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Introduction

     Let M be a compact, strongly pseudo-convex (s.p.c.), real 

hypersurface of a complex manifold M'. By Lewy [16] there is defined 

on M the (tangential) Cauchy-Riemann operator  d". The operator 

 d" can be extended to yield the (boundary) complex fe'ct(M),d"}

due to Kohn-Rossi  [IS].  Furthermore we have  the notion of (tangentially) 

holomorphic k-forms on M, thus obtaining the holomorphic de Rham

complex  {Sk(M),  d}  . Let  HP'cl(M)  (resp.  Hicc)(M)) be the cohomology 

groups of the complex  {CP'q(M),  d"}  (resp. of {Sk(M),  dl ).

    The main purpose of the present  note1) and 2) is first to make 

a differential geometric study on the cohomology groups HP,c1(M) and

1) Some of the results in 

the P.J.A. note [31]. 

2) This note is based on 

Nagoya University and Tokyo

this note have been already announced in 

the lectures given at Kyoto University,

University, during the years 1971-74. 
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Hk(M), based on the harmonic theory for the complex fe'cl(M),  d"1 

which was developed by Kohn [13], and second to try to clarify the 

the meaning of the  cohomology groups in connection with the study of 

isolated singular points of analytic spaces.

     Let us now proceed to the descriptions of the various sections 

and explain the main results in this note.

     §1 is preliminary to the subsequent sections. Let M be a 

partially complex manifold, which is the abstract model of a real 

submanifold of a complex manifold. We first introduce the notion of 

a holomorphic vector bundle E over M and define the associated 

complex

   9E1D 

     e(M, E)(M, E) -->E), 

where the starting operator is the Cauchy-Riemann operator of E. 

We then introduce a relevant filtration of the de Rham complex of M 

and let  Elj'cl (M) be the associated spectral sequence. The cohomology 

groups  EPI'cl(M) and  El;'°(M) are of particular importance, which we 

denote by  HP'cl(M) and  Hk(M) respectively. In §2 we specialize a
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partially complex manifold M to define the notion of a s.p.c. manifold, 

which is the abstract model of a s.p.c. real hypersurface of a complex

manifold. Note that the cohomology groups  HP'cl(M) and  4(M)

mentioned at the outset may be defined in the manner as above. In 

 §§ 3 and 4 the canonical affine connections v of a s.p.c. manifold 

M and the canonical connections D of a holomorphic vector bundle 

E over M are discussed.

 §§ 5 and 6 are devoted to the analysis (the harmonic theory) for

the complex  {0(M, E),  , where E is a holomorphic vector bundle

over a compact  s.p.c. manifold  M. We first describe the Laplacian 

 EE in the harmonic theory, in terms of the covariant differentiation

D which is induced from the canonical connections V and D stated

above (Theorem 5.2). We then prove subellipticity for  OE by

utilizing Theorem 5.2 and state the main theorem essentially due to 

Kohn [13]. In §7 we apply the general harmonic theory to the 

complex  {CP'cl(M), d"} and prove a duality theorem (Theorem 7.3) 

on the cohomology groups  HP'q(M). In §8 it is shown that the

3



holomorphic de Rham cohomology groups  Ho(M) are finite dimensional for

all integers k. The proof of this fact is based on the analysis for

certain cohomology groups H*k-1,1(M) (Theorem 8.5). In §9 we study the 

properties of a differentiable family  {Mt}te0 of compact s.p.c.

manifolds. Above all we prove a stability theorem (Theorem 9.4) for

holomorphic imbeddings of the s.p.c. manifolds Mt in CN.

In §10 we discuss isolated singular points of complex hypersurfaces

Let f be a polynomial function on  Cn+1, n 3, such that f(0) = 0

and such that the origin 0 is an isolated critical point of f.

Consider the intersection M =  f-1(0)  n  S of the complex hypersurface 

 f-1(0) with the  c-sphere  S in  Cn+1                                            centred at the origin.

For c sufficiently small, M is proved to be a compact, s.p.c.,

real hypersurface of  f-1(0). Let p be the Milnor number of the

isolated singular point, the origin, of the complex hypersurface. 

Then we prove the inequality

0 < p  � dim  Hn-1  'I(M) + dim H'(M)

4



(Theorem 10.5). Thus we see that the singularity has a considerable 

influence upon the cohomology groups  HP'q(M) and  Ht(M). (Note that 

if the origin is not a critical point of f, then  HP'q(M) =  HD(M) = 0 

for q 0, n - 1 and for all k (cf. Theorem 10.3 and Milnor  [18]).) 

It is expected that the method of our proof of Theorem 10.5 will be 

applicable to more general types of isolated singularities. For the 

Milnor number  u, see also Remark at the end of the section.

 §§ 11, 12 and 13 are concerned with the study of normal s.p.c. 

 manifolds. A s.p.c. manifold M is said to be normal if it admits an 

infinitesimal automorphism  E satisfying a certain generality condition 

(an analytic basic field). Typical examples of  normarl s.p.c. manifolds 

are Brieskorn varieties and the  U(1)-principal fibre bundle canonically 

associated to negative line bundles over compact complex manifolds 

(see §11). To every compact normal s.p.c. manifold M there is 

associated a double complex in a generalized sense,  {BP'cl(M),  a,  T}, 

in a canonical manner (see §12). Let  HP'q(M) be the cohomology 

groups of the complex  {BP'q(M), . In §13 we prove a series of
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reduction theorems for the cohomology groups  HP'q(M) and  Ho(M), 

describing these groups in terms of the "reduced " cohomology groups 

 HP'cl(M) (Theorems 13.1, 13.2, 13.7, 13.14 and the corollaries to them). 

These results will be useful for the calculations of  HP'cl(M) and 

 Hk(M). Our discussions here have been motivated by Naruki's (unpublished) 

theorem on a negative line bundle L over a compact complex manifold 

A. (This theorem describes the Dolbeault cohomology groups  HP'q(L0) 

of the non-compact complex manifold  L0 = L - (the zero section), in 

terms of the cohomology groups  Hq(A,  QP(Lm)), where  QP(Lm) is 

the sheaf of local holomorphic p-forms on A with values in Lm, the 

m-th power of L. Compare Naruki [23], in which he himself gives a 

generalization of this initial result.)

    In the proof of subellipticity for the operator  DE, Kohn's 

inequality (12], Theorem 5.4.7) or  Hdrmander's inequality (Appendix, 

Theorem 9) plays a fundamental role (see §6). In Appendix we therefore 

make some observations about linear differential systems, giving a 

simple and geometric proof of  Hdrmander's inequality. We also prove

6



a variant of  Hdrmander's inequality in terms of  Hdlder norms (Theorem 7) 

It should be noted that these inequalities have intimate relationships 

with certain estimations (Theorem 5) for the distance function p 

associated to a generic differential system  0.

    Finally I would like to thank Dr. Naruki for informing me of his 

result on line bundles, cited above. I am greatly indebted to 

Mr. Nakajima for his kind help through reading the manuscript.
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Preliminary remarks

Throughout this note we shall always assume the differentiability

of class C unless otherwise stated.

    Let M be a differentiable manifold. T(M) will denote the tangent 

bundle of M. F(M) (resp.  CF(M)) will denote the space of real 

(resp. complex) valued  C on M.

     Let E be a real or complex vector bundle over M. Then dim E 

will stand for the fibre dimension of E. For a point p E M,
 P 

will denote the fibre of E at p. Given an open set  U of M, 

EIU will denote the restriction of E to U. F(E) will denote 

the space of  Cc° cross sections of E.

  k
As usual we shall use the notations  E*,  A-E and  S-E to

denote the dual bundle of E, the k-th exterior product of E and 

the k-th symmetric product of E respectively. For any integers k

and  k,  EQ will denote the tensor product

E e E  e E* E* (E k times, E*  9„ times). 

  - . .  

 n

 Now  consider  the tensor products  F  Ei,  F  being another 

                          8



vector bundle over M. Then each fibre (F e Eo)p2of F  0 E°may            ER)p 
be identified with the space of  2-linear maps of Ex ... x E 

             PP 

(  Z times) to FP. For92E (F  e Eo)pand X  e EP'we shall 

    Z denote by X  _j  T the element of (F e Eo2-1)pdefined by

(X  _j W)(X1'...,X) =  (X, x1'...,  X2-1),  )Z1 

                                               X1,.,., E E                                             1,—*,A2 -1p

    Suppose that  E is a real vector  bundle. Then  UE will denote 

the complexification of  E, and  TE  3 u  E will denote the 

 conjugation operator with respect to the real part  E of  TE.
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I. Strongly pseudo-complex manifolds 

 gl. Partially complex manifolds

     1.1 Partially complex manifolds. Let M' be a complex manifold, 

and S' the  subbundle of CT(M') consisting of all (complexified) 

tangent vectors of type (1, 0) to  M'. Then S' satisfies the 

conditions  :

(C. 1)  CT(M') =  S' + S' (direct sum); 

(C. 2)  [r(P),  r(s,)]  r(s,). 

Let M be a real  submanifold of M'. For each  x  E M, we

define a subspace  Sx of  CT(M)x by 

             S= S' n CT(M) 
                                             x,         xx'

and assume that dimCSxis constant for all x E M. (In the case

where codim M = 1, this assumption is automatically satisfied. 

In fact we have  dimS
x =  n-1, where n = dim M'.) Then the union 

S = u  Sx forms a subbundle of CT(M), and by (C. 1) and (C. 2)

we have

(PC. 1) S n S = 0; 

                          in



(PC. 2)  [F(S),  F(S)]  r(s). 

Let M be a real manifold and S a subbundle of  CTN.

Then S is called a partially complex structure (or a pseudo-complex 

structure in the terminology of [30] ) if S satisfies (PC. 1) 

and (PC. 2). And the manifold M together with the structure S 

is called a partially complex manifold. Clearly the notion of 

a partially complex manifold generalizes that of a  complex  manifold.

    Let M be a partially complex manifold. By (PC. 1), there 

is a unique subbundle P of T(M) such that

 CP = S S (direct sum), 

i.e., P is the real part of S + S. Furthermore there is a unique 

homomorphism  I:P-->P such that

 I2 = -1; 

 S  =  {x-  v=r  IxIxEp},

1 denoting the identity : P The pair (P, I), thus 

obtained, will be called the real expression of S.

 Let  M.  (i = 1, 2) be partially complex manifolds with structures

 11



 Si. A diffeomorphism :  M1  m2 is said to be an  isomorphism 

if the differnential  9p* :  CT(M1)  CT(M2) sends  Si onto S2.

The notion of  isomorphisms naturally gives rise to the various 

notions such as automorphisms, infinitesimal automorphisms (or 

analytic vector fields ), etc.

    The (local) equivalence problem of partially complex manifolds 

was completely solved by Tanaka [30], under some natural assumptions. 

See also Tanaka [27], [28] and [29]  .

     1.2. Holomorphic vector bundles. Let M be a partially 

complex manifold with structure S. For u  E CF(M), we define 

d"u E  F(S*) by

 (d"u)(X) = X u, X  E  Sx.

The differential operator d" : CF(M)  3 u  F(S*)  is 

called the (tangential)  Cauchy-Riemann operator, and a solution 

u of the equation d"u = 0 is called a  holomorphic function.

    A complex vector bundle E over M is said to be holomorphic 

if there is given a differential operator

12



 3E  :  r(E)  r(E  ®  S*)

satisfying the following conditions  :

(HV. 1) X(fu) =  Xf•u +  f•Xu  ; 

(HV. 2)  '&7]u =  XYu -  r)(11,

where u  E  r(E), f  E CF(M), X, Y  E  F(S) and we put Zu =

 (7Eu)(f), Z E  F(S). The operator  5E is called the  Cauchy-

Riemann operator, and a solution  u of the equation  7u 0

is called a holomorphic cross section. It is clear that the trivial 

vector bundle  M x C is holomorphic with respect to the operator

 du defined above.

 Remarks. (1) In the case where M is a complex manifold, our 

definition of a holomorphic vector bundle is equivalent to the usual 

one in terms of holomorphic transition functions. We can see this 

fact, for example, by use of  Newlander-Nirenberg's theorem [24].

     (2) Consider the case where M c M',  i.e., M is realized 

as a real submanifold in a complex manifold M'. Let E' be a 

holomorphic vector bundle over M'. Then the restriction E = E'IM

13



of  E' to M is naturally a  holomorphic vector bundle : We have 

 Ru =  Ru' for all u'  E  F(E') and X  E S, where u denotes the 

restriction of u' to M.

     As for holomorphic vector bundles, we have the notions such 

homomorphisms, isomorphisms, the tensor products, etc, which 

are all defined in natural manners. For example, let  E and F 

be two holomorphic vector bundles. Then a bundle homomorphism

 99  : E  -->F is called holomorphic if 

   R(T(u)) =  (10(Ru), u  E  F(E), X  E  S,

and the tensor product E  g F becomes a holomorphic vector bundle 

by the rule  :

X(u 0 v) =  (Xu) o  v+ u  e  (Xv), u  E  F(E), v  E  r(F), X  E S. 

We now show that the factor bundle 

    T(M) = CT(M) /

is a holomorphic vector bundle with respect to the operator 

  =  a defined as follows : Let  co be the projection  : 

 T  (M)

CT(M) T(M). Take any u  E  r(T(M)) and express it as 

                              14
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u =  (-0(Z),  Z  E  F(CT(M)). For any X  E  F(S), define a cross 

section  (D)(R) of T(M) by

 (au)(X) = "(,)([X, Z]). 

Then we see easily that  (511)(R) does not depend on the choice of 

Z and that  au gives a cross section of T(M)  (8)  g*. Furthermore 

we can show that the operator u  >Tu satisfies  (HV. 1) and 

 (HAL 2), using the Jacobi identity in the Lie algebra  F(CT(M)). 

The  holomorphic  vector bundle T(M), thus defined, will be called 

the holomorphic tangent bundle of  M.

     Remark. Consider the case where M c  M'. First we note that 

 T(W) may be regarded as the holomorphic vector bundle  S' of tangent

vectors of type (1, 0) to M'. Let E be the restriction of  T(M9) 

to  M. Then the natural map  : CT(M)  >CT(M') induces an

injective homomorphism of T(M) to E as holomorphic vector bundles. 

Therefore if  dim  T(M) =  dim  M'  (e.g., if codim M = 1), then T(M)

may be identified with E.

1.3. The cohomology groups  11q(M, E). Let E be a holomorphic

 15



vector bundle over M. We put

 Cq(M, E) = E 0  AqS*, 

 e(M, E) =  F(Eq(M,  E))

and define differential operators

 ECq(M, E) Cq+1(M, E)

by  (DEY)(R1,003  Rp+1) = /(A.)1-14Ri(9,(R1,000,  xi,..., Rp4.1)) 

                       i 

 G (_1)i+i Taxi,  xj],  xi,...,  Rj,...,  Rp+1),

for all  9)E E) and X1,...,  X114.1  E  F(S). Just as in the 

case of the exterior differentiation d, we can show that  n 

gives an element of  Cc1+1(M,  E) and that  1+1  ° = 0. 

Thus the collection {  Cq(M, E),  } gives a complex and we 

denote by  Hq(M, E) the cohomology groups of this complex.

    1.4. The spectral sequence {  q'cl(M)  }. Let { Ak(M), d  } 

be the de Rham complex of M with complex coefficients, and Hk(M) 

the cohomology groups of this complex, the de Rham cohomology groups.

If we put

 Ak(M) =  Ak(CT(M))*,

16



we have Ak(M) = r(Ak(M)). For any integers p and k, we 

denote by  Fp(Ak(M)) the subbundle of Ak(M) consiting of all

50  E  Ak(M) which satisfy the equality  : 

 (x1,...,  xp_/, =  0

for all  X1,..., X
p_i  E ET(M)x and Y1,...,YkE Sx, x beingp+l 

the origin of  '. Then we have

 Fp(Ak(M))  D Fp+1(Ak(M)),

 F0  (Ak  ( (M)  ) =  Ak  (M) F'D+ 1(A' (M) ) =  0  ,

Furthermore putting

FP(Ak(M)) =  F(FP(Ak(M)),

we easily find that

       dFP(Ak(M)) c FP(Ak+1(M)). 

Thus the collection {FP(Ak(M))} gives a filtration of the de Rham 

complex. Let  {E'cl(M)} denote the spectral sequence associated

with this filtration.

     The groups E'cl(M) and E2k'0(M) are of particular importance,            1 • 

which will be denoted by  HP'q(M) and  Hi(ci(M) respectively. We

17



put as follows  :

 AP'cl(m) =  FP(API-q(m)),  AP'q(m) =  r(All'q(m)), 

 CP'cl(M) =  AP'cl(M) /  AP+1'cl-1(M),  CP'q(M) =  r(CP'cl(M)).

Then the groups  HP'cl(M) are the cohomology groups of the complex 

{  CP'cl(M),  d"  }, where the operator d"  :  CP'cl(M)  -->  CP'(14.1(M) is 

naturally induced from the operator d :  AP'cl(M) ---> AP'ql-1(M).

Now  EP = AP(T(M))* is a holomorphic vector bundle by the

rule  :

 (Y  T)(111,--.,  up) = Y(  T(111,...,  up)) 

               +  (-1)199  (Tui, u1,...,  u.,..., u
p),

where  y  E  r(0),  u
p  E F(T(M)),  Y  e S and 

 Y =  (7Ep  )  (7)  ,  Yui = (  Timui)(1).

