%2 - vz g2 = RK D) = 0.
This fact means that - S becomes a holomorphic vector bundle over the
s.p.c. manifold M with respect to the operator ﬁé : T(S)—>T(S & §%)
defined by

@B (X) = 932, X,Z e T(S).

Remark. Let &' be the image of the analytic basic field g by
the natural map T(M)- %(M) (= €TM)/S), being a holomorphic cross
section of %(M). Let C€¢' denote the 1-dimensional subbundle of
%(M) spanned by g'. Then the composition of the natural maps
S » %(M) and %(M) > %(M)/Eg‘ gives an. isomorphism of S onto
%(M)/Cg' as holomorphic vector bundles’

S being a holomorphic vector bundle, so is FP = APs*.  Just
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as in the case of the complex {Cp’q(M), d"} , the space Bp’q(M)
may be identified with the space Cq(M, Fp), and j = (—1)P§%p .
Therefore from the general harmonic theory developed in §6, we know
the fc;llowing (cf.7.2) = 1°. %0 = (g B 90| 0 =0}
is finite dimensional for any (p, q@) with q # 0, n - 1 ; 2°.
w9 = P29 for any (p, q).

We define operators

R, R, r(2) . pPsqny L BP9

respectively as follows :

R Xysen e xp, Yl,,.” Y )

q
- i,JZ,k (-1)7 ©(X,,. .., Rle,, Y%})lxJL Xo B Ypoeees \?j,
i place
RV @) 0t X, T T
= JZ QX5 xp, Yl,..., R*Y’j,..., Yq),
(R,EZ)(Y)(Xl,..., X ¥paeees 1)
= g @ (Xpseees R*Xi","’ xp, YI,..., Yq),
where ? € Bp’q(M) and Xl""’ Xp’ Yl""’ Yq € Sx' Note that
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these operators are all self-adjoint with respect to the inner product
<, > . Using these operators, we further define self-adjoint

operators

3
respectively by
@ - e r®,
@9 = v+ R,

P,q _ n-q-1 ,(1) q ,(2)
Q = R TR T R

Let us now define semi-norms || "S and | "S in B8P 9

respectively by

I 91% J(Zwasv, Vi > ) dv,
1 1 1

2
I gl = [ (Tergg. v, av
i i i
Then we have the following
Proposition 12.5 (cf. Theorem 5.2). For any ¢ ¢ Bp’q(M),

we have the equalities :

W (0%, 9 =] FPH; -ang, 9) + @99, ).
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@ (09, 9y =193 + @A, 9+ &%, 9.
) (09, %) = cfng c )i @09, 9.
12.3. The groups H?kg(M) and the spaces (X)(M) The

self-adjoint operator N : Bk(M) e-Bk(M) leaves invariant the subspaces
Bp’q(M) and commutes with the operators 3,4, etc. Hence it
operates on the cohomology groups ép’q(M) as well as the spaces of
harmonic forms ;p’q(M). In the same manner as in 11.4, we define
the subgroups H?i?(M) c ép’q(M) and the subspaces (X)(M) gp’q(M).

Then #HP29(M) 1is finite dimensional (for any (p, q) and any A ), and

(A)
we have
Hhn = e ) m(M) if q#0,n-1,
A
P9 ~
H M) =
(X)( ) (}\) day.
k —_— 2n-k-2
Let #B denote the operator B (M);a? > *B @ c B M). Then we
have N#, = -#.N and # HP Qo = g" P41y o gence
n p -1,n-q-1

We also note that the eigenvalues of the operator N : ;p’q(M) —

Hp’q(M) are all integers, provided M enters class (I).
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By Lemma 12.4, we have

Proposition 12.6. If X >0 and p+q <n-1, then ﬁ?i?(M) = 0.

On account of Proposition 12.7 below, we know that Proposition 12.6
generalizes Nakano's vanishing theorem concerning negative line bundles
over compact complex manifolds (e.g. [19]).

For the rest of this paragraph we assume M to enter class (II).
Consider the holomorphic C*-principal bundle M' over the compact
complex manifold & = M/U(1) and the associated line bundle F
over & (see 11.3). For any integers p and m, denote by Qp(Fm)
the sheaf of local holomorphic p-forms with values in the line bundle
Fm, the m-th power of F, That 1is, Qp(Fm) is the sheaf of local
holomorphic cross sections of the holomorphic vector bundle P -

' ® AP(%(&))*. As is well known, the gq-th cohomology group
Hq(&, Qp(Fm)) of the sheaf Qp(Fm) is isomorphic with the cohomology
group Hq(&, Fm’p)(the Dolbeault isomorphism).

Proposition 12.7, For any integers p, q and m, we have the

isomorphism :
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M, PEY).

jus i
Lo}
)

e

=

AN—
0

O
o)
=
—
—
|

={eeB”lon [Ny =m¢ ).
Then ¢ ¢ g2’9M) is in B]ZES(M) if and only if
REGg = a g, a U,
a
where Ra denotes the right translation M » x —» xea € M. To prove
Proposition 12.7, it is sufficient to show that there are (natural)
~ m v
isomorphisms B%;S(M) 26 > § ¢ Cq(M, F ,p) such that Gy =
G By 00
Let rm'(resp. m) be the projection of M' (resp. of M) onto
M. M' being a holomorphic principal bundle, we have an open covering
{Uoc} of M and, for each ¢, a holombrphic trivialization ¢ :
ﬂ"l(uu) > 2> (n'(2), £,(2)) ¢ U x €. Let {g .} be the
system of (homolorphic) transition functions associated with the
trivializations N Then we have
fq(za) = fa(z)a,

£ = g (1) £,(2), zem W), a e
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Now let u_ be the restriction of f to "rr-l(U ). Then u_ is
a o a a

a holomorphic function on the s.p.c. manifold M : d”uoc = aua = 0.
Furthermore from the equalities above for fOL , Wwe obtain

* 1 .
R* uy uca, ace u(1),

uOL/uB = w*gug .