Proposition 1.1.  CP'q(M) may be identified with  OM  EP)

a natural manner and we have

 d"y)  =  (-1)P  ;p  5,  y  c  CP'cl(vi).

Proof. Define a map  1P :  AP'cl(M)  --->O(M,  EP) by 

 (113  c1(xp) ;)                                   ct

18
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            =  9)(X
1,...,  Xp,  Y1,...,  Yq), 

for all  (p E  AP'q(M)x'  Xl''  X  E  CT(M)x, and  Y1,..., Yq  E  Sx. 

(It is clear that  113 is well defined.) Then we have the exact 

sequence of vector bundles  : 
 1p

     0  --40+1'cl-1(M)  --->AP'q(M)  Cq(M,  EP)  , 

whence  CP'q(M)  el(M,  EP). Furtheremore we can easily verify

the equalities  :

 1.1350  =  (-1)P 1Pc150 =  (-1)Pd"1139,  (f)E  AP'Cl(M), 

 E

proving Proposition 1.1.

    The groups H®(M) are the  cohomology groups of the complex 

                  {  Sk(M), d , where we put Sk(M) = E,0M. Note that                                   1 

 Sk(M) may be characterized as the space of holomorphic k-forms, 

i.e., holomorphic cross sections of  EP. Thus the complex 

{ Sk(M), d (resp. the groups  Ho(M)) will be called the holomorphic

de Rham complex (resp. the holomorphic de Rham cohomology groups ).

Since  de'cl(M)  c  AP'q+1(M), the collection {  AP'cl(M), d  }

becomes a complex, which is usually known as the complex of "the

19



mapping cone ". We denote by  q,'cl(M) the cohomology groups of this

complex.

     Proposition 1.2. We have the natural exact sequences of 

cohomology groups :

0--->  Hk(M)H*k-1'1(M)—> Hk-1'1(M)H,k1'(M)  -->  .

Proof. The short exact sequences

 0 ---> Ak,q  (M)Ak-1,q+1(M) ----> Ck-1' q+1 (M) 0

induce the exact sequences of cohomology groups

kk H
*'0(M) —> H-1*'1(M) --> Hk -1'1(M) --->k1(M)  .  .

We have

k,0 H*(M) = {  p  E  Sk(M)  ay = 0 , 

 k,, H0
*(M) n dA-10             k(M) =  dSk-1(M)  .

From these facts follows immediately Proposition 1.2. 

    Remrks. (1) Consider the case where M c  M' and codim  M =

Let {  CP'q, d"} be the complex in the sheaf category, associated 

with the complex {  CP'q(M),  d"} . Then it is easy to see that 

the complex  {  CP'q, d"} coincides with the (boundary) complex

20
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 BP'q'  } introduced by Kohn-Rossi [15], P.465. We 

note that they erroneously expressed  BP'cl as the sheaf of germs  of 

local cross sections of APS*However we shall be also 

concerned with a complex  {BP'cl(M), where  BP'cl(M) = 

F(APS*  Acl-*), under the assumption that M is a normal

 s.p.c. manifold (see Chapter III), and clarify the intimate 

relationship existing between the two complexes {  CP'q(M), d" } 

and {  BP'q(M),  }

(2) Suppose that M is a complex manifold. Then the groups

 HP  (M) (resp.  Ho(M)) are nothing but the Dolbeault cohomology

groups (resp. the (usual) holomorphic de Rham cohomology groups),

and  Hq(M, E)  Q°(E)), where  Q°(E) denotes the sheaf of

germs of local holomorphic cross sections of  E.

 21



 §2. Strongly pseudo-convex manifolds 

2.1. Contact manifolds. Let M be a manifold and P a

subbundle of T(M). Put

         P' =  T(M) / P 

and denote by  /70 the projection of T(M) onto P' . For any 

X, Y  E  F(P), put

 w(X, Y) =  claX,  Y]). 

Then we have w(X, Y) = -  w(Y, X) and w(fX, Y)  = fw(X,  Y)

(f  E F(M)). Hence w gives a cross section of P' A2P*.

The subbundle P is called a contact structure if dim P' = 1

and if  wx is non-degenerate at each x E M, i.e., the condition 

 " X  E  P
x and w(X, Y) = 0 for all Y  E  Px" implies X = 0  .

And the manifold M together with the contact structure P is called 

a contact manifold. Note that a contact manifold is necessarily odd 

dimensional.

     Let M be a contact manifold of dimension  2n-1 . A vector 

field X is called an infinitesimal contact transformation if it

22



leaves the contact structure P invariant or [X,  F(P)] c F(P).

     In what follows we assume that P' and hence  (P')* are 

trivial. Let  e be a trivialization of  (P')*, by which we mean 

a cross section  e of  (P')* such that  ex 0 at each x  E M. 

Since  (P')* c T(M)* in a natural manner,  e is a 1-form on M. 

Since  de(X, Y) = -  0([X,  Y]) for all X, Y  E F(P), we see 

that the restriction of dex to Px is non-degenerate at each

 X E  M. This clearly means that the  (2n-1)-form  0 A  (de)n-1 

gives a volume element on M or in other words,  0 is a contact 

 form. As is well known, it follows that there is a unique 

infinitesimal contact transformation  E such that 

 O(E) = 1 and  C  de = 0.

     We notice that the assignment  e  --->  E gives a one-to-one 

correspondence  betweer the set of all trivializations  0 of  (P')* 

and the set of all infinitesimal contact transformations  C such that 

 CxPxat each x E M.

23



     2.2. Strongly pseudo-convex manifolds. Let M be a partially 

complex manifold. Let S be its partially complex structure and

(P, I) its real expression. By (PC. 2) we have [IX,  IY] - 

[X, Y]  E  1(P) for all X, Y  E  F(P), meaning that

           w(IX, IY) = w(X, Y), X, Y E  Px. 

For each x E M, we define a P'-valued hermitian form Lx on Px by

 Lx(X, Y) = w(IX, Y). 

The hermitian form  Lx is usually called the Levi form at x. 

Especially if P is a contact structure and if P' is trivial, we

have

 L
x(X, Y) = - dO(IX,  Y)-cl(x), 

0 and  E being as before.

     We say that S is a strongly pseudo-convex (s. p. c.) structure 

and M is a s.p.c. manifold if dim P' = 1 and if the Levi form 

Lx is definite at each x, i.e., the condition " X E Px and 

 L
x(X, X) = 0" implies X = 0. It should be noted that a s.p.c. 

manifold is a contact manifold, because P becomes a contact

24



structure under this situation.

     Let M be a s.p.c. manifold. Then we can easily prove the 

following

    Proposition 2.1. P' is trivial and there is a trivialization 

 e of  (P')* such that the hermitian quadratic form -  de(Ix,  X), 

X E Pis positive definite at each x E  M. 
       X'

    A trivialization  e of  (P')* will be called a basic form 

if it satisfies the condition in Proposition  2.1, And an infinitesimal 

contact transformation on the underlying contact manifold will be 

called a basic field  ifx  Px at each x  E M and if the 

corresponding trivialization  e of  (P')* is a basic form.

     Let  6 be a basic form. Then a 1-form  6' is a basic form 

if and only if  0,  =  f6 with a positive function f. It follows 

that every s.p.c. manifold is oriented :  0 being a basic form
, the

volume element  8  A  (d8)n-1                               gives the orientation . 
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     2.3. S. p. c. real hypersurfaces. Let  M' be an n-dimensional 

complex manifold, and  S' its complex structure. Let f be a 

real valued function defined on an open set U of M' such that

 df
x 0 at each x E U. For each x E U, define a subspace  S(f)x 

of S' by 

 S(f) x =  {XES:  1 df(X) = 0  },

and a hermitian form  L(f) x on  S(f)x by 

 L(f)
x(X, Y) = (d'd"f)(X,  Y), X, Y E  S(f)x. 

    Assuming that  f-1(0)  (1) , let us consider the real hypersurface

M = f-1(0). Let S be the partially complex structure of M, and 

(P, I) its real expression. Clearly we have  Sx =  S(f)  x, x  E M.

Define a 1-form  e on M by

 0 =  v7r  i*  d"f = -  vrr  i* d'f  , 

where i denotes the injection M  ---> M'. Then  0 is a real form 

and gives a trivialization of  (P')*. Furthermore we have

 L(f) x(X, Y) -  V71-  de(X,  117),  X,  Y  e  Sx.

Thus we know that M is s.p.c. as a partially complex manifold if
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and only if M is s.p.c. in M' in the classical sense.

     Let M be a s.p.c. real hypersurface of a complex manifold M'. 

Then we shall say that an open set V of M' lies inside M if 

it satisfies the following conditions  :

1) M is contained in the boundary  BV of V  ; 

2) V is s.p.c. at each x  e M, i.e., there are a neighborhood

U of x in  M' and a real valued function f on U such that  10

dfx 0, 2° : VnU={yclilf(y) < 0 }, and 3° : L(f) x is

positive definite (cf. Gunning-Rossi  [4]  ).
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§3. The canonical affine connections 

    of strongly pseudo-convex manifolds.

     3.1. The basic notations. Let M be a s.p.c. manifold of 

dimension  2n-1, and  E a basic field on M. Our discussions from 

now on will be concerned with the pair (M,  E).

     Let S be the s.p.c. structure of M and (P, I) its real 

expression. We denote by  P' the 1-dimensional subbundle of T(M) 

spanned by  E  :  P' =  RE
x, x  E M. Clearly we have

                  T(M) = P + P' (direct sum). 

 e denoting the basic form corresponding to , we put

 w = -  de  .

Note that  E w =  O. Let us now extend I to a tensor field of type 

 (1) in such a way that  IC = o. Then we have

 2
 1-x =  -x +  e(x)E ,  X  E  T(M)

x

and 

           w(IX,  IY) = w(X, Y), X,Y  E  T(M)
x.

We define a tensor field g of type (20   ) on M by
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         g(X, Y) =  w(IX,  Y). 

Then g is symmetric and

         g(IX, IY) = g(X, Y). 

Furthermore, for each x  E M, the restriction of  g
x to  Px 

positive definite. (g is never a Riemannian metric, because 

 E  _J g = 0.)

 3.2. The canonical affine  connections. 

We shall prove the following 

Proposition 3.1. There is a unique affine connection 

 F  (T  (M))  F(T(M) 0  T(M)*)

on M satisfying the following conditions: 

     1) The contact structure P is parallel,  i.e.,

 VxF(P) c  r(P) for any X  E  F(T(M)).

2) The tensor fields  E , I and  co are all parallel, i

 vE =  DI = vw = 0. (It follows also that  ve = vg = 0.) 

    3) The torsion T of  v satisfies the equalities  :

T(X, Y) = -  w(X,  Y)E  , 
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.e.,



 T(E, IY) =  -IT(E, Y), X, Y  E  Px.

    Let X, Y  E  r(CP). We denote by [X,  Y]p (resp. by [X,  Y]p, 

the CP-component (resp. the CP'-component) of  [X, Y] in the 

decomposition  :

         CT(M) =  EP +  CP' (direct sum). 

Clearly we have

         [X,  Y]p,  = w(X,  Y)E  . 

We also denote by [X,  Y]s (resp. by [X,  Y]g) the S-component

(resp. the S-component) of [X,  Y], in the decomposition

 CP =  S + S (direct sum). 

Uniqueness. Let  V be any affine connection satisfying the

conditions in Proposition 3.1. Let us extend  4 to a differential 

operator of  r(cT(14)) to  F(TT(M) 0  (CT(M))*) in a natural 

manner. By 1) and VI = 0, we have

 vxr(s)  C  F(S), 

 VxF(s)  c  F(s), X  E  r(u(m)).
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 Lemma 3.2. Let X, Y, Z  E  r(s).

(1)  vXY = [X,  Y]s. 

(2) w(VxY,  2) =  Xw(Y,  Z) - w(Y, [X,  2].0. 

(3)  VY=LY+TY, where L denotes the Lie derivation and

T is given by T = - 1I.LEI.

 Proof. Since T(X, Y) = -w(X,  Y)E , we have

    -  V
yX = [X, Y] + T(X, Y) = [X,  Y]p.

Hence  VRY =  [X,  Y]s and  VyX = [Y,  X], proving (1). (2) is clear 
 S

fromthefacts:vw=0andVXZ.=[X,Z]-.Since  of = 0, we have

 V  Y =  [E, Y]  T(E, Y), 

 V  (IY) =  [C,  IY] +  T(E, IY).

Since  T(E, IY) =  -IT(E, Y) and VI = 0, it follows that  (L  I)Y - 

 2IT(E, Y) = 0. Hence  T(E, Y) =  T  Y, proving (3).

We have  VE = 0 and  Vz11 =  V.4 for all Z, W  E  F(CT(M)).

And the condition "X  E S  and  w(X, Y) =  0 for  all  Y  E  S  "

implies X = 0. Therefore we see from Lemma 3.2 that  V is 

uniquely determined.
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Existence. We first prepare two lemmas. 

Lemma 3.3. (1) IT = -  T  I. 

(2) If  yEr(s), then  LY+TYEr(S). 

(3)  L  w = 0. 

(4)  w(T  X, Y) + w(X,  T  Y) = 0, X, Y  E  T(M)x. 

Proof. We have  I2X = - X +  e(x) and  L  e  0. Hence

 (L  I)I +  I(L  I) = 0, which means (1). Let Y  E  F(S). By  E  E 

using (1), we see that  I(L  Y +  T  Y) =  L  (IY) +  T  IY =  E  E  E  E 

 VT (Lr
,,Y +TY).Hence L,sY  +TYEr(S), proving (2). 

  We have  L  w =  -dL  0 = 0, proving  (3). Finally, (4) is easy  E  E 

from the facts :  L  w = 0 and w(IX, IY) = w(X, Y).

Lemma 3.4. For any X, Y, Z  E  P(S), we have 

    X w(Y, 2) + Y w(2, X) + w(2, [X, Y]) + w(X,  [Y,  2]g) 

   + w(Y, [2, = 0.

This is easily obtained from the fact : dw = -  d20 = 0. 

We are now in position to prove existence. We define a bilinear

map V  :  F(ET(M))  X  r(TT(M))--->r(CT(M)) in the following
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manner  :  1°. For any X, Y  E  F(S),  VRY,  VxY  (E  F(S)) and  Ve 

are respectively given by the equalities (1), (2) and (3) in 

Lemma 3.2 ; 2°. For any Z  E  I(EM)),  VzE = 0 ; 3°. For 

                    vxY=-                         VXYX,V-Y =  v  Y and V Y =  VY. 

Then it is easy to see that  V is the complexification of an affine 

connection and that it satisfies the following :  Vxw = 0, 

 T(E, X) =TXand T(X,Y) = - w(X, Y) for X, Y  e  S  . From 

Lemma  3.3, we getVP(S) F(S) andpw= 0, and from Lemma  3,4, 

T(X, Y) = 0 for X, Y  E  Sx. Thus we see that V satisfies the 

conditions  1), 2) and 3) in Proposition 3.1. We have thereby

completed the proof of Proposition 3.1,

    The affine connection  V in Proposition 3.1 will be called the 

canonical affine connection of (M,  E).

     Let V be the canonical affine connection and R its curvature.

Then we have R(X,  Y)P x  c  Px for all X, Y  E  T(M)x.

    Proposition 3.5. Let  Xi  E  Px (1  � i 4). 

    (1)  R(X1,  X2)IX3 =  IR(X1, X2)X3.
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(2)  g(R(X1, X2)X3, X4) + g(X3,  R(X1, X2)X4) = 0, 

(3) S  R(X1, X2)X3 = - S w(X1,  X2)TEX3, where S stands

for the cyclic sum with respect to X1,  X2 and X3. 

    Corollary. Let  Xi E  Sx  (1  � i  5.  4). 

    (1)  R(X1,  R2)SxC  Sx 

    (2)  R(X1,  X2)X3 = R(X3,  R2)X1. 

    (3)  g(R(X1,  X2)X3,  X4) = g(R(X3,  R4)X1,  R2)•

The proof of these facts are left to the readers. 

We now define an operator 

 R„  : CP  ---> CP

as follows : Let e n-1 be any orthonormal base of Sx 

respect to g), i.e., a base of  Sx such that g(e., 6.j)  = S..

 n-1

 R,X =  -VITT  y R(e.,  e.)IX,  X  E  CPx. 
             1=1

Clearly  R, is a real operator, and by the corollary above we 

have

 R, S c  S, 

 g(R,X, = g(X,  R„Y), X, Y  E  Sx.
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The operator  R* thus defined will be called the Ricci operator. 

3.3.  Green's theorem. We put

dv = e A (de)n-1,

which is a volume element on M. For a  E  r(S*) we define a function

 ra on M as follows : Let x  E M and let  (e1,...,  en -1) be 

any orthonormal base of Sx. Then

 (6"a)  (x) =  (V  a)
1 1

In the same way, for  (3  E  r(S*), we define a function  6'f3 by

 (6')(x) =  / (V.L(3)(ei).
 1  1

Clearly we have  VS = where  7 is defined by  34(R) = 

 13(X) for all X  c  Sx.

Proposition 3.6. Let f  E CF(M) and a  E F(S*). 

(1)  Cf•dv =  d(f•  J dv).

(2)  6"a=dv =  di , where  a is the  2(n-l)-form defined

by  a =  a(ei) ei  J dv.
 1

Therefore if M is compact, we have

 Cf•dv  =  6"a•dv  =  J  6'13•dv =  0.
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     Proof. Since  L  dv = 0, we have  L  (f dv) =  Ef•dv. 