Take any ¢ ¢ BI()X;()I(M) and put Sooa = ur(; «%. Then we have,

for any a ¢ U(1),

m

* - * m. * - m
Ra 9’oc (Rau ) Ra()(J Y

m -
*2 eQa

. 97 = (foc
= ; ; ~ P>q i
and g_Jg:a 0. It follows that there is a unique §, € c (an) such
that ¥y = ’IT*(?)OC . Let o and R be such that Uoc n UB # o -
Then we have
m m m
= (u /u = * , h - -

$, = W fug) ¥ = (g )Y, whence @, = (8,0) ¢

This means that the collection {(;506} defines an element, say '93 ,

of Cq(M, Fm’p). It is easy to see that the assignment 9’ — ¢

gives an isomorphism of B%;S{(M) onto Cq(1\~4, FPy . Let ¢ < BIE&()I(M)

Since 3j Tu = *d" ‘;oc and §u(x = 0, we see that

m

By =0 g = T ng, ¢ T,
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™M kg 3
—ua'le Ya,

3

whence (397)(1 = d" ‘)?oc' Since (—l)p ? m,p (53 is defined by the
F

collection { 4" (j;oc} , we get (5%(19) = (-1)P aFm,p? . We have thereby
proved Proposition 12.7.
12.4. Normal s.p.c. manifolds with vanishing curvature. Let
n be an integer = 3. Let Ud'f = .Z,Q}i be a graded Lie algebra over
i=1
R and let I be a complex structure on the vector space %71' For

the pair (g, 1) assume the following:
1) (yi =0 if i > 3, dim gz =1 and dimp G, = 2(n-1) ;
2)  [IX, Y] = [X, Y, X, Y e@
3) The hermitian quadratic form OJI > X —>» [IX, X] € gz =R)
is definite.
Let G be the simply connected Lie group whose Lie algebra (of
left invariant vector fields) 1is given by %7 Consider the exponential
map exp :%’( — G. Then exp is a diffeomorphism of g onto G, G, =

2

exp (gz is the center of G, and
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exp X exp Y =exp (X +7Y) exp(%-[x, YD, X, Y ¢ 91'
We define a subspace 4 of @gl by
é={X-ﬁTIx|X€c?1}
Then 4 induces a left invariant subbundle S of CT(M), and, as
is easily observed, S gives a s.p.c. structure on G. The manifold
G together with the structure S is called the standard s.p.c.
manifold (cf. [30]). We note that the s.p.c. manifold G can be
realized as the real hypersurface of €" defined by
Im Zn = %
We fix a base g of CJZ such that the quadratic form l;ll > X >
[1X, X] « % is positive definite, where ?2 should be identified
with R w.r.t. g. It is easy to see that & 1is an analytic basic
field on G and that the canonical affine connection. v of (G, &)
is uniquely determined by the property : Every left invariant vector
field X 1is parallel w.r.t. v, i.e., vX = 0. It follows that the
curvature of vy vanishes.

Let ' be a discrete subgroup of G such that the space M =
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\G of right cosets of G by T is compact. Then every left
invariant vector field X is projectable on M, i.e., there is a
unique vector field X' on M such that X and X' are g-related,
m being the projection G » M. It follows that the s.p.c. structure
S on G induces a s.p.c. structure S' on M in a natural manner
and that g' 1is an analytic basic field on the s.p.c. manifold M.

Proposition 12.8.

(1) ;%i?(M) =0 if 3 #0 and 1 < q < n-2.

@ #pton = WP e A% for all (v, @).

Proof. Let y € Bp’q(M). Since the curvature of (M, ¢')

vanishes, we see from Proposition 12.5 that (f c ;{Iz;\(;‘(M) if and only if

Ng =3¢,
lg1Z - axfg)®=o,
I g3+ m-a-Dajg)® = o.

Hence ;?i?(M) =0 if A #0 and 1

IA

q < n-2, and is in Np’q(M)
b Heo)

if and only if V"f =0 (or V(W*‘f) 0), where ¢' 1is the canonical

affine connection of (M, &'). Since vXY = 0 for all X, Y E‘g’
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*
this last condition is equivalent to the condition that ﬂ'q) is left
invariant. Hence H%é?(M) = Py o p5%, completing the proof of

Proposition 12.8.

Let e;,..., e, . bea base of %{1 over R such that

[ei, ej] = aijg with some integers aij’ and let
Then we see that T = exp vy is a discrete subgroup of "G and that
M = I'\G 1is compact. Furthermore we see that the normal s.p.c.
manifold (M, £) enters class (II) and that the complex manifold
M/U(1) = F\G/G2 is holomorphically isomorphic with the abelian

variety %1/ ) zec,.
i
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§13, Reduction theorems for the cohomology groups

Hf(’ igl (M) and HS(M)

k-1,1
In this section we shall describe the groups H?ig(M), H*, (A)(M)

and Hg(ﬂ] ir terms of the group H%i?(“).

13.1. The groups H%é?(M). Using the basic form @9, we define
a map
e(e) : B on —> A )
by
e =649, B lon.
Then we have
A = B0n e e(8 0w,
Pl = B e ee) BP0V,
Furthermore the map e(6) preserves the inner product ( , ), and
g = (=l)k_le(8)#B<}’, pe BT,
We denote by Hk(M) the space of harmonic k-forms associated

with the Riemannian metric h. Let d* be the adjoint operator of

the exterior differentiation d. By definition, ? € Ak(M) is in
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Hk(M) if and only if ? satisfies the

We have

#AHk(M) = gkl

We also define subspaces KX’q(M)

by
K[I\)’q(M) ={ Qe HIE(’)?(M) | A g
KIL”q(M) ={gpe HI(’(’)()*(M) | Ly

since & = (-D)M# Lt P, ¢ < BRan,
we have
n.a
KL M =

and by Lemma 12.1,

kP29 =0 if p+q=n-
KP9an =0 if p+qzn,
K290 = K2 9an if p+q-=

These being prepared,

Theorem 13.1.

(1
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equations:

d¢ = a*¢ = 0.

of HP:%na

P-q
and KL M) )

=01,
=01}.
HP>9 vy = HR-P-1,n-q-1
and #BH(O)(M) = H(O) m,
2,
n- 1.

we state the next two theorems.



(2) Hk(M) =9 ) e(® K{'l’q(M) if k = n.
p+q=k

Theorem 13.2.

W #23m

Psq : _
(0) KA M) if p+q <n-1.

@ ylon = e it p+aq s

(0)

From these theorems it follows immediately that
oo =o T fylen.
Y\+f1=k
FiH

Consequently we get

Corollary (cf. Naruki [23]). For every k we have the
isomorphism :
k ~ ,
HM) = H?O§(M)n
p+q=k

Proof of Theorem 13.1. Every g ¢ Ak(M) can be written uniquely
in the form : o= mo + e(8)ma,
k-1

where Ty € Bk(M) and o e B M) .

Lemma 13.3. Let o ¢ Ak(M).

(1) ﬂoda (5 + 5)ﬂ0a - Lmo ,

mda = - (VTT'NWOu + (3 + mya).

(@) myd*a = (49*”,5—)'”00& + V-T Nma
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md*a = - (Amga + &, +,§)ﬁ1a)-

Proof. Using (12.1), we obtain

da = dﬂou -wAT; -0 A dm;a
= (@ +mya - Lma - 8 A (T Nrga + (3 + Dmya)-
Hence we get (1). (2) 1is easily obtained from (1).

k
Let o = ? +e(®yp e A(M), where ¢ = oo and ¢ = mO -
By Lemma 13.3, ¢ 1is in Hk(M) if and only if ¢ and y satisfy

the equations :

(3 + 3% =Ly ,
(a+®w ='|/_—IN?,
(13. 1) ]
WN+HHy = - /1INy,
($+5) = - Ay .

To prove Theorem 13.1, it is sufficent to verify the first
assertion (1), because the second assertion (2) can be obtained
from the first by utilizing the dualities given by # and #_.

A B

Putting kX(M) = ) Ki’q(M), we first show that KX(M) ey,
p+q=k
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Let So € KX(M). Then 550 =,SSD= Ng = ASO = 0. By Lemma 12.4

we have iso =0¢ =0, whence 3¢ = §¢% = 0. Therefore
satisfies equations (13. 1), i.e., @ ¢ Hk(M).

Conversely we have Hk(M) c KX(M) by the following

Lemma 13. 4. Let a= @ + e(®)Y ¢ Hk(M).

(1) N =Ny = 0.

(2) 209+ LAy =2/-T3y = -2/-1 3y .

(3) 389 =o0.

(4) A<}> = 0,

(5) p =0, and o =9 KK(M).

Proof. In the proof below, we shall freely use conditon

(13. 1) and Lemmas 12.1 ~ 12.4 without comments.

¥

(1) Since L,6 = ng = 0, we have L,h = Lg(g + 92) = 0.

3 3

o, being a harmonic form for the Riemannian metric h, it follows

that Lgoc =0 (e.g., [3]). Hence N§ =Ny = 0.
(2) We have
(N+9)@ +3)P + B+ NI+ HY = (S+ N .
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The left hand side of this equality is equal to D&D + DSo': 2 EISO,
and the right hand side is equal to L(§+ 3y + /I3y - ).
Thus we get (2).

(3) We have 04 =99 and OJLAY = LASY - /-ILF Y.

Therefore it follows from (2) that

2039 + LASY = /-1LS9 .
Analogously we have
2 03¢ + LAYy = -/-1L9 9.

From these two equalities follows that
20(3Y - 39 + LA(GY - 39) =/~IL(8% +.3¢) = 0.
Hence 3(3Y - d9) = - 35¢ = 0.
(4) We have L3y = 9Ly = 3(39 + 3¢) = 309 = 0, and hence
0 = AL3Y = LABY + (n-k-1)3Jy .
Since k < n-1, this equality gives A3y = 0. Since MY = AP,
it follows from (2) that
2009 + ALAY = 2/-IA3y = 0, whence AY = 0.

(5) Since AQ =0, we have 3¢ =0 by (2), whence
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3¢9 = 0. Analogously we obtain 3% = 0. Hence we have Ly =
-59’ + 3y = 0. Therefore it follows that 0 = ALY = LAY + (n-K)y .
Since k < n-1, this equality gives ¢ = 0. Thus (2) reduces to
D¢ = 0 and hence we have proved § = 0 and a = §e KIR(M).

Proof of Theorem 13.2. a e AP*Yvy  is in CP°9(M) if and
only if mya € BP:9UM) and ma e Bp-l’q(M).

Lemma 13.5. Let o < CP9qM).

(1) md'a .o - Lm0,

0 1

-9 o .