We have  L  (f dv) =  d(fE  J dv), proving (1). We have

   =  vde = 0, whence Vdv = 0. Therefore

 LXdv = -  TrAX•dv 

for all X E  rm(m)) ([10], Appendix 6), where  Ax is the

(complexified) tensor field of type  (II) defined by

 AxY = -  VyX - T(X, Y), Y  E  CT(M)
x.

Now define X  E F(S) by  a(Y) =  g(X, Y) for all Y  E  S. Then

T(X, Y) E CP'if Y  E CPx,and T(X, EHencex

 TrAX = -  : g(V X, e.) =Va. 
       .e.

1 1

Therefore  Sua•dv = -  Lxdv = - d(X  J dv) = -  da, proving (2).
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§4. The canonical connections of holomorphic

vector bundles

4.1. Connections in complex vector bundles. 

Let E be a complex vector bundle over a manifold M. A

differential operator 

      D  F(E)  F(E  TT(M)*)

is said to be a connection in E if it satisfies the following

condition

 D(fu) = f Du + u df 

for all u E F(E) and f  E  TF(M). As usual the covariant derivative 

(Du)(X) of u in the direction X  E  CT(M)x will be denoted by  Dxu. 

For any X, Y  E F(CT(M)) and u  E  r(E), we put

         K(X, Y)u = D
x(DYu) - DY(DXu) -  D[X, Y]u. 

Then K gives a cross section of E  E*  m A2(CT(M))*, which is called

the curvature of D. 

     Let us now fix an affine connection V on M. As is well known

a connection D in E together with the affine connection v gives
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rise to the covariant differentiation  :

        D :  r(E s  0  (CT(M))i)  0  (CT(M))i41). 

For example, let  ypE  F(E 0  (CT(M))i). Then  DT is defined by

 (Dy)(x,  xl,...,  x,Q,)  =  Dx(y)(x/,...,  xi)) - vxxi,...,  xso

for all X,  X1,...,  XiE  F(CT(M)). The covariant derivatives

 2
 (Dy)(x, ...),  (Dif)(X, Y, ...), etc. will be also written  (Dx9)(...), 

(DxDy(f)(...), etc.

We shall frequently use the following 

Lemma 4.1. For any5) E  F(E e T(M))00                                     ) we have the equality

(the Ricci formula)  : 

 (DxDyT)(X1,...,  Xi) =  (DyDxT)(X1,...,  Xi)

- (DT(X
,  ,n1f)(X1,..., Xi) 

+ K(X, Y)?(X1,..., Xi) 

 -  y  97(X1,..., R(X,  Y)Xi,...,  Xi).
1

     4.2. The canonical connections. Let M be a s.p.c. manifold 

and a basic field on M.
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    Proposition 4.2. Let E be a holomorphic vector bundle over the 

s.p.c. manifold M, and < , > a hermitian inner product in E. Then

there is a unique connection D in E satisfying the following

conditions:

    1)  DRu = X u ( =  (3Eu)(X)),  u E  r(E),  X  E  r(S); 

     2) X <u,  u° > = <  Dxu, u > + < u,  DRu' >,

                         u,  U'  E  r(E),  x E  r(CT(M)); 

3) Let x E M and let  (e  en 1)be any orthonormal

base of S
x. Then

                  K(e.,  6.) = 0,
1

K being the curvature of D. 

Proof. We first prove uniqueness. Let D be any connection

in E satisfying the conditions in Proposition 4.2. By 1) and 

2) we have

     (4. 1) X <u, u'> = <Dxu,  u' > + < u, Xu' >, X E  r(S).

By Lemma 4.1, we have

                             39



K(X, Y)u = (D2u)(X, Y) - (D2u)(Y, X) + (Du)(T(X, Y)), 

                          u  E  F(E),  x, Y  E  r(n(m)),

where the covariant differentiation D should be considered with 

respect to the canonical affine connection  v of (M,  E  ). If we 

put B(X, Y)u = (D2u)(X, Y) -(D2u)(Y, X), we have

(4. 2) B(X, Y)u =  (Dx(DyU) - Dv
xyu) -  (Dy(Dxu) - Dvyxu) .

Moreover since

 XT(e.,e.)=- yw(e.,e.)E(n - 1)IE,   
1

it follows from 3) and the formula above for the curvature K that 

 /7f  r -
 (4.  3)  DEu  -  n Z B(ei, ei) u . 

 Y-1 

                              1

Now we see from 1), (4. 1), (4. 2) and (4. 3) that D is 

uniquely determined. (Note that  pxY  E  r(cp)) if X, Y  E  F(u)).

     Let us now prove existence. We first define a bilinear map 

D' :  r(m)) x  r(E)  3 (X, u)  E  P(E) in such a way  that, 

foranyuEF(E)andXEF(S),-and D                               DxuXu are respectively 

given by 1) and (4. 1). Using this map, we define B(X, Y)u

(X, Y  E  rem) by (4. 2) and  DEu by (4. 3). Now the map
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D' together with the correspondence u  D  u gives rise to 

bilinear map D  :  r(n(m)) x  r(E)  --->  r(E). It is easy to 

that the bilinear map D, thus obtained, defines a connection 

in E and that it satisfies 1), 3) and the equality  :

X < u, u' > = <  Dxu, u' > + < u, Xu' > , X  E  F(CP).

It follows from this equality that

(4. 4)  -T(X, Y) < u, u' > = < B(X, Y)u, u' > + < u, B(X, 

                                   X, Y  E  F(CP).

Therefore we see from (4. 3) that

 E < u,  u? > = <  Du, u' > + < u,  >.

Thus D satisfies 2), completing the proof of Proposition 4. 

     The connection D in Proposition 4. 2 will be called the

canonical connection of E with respect to the inner product 

and to the basic field  E

     Proposition 4. 3. Let X, Y  E S
x and u, u'  E Ex. The 

being as in Proposition 4. 2, then we have
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(1) K(X, Y) = 

(2) < K(X,  Y)u 

Proof. By 1)

and by (4. 4), 

     < K(Z, W)u, u' >

Hence we get (2) as

 K(X, 

 u'

of

Y) = 0. 

> + < u,  K(X,

Proposition 4.

 +  < 

well

 O.=>Y)u'

havewe2,

u, K(Z,  W)u'> = 0, 

 as K(X, Y) = 0.

 K(X,  "I) = 0,

 Z,  W  E  TP
x.
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II. The harmonic theory on strongly pseudo-convex manifolds 

           §5. The Laplacian

     Let M be a s.p.c. manifold of dimension 2n - 1, and a 

basic field on M. For the pair (M, ) we use the same notations 

as in §4. Let E be a holomorphic vector bundle over M, and

 <  , > an inner product in E. D denotes the canonical 

connection of E with respect to < , > and to . The covariant 

differentiation D will be always considered with respect to the 

canonical affine connection v  .

     In this section we shall make a differential geometric study of 

the complex  f E),  aE  1 describing the Laplacian  ^ in

terms of the covariant differentiation D.

     5. 1. The fundamental operators. Since  TT(M) = CP' + S + S 

(direct sum), the vector bundle  OM E) may be identified with 

a subbundle of E  A'(CT(M))*, and, for any X E  F(CT(M)) and 

 (FE  el(M) E), the covariant derivative  Dx(p is in  Cq(M, E).

For any X, Y  E  F(S), we have 
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 Vx/-           VyX= [X, '1], 

because  T(X, = 0. Hence the operator  TE : E)  ----> 

 6+1(M, E) may be expressed as follows  :

 (50))(R11..., Rq4.1) =  y (-1)j+1(Dep)(5(1,..., R),...,  Rq+,), 

                               3 where  9  e  Cq(M, E) and X1,..., Sx.

    The inner product < , > together with the tensor field 

g induces an inner product < , > in the vector bundle

 Cq(M, E)  : Let  9,  *  E  Cq(M,  E)x and let (e1,..., en-1) be

any orthonormal base of S
x. Then

 i < T, 4, > . 1.
l'X <T(6i,..., 6i ), 4(6i ,..., 6i) > 

     -1.1 ..,i
a1  q 1q 

The operator  45E. We define a differential operator 

 ^51E  :  el+1(M, E)  -p  Cq(M, E)

by

            Rq) = X (De(9)(6i, RI,..., Rq),-

where  9)  E  Cq(M, E). For any  I),  6(M, E) and  IP e  644(M, E),

we have

(5. 1)  <  (f)  <  >  _  a  ,

44



where  ot is given by

 ot(X)  =  <  9),  g  > ,  X  E Sx.

The  operator  OE. The differential operator 

 /15ETE +  T5,k :  E)  C'(M, E)

is called the Laplacian and is denoted by  OE. A solution  50 

of the equation  OET= 0 is called a harmonic form. We denote 

by  Hq(M, E) the space of harmonic forms in  Cq(M, E).

    The Ricci operator  R* .  Using the Ricci operator  R* 

(see 3.2), we define an operator

 R*  :  Cq(M, E) >  Cq(M,  E)

by

 R
q) =  I  T(Xy...,  R*Rj,...„  Rq) 

for all5) E C(ME) x and X1,..., Xq E Sx. Since 

 g(R*X,  I) = g(X,  R*I) for all X, Y  E  Sx, we see that the 

operator  R* is  self-adjoint with respect to the inner product 

 <  , > in  Cq(M, E).
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    The operator K. Using the curvature K of D,  we  define 

an operator

K  :  Cq(M,  E)  -->  Cq(M, E)

by

          ) =(-1)j+1K(ei, Ri)99(ei,R(4) 
        q± ,i

By Proposition 4.3, we see that the operator K is self-adjoint

The operator  Qq. For any integer q, we define a

self-adjoint operator

Qq  :  Cq(M, E)  Cq(M, E)

by

 Qq  = K +  n-q-1  R  n  -  1  *

5.2. The description of  OE in terms of D. The main

aim of this paragraph is to prove the following

Proposition 5.1. For any  T E  Cq(M,  E), we have the

equalities  :
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(I) ~E  De  D-
  e.

1

 _q D  +  KT  +  .

 (2)  -  X D6
.De.+

1 1 1

(n-q-1)  -77  D  (f,  KT  .

 (3)  EET =  -
 n-q  -1

 -  1 e.  1
 D 

 i
 1  De 

 i

 a
n  n  -1 e. 

 1

 D D.6 +  Qqy  .

Proof. (3) is obtained from (1) and (2) by eliminating

 /7-1.  D  .

Let X1,...,XE S
x   1'q

We have

(5.2)  5(
,)

 =  I  (De  Xc
l)

 =  (D
    e

           X
g) 

1 1

-

 j
 (-1)J  (D e.DR(f)(e 

1 J
 i'     X1'..., X.,..., X).

If we put

A. =  (D
e.  .9:)) (  )

 q 3
3-(1'...' X

 _ 

e .  1'
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it follows 

 1
A. =  A: +
 J

Since

3 

=

..^

1 A
. 
 J 

2 A
. 
 J 

3 A
. 

3 

4 A
. 

3 

5 A
. 

3

 A6  =  -

from the Ricci formula (Lemma

2 6 A
. + + A., where 

 3

 (D_D57)(e.RR iR
.eil' •'j' 

 3

                                   ,  w(e.1, R.)(D99)(.1R .7E 

1

 K(e., R.)T(e.,R, R. 
  )1

 IT(R(e., g.)e.gg      j1'j' 

 X  X  q)(ei,  Xi,...,  R(e.,  R
 k<j  i

fi

kth

   13)(6., R  Xi,..., 
k>j

First of all

  (-1)jA.1

 X w(ei, 

  (-1)jA.2        3

we

 X.  7

4.1) that

 .., X),     c
t

       X 
        ct),

 x  ),

 ..., X),      ct

.)Xk,  X.,...)X ), 

place 

 R(e., Rk,...,5(q)  • 

                            .

 I-  1,

 k-- place

have 

 (E49-ET) (R1,  Rq). 

 1471-  R., we

 q  /T  (1)  (f)(R1,...,

 obtain

x). 
 ct

We have

 i
 (-1)'

3        -A.= 
3

 (Ky)  (xi.,  ...,  x  )  . 
 a
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By Corollary to Proposition 3.5, we have  R(ei,  Xj)ei 

 1 

 -  X. and hence 

 X (-1)jA4  = -  (R*(p)(R1,...,  R
q).

 J

Furthermore by using the fact that  R(ei,  Xk)Xj =  R(ei,  Xj)Xk

(the corollary,  i.b.i.d.), we can easily show

                                 =  0. 
 3 4 3

We have thus proved the equality:

 1  (-1)3  Aj  + q  v=r  Def-  K9 -  R4)(X1,..,  Xq).

and (1) follows from this equality and (5.2).

By the Ricci formula we obtain

 (DD-Rq)     e
i ei,

  2 (D6DeT)(5-C1,..., Rct) +  1w(ei, ei)(1kXq)  . 
      ii 

 K(ei,  Rq) -  R(ei,

Since  2 K(e.,  e.) = 0 and  V w(eei) = - (n-11/1-17, it follows
                          1

that

  (D D- T) =D- D- (n-1)/:17D+ 
  e. e.e.  e. 

. 

 i 1 11 1

(2) now follows from this equality and (1). We have thereby 
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completed the proof of Proposition 5.1.

     5.3. The fundamental equalities. From now on 

M is compact. We define an inner product ( , ) 

    E) by

     Idv 

for all  T, E). By (5.1) and Proposition 

that  A9E is the (formal) adjoint operator of  aE.

Let us now define semi-norms II  II-and 

 S

as follows  :

m y)m! =  f< D--> ) dv  , 
 M elll(fei

 =  J ( < De , Decf> ) dv  . 

 M

We have

 < D63,1:31.(s,>-  X < De.DL,(f) > -cS" a
1 1 1 1 1 1

where  a is given by 

 a(R) = <  ,  99> ,  x  e  S.

Accordingly from Proposition 3.6, we get

we

in

assume that 

the space

3.6, we see

in  Cq(M, E)
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 9  II 2 = - I ( < D e.De.- ,  >)  dv. 
                   1 1

In the same way,

 (a)  ils =  -1 <D e97'9" )  dv. 
 1 1i

Therefore by Proposition 5.1, we have the following 

Theorem 5.2. For any  y E  Cq(M, E) we have the equalities 

(1)  (  ^Ecf  97)  =II  9)  112 - q(/.717  DET,T) + (K +  R„T,  T). 

(2)  (  ,  (f) =  (n-q-1)  1  DET,  90 +  (KT,  T). 

                                   -1 
(3) (11E4,,(r)  =q 11  112 + nq 1 II 11s(Qq(17,(f). 

 S-

As an immediate consequence of Theorem 5.2, we get 

Proposition  5.3. Assume that, for some q, the

self-adjoint operator  (41 is positive definite at each x c M. 

Then we have  ficl(M, E) = 0.
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§6. The harmonic theory for the complex  OM E),

     We preserve the notations in the previous section. For 

simplicity we put m = 2n - 1.

     6.1. The Sobolev norms  (Hdrmander [7]). As usual, 

let C°°(Rm) denote the space ofrfunctions with compact     0 

support on  IRm . For each real number s, we define the Sobolev 

norm 
         (s) in Cc°(Rm) by                 0

 f  II  (s)(1  +  1C12)sli(012 f  E  C0ORM),

where  f() is the Fourier transform of f, i.e., 

 m

    = (4 ffe471-<x,> (07)f(x) dx. 

Let {Uk, k 
e K be an atlas of M such that K is a

 m

finite set and such that each Uk is homeomorphic with 

(We are assuming that M is compact.) Let  {pk} be a partition

unity subordinate to the atlas. For each k, take a moving frame

(e1,           enk             -l) of SIUk and a moving frame  (si,...,  sr) of 

EIUk  (r=dimE).
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    Now denote by  Jcl the family of all ordered set (i 

of integers with 1  <  it < <  i  <  n-1. For any  9'

 I E  Jcl. and  9, (1  <  k  < r), define a function  %k,I on

      (6...., 6.,ks 
  1qk 

       , iJ t9 ,,I 

where I =  i ci). By using the functions  (Pk' 

in  C°0° (IRm), we now define the  Sobolev norm  II 11(s) in 

by 

 

II 112(s) = II (pk• 0 hk-1 (s)

     6.2.  Kohn's harmonic theory. Hereafter we fix an 

with 1  � q  n-2. First of all we define norms  II  11 

in  Cq(M, E) respectively by 

 112 =

 HI  9P  = 

Note that the norms and  11  11(0) are equivalent.

Proposition 6.1.

III T 1112  C(^ET, 5') + 119)112),  E Cq(M,  E)  .

This follows immediately from Theorem 5.2, because 
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E  Cq(M, 

Uk by

 k
     h 

 c  (M,

 integer 

 and

) a 

 E)  ,

-1 

k 

E)

 a



1  s q  s n-2 and the operator  0 is of order 0. 

     Proposition 6.2.

IId � cpiN,  E  e(M, 
   (2) 

Proof. k being fixed, let K be any compact subset of

 Uk. Put Co(K) =eel(M, E)supp c K }. Now the system 

              (Xl'...,  Xm-1) = (ek,nk-1'1eeekn-1) gives a moving        1k" 

frame of CPIUk. Since P is a contact structure, we know 

that, at each x  E Uk, the complexified tangent space  CT(M)x 

is spanned by the vectors of the form :  (Xi)x,  [Xi,  Xk]x, 

 1  s i,j,k  s  m-1. Therefore by Kohn's inequality  (Folland-Kohn 

[2], Theorem  5.4.7), we have

 m-I

 1121 ̀ C1( Y.' 11112+1; ,I 112                                           )92ECcol-(K). 
 i=1or",.