ﬂld”u
LR —_
(2) TTOG o = ,GTrooc s

11
ﬂld o

-(ATTOOL + 9 7r10c).
Proof. 5h0a, LT 0 € Bp’q+1(M), ﬁﬁla € Bp_l’q+1(M),

Ta—"rrooc € Bp+1’q(M) and N7 .0, Sﬂlcx ¢ BP>9).  Therefore (1) follows

0
from the equality for da in the proof of Lemma 13.3. (2) 1is easy
from (1).

Let a =9+ e(B)Y ¢ CP>9M). By Lemma 13.5, o is in

lea()l(M) if and only if y; and ¥ satisfy the equations:
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n
(e}

0% = W, Y

dp=0, dy = -A¢

To prove Theorem 13.2, it is sufficent to verify the first
assertaion (1) (cf. the proof of Theorem 13.1). Clearly we have
pPsq P,q
KA ™M c H(O)(M).

Conversely we have H%é? c Ki’q(M) by the following

Lemma 13.6. Let o = § + e(8)y « HIE(’S(M).

(1) [O¢%+ LAy = -/-Toy.

(2) 39y = 0.

(3) Ay = C.

4 p=0, and a=1¥ ¢ Ki’q(M).

The proof of this lemma is analogous to that of Lemma 13.4 and
therefore is omitted.

13.2. The groups H%i?(M), A# 0. For every non-zero real

number ), we define differential operators

T, B0 x B0 > B0 x Bh 0
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by

a9 -Gl
5= v S5

where ¢ « BP Ay, u e Bphl’q(M) and (o, B) = T, (9, ¥). In this
paragraph we shall identify Cp’q(M) with the product space
8P ) x Bp—l’q(M) by the correspondence o —> (m,a, T0).

Theorem 13.7. Let (p, q) be any pair of integers, and X any

real number with [A| > 1.  Then the operator T, maps H?i?(M)

injectively onto H?i?(M) x H?i;’q(M)-

Corollary (cf. Naruki [23]). Let (p, q) be any pair of
integers, and A any non-zero real number. Then we have the
isomorphism :

S 00 = B dm) H?i;’q(M).

Proof (of the corollary). The groups H%i?(M), H?i?(M) and

the spaces H%i?(M), H?i?(M) are all dependent of the analytic basic

field & chosen. Accordingly we write them exactly as H?ig(M, &),

ete. Let AP°%(E) = () eR | H?i?(M, £) # 0} and A P9y -
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{XeR | ﬁ?i?(M, g) # 0 }. Let us now modify ¢ by a positive

constant p to consider the analytic basic field pg& . Then we

have aP.3(p5) = p-aP’%() and AP*%(p) = paP*%(E), and

HOS) O p8) = HPS (M, 08) = K3, 8),

~

P,q ~ P-4 |
H(p)\) M, DE) = (M) M, OE) = H()\) M, £).

(Note that the operators 3 : Bp’q(M) -> Bp’q+1(M) are unchangeable
under the modification.) Since both Ap’q(g) and Zp’q(g) are
discrete subsets of R , we can find a p such that |A] > 1 for
any e 8P2%(0g) u AP>Y(oE) - {0} and any pair (p, ). By
Theorem 13.7, then we have, for any (p, q) and any X ,

#:S 01,p8) = #ES 01,p8) x HE~ 1500, 08)
Thus we get the corollary.

Proof of Theorem 13. 7. Let (9, ¥) € Cp’q(M). By Lemma 13. 5

(¢, ¥) is in Hp’q(M) if and only if (%, y) satisfies the equations:

()
Ny =2y, Ny = Ay,
(13. 2) 99 =L, 3 =0,
,S(f:(), r-W’"A(P
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Lemma 13. 8. if (99, P) € H%\;i(M), then we have (o, B) =

. _—
T, (g, W) € WD x HES e,

Proof. It is sufficient to prove the first assertion that
a e HIE;\(;‘(M), because the second assertion that B8 ¢ H%;\;’q(M) can
be similarly dealt with or rather can be derived from the first by

using the dualities given by #A and #_.

By using (13. 2) and Lemmas 12 1 ~ 12. 4, we can easily

obtain Ng = Xa, oo = 0 and o = - %ZABQ, (For example,
4506=4999—%31!) =‘/%_13$w=-‘/~;@f\30
_ /1 _ /1
=-S5 (Mg o+ /—'1‘«97) = - 5 Ada.)
It remains to show ~9a = 0. First of all we obtain

0da = - % 35 a.
Since A # -1, it follows that - 33 a = 0. Furthermore we have
1 —
(o + ALa = - xsaa.
From this equality together with 39a = 0, we have
O%a + ALS o = 0.

Hence ,3 a = 0, proving Lemma 13. 8.
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We now define a differential operator

U)\ : Bp’q(M) > Bp’q(M)
by
- 1n 1y 1 D,q
Uy, ==509+—=N¢ +39, ¢ e B2V,
A 2
which is a self-adjoint, strongly elliptic operator. It is clear

that the operator U)L maps Bp’q(M) injectively onto itself. Let
B%i? denote the subspace of Bp’q(M) defined by
P>q  _ P,q -
BO\) ={@eBR | N = g},
L. P>q9 _ gPs9
Then it is easy to see that UAB{A) B(A) and
=1 D,q
U)\(f—)\zﬂlf+g3, 9768()\)
An easy calculation gives the following
Lemma 13. 9. Take any (¢, y) « B?i? x B?i;’q and put
(a, B) = TA( ?, V). Then we have :
_ 1~ V-1
UA?—Q+A—2,SBOL+T38,
_ 1. V-1 —
U)\RU—B+'>\—23,SB+ }\ro.
Lemma 13.10. The operator T, maps BP:4 x gP-l.qa injectively

) ey 3]

onto itself,
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Proof. Let (o, B) € B?i? X B?i%’q. Then there is a unique

(¢, ¥) BP:4 x gP-1:q satisfying the equalities in Lemma 13.9. We

M) 1)
have

U (9 - - - Lage « Llae — v Glau o,

A >\2 AN A
whence ¢ - o = Z;I oY . In the same way we get ¢ - B = z;ij;?.
We have thus proved TA to be surjective. That TA is injective,
is clear from Lemma 13. 9.