Clearly we have

               k 2 
 X II (DO)kk,I2II,I0  II  � c21111112 E CciaK), 

 I 1

 and  the  functions  (D
X be expressed as                      Ai,k

     k.k R',I',

2,k  R',I' 
     (Dx.y)z,, = Xfyt,, +SP1I'ai,t,i5,,,„al                                             where. 

                                                                 ,t,  I 

                are functions on  Uk- From these it follows that  II  T II  1  �  C31IIIII, 
 (.-f-)
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 E  Cg(K). Thus we get Proposition 6.2.

By definition, the operator  OE is subelliptic if we can

find a positive number a such that

 II  II  (0) � Co ((OE?,  9)) + II 1) 11 2) , e elm  E).

Theorem 6.3 (cf. Kohn  [13] and Folland-Kohn 12]). The 

  

.  . .

operator  OE is  subelliptic with a =  7  .

This follows immediately from Propostions  6.1 and 6.2. By

virtue of Theorem 6.3, we have the following important result  : 

    Theorem  6.4 (Kohn-Nirenberg 114], Kohn 113], Folland-Kohn

[2], and  Hdrmander [9]). The operator  LE is hypoelliptic.

By Theorems 6.3 and 6.4 and by using standard arguments,

we now arrive at the main theorem in the harmonic theory, essentially 

due to Kohn [13].

Theorem  6.5. (1)  Hq(M, E) is finite dimensional for any

q with 1  5  q  5  n-2.
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(2) For each q 

    H,  G :  el(M,

such that

 0  H  =  HG  =  0

The operator G 

Assuming that n

 n-1. We first define

H : C0(M,  E)

with 

 E)

1 q  � n-2,

 E)

G + H =  1. OE

is  usually  called the 

 � 3, let us consider

an operator

    0    C(M
, E)

there are unique operators

Green operator. 

the case where q = 0 or

by

Then 

onto

 we

fl

 t1

easily 

 0
 (M,  E) 

 H  :

      -

find that 

.  In  the

 Cn  -1(M, E)

same

 CO  (M,

is an orthogonal 

way we define an

 Cn-1(M, E)

 E).

projection of C0(M,  E)

operator

by

which

 H = -  ,

 is an orthogonal projection of 

Theorem 6.5 combined with the

 E

 n-1
C

remark

 n-1
 C—  - (M,

(M, E) 

above

 E), 

onto

gives

 Hn  -1(M,  E).

the following

56



    Proposition 6.6 (cf. Kohn 113]). Assume that n  � 3, and 

let q be any integer. Then every cohomology class in  Hq(M, E)

is represented by a  unique harmonic form. Hence 

      E) E).

     Remark. In the proof of Theorem 6.3,  Kohn's inequality 

played an important role. We can also arrive at the subellipticity 

by utilizing  Hdrmander's inequality (Appendix, Theorem 9). In 

Appendix we shall give a simple and  geometric proof of  Htirmander's 

inequality and argue about some related problems.
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 g7. The cohomology groups  HP'cl(M).

     Let M be a compact s.p.c. manifold of dimension m  = 2n - 1, 

and  E a basic field on M.

7.1. The complex  {e'cl(M), d" }. We define a  Riemannian

metric h on M by h = g + e-2  or in other words, 

 h(E,  E) = 1,  h(E, X) = 0, 

 h(X,  Y)  =  g(X,  Y),  X,  Y  E  P  .

The Riemannian metric h induces a hermitian inner product < , > 

in the complexified tangent bundle CT(M)  :

         <X, Y>  = h(X, Y), X, Y  c  CT(M) x. 

 And this inner product in turn induces an inner product < ,  > 

in the vector bundle Ak(M) = Ak(CT(M))*  : Let 5', p  , Ak(M) 

let (e1"e m) be an orthonormal base of CT(M). Then

 <y,  Ta-  T(ei  ei  )  11)(ei  ei  )  . 
 ik  1  k  1 

Furthermore h together with the orientation of M gives the 

* - operator

and
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 k  m-k *
A  :  A- (M)(M)  .

We have

          dv =  (n-1)!  *A1. 

These being said, we now define an inner product ( ) in

the space Ak(M) by

 (  9  , f < =  (n-1)  !  [  A 

for all E  Ak(M).

We have 

    CT(M) =  CP'  $ S

where the symbol means that the sum is orthogonal with respect 

the inner product < , >  . Accordingly we may identify T(M) = 

 CT(M)/S with the subbundle CP'  1: S of  CT(M), and hence

 CP'cl(M) =  APT(M)*  :  AcI*(M). More precisely  CP'cl(M) is a 

 subbundle of  AP'q(M) and we have the decomposition  :

 AP'cl(M) =  AP4-1'cl-1(M)  e  CP'cl(M). 

Let  113 be the projection of  AP'cl(M) onto  CP'q(M), which just 

corresponds to the natural map  AP'cl(M)  CP'cl(M) given in the
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proof of Proposition 1.1. Then we have

 d" =  11)&1,  E  e'cl(M). 

If  E  CP7q(M) and  * E CY's(M), then (t A 4) E CP1-r'ql-s(M) and 

 d"(y  A =  cl"(t  A  +  (-1)P1-cl  9,  A  dull)  .

Now consider the anti-isomorphism

#A :  Ak(M)  3  ---> *AJ E  Am-k(M)                                             (L.

 Lemma 7.1. For any (p, q), we have

# CP'q(m)  en-P, n-q-1 A(M).

Proof. We have

CP'q(M) = e  X  B(r,s,q),
 r+s=p

where

B(r,s,q) =  Ar(CP')* 0  AsS*0

It is easy to see that #A B(r,s,q) = B(1-r,  n-s-1,  n-q-1). Hence 

 #ACP'q(M)  =  y B(1-r,  n-s-1,  n-q-1) =  Cn-p,n-q-1(M).
r+s=p

Lemma 7.2. Let  6" be the  formal adjoint operator of

du : CP(M).--->Cp,q+1(M) with respect to the inner product

( , ).  Then  we  have 
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 =  (-1)134-q+1 #Ad"#A.E Cp,q+1                                        (M).

Proof. Let  y  E  CP'cl(M) and  E  CP'cl+1(M). Then

 d(  5  A  #A1p) =  d"  ( A ) 

          =  d" A  #0 +  (-1)P+q  9;  A  d"  #A11)

and  d"#A1p = #A #A  d"  #A4) . Therefore it follows from the Stokes 

theorem that  (d"y  ,  4))  (-1)134-c1+1 #A d"#A  4)), proving

Lemma  7.2,

     7.2. The harmonic theory and the duality. Let us now consider 

the complex  {O(M,  EP),  5  } and apply the results in  §§5 and
 EP 

6, where the holomorphic vector bundle  EP =  AP T(M)* should be 

equipped with the inner product < > as a subbundle of  AP(M). 

By Proposition  1,1 we have  CP'q(M) =  Cq(M,  EP) and  d" =  (-l)
 EP 

It is clear that the inner product in  OM  EP) induced from the 

inner product in  EP just coincides with the inner product < , >

in  CP'cl(M). Hence

 6" =  (-1)13,&. 
         EP
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We put as follows  :

A" = S"d"  d"6".

 HP'cl(M) =  {9E  CP'cl(M)  A"9 = 0 }  .

Then A" =  ^and  HP'q(M) =  Hq(M,  EP). Therefore by the general 
          EP

theory developed in §6, we have dim  HP'q(M) <  co if q 0, 

 n-1, and  HP'cl(M)  HP'cl(M).

By Lemmas 7.1 and 7.2, we have the following 

Theorem 7.3 (cf. the Serre duality). For any (p, q) we have

 #AHP'cl(M) =  Hn-P'n-q-1(M).

Hence 

 HP'cl(M)  Hn-P'n-q-1(M).

Finally we add the following 

Proposition 7.4. Assume that the Ricci operator  R, is

positive definite, i.e., the quadratic form  g(R,X,  R),  X  E  Sx' is 

positive definite at each x  E M. Then we have H°,ct(M) = 0 for

any q with q  / 0,  n-1.

Proof. Apply Proposition 5.3 to the trivial holomorphic 
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vector bundle M  x C (with the usual inner product).

For example, consider the unit sphere S2n-1in  Cn, which is

a compact s.p.c. real hypersurface. Let  E be the vector field on

 S2n-1        induced from the 1-parameter group of transformations 

 x  S2n-1  3 (t, x)  et17T•x  E  0  ,2n-1. Then it can be shown that  E

is a basic field and that the associated Ricci operator  R* is

positive definite. Hence  H0'q(S2n-1) = 0 for any q with q 0, 

                                            ^ n 

 n-1 by Proposition 7.4. Moreover since T(S2n-1) (  =T(C )16 

is holomorphically trivial, we have HP,q(s2n-1) = 0 for any

(p, q) with q 0,  n-1 (cf. Theorem 10.3).
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§8. The cohomology groups H*k-1,1(M) and  Hk(M)

We use the same notations as in the previous section. 

8.1. The complex { d  } . Since  AP'q(M) =

 AP+1'cl-1(M)  CP'cl(M), we have the decomposition  : 

 AP'q(M)  = y cr+---,-(m).
 i=0

Let  y  E  e'cl(M). Then  dT  E  AP'ql-1(M) or more precisely 

 dT  E  CP4-2'ci-1(M)  CP+1'cl(M)  e  CP'cl4-1(M).

Consequently  dT can be written uniquely in the form  : 

 dT=  AT+  d'T  +  d"T,

                        and d'97  E  CP+I'cl(M). where ATE Cp+2,(1-1(M)

In general let  T.  E  A-(M) and X1,..., Xk  E  CT(M)x. Then we

have

 (dT)(X1,..., Xk+1) = (-1)A+1(vx
A) (xi,.,  Xx,..., Xic+1) 

                                  C(-1)X+1,1+1  T(T(X
x,  X.0),  X1,...,  Xx,...,  X10.1). 

 X<T1

Now we know the following (see Proposition 3.1) :  1°. T(X, Y)  E  g
x

if X, Y  E T(M)
x ; 2°. T(X, E (M) x if X 6 T (M) x and
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Y  E  Sx ;  3°.  T(X, = 0 if X, Y  E  Sx. Therefore, for any 

 E  CP'Cl(M),  AT,  VT and  d"9 may be described respectively as 

follows  : (In the following, X1,  X2,... (resp. Y1,  Y2,... ) denote 

any vectors in  T(M)x (resp. in  Sx) at any x  E M.)

(8.1)  (AT)(X1,...,  Xp+2,  Y1,...,  Yq_1) 

         =  (-1)i+j+1 S(T(X.,X.),X..,X..,X...,X 
                        31,°l'°'j'° p+2'  i<j

              Y1,...,)             l'°°
q-1 

(8.2)  (d'T)(X1,...,  Xp+1,  Yci)

   = x
P+-,,Y1, ...,it7). 

 (8.3)  (d'T)(X1,..., X,`71,)                              P1,...,ci+1

 (_1)P  y  (-1)j+1  (V)7.40(X1,..., X17.,?)          p'q+1 

+  (-1)P  y  (_1)i+j1-1  3(T(x.,xx..x                                                    ' p'

Y1,...,Y....Y). I"
j"q+1

In particular, we see from the first equality that the

operator A :  CP'cl(M)  CP+2"c1-1(M) is of order 0.

Let  6,  S' and A respectively denote the adjoint operators 
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of the operators  :

   ,c1,q+1 d  : AP(M)AP(M)
,

d'  CIDI'cl(M)  --->  611"l'q(M), 

A :  6P+2'c1-1(M).

Clearly we have  6 = (A*+ 6'+VI) for all13E AP'q^(M1),

 p,q-1being the orthogonal projection: AP+q-1(M)-->AP'cl-1(M). 

     Let  x  E M and let  (e1,...,  e
n-1) be an orthonormal base of

S
x. Put e0=x.Then (e0,...,en-1)gives an orthonormal

base of  T(M)
x.

Lemma  8.1. For any  f E  C  'LIM,  6'T may be described as

follows

 Xp,  Y1,..., Y
q)

 n-1

          = - 
X/(4?)(ex, X1,..., Xp, Yq).           0X 

Proof. Define  9;0 E  CP  (M) by the right hand side of the

formula above. For any  tp  E  CP'cl(M), we have 

   <  (, > =  <9,,  1p>  y(v6ayy, 
              AA

                      ^ * 

where  a is the cross section of T(M) defined by  a(X) =
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< X  J >  for  all X  E T(M)x.Since
 n-1

 y  (v  a)(ex)  -  .(0 +  y  (v6a  )(ei), 
 X  X  i=1  1 

we see from Proposition 3.6 that the integral of ( y (v0)(ex))dv 
                           XX 

over M vanishes. Hence  7,  =  6,9, proving Lemma 8.1.

Lemma  8.2. The operator  At = +  :  e'cl(M)  -->CP'cl(M)

is strongly elliptic.

Proof. Let  9  E  e'cl(M). Then we have 

 (6'd')(X1,...,  Xp,  )7q)

= - X(V- V
exT)(X1,...,  X.Yq)   Xex 

+X(-1)i+1 vx 9:0(ex, X1,..., Xi,...,  X. 
 X,iexi 

 (dWT)(X1,...,  Xp,  Clq) 

 y  (-1)i(4xv6  (0  (ex,  Xp, 

 X

Therefore by using the Ricci formula, we obtain

 A'T =  X  (%.Vy)
 A  -X

where W is an operator of order 1. Since e0,...,  en-1'  6 

form a base of  CT(M)x, it follows from this formula that A' is

strongly elliptic.
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Lemma 8.3. The operator  15'd" +  ecy  e'q(M)  cP-1'cl+1(M)

is of order 1.

Proof. Let E  e'cl(M). Then we have 

 (Pd"7)(X1,...,  Xp_i,  .117(44.1)

 .  (-1)P  (-1)3(v- VT) (ex, X1,...,  X
p_i,  ?1,...,Icy])  exYi 

+  (W1T)(X1,...,  X
p_/,  C/c1+1), 

 (d"V,)(X1,..,  Xp_1,  ;04) 

=  (-1)P-1  (0 (e
x, X1,...,  Xp_1,  ?c,4,1)  X,7  7  A 

+  (W  2))(X1,...,  X
p-1, c,1+1)'

where both  W1 and  W2 are operators of order 1. Therefore from

the Ricci formula we find that  Vd" +  d"6' is of order 1.

8.2. The finiteness for the groups H,k-1,1(M) and  Ho(M). In

this paragraph, we assume that n  > 3. Let k be any integer. Now 

I"H;  '(M) was  the  cohomology group  or  the  complex  :

 Ak-1'  0  (M)d--> Ak-11(m)dAk-12(M) •

Let us consider the Laplacian :

 = 6d + dcS: Ak-1,1(M)  Ak  -1  ,1  (M)  •
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We also consider the operator

K =  6'd" +  c1"6' +  A*d' :  Ck'0(M)  ---->  Ck-1'1(M),

of which the adjoint operator is

K* = 6"d' +  d'6" + 6`A : Ck-1'1(M)Ck,0(M).

                    k0Lemma 8.4. LetV)=  To +591,  A  WheTe  To  EC-(M)

and E  Ck-1'1(M). Then we have 

 (A  T,  9')  (Al  To,  To) +  (A1)1,  yi)  2Re(Ky)0,  971)

Proof. We have

A  TO =  (A'9'0  6"d""  4-  K9'0,

 A  yi =  K*f1 + wall  AnT1 +  A*A971)

Hence

 (A,  y) =(A'9'o,Yo)  (6"d"To'  Vo)  (K(O'  Yl)  9'0) 

            +  (6'd'971,  Ti) +  (A"T1, +  (A*A91,  931).

Lemma 8.4 is now clear from this equality, because  (K*Ti,  990) = 

(K  (10,  (6"d"?0,  yo)  =  (cP10,  duTo  � 0, etc. 

Now the spaces  CP'cl(M) (=  Cq(M,  EP)) are equipped with the

Sobolev norms  11( s). (See §6.) These norms yield the product
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norms  11  11(s) in the spaces  AP'cl(M). We also consider the 

norm  11  11 in  AP'cl(M) defined  by  hP  112 =  50)

Theorem 8.5. The operator A  :  Ak-1,1(M)k-1,1(M)

subelliptic or more precisely

11(021c«Ay,yr)11T112),yssE  Ak-1  '1  (4)  . 
   2)

Proof. Since A' is a  self-adjoint, strongly elliptic

operator (Lemma 8.2), we have

 c111   (yrOq  (1)2 <  (A ,cfo,  To) +ilroll2,e ck,0(m)

Since n 3, it follows from Theorem 6.3 that

 C211'r11l21  � Wry 901)  yi 112,  Ti ck-1,1(m).

The operator K is of order 1 by  Lemma 8.3 and hence

 11105'0  II  _<  c3  II  to  (1).

Furthermore, for any positive number  6, we have

 C II KT°2-1Ti2-                      < Re(K To,

From these inequalities and Lemma 8.4 follows that

(C1  -  2  c  c23) E p() E(1) c211 9'1 1121 
 (f) 

 �  (AT,  cy)  +  (1  +  11  (f  112

is
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                                 2 Th
us, choosing c such that C1- 2cC3 0, we get an equality of

the form in Theorem 8.5.

    Above all we see from Theorem 8.5 that  A is hypoelliptic 

(cf. Theorem 6.4). Thus, as in §6, we have the following  :

 1°0  =  {TE  Ak-i'l  (M)  A = 0  }  , the space of

harmonic forms, is finite dimensional

      k-11-k1  2° H
,'(M)=H,1(M).

Therefore, using Proposition  1.2, we get 

Theorem 8.6. For any k, we have

.k.k-1 d
im Ho(M) � dim H,'1(M) < 

    Remark. Since  HP'q(M) E'q(M) and  Hk(M) =  Ek'°(M), a        1  0  2 

formal argument on the filtration  {  FP(Ak(M))} proves the inequality  :

      dim H(M)dim Hk(M) +  I dim  HP'q(M), 

          0 where the sum  y is taken over all the pairs (p, q) with p + q =  k-1, 

p 0 and q  � 1. This inequality combined with (1) of Theorem 6.5

implies that  Ho(M) is finite dimensional if k n.
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§9. Differentiable families of compact strongly

pseudo-convex manifolds.

9.1. The upper semi-continuity for dim  HP'q(M) and

dim dim H-11*'(M). Let  Q be a domain of the space  Pk of  )2 real

variables, and  {Mt}t EQ a family of compact s. p. c. manifolds 

parametrized by  Q. Then the family  {Mt} is said to be differentiable 

if there is a fibred manifold M over Q with projection  Tr which 

satisfies the following conditions  :

1) The projection  7  is proper  ;

2) For every t  e  S2 ,  7-1(t) =  Mt as differentiable

manifolds  ;

3) Let St be the s. p. c. structure of  Mt' where we note

that  St c  CT(Mt) c  CUM. Then the union u Stgives a differentiable 
                                            teQ

subbundle of  CTN.

Theorem 9.1. Let  {Mt}t ec2 be a differentiable family of

compact s. p. c. manifolds of dimension 2n - 1 5. Then the 
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functions

 Qpt----> dim  HP'El(M  )EZ,  qi0,n- 1,

and the functions

Q  3 t  HI:-1'1(Mt)  E

are all upper semi-continuous, where  Z denotes the set of integers 

equipped with the discrete topology.

It should be noted that the functions

 Q  3 t   dim H"0(M)  E

do not have upper nor lower semi-continuity in general. 

     Proof of Theorem  9.1. Take any  t0  E  Q and let us work around

 0•Since the projection  aM3Q is proper, the fibred manifold 

M is locally trivial. Therefore we may assume that, for each 

t  E  2, Mt =  Mt as differentiable manifolds. In this case the
 U

differentiability for the family  {Mt} means that  {St} is a 

differentiable family of subbundles of CT(Mt). Let Pt be the 
                                    0 

                                                               real part of  St +  S. Then  {Pt} gives a differentiable family 

of contact structures on  Mt  , which is locally trivial by Martinet
 U 
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[17]. Thus we may further assume that Pt = Pt for each t  EEQ  . 
                                        0

We take a basic field for the central s. p. c. manifold Mt

0

which is simultaneously a basic field for every s. p. c. manifold Mt. 

Starting with the s. p. c. manifold Mt and the basic field  E  , 

we difine the inner products ( , ) in  CP'cl(Mt), the operators 

 A"  :  CP'cl(Mt)t')etc. just as in §7, which will be 

written as ( ,  )t,  A"t' etc. We also consider the Sobolev norms 

 II  11(s) in  CP'cl(Mt ). If we choose Q sufficiently small, we 

                 0

can find a differentiable family of (base preserving) bundle

automorphisms of T(Mt ),  {Tt} , such that Tt is the identity 
  0 0 

and TtSt =  St. Each  Tt induces the bundle isomorphisms  :
 U

 CP'cl(Mt)  -->  CP'q(Mt) in a natural manner , which we shall denote
 U

by the same symbol  Tt. The norms  Ft50( s) ,  E  CP'ci(Mt)' 

will be denoted simply by  (
s)

Let K be any compact subset of  52  . 

Lemma 9.2. If q 0, n - 1, we have 
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2

 II  5° II C((A"tY'59)t . (T, 
   (T) 

 E  CP'cl(Mt), t E K.

     Remark that this estimation is uniform with respect to the 

parameter t, i.e., the constant C does not depend on t. The 

proof of Lemma 9.2 is easy from those of Propositions 6.1 and 6.2 

if we note that the estimation in Proposition 6.2 essentially depends 

on the contact structure P only.

Let us now consider the operators At : Ak-1,1(Mt)--ioAk-1.1(Mt)

Then from Lemma 9.2 and the proof of Theorem 8.5, we can easily

obtain the following 

      Lemma 9.3.

 

II (JP V,CuAt7,  7)t +  (7,)t ,), 
   (1) 

 T  E Ak-i'l(Mt',                                         )  t  E K.

     Now we have established Lemmas 9.2 and 9.3 , we are able to 

prove Theorem 9.1 in a standard fashion, using the Rellich lemma 

and the hypoellipticity for  A"t and  At (cf. Kodaira-Spencer  [11]).
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9.2. A remark on holomorphic imbeddings. Let M be a s. p. c.

manifold, and  f an imbedding of M in  CN. Then we say that the

imbedding  f is holomorphic or the s. p. c. manifold M is realized 

as a real  submanifold  in  CN by  ff, if the s. p. c. structure S of 

M is induced from  f. Let  f = (f1,...,  fN). Then it is easy to

see that the imbedding  f is holomorphic if and only if each component

 fi of  f is a holomorphic function on the s. p. c. manifold.

Recently Harvey-Lawson [5] proves that if M is compact and if

 f : M  —4CN is holomorphic, then the image  f(M) of M by  f is 

the boundary of a uniquely determined subvariety of  CN- M, a solution

of the Plateaux problem.

Theorem 9.4. Let {Mt}t2be a differentiable family of compact 

                                 E 

s. p. c. manifolds of dimension  2n-1  > 5 and let  Tr  :1{-->  Q be the 

associated fibred manifold. Asssume that, for some t0,there is

nr  0  1
given a holomorphic imbedding g :MtV  and  that  aim  H"(Mr) 

 0

is constant in a neighborhood of  t0. Then there exist a neighborhood

U of  t0 and an imbedding F  :  -1(U)  U x  TN satisfying the 
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following conditions  :

1) is F = R  I 7-1(U), (7) being the projection of U x TN

onto U. In other words, if t  E U and p  E Mt, then F(p) is 

of the form  : (t,  ft(p)).

2) For each t  E U, the assignment p  ft(p) gives a

 N
holomorphic imbedding of the s. p. c. manifold  Mt in  T-. 

     3)  ft _  =  11°
 U 

Outline of the proof. As in the proof of Theorem 9.1, we may

assume that Mt = Mt(as differentiable manifolds) and P=P.                  t
o                                          Pt t0

 01  0,1
Let us consider the operators A"t  C-'-(M)  ---->  c'-(Mt).

Lemma 9.5. Let K be any compact subset of  52 . Then, for

any non-negative interger m, there is a constant Cm such that 

 (5)  II 
(m+2)� cmIIA"tY'II  1  (m-2)

 59 E C0 1(Mt), t  E K. 

We can prove this fact in the same manner as Kohn [13], based

on Lemma 9.2 or properly uniform estimations for the operators  Ant

corresponding to Propositions 6.1 and 6.2. From Lemma 9.5 follows
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the inequalities  :

(9.1) 119 112 1� C,;  (II At't.9  11(m) +  II ' II2(0)), 
        ("T)

 01
 T  E  C  (Mt),  t  E' K. 

Lemma 9.6. In a small neighborhood V of to, the Green

operator  Gt of the operator  A"tC°,1(14t)-->CO31(Mt) differentiably 

depends on the parameter t, that is, if  1/tl  t€V is a

 01
differentiable family of elements  yt of  C-'-(Mt)(i.e.,  (TtCpt)p

is C in the two variables t and p ), so is the family 

 {  Gt  .

    The proof of this fact is based on (9.1), and is quite similar 

to that of Kodaira-Spencer [11], Theorem 5.

We are now in position to prove Theorem 9.4. Let us consider

the operators  d"t  :  C°'q(Mt)t),  (S"t  :  ) 

C°'cl-1(Mt) and Ht :  C°'°(Mt)-->C0'0(Mt). (Ht was defined 

in 6.2.) We express g as  (g1 gN) and put

                               t  E  V. 15 i5N,  _ 6,,tGtetg  It
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which is a holomorphic function on the s.p.c. manifold  Mt Since

Gt differentiably depends on t(Lemma 9.6), so is ft. Since 

                                                      d"t gi = 0, we have ft= gi. Now, for each t, define a map 
00 

                       ft : Mt.---7i)CN byfttt= (fl,...,ft).Then $tdifferentiably 

                                                                                                                                                                                        ' depends on t and  ft = g. Since g is an imbedding, we can
 0

find a neighborhood U of  to such that  ft is an  imbedding for 

each t E U. We have thus proved Theorem 9.4.

     Remark. Let M be a compact, connected, contact manifold 

of dimension 2n - 1, and let P be its contact structure. We 

denote by  S(M, P) the set of all s.p.c. structures S on M such 

that the contact structure associated to S is just equal to the

given P. For S  e S(M, P), we denote by  Ms the s.p.c. manifold

with the s.p.c. structure S.

     Let  G—  -  be the set  of all complex contact elements of 

dimension  n-1 to M, which is a fibre bundle over M. Then an

 (n-1)-dimensional subbundle of CT(M) gives a cross section of Gn-1,
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and vice versa. In particular S(M, P) may be regarded as a subset

of r(Gn-1), the set of all cross sections of Gn-1, and hence

we have the notion of the  Ct-topology in S(M, P). 

    Let N be an integer with N n. Let  SN(M, P) be the set

of all S  E S(M, P) such that the s.p.c. manifold  Ms can be realized

as a real submanifold in  C  . Then it can be proved that the set

{ S  E SN(M, P)  I  H0'1(MS) = 0 } is an open set of S(M, P) w. r. t. 

the  Cn+4-topology (cf. Theorem 9.4). Note that every S  E  Sn(M, P) 

satisfies H0,1(Ms) 0 by Theorem 10.3.

 2n-I   _n
Now consider the case where M is the unit sphere S - in C-.

 2n-1Let S0 -be the s.p.c. structure induced from the injection S---> 

 Cn and let P0be the associated contact sturcture. Then we raise

the question  : Is it true that  Sn(S2n-1,  Po) =  S(S2n-1,  Po) ?

The Brieskorn variety B- of type (2,2,2,3) is known to be

 5diffeomorphic with the 5-sphere  S (cf. Milnor [18]) and there 

is defined on B5 a s.p.c. structure S1 (see 11.2). This will
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imply that there is a s.p.c. structure on  S5 wh

realized as a real hypersurface in C3. However 

 whether the  contact  structure  P  associated to
 1 

the "standard" cantact structure  P or not.
 0

 ich

we

 Si

can

do

is

 not be 

not know

equivalent to
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§10. Strongly pseudo-convex manifolds and isolated 

         singular points

     10.1. The boundaries of Stein manifolds. Let M' be an 

n-dimensional complex manifold, where n  > 3, and V a relatively 

compact domain of M'. Assume the following  : 1) The boundary 

M =  aV is smooth and connected ; 2) M is s.p.c. in M'; 3) V 

lies inside M (see 2.3).

Let us consider the complex manifold with boundary, V = V  u M.

We denote by Ak(V) the restriction of  Ak(M') to  V and by Ak(V) 

                                                         k. the s
pace of C cross sections ofA(V).  (Ak(V) is nothing but 

the space of all the restrictions  T1V of  9)E  Ak(M') to  V  ). 

The exterior differentiation d :  Ak(M')k+1(M') induces the 

operator d :  Ak(V)k+1(v). Thus we obtain the complex 

 {  Ak(V), d , the de Rham complex of  V. We denote by  Hk(V) the 

cohomology groups of this complex. It is known that  Hk(V) is 

isomorphic with the k-th cohomology group of V with complex 

coefficients (e.g. Nagano  [20]).
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    We denote by FP(Ak(V)) the restriction of  FP(Ak(M')) to V 

and by FP(qk(V)) the space of  Cw cross sections of  FP(Ak(V)). 

Then the collection  (FP(Ak(V))1 gives a filtration of the de Rham 

complex  fAk(V),  d} and we denote by  -4cl(V)} the spectral

sequence associated with the filtration.

The injection  11,4 :  M-1/ induces, as usual, the morphism of

complexes

* k 
 :A(V),  d}   >(  Ak(M),  d},

                                             * - 

which clearly preserves the filtrations,i.e.,  im FP(Ak(V)) c P-D(Ak(M)). 

Thus  1 induces the morphism of spectral sequences

          1  : EP'cl(V)  —> EP'cl(M).     M r 

In the same way the injection  iv  :  V  V induces the morphism 

    * p ,q 5        1 E (V) EP q(V) .  V 
r

    Lemma 10.1. (1) (Kohn [12] and  Hdrmander [8].) The map 

1 • EP'q(V) -->.EP'cl(V) is an isomorphism for any (p, q) with V • 1 1

 q  #  0.
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(2) (Kohn-Rossi [15] and Folland-Kohn [2] )

dim dimE'cl(M) < dim EP'cl(V) + di-nri-P'n-q-1(V.) 11

for any (p, q) with q  / 0, n - 1. 

    To accept this lemma, we must observe the following  :

EP'cl(V) (resp.EP'cl(17)) are the Dolbeault cohomology groups of the                1

complex manifold V (resp. of the complex manifold with boundary V);

2°. EP'cl(M) are the boundary cohomology groups HP'cl(B) of the

boundary M =  aV introduced by Kohn - Rossi [13].

Lemma 10.2. If M' is a Stein manifold, then the map

M     1,0k0 1* : E1-'(V) --4E1'(M)is an isomorphism for any k.

    This fact follows immediately from Theorem 3-5 of Shiga [26] 

(cf. Kohn - Rossi [15]), if we remark the following  : 1°. The

                    k" * h
olomorphic vector bundle A T(M) over the s.p.c. manifold M is 

the restriction of the holomorphic vector bundle  A  T(M') over the 

complex manifold M' to M ; 2°. E1'0(V) is the space of  e 

cross sections of AkT(14')117 which are holomorphic, restricted to
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 V ; 3°.  E13(.)0(M) is the space of  Cc° holomorphic cross sections of 

        * A T(M)  .

Using Lemmas 10.1 and 10.2, we shall now prove the following 

Theorem 10.3. If  M' is a Stein manifold, then we have  :

(1)  HP(M) = 0 for any  (p, q) with q  / 0, n - 1. 

(2)  Ho(M)  Hk(V) for any k.

Proof. M' being a Stein manifold, V is also a Stein manifold

and hence EM(V) = 0 for q  # 0 (e.g. Gunnning - Rossi [4]).           1

Therefore (1) is clear from Lemma 10.1. Let k be any integer.

                   * k ,0 k,0 By Lemma 10.2, we see that the mapim:E2(\T) --->E2(M) is an 

isomorphism. By using (1) of Lemma 10.1, we have  EPI'q(17) ="-- 

E'1(V) = 0 for q  / 0. It follows that the (natural) map 1 

k,0 -k.* E
2(V)H(f)is an isomorphism. Furthermore the map1 :                                                    V 

Hk(V) Hk(V) is clearly an isomorphism. Thus we have shown that 

E'0(M)E2(M)H(V), completing the proof of Theorem 10.3.

Corollary. The assumption being as in Theorem 10.3, we have  :

(1) The (natural)  map  H(M) Hk(M) is an isomorphism
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for any k  <  n  -  2.

(2) The map  H1(1)-1(M)  Hn-1(M) is injective.

In the next paragraph we shall treat the case where V admits

(isolated) singular points. 

     10.2. Isolated singlar points of complex hypersurfaces. 

    We first prove the following

Proposition 10.4. Let  {Mt}t2 be a differentiable family of

compact s.p.c. manifolds of dimension 2n - 1  > 5. Given intergers 

k and p let  0(k,  p) denote the subset of  SZ consisting of all

t which  satisfyk-11(mt) = 0 and  dim Ho(Mt) = p .t which  satisfy  H-  -'-(Mt) = 0 and dim H6(Mt) = p . If  0(k,  p) 

     then we have the inequalities

 < dim H*k1,1(M)  k dim  Hk-1,1Mt ) + dim  H0(Mt  )               t
o  0 0

for every

 t0 in the closure of  Q(k,  p) (in  0).

     Proof. Let t  E  Q(k,  p). Since  Hk-1'1(M  )  = 0, it 

follows from Proposition 1.2 that  Ht-i'1(Mt) H(Mt). Hence 

                          0

 k-1  1 d
im H'  (Mr) = p for any t  E  0(k, p). Therefore we see from

 k-11Theorem 9.1 that dim H;'(Mt)  >pfor everyt0in the closure 

                         0 
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of  c(k,  p ). Proposition 10.4 now follows from this fact and

Proposition 1.2.

    We shall apply Proposition 10.4 to the study of isolated singular 

points of complex hypersurfaces.

Let  f(zi...., zn+1) be a polynomial function on C114.1

where n  > 3. Assume that f(0) = 0 and that there is a neighborhood

 U of the origin  '0 of  Cn+1                                such that the  differential  dfz does

not vanish at each z  E U {0}  .