Lemma 13.11. Let (¢, y) « BR:4x 8P hod ¢ (4 gy -

oy (A

o 5 Y '1’ )
T,(§, ¥) « HP()A?(M) x HI()A) 4, then we have (¢, ¥) ¢ HP(’A‘}(M),

Proof. First we have
S¢ = - Lyg NN
? xz 39<? A ?
Since 1 + %- > (0, it follows that ,Sff = 0. Furthermore we can
easily show J¢ = - A¢. In the same way we get 3? = LYy and
3 = 0, proving Lemma 13.11.

Now Theorem 13. 7 follows immediately from Lemmas 13. 8, 13.10

and 13.11.
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13. 3. The groups HE—tG;(M). The main aim of this$ paragraph

is to prove the following

Proposition 13.12. For any k, we have :
k k-1,0
M) = M e(6 M
He oy @0 = Kp00n e eedky O 00

T AR OERIOT R O

Corollary. For any k, we have :
k-
*

1 1 _ k,D k']-:l

This fact is clear from Theorem 13. 2 and Propostion 13.12.

Consider the operators A : Cp’q(M) - Cp+2’q_1(M), d' : Cp’q(M)
- Cp+1,q(M) and §' : pTl’L{(M) - Cp q(M) which were defined in
8. 1. We have T(X, Y) = 0 for all X, Y ¢ :I\'(M)x (see 11. 1).
Therefore from the formula for A¢ given in 8. 1, we see that the
operator A vanishes and hence

dp =d'¢ +d'g , ¢ c APy .

(Accordingly the collection { Yy, dr, dv} gives a double

complex in a proper sense.)

Lemma 13.13. Let o e cP’9M).
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i

1
Y Trod o = dmya,

md'a = /-1 Nmpa - 3m;a.
(2) mys'a = S T * V-1 Nm, o,
m8la = ~j§hla.

This is easy from the proof of Lemmas 13. 3 and 13. 5.
We are now in a position to prove Proposition 13.12. Let a =

to, e A o, where o) e €000 and o e M1 lon.  and

%0 1 1

k,0
let 0y = SPO + e(e)wo and o = 501 + 6(9)‘4)1, where }’O e B ),

wo € Bkhl’O(M), (fl € Bknl’l(M) and Yy e Bk—z"l(M)= Then we see

k-1,1

from Lemmas 13. 5 and 13.13 that o is in H, (0)
5

(M) if and only

if  @gs ¥ys ¢ and Y, satisfy the equations :

NG, = Ny = NP, =Ny = 0,

3?0 = awo 0,
(13.3) §{ 5@, - Ly, + 3¢, = 0, B, + 3y = 0,

Scyl - Ly, =0, §¢1 =0,

+

9P+ VP =0 JUy+ Apy +Jy) =0

First of all it is clear that o e Hlj:l((’)%(m £ P, KO,
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woeKk

L0, ¢ e KTVan mnd g e k2T OD.

Conversely let o ¢ HE—I((’);(M). By using (13. 3) and Lemmas
12. 1 ~ 12. 4, we have (_B'wo, %) =0 and
D¢, +50%, + LAP, = 2/-T 3y,
whence
It follows that k-1,1op  and h hat 39, =359, =0, i
t follows a (fleKA (M) and hence tha 90—390— , 1.e.,
k,0 . .
YO € I(A M. Furtheremore we easily obtain
Sy, +3d5yy =0,
meaning 54)0 =,S_KU0 = 0. Thus we get 3y, =,5T¢0 = Ly, = 0 and
= . k-1,0 k-2,1
311)1 =,91p1 = prl =0, i.e., 11)0 € KL M) and ¥y € KL ™.
We have thereby proved Propostion 13.12.
k . k k
13, 4. The groups HO(M). Since NS (M) < S (M), the operator
N operates on the cohomology group H](; M. We assert that the
. k . - : k
operation on HO(M) is trivial. Indeed, let ¢ ¢ S°(M) be such
that d@ = 0. Then Lgty= g_ldy + d(g_]y) = d(g_jso). £ being

analytic, we have 5__!9 € Sk_l(M). Hence Ng e dSk-l(M), proving
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our assertion.
Consider the exact sequence
0 > HE(M) b an 5 E D

(see Propostion 1. 2). By the remark above, we see that this exact

sequence induces the exact sequences

k k 1,1
0 - HO(M) + H, (0 )(M) > H(O) (M),
0 - HS ti%(M) H$;%’1(M) ( # 0).
. k 1,1 .
Since H, (O)(M) = (0)(M) ® H( ) (M) by Corollary to Proposition

13.12 and since the map HE %0§(M] %_i’l(M) is induced from the

orthogonal projection HE %0§(M) - H( ) (M), we have the isomorphism

Koo o~ k.00 - Kk,0

and the exact sequence

k k-1,1 k-1
0~ H, (M) ~H M) ~ H M) - 0.
o0 > HI 200 > Hegvr o
Therefore we have proved
Theorem 13.14. For any k, we have

1 myoen =uSon.

(0)
k- k-1

(2) 0~ HE(M) -+ H t ;(M)+ H( 0) (M) - 0 (exact).
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Corollary. Hg-l(M) = HJ ().

n-1 ~ ~ n ~ 0,0 ~
Proof.  Hj (M)=f§m M) = K Oy, WﬂM)_wﬁm(m =
Oy, and Ky L0aygy - K 1,0y,

This corollary is interesting in connection with Naruki's formula,

(N. 1), for the Milnor number y.