                         2n+2 L
et S2n+1(r) (resp. B (r)) be the sphere  (resp. the open

ball) in  Cn+1                  of radius r centred at the origin, and let 

be the real polynomial function on  Cn+1                                       defined by (z) =

 XIzil2. Now consider a smallwith B2n+2(E) u s2n+1()  c U,
1

and let M (resp. V) be the intersection of the complex hypersurface

 f-1(0) with the sphere  S2n+1(c) (resp. with the open ball B2n+2(0). 

Clearly V is a relatively compact open set of  f-1(0) and M =  V.

Milnor [18] proves that, for  c sufficiently small, M is a

                                                                                    -1 
smooth real hypersurface of the complex hypersurface f (0), that
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is, the differentials  df
z,  dfz and  dcz are linearly independent 

over  0 at each z  E M. (He also shows that both M and V are 

connected.) Fix such an  e from now  on.

We assert that M is s.p.c. in  f-1(0) and V lies inside

M  W. Indeed let  ci be the restriction of  c to  f-1(0). Then

 7   2
M (resp. V) is defined by  ci =  E-  (resp.  by  ci <  E-) and the 

quadratic form  L(cl)z(X, =  y IXzil2                                          X  E  S(Cdz, is positive
1

definite at each z  E M, proving our assertion (see 2.3). We have 

thus known that V is a  s.p.c. domain in the complex hypersurface 

 -1 
f (0) with a single isolated singular point, the origin (cf. 

Gunning - Rossi [4]).

    Theorem 10.5. Let p be the Milnor number (or the multiplicity) 

of the isolated singular point ([18]). Then we have the inequality 

        p  � dim  Hn-1,1(M) + dim  Ho

Proof. Let  0 be a small open disk in  T centred at the origin.

We define an open set M of S211+1(E) by M = f-1(0) n 52n+1(6),

and consider the proper map  7  :MD z  E  0. Now the fact
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that the differentials  df z'  dfz  andz are linearly independent 

at each  z  E  M  7-1(0), means that the map  S2n+1(6) z  -4- f(z)  E  C

is of maximum rank at each z E M. Therefore for  Q sufficiently 

small, we have : 1°. M is a fibred manifold over the base space 2

with projectionTr ; 2°. Each fibre Mt =1-11(t) is a s.p.c.

real hypersurface of the complex hypersurface  f-1(t). Furthermore 

if we put Vt =  f-1(t)  n  B2n+2(E), t  E  0, we see that Vt is a

relatively compact domain of  f-1(t) and lies inside Mt =  DVt

The notation being as in Proposition 10.4, we now assert that 

 Q  -  (0) c  c2(n,  p). Indeed, let t  E  Q  -  {0} . Then we have

 Hn-1,1(Mt) = 0 and Hn(Mt)  Hn(Vt) by Theorem 10.3. (Note that 

there is a neighborhood  M't of Vtu Mt in f-1(t) such that 

 M' is a Stein manifold.) On the other hand, Milnor [18] proves 

that  p = dim  Hn(Vt). We have thus shown that t  E  0(n,  p),

proving our assertion. Theorem 10.5 is now immediate from 

Proposition 10.4.

Remarks. (1) Let t  EQ -  {0}. Milnor [18] proves that
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0 H(V)  (C
, 

 Hk(Vt) = 0, 1  < k <  n-1.

It follows from Theorem 10.3 that

Ho(Mt) C, 

 Ho(Mt) 0, 1  < k  <  n-1.

     (2) There naturally arised the question of whether, in 

Theorem 10.5, equality  " =  " holds in general or not. Concerning 

this question, Naruki has recently succeeded in obtaining the exact 

expression of the Milnor number p. The result is

(N. 1)p= dim Hn-1'1(M)+ dim Hn(M)- dim4-1(M) 

                            0

(cf. [21] and [22]). For the details, see the forthcoming 

papers of Naruki.

    Note that this equality remains valid even if M is replaced 

by  Mt, showing that the Milnor number p is an invariant of the 

family {NI}          tt
eQ

Naruki has also proved the following facts  : 

(N. 2)  HP'cl(M) = 0 for any pair (p, q) with p + q  / n - 1,
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n and q 0 

p + q = n -1

(N. 3) 

Note

fact due to 

   (3)

function f(z 

the origin 0 

for any  6 > 

 s.p.c., real 

basic field

vCT
 1 

 E  �  IT, then 

associated to 

By Propositio 

this fact  rep

 , n  - 1, and the groups  HP'q(M), where

or n and 1  < q < n-2, are mutually isomorphic  ;

 Ho(m)  C, 

 Ho(m) =  0, 1 k  < n-2  .

 that (N. 3) can be also derived from (N. 2) and the

[18] :  H0(M) C and Hk(M) = 0, 1  < k  < n-2.

The Ricci operator. For example consider the polynomial 

f(z) = z2 + + zn2+z        1                       n+1(cf. Milnor [18]). Then

is the only isolated singular point of  f-1(0) and,

0, the intersection M = f-1(0)nS2n+l                                             is a compact

hypersurface of f-1(0) (see 11.2). Let be the

 on  M
E corresponding to the basic form  0  

,  (f.  being the restriction of  z. to  M
E  If

it can be proved that the Ricci operator  R, 

the pair (Me,  ) is positive definite everywhere.

7.4 it follows that  H°  (%4  ) = 0, 1  5 q  � n-2, and

Naruki's result (N. 2) in this special case. 
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In  general (N. 2) can be easily obtained, once we  have'established

(N. 2')  H0'q(M) = 0, 1  s q  s n-2.

(This is based on the fact that both E = T(Cn+1)IM and E/T(M)

are holomorphically trivial.)

     (4) In an analogous way to the proof of Theorem 10.5, we shall 

be able to apply Proposition 10.4 combined with Theorem 10.3 to the

study of more general types of isolated singularities by considering 

appropriate deformations of the singularities. (Before proceeding to 

the applications, it will be first necessary to generalize 

Proposition 10.4 so that the parameter space  Q will be allowed to 

have singularities.) Thus we shall obtain certain results on the 

singularities which will generalize Theorem 10.5. We want to take 

up this problem at another occasion.
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III. Normal strongly pseudo-convex manifolds

     §11. Normal strongly pseudo-convex manifolds 

 11.1. Normal s.p.c. manifolds. Let M be a s.p.c. manifold.

Let S be the s.p.c. structure of M, and (P, I) its real expression. 

Recall that a vector field X on M is analytic if it leaves the 

structure S invariant or [X,  r(S)]  c  r(S). This condition is 

equivalent to the following two conditions : 1) X is an infinitesimal 

contact transformation on the underlying contact manifold, 2) X 

leaves I invariant or [X, IY] =  I[X, Y] for all Y  E r(P). We

also note that X is analytic if and only if the image of X by 

the natural injective map T(M)  --4T(M) is a holomorphic cross section 

of  T(M).

    We say that M or the pair (M,  E) is a normal s.p.c. manifold 

if M admits an analytic basic field  E  .

    Remark. It is known that the Lie algebra  M(M) of all analytic 

vector fields on M is of finite dimension  n2 + 2n, where dim M 

= 2n - 1 (Tanaka [27] and [28]). Therefore if M is normal
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and compact, the set of all analytic basic fields is endowed with 

the structure of a finite dimensional manifold as an open set of 

 CUM).

Let  (M,  E) be a normal s.p.c. manifold. Then the basic 

field  E leaves invariant the associated tensor fields  e, w, I,

g and h(= g +  e2). It follows that the canonical affine connection 

v is invariant by  E, i.e.,

 [,  VxY] =  xiY  Vx[C,  Y], X, Y  E  r(T(M)).

We have

             1       T —2IL= 0

and hence

 V  Y  =  L  Y.  E  E

Therefore the curvature  .R satisfies

 R(E, Y) = 0.

Furthermore by using Proposition 3.5, we can verify the equality 

R(IX,  IY) = R(X, Y).

    We remark that the collection {I,  E,  e,  h} gives a normal
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contact metric structure due to Sasaki [25]. Accordingly the 

results on normal contact metric structures are applicable to our 

study on normal s.p.c. manifolds.

Here are two important classes of normal s.p.c. manifolds: 

Class (I): The class of normal s.p.c. manifolds  (M,  E) such

that is induced from a  U(1)-action, i.e., the toroidal group 

U(1) differentiably acts on M (in the right) and is induced 

from the 1-parameter group of transformations  :  Mx1123 (x,  t) —

x.et1/717  E  M

    Class (II) : The class of normal s.p.c. manifolds (M,  E) such 

that  E is induced from a  U(1)-action and such that the  U(1)-action 

is free.

For example, the unit sphere  S2n-1 in Cnis a normal

s.p.c. manifold entering class (II), where the analytic basic field

 E is induced from the U(1)-action : s2n-1 x  u(1)  D (x, a)

ax e S2n-1
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      11.2. Weighted homogeneous polynomials. Let  f(zi,...,  zn+1) 

be a weighted homogeneous polynomial of type (a1,..., an+1), where 

 a1,'  an+l are positive rational numbers (Milnor [18]). By

definition the polynomial f satisfies the equality

al an+1

(11.1) f(e  z ezn+1) = e-f(z zn+1) 
                           -_

 for  every complex number c.  Clearly  we have  f(0) = 0. We assume 

that the origin 0 is an isolated critical point of f. It is then 

easy to see that the origin is the only isolated critical point of f.

We put  M' =  f-1(0) -  (01  .

Lemma 11.1. Let z  E  M. 

„ r  1  n
 (1)

i (Z)  Z.           1 U i 

(2) The differentials  dfz'  (ffz and  ckz are linearly

independent over  C. 

    Proof. By differentiating the both sides of (11. 1) in

                                    r af the variable c at c = 0
, we have2 ,(z)z. = f(z) = 0. This                                             1az .                           1 1

proves (1). Suppose that we have a linear relation  : 

 adfz +  (3drz + = 0,
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where  a,  S., y  E C. Since df =  y  of dzand= y z.dz.  + 
                          i  3zi 

  z.clz.itfollowsthatjf--(z)+yz.=0, 1  � i  �  n+1. 
                                                   z.

1 1

Therefore by (1) we obtain y1—lz.12 = 0, whence  y = 0. 
                                 a.i

1 1

Since df 0, we have  a = 0. In the same way we get  S = 0,
 z

proving  (2). 

     For every positive number r , let M(r) be the intersection

                                              -1 
of the complex hypersurface f(0) with the sphere S2n+1(r). Then

we see  from Lemma 11.1 that M(r) is a s.p.c. real hypersurface of 

M'  (cf. 10. 2).

We shall now show that the s.p.c. manifold M(r) is normal.

 n+1Define a 1-parameter group of  holomorphic transformations of  C“ 

 {Tt} , by

 t/T 
 a.

 Tt(Z)  (ZI Zi+1')z! = ez..

2n+1Clearly ITOleaves invariant M', S"--(r) and hence M(r). Let 

 C be the vector field on M(r) induced from the 1-parameter group

 {Tt  1  M(r)}
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    Lemma 11.2. The vector field  E is an analytic basic field on 

the s.p.c. manifold M(r).

    Proof. LetTi..be the restriction  of z. to  M(r). We define 

a 1-form  e on M(r) by 

         v7r  ,
 Ti  d

where  X is the positive function on M(r) defined by 

          A= . a.-157- 12.
1 1

If we denote by  1 the injection M(r)  -->  Cn+1, we have  T.  di

 i*dnc, . Hence  e is a basic form on M(r) (see 2.3). Now it is 

                                                r-717-
 clear  that.is analytic.  since c97i=-===a . i, we see easily

1

that  E is the basic field corresponding to the basic form  0, proving

Lemma  11.2.

    Note that the normal s.p.c. manifold (M(r),  ) or exactly 

(M(r),  cE) with some positive rational number c enters class (I), 

because  ai are rational numbers.  Consider the special case where

a.

f(z1,...,z 11+1)=Y(z.),a.being integers  > 2. Then the
1

manifold M(r) is well known as a Brieskorn manifold of type
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 (a1'  an+1).

     11.3. Normal s.p.c. manifolds entering class (II). Let (M,  E ) 

be a compact, normal s.p.c. manifold entering class (II). Then we 

know the following :  1°. The orbit space M =  M/U(1) becomes a

differentiable manifold so that M is a differentiable  U(1)-principal

bundle over the base space M  2°. The contact structure P defines

a connection in the  U(1)-principal bundle M and the basic form  e 

is the connection  form. Let  M' donote the  C*-principal bundle over

M which is obtained from the  U(1)-principal bundle M by enlarging 

the structure group  U(1) to  C* =  GL(1,  C).

Lemma 11.3 (cf. Hatakeyama [6]). (1) M becomes a  Khlerian

manifold in a natural manner.

     (2) The  C*-principal bundle M' over M becomes a holomorphic 

principal bundle in a natural manner and the s.p.c. structure S of 

M is induced from the injection M M'.

Proof. Let  7 be the projection M  -+ M. Then there are  a

unique almost complex structure I and a unique Riemannian metric g
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on M such that  Tr*IX =  Iff*X and g(X, Y) =  g(7*X,  Tr*Y) for 

X, Y  E  P  , x  E M.  Let  w be the fundamental form associated with
 x-

the hermitian structure (I, g). Then we have  7*(1) =  W =  -de  3

whence  d(70 = 0. This shows that (I, g) is a  KUhlerian structure, 

proving (1). As for assertion (2), we shall only explain how to 

define the almost complex structure I' on M'. Let ZR(resp  ZI) 

be the vector field on M' induced from the 1-parameter group of

right translations M° x R  3  (x, x•e  E  M' (resp.  M' x  R  3  (x,  t)

 i717   x .et e M'). Then there is a unique almost complex structure

I' on M' such that I' is invariant under the right translations 

and such that I'X = IX for  XEP,  x  E  M and  I'ZR =E=zI 
                              xx

for x  e M.

Now let F be the holomorphic vector bundle over the  Kffhlerian

manifold M associated with the  holomorphic  C*-bundle. Then we assert 

that the line bundle F is negative in the sense of Morrow - Kodaira 

[19]. Indeed, as we have already remarked,  e or preferably  v=re 

difines a connection in the  U(1)-bundle M over M. The curvature
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of this connection is  i=fde  -v=r  w  =  4=1-7*(1 . Hence the Chern 

class of F is represented by the 2-form  2
7v_lw = -  W  27

proving our assertion.

Conversely let F be any negative line bundle over a compact,

complex manifold M, and M' the associated  C*-principal bundle. 

Then we have a canonical  U(1)-reduction M of  M' such that M is 

 s.p,c. in  M'. (We can see this fact from Theorem  7.4 of  [19].) 

Let  E be the vector field on M induced from the  1-parameter group

of right translations M x  9  (x,  t)  --  tV-1                                                 E M. Then we find

that  E is an analytic basic field on M and hence that M is 

a normal s.p.c. manifold entering class (II).

     11.4. The operator N. Let (M,  ) be a compact, normal 

s.p.c. manifold. For every k, we define a differential operator

N :  Ak(M)  >  Ak  (M)

by

 N  =  /=TLE  (5)  =  i71  p  ),  CfE  A(M)  •

 k
For any  90  ,  i  €  A.-(m), we have
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 <N  T  ,  -(1)> =  <  T, Nip> +/71:  <  T  ,  /p>  .

Therefore we see from Proposition 3.6 that the operator N is 

self-adjoint with respect to the inner product ( , ).

     The operator N leaves invariant the subspaces  AP'q(M) and 

 p,q,., CtpJ, and commutes with the operators d,  S, d",  6", etc. It

follows that the operator N operates on the cohomology groups,

HP'q(M) and H1:-1'1(M), as well as the spaces of harmonic forms, 

13,c1k-1, H(M) andH1
,(IA).

    The groups H'cl(M) and the spaces HP'q(M). For each     (X) (X) 

A  E  R, we  define  a subspace  HP'q(M) of  Hl''  `1(M) by  (X)

        H(X)'cl(M)  = {5E HP'q(M)  1 NY)=AT }. 

Every  T  E  HM(M)  satisfies the differential equation

 (A" + N2)so2 y. 

Since the operator A" + N2 is a self-adjoint, strongly elliptic 

differential operator, we see that  HP'q(M) is finite dimensional  (X)

(for any (p, q) and any A) and that the eigenvalues of the operator 

N :  HP'cl(M)  --3^HP'cl(M) form a discrete subset (without accumulating
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point) of  IR. Since  HP'cl(M) is finite dimensional if q 0,

 n  -  1,  we  have

 HP'cl(M) = HP'cl(X)(M) if q 0, n - 1. 

Since N#A =  -#AN and  #AHP  '  (M)  =  Hn-P'n-q-1  (M)  , we have

          #A(X)( -H,qrm,Hn-pn-q-1 (4). 

Now, for each X E IR, we define a subgroup HP'cl(X)(M) of HP'cl(M)

by

   ,ct    H(X)(M) = { c E HP,c1(M)  I Nc = Xc  }.

Clearly we have

           P'q  H
(A)(M)H(X)(M).

    -1 ,1-11 The groups H
*k,(A)(M) and the spaces Hk„,(X)'(M). In the same

 k-11,„IN  TTk-11way as above, we define the subgroups  1-1;9(i)(M)  c  1-1; (M) and 

the subspaces  Hk-'(M) c H,,k-11'(M). Then we have  *
,(x)

k-1k-1,1 H1(m) y H*(M), 

 k-1,1k-1,1  H
* ,  (x)  (M) H*,  (a)  (m)  .