13. 5. The groups HE %Ki(M), A # 0. In this paragraph we

state the following

Proposition 13.15. Let k be any integer, and ) any real

number with |[A| > 1.  Then HE %A;(M) is contained in Hkk; l(M),

and
k 1,1 vk-2,1
T, (T 3y D) = 0 x HEP T,
where T, 1is the injective operator of B Ll Bk_z’l onto itself
A ) )
given in 13. 2.
Corollary. For any integer k and any real number A , we

have the isomorphism :

k-1, rk-2,1
e Gy 00 = HEy 0.

The proof of these facts is left to the readers as an exercise.
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Appendix
Linear differential systems

In this appendix the differentiability will always mean that of
class C unless otherwise stated.

Let & be a sheaf of vector spaces on a manifold M. For each
P e M, @p will denote the stalk of & at p. r(¢) will denote
the space of cross sections of ¢, and TO(Q) the space of cross
sections with compact support of &.

Let X be a vector field with compact support on a manifold M.
As is well known, X generates a global l1-parameter group {FE} of
transformations of M. The transformation P which is usually
called the exponential map generated by X, will be denoted by eX.
We have 9%:= etx. For any differentiable function f on M, the

. tX . . .
function f.o e is expanded to a formal power series in . t as

follows
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1. Linear differential systems
Let M be a manifold. 0 denotes the sheaf of local differentiable
functions on M, being a sheaf of rings. Given a subbundle P of
the tangent bundle T(M) of M, P denotes the sheaf of local cross
sections of P. The sheaf T(M) is at the same time an O-module and

a sheaf of Lie algebras with respect to the usual bracket operation

By a linear differential system or simply a differentiable system on

M, we mean an O-submodule of the O-module T(M).

Let ¢ be a differential system on M. For any integer £ > 1,
we define a subsheaf @2 of T(M) inductively by @l = ® and
©R - Q’Ql—l] . ®2—1 ,

i.e., each stalk @i of @Q is defined to be the subspace of T(M)p

spanned by the elements of the form

aXm e ade_IXm,
where Xl""’ Xm € @p and 1 s m< Q. Clearly we have
<I)=(I>lc ccb'q'c
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and

2 k+%

(6%, o%] < o

The union o' = @2 may be characterized as the subsheaf of the sheaf

U
L
T(M) of Lie algebras generated by &, i.e., each stalk ®§ of @' |is
the subalgebra of T(M)p generated by @p. Note that @2 and @'
are all differential systems.

For each p ¢ M, we define a subspace V(@)p of the tangent

space T(M)p by

V(q>)p={xp|x€q>p}.

Then the union V() = u V(CD)p forms a subbundle with singularities
P
of T(M). The differential system & is said to be regular if

dim V(@)p is constant for all p e M. If & is regular,  then V()
is a subbundle (without singularities), and & = V(9). Conversely
if P is a subbundle of T(M), then P 1is a regular differential
system and P = V(P).

We say that a differentiable curve u(t), a <t <b, in M is

an integral curve of the differential system & if the tangent vector
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%%{t) to the curve u at any time t 1is in the subspace’ V(@)u(t)

of TOD 4y

2. The transformations ?(h)

Let & be a differential system on a manifold M of dimension n.

Assume that, for some point Py € M, we have @'O = T(M) . or equiv-
alently V(d') = T(M)_ . Since
Py Po
Vo) =velh) e ...c v <
Po Po Po
and V(®") = U V(@Q) , there is an integer k such that V(@k)
P P P
0 2 0 0
= TM)_ . Putting n, = dim V(@l) , we define a function wuy(h) on
Po . Po
R" by
uch) = J ) b " . h=(h,...,h) R
2=1 i=n, .+1 n
2-1
Clearly we have
1
k
u(h) = o(|n|™) at h = 0.

These being prepared, we shall prove the following
Proposition 1. To every h € R" there is associated a

diffeomorphism T(h) of M so that the correspondence h > ¢(h) has
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the following properties :

(1 ?(h)p is C1 differentiable in the two variables h ¢ R"
and p € M.

(2) _y(O) = 1, the identity transformation of M, and the map
F:R® xM > (h, p) - (p, ?(h)p) e M xM gives a C1 homeomorphism of a
neighborhood of (0, po) onto a neighborhood of (po, po).

(3) There are vector fields ZA’ 1 <A <N, in F0(®) and
continuous functions sA(h) on R" such that

¢ (h) = eSN(h)ZN .. eSA(h)ZA . esl(h)Zl
and such that the function g [sA(h)[‘ is equivalent to the function
p(h) in the sense that, with suitable positive constants Cl and C2,

Cu(h) < g s, ()| < Cun, h e R".

The proof of Proposition 1 is preceded by a general consideration

on the exponential maps. For any real number t and any vector fields
Zl""’ Z2 in FO(ILM)), we define a transformation 6(2)(t; Zl""’ ZK)
of M inductively by 6(1)(t; Zl) = etzl and 6(1)(t; Zl""’ Zl)

= e(l—l)(t; Zysenes 22)'1 e—tZl G(Q—l)(t; Zosenv s Zg) etzl.
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If we put N, = 3 x 4l 2, we see that e(l)(t; Zysenes Z

is a
2

9
product of N2 transformations of the form eZ, Z € TO(T(M)).
Using 6(2)(t; Zl""’ ZR)’ we now define a transformation
(%) cy. :
? (t; Zl”"’ Zz) by
O OPRE
@H(t; 2y, Z)) = 0 (lt|7 ; €215 Zys---» L), where

€ stands for the sign of t, 1i.e., Et =1 if t>0; =0 if

t=20; = -1 if t < 0.
(L) .. : 1. . -
Lemma 2. ¢ (t; Zl""’ Zﬁ)p is C° differentiable in the two
variables t and p.

Proof. Let x X be a coordinate system of M at any

1770 Xy

q € M. Then, in a neighborhood of (t, p) = (0, q), we have

(L) (. - %
xi(e (t; Zl""’ Zl)p) = Xi(p) + t (ale... adz%-lzl)pxi

N t52,+1

(%) :
Ryt s Zyseees Zg),

where the functions Rgz)(t, P 2 s ZK) are differentiable in

17
the two variables -t and p. (This fact can be easily proved by

induction on the integer £.) It follows that

2
Xi(?( )(t; Zl""’ Zz)p) = xi(p) + t(ale...adZQ_lzﬁ)pxi
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1 1 1

+— -—
sel PR (et s ey, 2,0 2
Lemma 2 is now clear from this equality.

Let us now construct the diffeomorphisms ?(h). Put n'

k
= ) 2, -n, ,). Since V(@k) = T(M) , we can find n vector
g=1 & A Py Py

fields Y

IERRRE Yn and n' vector fields Z. in T0(®)’ where

-
i
=
1IN
x>
g
Sy
—
In
)
IA
e

-
n
C
O
=
+
g
5]
et

and such that the n vectors (Yl) ., (Y ) form a base of

Py Py

.
T(P)po

For any h = (h o hn) eiRn, we define n transformations

170"

?i(h), 1 <1i<n, by

g, = 9y ZRE

and define a transformation ¢(h) by

@(h) = 9ﬁ(h)... @n(h).
Clearly we have yg(O) =P = 1. Furthermore we see from Lemma 2
that 9i(h)p and ?(h)p are all C1 differentiable in the two

variables h and p.
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Lemma 3. The map F : R™ x M > (h, p) » (p, ¢(h)p) € M x M gives
a C1 homeomorphism of a neighborhood of (0, po) onto a neighborhood

of (pys Py)-

Proof. Let x X, be a coordinate system of M at Py

122

From the formula for xi(y(z)(t; Zl""’ Zx)p) in the proof of

Lemma 2, we see that

1+%
x; (p; (P) = x;(p) + (Y;x;) ()b + OCJn| *)
if n2_1+1 <1ix< nz.
It follows that
1+=1—

xj () = x;(p) + ] C1yx;) @)y + OC|n] 9.

Since Y seees (Y form a base of T(M , we have
Dy, )y o0,

det((Yixj)(pO)) # 0. Thus we get Lemma 3 by the implicit function

theoremn.

As we have remarked before, ?i(h), n +1 <1 <n

2-1 are products

2)
of N, transformations of the form eZ. Hence @(h) 1is a product of

2

k
N transformations of the same form, where N = Z N,(n, - n ).
051 2LY8 2-1

More precisely ?(h) may be expressed as
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sN(h)sz eSA(h)ZA... esl(h)Zl

$h) = e ,
1
where 2 is of the form Z, and s,(h) is of the form ilh.’f
A i,m A i
1
or * €. lhilﬂ . We have
i n .
Yls ] =] N, ] [h, [T
A L 1=n2_1+l
and hence

ph) < § Is, ()] < Nuh).
A
We have thus constructed transformations @ (h) having all the
properties in Proposition 1.
The notations being as in Proposition 1, we define, for any
h e R"  and any t with 0 <t <N, a transformation {(h, t) by
(t-A+1)s, (h)Z, s (h)z s, (h)Z
?(h, ) = e A A R A-1 A-1 e 1 1
if A-1 <t <A,

Then we have @(h, 0) = 1 and @(h, N) =@(h). Thus ¢(h, t),

0

IN

t < N, give a homotopy between the identity and ¢(h). Using
@(h, t), we now define, for any h and p, a curve g(h, p)

in M by

g(h, p)(t) = ¢(h, t)p, 0 <t <N.
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Then we have @(h, p)(0) = p and ﬁ(h, p)(N) = ¢(h)p. We have
ZA e T'(®), and the curve §(h, p) restricted to the interval
[A-1, A} 1is an integral curve of Zy- Hence @(h, p) 1is a piece-
wise integral curve of the differential system ¢ joining the two
points p and ¢(h)p. Therefore using (2) of Proposition 1, we
have proved

Theorem 4 (cf. Chow [1]). Let & be a differential system
on a connected manifold M. If o' = T(M), then any two points p

and q of M can be joined by a piece-wise integral curve of &

which is a composition of integral curves of vector fields in T(d).

3. The distance functions associated with differential
systems
Let ® be a differential system on a connected paracompact
manifold M, Assume that ¢' = T(M).
Let g be a Riemannian metric on M. Given a differentiable

curve u{t), a < t<b, in M, we denote by L(u) the length of u
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w.r.t. g. We denote by d(p, q), p, q € M, the distance function
associated with g, i.e., d(p{ q) = the infimum of the lengths L(u)
of all piece-wise differentiable curves joining p and q.

Taking account of Theorem 4, we now define a new distance
function p(p, q), P, 9 € M, as follows : p(p, q) = the infimum
of the lengths L(u) of all piece-wise integral curves u of ¢
joining p and q. Clearly we have

d(p, 9) < p(ps a)-
It is now easy to see that o becomes really a distance function.