     Note that if the normal s.p.c. manifold M enters class (I), then 

the eigenvalues of the operators N :  HP'q(M)  >HP'cl(M) and N  :
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 k-11 H:  ' (M)

     In 

 k-1,1  H
* ,  (A) (M)

 ---->H 

§13, we

and H

k-11 
„'(M) are

 shall make a

(M)

all integers. 

detailed study of the groups H13,c1(M), (A)
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 §12. The double complex  fe'cl(M),  B,  a  )

     In this section and the subsequent section, (M, will 

be a compact, normal s.p.c. manifold of dimension 2n - 1  > 5.

12.1. The fundamental operators. We put as follows  :

Bk(M) = Ak(CP)*c Ak  (M), 

 BP'q(M) = APS*  0  Acig* =  BP+q(M)  n  CP'q(M).

Then Bk(M) is equipped with the inner product < , > as a subbundle 

of  Ak(M), and

 B(M) =  y  BP'cl(M).
p+q=k

The operator  *B. For each k, there is a unique operator 

 * Bk(M)  B2n-2-k(M)

having the following properties 

             1) *B is a real operator,  i.e.,  *B(f=  *Bcp;

 2)  <5),  I>(de)n-1 =  (n-1)! 97 A  ; 

3) *B*B5,  (-i)k(F ., 5,  E  Bk(m).

    The operators L and A. By using the cross section w = -  de 

of  B1,1(M), we define an operator 
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k+2
L  :  Bk(M)  B (M)               k+2

by  L =con(f,  TEBk(M). 

Let A be the adjoint operator of L with respect to the inner 

product < ,  >. We have

 A9 =  (-1)  *BL*B  ,  e  B  (M)  .

Lemma 12.1. 

 k
 ALT  =  LA  +  (n-k-1)  ,  E  B"  (M)  . 

We put as follows  :

 Bk(M) =  r(Bk(M)), 

        ,q_n,q  8' (M) =  r (Br (m)  )

Then  Bk(M) is equipped with the inner product ( , ) as a subspace 

of  Ak  (M)  - 

The operator  N. Consider the self-adjoint operator N A k (4)

 Ak(1) which leaves invariant the subspace  Bk(M). The operator 

N  :  Bk(M)  ---->  Bk(M) leaves invariant the subspace  BP  (M)  , and 

commutes with the operators  *B, L and A.

    The operators  a,  4, and  ,;5 Let  E  BP  'c  (M)  . As is
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easily observed, the exterior derivative ayeasily observed, the exterior derivative ay can be written uniquely 

in the form  :

 d  E  ay  +  a  9)  (mod  0  )  , 

where  BYIE  Bp+1  ,  q  (M) and  5TE  BP  '  c1+1  (M)  . In this way we get operators

 5- Bk (M) Bk+1 (vi)

with  aBP'cl(M) c  BP+1  (M) and  7BP'cl(M) c  BP  '  c11-1  (M)  . Clearly we have 

have  a  y =  ay . Note that the operators  a and  a depend on

the choice of the analytic basic field  E 

    Let  to and be the adjoint operators of and                                                        and

respectively. We have ;5  17 and  /9- = -  *BB 

     In terms of the canonical affine connection v  y and  49-9,  ,

     p,q 
 9B(M), may be described as follows: 

 (ay)(xl,...,  Xp,  )71,.06,  '7c14.1)

 (-1)P  y  (-1)j4-1(v)7.9)(x  x171;,j'...,q+1)' 

 ($Cf)(X1,...,  Xp, 

 (-1)P+1 
k-(vp,ci)(xl,...,Xp, ek,,q-1),

where  X1,...,  X-11  ' Y1YE S 
              -'-C1+1x.

107



 2
Lemma 12.2. (1)  9- =  a = 0 and 

 +  =  LN.

(2)  4  2  _  ;672  =               0 and 

 +  =  AN.

Proof. Let E  BP'cl(M). Then there is a unique a  E  eq-q(M)

such that

 d =  (  ±  ) +  A  a  . 

Since  L =  _jay , it follows that a  L  -  TNTE  BP  (4)

Hence

 (12.1)  d  if =  (9 +  Cp -  1  0  n  N  . 

Since  de = -  a), we find

 (B  a)23)  ^71-  W  A  N  99  (mod  e  )  .

This  cle'arly means

         2         a9—2g  +  (DT  + )9  =  -V71-  LN  , 

from which follows immediately (1). (2) is is easy from (1).

The first assertion of Lemma 12.2 indicates that the collection

{  e'l(M),  a,  T gives a double complex (in a generalized sense)
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where the relation  as +  as  = 0 is not satisfied.

Lemma 12.3.

(1)  TA  -  AT  =  BA  -  /1  = 

(2)  kL  -  Lk  =  -  =  7T  T. 

(3)  T.,75  +  7=  0,  a +  a  =  0. 

The proof of this fact is just analogous to the case

 Ohlerian manifold  (e.g., see [19]). We also note that 

commutes with  B and  T (resp. with  .6 and  3  ).

    The operators  ^ and  III  . Let  ^ (resp.  ^ ) denote 

operator  k  T +  7,9- (resp.  Sa

Lemma 12.4.

 ^ +  (n  -  k  -  1)N  =  E  Bk(m).

Proof. By (1) of Lemma 12.3, we have 

 (3-5- +  Ta)A -  AP5 + =  i=f (E  -  p).

Therefore it follows from Lemmas 12.1 and 12.2 that

(  ^ -  ^  )  1), = (AL -  LA)N = (n - k -  1)N(?.

of

L

a 

 (resp.

the
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    12.2. The complex {  BP'cl(M), In this paragraph we 

shall observe the complex {  BP'cl(M),  a }. The  cohomology  groups of 

this complex will be denoted by  HP'q(M).

For any X, Y, Z  E r(S), we have 

    V-(fZ) =  fv-Z +  gf•Z (f  E  TF(M)), 

     V-X(V-YZ)-V-Y(V-XZ) -  V- - Z = R(g,-i7) =  O.   [X,Y]

This fact means that S becomes a  holomOrphic vector bundle over the 

s.p.c. manifold M with respect to the operator  -5-s  :  r(S)---i)r(s

defined by 

 (fsZ)(R) =  vXZ,  X,Z  E  r(S).

    Remark. Let  E' be the image of the analytic basic field  E 

the natural map  T(M)- T(M)  (=  TT(M)/g), being a holomorphic cross 

section of T(M). Let  CE' denote the  1-dimensional subbundle of 

T(M) spanned by  E'. Then the composition of the natural maps 

S T(M) and T(M)  T(M)/CE' gives an isomorphism of  S onto 

 T(M)/CE' as holomorphic vector  bundles.

S being a holomorphic vector bundle, so is  FP =  APS*. Just

 S*)

by
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as in the case of the complex  {CP'cl(M),  d"} , the space  BP'cl(M) 

may be identified with the space  el(M,  FP), and  (-1)135Fp  .

Therefore from the general harmonic theory developed in §6, we know

the following (cf. 7.2)  1°.  HP'cl(M) = { 9  E  BP'cl(M)  I = 0 }

is finite dimensional for any (p, q) with q 0, n - 1 ; 2°.

 HP'cl(M)  2-="  HP'cl(M) for any  (p,  q).

We define operators

R, R(1),  BP'q(M) -4-  BP'cl(M)

respectively as follows  :

 (R  9)  (Xi,  ,  Xp,  Yi,  , Yq)

= X  (-1)3 92(X                           R(ek,.., X                       1,.9                     k'3'p'ek'Y3'°." i
,j,k 

                               ith  place

 ( (R1)*  y)(X1,...,  Xp,  Yi,..., 

=  y  X
p,

 ( (R2)
*  Xp,  Yq) 

 =  I  (y  (X1,...,  R*Xi,...,  X
p,  17q),

where  9 E BP'q(M) and X1,...,  X
p, Y1,..., Yq E Sx.  Note  that
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these operators are all  self-adjoint with respect to the inner product 

< , >  . Using these operators, we further define  self-adjoint 

operators

Q,  Q2 '                  : BP,c1.(M) BP,ct(M)

respectively by

13'cl = RR( Q
i1)* 

 QP'q =RR(2)'  2- 

 Qp,q R  n-q-1 (1)q   R(2)  n -1R+ 

        * 

 n-1  *

Let us now define semi-norms  11  II  g and  q  h in  BP'cl(M)

respectively by

 II  ?  ( <  ,  vo,  > ) dv, 

 II  ?  Vs  =  f  ( <  Ve  cf  ,  Ve.?  > ) dv.
Then we have the following 

Proposition 12.5 (cf. Theorem 5.2). For any  T  e  BP'cl(M),

we have the equalities  :

(1)  (  ̂ 59,  9') =  II  T  112 -  q(1\19),  9)) +  (QPI,c19),

112



(2) (  01F,  (f) = +  (n-q-1)  (NT  , +  (tc19),  s9). 

(3) (  (5)  , (5, )nngll 1/qs2(Qp,q ,  )                     II2I'n_i!ITE 

12.3. The groups HP'cl(X)(M) and the spacesHP'clX)(M). The                              (

 self-adjoint operator N :  Bk(M)  3  Bk(M) leaves invariant the subspaces 

 BP'cl(M) and commutes with the operators etc. Hence it 

operates on the cohomology groups  HP'cl(M) as well as the spaces of 

harmonic forms  HP'cl(M). In the same manner as in  11.4, we define 

the subgroups  HP'cl(M) c  HP'q(M) and the subspaces HP'(M) c HP'cl(M).  (X)(X) 

Then  HP'cl(M) is finite dimensional (for any (p, q) and any  A ), and

we have

 HP  (M) = HP'cl(M) if q  0, n - 1,            (X) 
         A 

 1 ,c1 H
(X)HP (M)  • (M)-2--(X)

Let #B denote the operator  Bk(M)  *ET  EB2n-k-2(M). Then we

                                                a have N#B =  -#BN and #BHP'q(M) = Hn-o-1"n--1(M). Hence 

                               n-          # HP ' (m)  =Hp-1n-q-1(M)•        B (A) ( -X)

We also note that the eigenvalues of the operator N :  HP'cl(M)  ---> 

  ,c1 HP(M) are all integers , provided M enters class (I).
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By Lemma 12.4, we have

Proposition 12.6. If X > 0 and p+q <  n-1, then  HP'cl(M) =  O.  (X)

On account of Proposition 12.7 below, we know that Proposition 12.6

generalizes  Nakano's vanishing theorem concerning negative line bundles 

over compact complex manifolds (e.g.  [19]).

     For the rest of this paragraph we assume M to enter class (II). 

 Consider  the holomorphic  C*-principal bundle M' over the compact 

complex manifold M = M/U(1) and the associated line bundle F

over M (see 11.3). For any integers p and m, denote by Op(Fm)

the sheaf of local holomorphic p-forms with values in the line bundle 

Fm, the m-th power of F. That is,  OP(Fm) is the sheaf of local

holomorphic cross sections of the holomorphic vector bundle Fm,p 

                   * Fmeg(T(M)). As is well known, the q-th  cohomology group 

 Hq(M,  OP(Fm)) of the sheaf  OP(Fm) is isomorphic with the cohomology 

group  Hq(M,  Fm513)(the Dolbeault isomorphism).

     Proposition 12.7. For any integers p, q and m, we have the 

isomorphism  :
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HP'q(M) Ha  (M, SID(Fm)).  (m)

Proof. Put

BP'q(M) = { BP'q(M) I= m  }. cm)

Then  9 E  BP'cl(M) is in  BP(n11(M) if and only if 

          Ra*9) = a-m99 , a  E  U(1)

where Radenotes the right translation M 9 x--->x.a c M. To prove 

Proposition  12.7, it is sufficient to show that there are (natural)

isomorphisms  BP'11;1(M)  3T  ,  ip  E  cq(M,  Fm'P) such that  ((9) = 

 (-1)13 aFm'P 4,  c 13017(M).
Let  7'(resp.  7) be the projection of M' (resp. of M) onto

M. M' being a holomorphic principal bundle, we have an open covering 

{U } of M and, for each a, a holomorphic trivialization (1)
 a 

 _1
 7°  -(U

a)  3  z  (7'(z),  fa(z))  E  Ua x  C*. Let  {ga3} be the 

system of (homolorphic) transition functions associated with the

trivializations(I)
a. Then we have

f
a(za) = f(z)a,

f
a(z) =  g(1(7'(z))  f  (z), z E 7'-1(Ua), a  c  C*.
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Now let u  be  the  restriction  of  f  to 7-1 CU  ).  Then  u
a  a  a a

a holomorphic function on the s.p.c. manifold M : d"u
a = Duct =

Furthermore from the equalities above for f
a, we obtain

R* u = u  •a, a  E  U(1),
a a a

 u
a/uB =  7*g  .

Take any 9) E  BP'l(M) and put sco
otaum.90.Then we have,  (111)

for any a  E  U(1),

  R*
aa               a= (R*u )m.R*yuma-am-a-m -T  . 

  a and  J  9a= 0. It follows that there is a unique  eia E  CP'cl(U 

that Tot = 711>a  . Let a and  IS be such that  Ua n  Uf3

Then we have

                                                                   m_        = (uju)my)m , whence 45a = (gad9)(3  aa(3aI3 

This means that the collection  Igial defines an element, say 

of C'(M, Fm''D               ). It is easy to see that the assignment  9' 

gives an isomorphism of BP'cl(11.0(M) ontoelk Fm'P). Let  T 

Since  5 =Tr*d"61and5u= 0, we see that 
 a)aa

                                  m- T  T =-T(um  •) =-T(um) A 5)a + u 

                                    a 

  aaa
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0.

 a)

 g)

 9'

P B
,

such

 () (m)



                               = uTr*cl                         a-m ict  , 

whence  (a 9')a=  d"fa. Since  (-1)P  2 is defined by themp 

ti

collection { d" , we get  (TT) =  (-1)1) a m. We have thereby 
                                                 F'P

proved Proposition 12.7.

12.4. Normal s.p.c. manifolds with vanishing curvature. Let

n be an integer 3. Let  g                            =9
i=ibe a graded Lie algebra over

 JR and let I be a complex structure on the vector space  gI. For 

the pair  (f, I) assume the following:

1)  oh_ =  0 if  i  > 3, dim  ?2 = 1 and  dime  (71 =  2(n-1)  ; 

2) [IX, IY] = [X, Y]  , X, Y E  

3) The hermitian quadratic form  gi  9 X  --> [IX, X] E  g  2  (=-  IR)

is definite. 

     Let G be the simply connected Lie group whose Lie algebra (of

left invariant vector fields) is given by  ¶. Consider the exponential 

map exp  —) G. Then exp is a diffeomorphism of 01,7 onto G,  G2 = 

exp  912 is the center of G, and
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exp X exp Y = exp (X + Y)  ex4 [X,  Y]), X, Y  E  (31.

We define a subspace  6 of  9/ by 

      =  {X -  vIT  IX  I  X  E  471  .

Then induces a left invariant subbundle S of  CT(M), and, as 

is easily observed, S gives a s.p.c. structure on G. The manifold 

G together with the structure S is called the standard s.p.c.

manifold (cf. [30]). We note that the s.p.c. manifold  G can be

realized as the real hypersurface of  Cn defined by 

 n-1

    Im zn =Izil2. 

     1 

                 i=1 

We fix a base  E of  92 such that the quadratic form  C)13 X  —>

[IX,  X]  Ech is positive definite, where2                                        CTshould be identified 

with  IR w.r.t.  E. It is easy to see that is an analytic basic 

field on G and that the canonical affine connection v of  (G,  E) 

is uniquely determined by the property : Every left invariant vector 

field X is parallel w.r.t. v, i.e.,  0( = 0. It follows that the 

curvature of v vanishes.

Let  r be a discrete subgroup of  G such that the space M =
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r\G of right cosets of G by  r is compact. Then every left 

invariant vector field X is projectable on M, i.e., there is a 

unique vector field  X' on M such that X and X' are  Tr-related, 

 7 being the projection  G M. It follows that the s.p.c. structure 

S on G induces a s.p.c. structure  S° on M in a natural manner 

and that  E° is an analytic basic field on the  s.p.c. manifold M.

Proposition  12.8. 

(1) HP'cl(M) = 0 if  A 0 and 1 < q < n-2.      (A) 

(2)  K(0)  (M)  AP,5*  ®  Aq?" for all  (p,  q).

 Proof. Let  97  E  BP'cl(M). Since the curvature of (M,  E')

vanishes, we see from Proposition 12.5 that  ) E  }{3(a(M) if and only if 

 N =  x(j5, 

 1?  -011 112  =  0,  

II  II  s  (n-q-1)Altfil2  =  0.

                                                                        13,ct Hence H(2̂)(M) = 0 if  X 0 and 1  < q  < n-2, and  9p is inH(0)(M) 

if and only if  v'f 0 (or v(Tr*(f) = 0), where  \7' is the canonical 

affine connection of (M,  E'). Since  vxY = 0 for all X, Y  Eg,
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this last condition is equivalent to the condition that  Tr  9") is left 

invariant. Hence  Pcl(M)  ge  0  cq*,  completing  the  proof  of  (0)invariant. Hence  H-r."-(M)  Are  0  A-le,  completing  the  proof  of  (0) 

Proposition 12.8.