The notations being as above, we have

Theorem 5. Let Py € M and let k be an integer with @;
0
= T(M)p . Then there is a neighborhood V of Py such that
° 1
k
p(p, @) = Cd(p, a), P, q € V.
Let us apply Proposition 1 to the pair {9, po}
Lemma 6.
p(p, p(h)p) < Cu(h), heR', peM
Proof. Since the support of ZA is compact, we can find a
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constant C' such that
|(ZA)plsC', peM, 1s<AZc<N,
where |X| denotes the norm of a vector X w.r.t. g. Let h € IR

and p e M. Putting u(t) = f(h, p) (t), we have

g% (t) = sA(h) (ZA)u(t) if A-1 <t <A,
whence
|%‘ti(t)| sC' ] |s,(m|, 0<t=N.
A
It follows that L(¢ (h, p)) < NC' ) IsA(h)I . Since p(p, $(h)p)
A

< L(g(h, p)) and %]sA(h)] < C"u(h) ((3) of Proposition 1),
Lemma 6 follows.
Remark. Suppose that & is regular and that V(®) 1is a standard
differential system in the sense of Tanaka [30]. Then we have
u(h) = O(p(po, ?(h)po), implying that the estimation in Lemma 6 is
best possible in a sense.
1

Proof of Theorem 5. Since u(h) = O(Ih]k), there is a positive

number 60 such that
1

k
uh) = ¢, [h|™ In| < 8y -

150



By (2) of Proposition 1 there are a positive number ¢§ (< 60) and
a neighborhood U of Py such that the map F gives a C1

homeomorphism of U, =U x { h | |h| <6 } onto a neighborhood W of

§
(Pg» Py)-  The inverse map (F’Ué)—l of F!UG may be expressed
as (FlUG)_l(p, q) = (h(p, q), p). Again by (2) of Proposition 1,
then we can find a neighborhood V of Py such that V x V ¢ W and
€, d(p, @) = [h(p, @] <C, d(p, @), P, qeV.

Therefore using Lemma 6, we get an inequality of the form in
Theorem 5.

Corollary (to Theorem 5). Let ® and g be as in Theorem 5.
Assume further that @k = T(M) with some Kk. Then for any compact
subset K of M, we have

1
k
p(P» Cl) < C d(P’ ‘U 5 P> 9 € K.

4. Differential systems and HYlder norms

Let © be a domain of R". We denote by |f] the maximum norm
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of a function f

in CE(Q). Given a real number ¢ with

0 <o <1, we define the H8lder norm |f|G of f by

le] = 1e] + sup [EREC]
xty |x-y|
Theorem 7. Let Xl""’ Xr be vector fields on Q. Assume
that @k = T(R) with some k, where ¢ stands for the differential
system on §{ generated by Xl""’ Xr' Then, for any compact
subset K of § , we have
€], < cd£] + ] IxED, £ e Cy(K).
'E 1
Let Xg < Q. We apply Proposition 1 to the pair {0, xo} .
Lemma 8.
*f
[?(h) f fl < C u(h) g |Xif| ,
heRY, fe c‘g(sz).
Proof. Let heR" and X e Q. Putting u(t) = ?(h, x) (t),
we have
N
_ _ df (u(t)) oo
£(p(M)x) - £(x) J S, fe @,
0
We have
df (u(t)) _ .
- rama SA(h)(ZAf)(u(t)) if A-1 <t <A,
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i 3 = Y O
and ZA may be expressed as ZA = g giAXi’ where g GCO(Q)'
It follows that

df(u(t))

T | = Clu(h) g!Xifl(u(t)}, 0<t<N.
Thus we get Lemma §.

Proof of Theorem 7. From the proof of Theorem 5, we can find

a neighborhood V of x such that

Therefore by Lemma 8, we cbtain

1

- - , Lk )
[£(x) - £0)] = C']x - y| Z §xif§ ,
1

Now Theorem 7 can be easily derived from this fact.

5. Differential systems and Sobolev norms
Finally we shall prove the following theorem due to H8rmander
(s].

Theorem 9. Let Xl""’ Xr be as in Theorem 7. Let o be
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any real number with 0< g < %u Then, for any compact subset K

2, we have
2 2 2 ©
Pely s cCRE™ + ThxelD, £e 0.

Let x,€Q. We apply Proposition 1 to the pair {9, xo}.

Lemma 10. For any a > 0, we have
Igme*s - £]* < cum? [ lIx£)%,
1
|h| <a, fe c:(Q).

Proof. From the proof of Lemma 8, we see
N

|£(9mx) - £00]% < crum)? ) J lxifiz(ychs t)x)dt.
1

[

We have

N

2 2
{dx[ J |Xif| (p(h, t)x)dt < C" J [Xifl (x)dx,
0
Inl <a, fecy@.
Thus we obtain Lemma 10.
Proof of Theorem 9. Let V be as in the proof of Theorem 7.

To prove Theorem 9, it is sufficient to deal with the case where

K<cV. For € >0, wedefine a compact subset K, of R" x g™

by
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K. = {lx, ¥ e RY x R"  Ix -yl =€, xeX or yeK}

Fix an € with Ke cVxV, Then, for any f ¢ C;(K), we have

f Jo,f - £l
I - —— e —
€ ) lhln+20
|h|<e
[ 2 2
. £(x)-£(y) ] Ph)*£-f
N [X_Vln-i-ZO dxdy = C! [ lhIn+20 dh,
K. |n|<C e
where T denotes the translation R 5 x > X + h € Rn. Since

h
0 <o < %3 it follows from Lemma 10 that
2
13
o=sc ] IxEl” .

€ :
1

Furthermore we clearly have

Cwr e 12
{ ”—T}l-fnézlcl;— ah < ¢ |g] 2.
Ih|ze |h]

Therefore using HBrmander's lemma ([7], Lemma 2.6.1, p.57), we get

an equality of the form in Theorem 9.
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