Let e1,...,be a base of Or   1"2n -2dl over  R such that

[e.,e.] = a..E with some integers a.., 
1 3 13

and let

y =  Z•E +  X  Z•e..
1

Then we see that  r = exp y is a discrete subgroup of  G and that 

M =  F\G is compact. Furthermore we see that the normal s.p.c. 

manifold (M,  E) enters class (II) and that the complex manifold 

 M/U(1) = F\G/G2 is holomorphically isomorphic with the abelian 

variety  Cyl/  X  Z•ei.
1
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 g13. Reduction theorems for the  cohomology groups

  ,ct HP(M) and  H
o  (M) (A)

 k-1,1 
    In this section we shall describe the groups  H(x)(M),  H*  (x)(k) 

and  Hk(11  it terms of the group HP'g(X)(M). 

13.1. The groups  HP'(M). Using the basic form  e, we define  (0)

a map

 e(e)  e  Bk-1(M)k(M)

by

 e(0)T =  0  A  T,  c  Bk-1(m).

Then we have

 Ak(M) =  Bk  (m)(13, e  (0)  Bk-1(M) 

 CP'cl(M) =  BP'q(M)  e e(0)  BP  "q(M).

Furthermore the map  e(e) preserves the inner product ( , ), and

    =  (-1)k-1e(e)#10,  TE  Bk-1(M). 

 - - 

 k

    We denote by  fl  M)the space  of harmonic k-forms associated 

with the Riemannian metric h. Let d* be the adjoint operator of

the exterior differentiation d. By definition,  T E Ak(M) is in
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 Hk(M) if and only if satisfies the

We have

#AHk(M)2n-k-1(m) .

We also define subspaces  Ky'cl(M)

by

O'cl(M)={(0)             E Hr'l(M)1 AT 

A 

 KP'q(M) =  e HP'cl(M)  I  LT 
            (0)

Since A =  (-1)k#BL#Bl5'  E Bk(M),

we have

0,q(m)= # Kn-p-1,n-q-1(m),          B A

and by Lemma 12.1,

 Kr  (M) = 0 if p + q  n  - 

O'cl(M) = 0 if p + q  � n, A 

 Tcl(m)  KPA'Cl(M) if p q =

These being prepared, we state the 

Theorem 13.1.

(1)  Hk(m) = ® 0,q(m)                A if 
                p+q=k 

                         122

equations: d =  d*9, = 0. 

and  O'ci(M) of  HP'q(M)  (0)

=  0 } , 

 =  o  1 .

and #=     B(0) (0)

2,

n - 1. 

next two theorems. 

k  n-1.



(2) Hk(M) =  X  e(e)  0°-"q(M) if k 
                p+q=k

Theorem 13.2.

(1) HP'cl(0)(M) = KPA'cl(M) if p + q  <  n-1. 

     0) (2) HP'q(M) = e(e)rp-1'q(M) if p + q     (

From these theorems it follows immediately

I4k(M) = u / HP'q(M).            (0)  p+q=k

Consequently we get 

    Corollary (cf. Naruki [23]). For every

isomorphism  :

Hk(M)  =  X HP'q(M). 
           (0)           p+q=k

    Proof of Theorem 13.1. Every  a  E  Ak(M) 

in the form :  a = 7 a+ e(e)71a, 

where  70a  E Bk(M) and Tr1a  E  Bk-1(M).

Lemma  13.3, Let  a  E Ak(M). 

(1)  Trodot = +  )1-roa -  Larla  ,

 Trlda -  (/171-  NTroa + + 

(2)  Trod*a =  ("9+,6)Troot  v=r  N7la
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that

k we have
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the

be written uniquely



 Trid*a = -  (ATr0a  (,  +/-19Tfict).

Proof. Using (12.1), we obtain

 da  =  dTroa  -  W  A  ffi  -  8  A  dffict 

  =  (a  Dire  -la -  e A  WIT N7
0a +

Hence we get (1). (2) is easily obtained 

     —  „  k„    Let a = +  e(0)11)  e  A(M), where  99 = 

                      k By Lemma 13.3, a isin  H (M) if and only

the equations  :

 f  (  =  ,

(13.  1)

     To prove 

assertion (1) 

from the first

Putting  K
A(M)

(a 

from

 71-0a

if

 (a  +  T)p  =-  v=i-Ny  , 

 ±  is-7)9 = - /71N4) 

 („9+,§Ip  =  -  AT  •

Theorem 13.1, it is sufficent to 

 , because the second assertion

by utilizing the dualities given

         13,cl        K
A(M), we first show    p+q=k
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 (1). 

and 11)

 5, and

verify 

(2) can 

by  #,
 A 

 kthat  fel;

the

be 

and

(M)

 71a 

 satisfy

first 

obtained

 #B

 c  H--  (M)



Let  y)  E  KA(M). Then  o  =,(99).  N  cp =  I1 =  0. By Lemma 12.4 

we have  DT, =  05) = 0, whence  ay =  :5.90 = 0. Therefore  T 

satisfies equations (13. 1) , i.e.,  9' E Hk(M).

Conversely we have Hk(M) c  Kk(M) by the following 

Lemma  13. 4. Let a =  9 +  e(e)lp E  Hk(M). 

(1)  N  =  N  =  0. 

(2) 2  ET + LAT =  21T  a =  -2/-1  n 

(3)  ".) = 0. 

(4)  AT)  =  0. 

(5) = 0, and a =  99 E  KAk(M).

Proof. In the proof below, we shall freely use conditon

(13. 1) and Lemmas 12.1  ti 12.4 without comments.

 (1) Since L  6 =  L  g =  U, we have  L  h =  L  (g +  e-)  0.

a being a harmonic form for the Riemannian metric h, it follows

that  La 0 (e.g., [3]). Hence  Ny =  Nip =  0.

(2) We have

 +  5)(49+ =  (49+,5)14
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The left hand side of this equality is equal to  ^ +  oy)  = 2 

and the right hand side is equal to  L(451+  ,Thlp -  94)). 

Thus we get (2).

(3) We have  TO  (I) =  ̂ a  9 and  TLA9) =  LAT -  V=TL795.

Therefore it follows from (2) that

2  OTT +  LA30 =  ir-T.L*1  .

Analogously we have

2 +  LA(.9 =

From these two  equalities follows that

 20a9 -  LACa9, -  +.,9-92) =  O. 

Hence  a  (aif  _  Dy)  =  -  Tay  =  o.

(4) We have  Laip =  nip =  gc.  +  a  9 =  as = 0, and 

    0 =  AL4 =  LATtp +  (n-k-1)Tip  .

Since k  s  n-1, this equality gives  Aalp = 0. Since  /ET 

it follows from (2) that 

        2  CIA9 + ALA =  2,7=TATip = 0, whence  AT =  0.

(5) Since  A  T = 0, we have  OTT = 0 by (2), whence
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 ay = 0. Analogously we obtain  B' = 0. Hence we have 

   +  Pi) = 0. Therefore it follows that 0 =  ALlp =  LAtp 

Since k  �  n-1, this equality gives  4) = 0. Thus (2)  re

 ^ = 0 and hence we have proved  tp =  0 and a =  E  KkA

     Proof of Theorem 13.2. a  E  AP+CI(M) is in  CP'cl(M) 

only if  Troa  E  BP'q(M) and  Tria  E  BP-"q(M).

Lemma  13.5. Let a  E  CP'cl(m), 

(1)  Tr0d"a =  570a -  LTr1a,

 71d"a =  71a  .

(2)  706"a =  '‘9.70a  ' 

 Tri6"a =  -(ATroa +  ,9  Trio).

     Proof.  TRoa,  LTria  E  BP'crEl(M),  Trria  C BP-1,q+1(m), 

  0a  E/3131-1'q(M) and  N70a, BTria  E BP'cl(M). Therefore

from the equality for da in the proof of Lemma  13.3.  (2) 

from  (1).

    Let a = +  e(0)4) E  CP'cl(M). By Lemma 13.5, a is 

 HP'cl(M) if and only if and  tl) satisfy the equations:  (0)
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 LtP=

   +  (n-k)11)  . 

 reduces to

 (M)

if and

(1) follows 

   is easy

in



    =  Ntp =  0, 

 T9)  =  L  t  p,  q)  = 0

 ,a9.  0,  „9-0  =  -AT  .

To prove Theorem 13.2, it is sufficent to verify the first

assertaion (1) (cf. the proof of Theorem 13.1). Clearly we have

O'cl(M) c HP'(M) A (0)

Conversely we have  HP'cl c O'ct(M) by the following  (0)A 

Lemma 13.6. Let a =  e(e)1P  E  04(M). 

(1)  ^  +  LAT = 

(2)  5aT 0. 

(3)  AT  =  O. 

(4)  4) = 0, and a =  T  E  KPA'q(M).

The proof of this lemma is analogous to that of Lemma 13.4 and

therefore is omitted.

13.2. The groups  HP'(M) X 0. For every non-zero real  (X)

number A, we define differential operators

T •BP'cl(M)  xrel-"Ci(M) g'q(M)  X8P-"q(M) X•
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by

a =  T  A   DV, 

         /7-1- 
      7_02,

where  9)  ,  BP'cl(M),  V  E  Bp-1'q(M) and (a, =  Tx(T,  V). In this 

paragraph we shall identify  CP'cl(M) with the product space 

 BP'q(M)  x  Bp-1'q(M) by the correspondence a  (70a,  71a).

Theorem 13.7. Let (p, q) be any pair of integers, and X any

real number with  IX! >  1. Then the operator  Tx maps  la(M) 

                                            a19,-1 injectively onto HP'c(M) xx)''(M).              (X)

    Corollary  (cf. Naruki [23]). Let  (p, q) be any pair of 

integers, and X any non-zero real number. Then we have the 

isomorphism

    -
„-,, 

HP'(M)x11-r--"(M). (X)(x)(x)

    Proof (of the corollary). The groups  HM(M),  HNI(M) and 

the spaces  HP'cl(M)  HP'cl(M) are all dependent of the analytic basic  (X)  (X) 

field  E chosen. Accordingly we write them exactly as  HM(M,  ), 

etc. Let  AP'q(E) = {X  E  LI2  I HP'cl'                               (ME) 0} and Ap'q(=                        (X)
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  X  E  IR IHP'q(m E) 0  }. Let us now modify  E by a positive        ' (X) 

constant p to consider the analytic basic field  pE . Then we 

have  AP'q(PE) =  p.AP'cl(E) and  AP'cl(PE)  P•AP'cl(E), and

P'q(q PE)2-1HP'cl(M . PE) = HP'cl(ME (PX)'(PX)'(X)") 

- _ - 

HP'cl04 pE)----=HP'cl(M, pE) = HP'c(ME). (PX)'(PA)'(X)'

(Note that the operators  7 :  BP'cl(M)  BP'(14-1(M) are unchangeable 

under the modification.) Since both  AP,q(E) and  AP'cl(E) are 

discrete subsets of R , we can find a p such that  'Xi > 1 for 

any  X  E  AP'q(pE) u  AP'cl(pE) - {0} and any pair (p, q). By

Theorem 13.7, then we have, for any (p, q) and any X  ,

                      P
01 HP'cl (M,pE)-=HP'cl (q,pE)  x H'q-(4nr).  X)(PX)(0

 Thus  we get the corollary.

    Proof of Theorem 13. 7. Let  ey, E CP,q(M). By Lemma 13. 5 

 (f,  IP) is in  li?(M) if and only if  (9),  tp) satisfies the equationssatisfies the equations:

(13. 2)

 N  p=  xy),  Nip =

 a= 

 -15(9 = 0,

 -5-
4)  =  o,

   =  -A  .
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    Lemma  13.  8. If  (9's  *) E  HM(M), then we have  (a,  f3) 
                              -

p-1 Tx(T,11))  E HM(M) x Ho.),q(M).

     Proof. It is sufficient to prove the first assertion that 

                                                        a  E HP'c(M),because the second assertion thatIS E Hn--'q(M) (x)(x) 

be similarly dealt with or rather can be derived from the first 

using the dualities given by #A and  #B.

    By using (13. 2) and Lemmas 12 1  ti 12. 4, we can easily 

obtain Na =  2^a,  Tot =  0 and  ,9a =  ---Aa. (For example,

      v7r /71- /1717  
15 = 4919 x -k9aq.) -   - x @A 

     iTrI=F    =( .D+/liar  -   .na.)

It remains to show  /190( =  0. First of all we obtain 

                1 

 DA9a = -7  a,t.o.

Since A  # -1, it follows that = 0. Furthermore we have 

 Oa  +  ALa  =  —X,pa.

From this equality together with  B,S.a = 0, we have 

 +  = 0.

Hence  ,o 0, proving Lemma 13. 8.

can

by

131



We now define a differential operator

 ux  :  BP'cl(M)  BP'cl(M)

by

   1 - 1 1  U  x=-2 ^( f+ —2 N2Cy+-2 y,  E BP 'Cl(M) 
            2A

which is a self-adjoint, strongly elliptic operator. It is

that the operator  Ux maps  BP'cl(M) injectively onto itself. 

BP'cl(X)denote the subspace of BP'cl(M) defined by

        BP'cl(X)..(TEBP,q(m) INg)= X921. 

                                           1),c1 Then it is easy to see that Ux813(5=-B(x) and 

                                       RP,q      u
x = + ,€.*"(X)

An easy calculation gives the following

Lemma 13. 9. Take any  (59,  11)  E x BP-i'q and put                              (X)

(a,  13) =  Tx(  (p,  -(p). Then we have  :

 1  V7fUx (f aas 

 -  A 

     1/7T U
x=++             X'

Lemma 13.10. The operator  TA maps B(A) x BP-i'q 
                            (X)(X)

onto itself.

clear

Let

 ectively
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    Proof. Let (a,  13)  E x  8P(VI• Then there is a unique 

 'J)  e  BP'cl x Bp-1 ,c1satisfying the equalities in Lemma 13.9.  (X)(X)

have

 1 rf  U
x  (  cp -  a) = -  —7;45a + =  Ux  (   ),                           X' 

  V=T iff whence 7 -067—a .  In  the  same  way  we  get  1p  -  8  =  T. 

We have thus proved  TA to be surjective. That  TA is injective

is clear from Lemma 13.  9.

                              q    Lemma  13 .11. Let (9),4)) E BP'(A)BP-1'q(A) , If (a, 8) = 

 Tx( T,  ip)  c fil)(c)1(m) x  H(x)  (m)  , then we have  (  1p)  c  HPX  (m)

Proof. First we have

 191 = -  ,159

 1Since 1 + > 0, it follows that  81 = 0. Furthermore we can

easily show  i = -  A In the same way we get  DT =  Li and

   = 0
, proving Lemma 13.11.

     Now Theorem 13. 7 follows immediately from Lemmas 13. 8, 13. 

and 13.11.
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 1(_1  1
13. 3. The groups  H;,(6)(M). The main aim of  this paragraph

is to prove the following 

     Proposition 13.12. For any k, we have :

k-1,1 k,0 H
* ,(0)(M) = KA (M) * e(e)Kk-1,0(M) 

               k-1,1           K
A(M)  e(e)Kk-2,1(M).

Corollary. For any k, we have :

 k-1 1 lik*:1(6)1(M) =Hk'0(M) H  (0)  (M)  •          (0)

This fact is clear from Theorem 13. 2 and Propostion  13.12,

Consider the operators A  :  CP'q(M)  CP4-2'cl-1(M),  d'  CP'q(M)

 CP+1'q(M) and  6' :  CP+1'q(M)  CP'cl(M) which were defined in 

8. 1. We have T(X, Y) = 0 for all X, Y  E  T(M)x (see 11. 1). 

Therefore from the formula for  Ay) given in 8. 1, we see that the 

operator A vanishes and hence

 d9 =  d +  d"9:. , 9  E  AP'q(M). 

(Accordingly the collection  {  CP'cl(M),  d°,  d"1 gives a double 

complex in a proper sense.)

Lemma 13.13. Let a E CP,q(M).
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 a0 

let

from 

if

(1)  Trod'a = BTroa, 

     71d'a = -v7rN70a -a71a.

(2)  Tro(S'a =  ..§Troa +  v7r  mria, 

 716'a  =

This is easy from the proof of Lemmas 13. 3 and 13. 5. 

We are now in a position to prove Proposition  13.12.

k-11k 0  k-1,1+  al  EA--'-(M), where  an  E C-'(M)  and  al  E C

 a0 =  To +  e(e)ipo and  al =  Ti +  e(0)i1, where  yo  E 

 k-1,0(M) ,  T1  E  Bk-1,1(M) andBk-2,1(M). Then 

                                              1,1 Lemmas  13, 5 and 13.13 that a is in H,k
,(0)(M) if 

 To,  1P0,  T, and  tp, satisfy the equations  :

 N  =  N*0  =  N  =  =  0,1 

 TO =  40 = 0,

 (13. 3)  "TO -  140  /)1 = 0,  40  41 = 0, 

 5T1 -  Ll = 0, = 0, 

                  = 0,  '9 1P0q)1 =  0 •

                                                  -1,1 First of all it is clear that a  E H*k,(0)(M) if 5p0  E
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 (M).

 Bk,O

 we 

and

 a  = 

 And

 (M), 

see 

only

 Kk'0(M) 

 '



    KL-1'0(M),.1-1,1c 1po  6(M) , EKA(M) and  1p1  E KL-k-2'

 k-1,1 C
onversely let  oc  E  ft*

,  (0) (M)  . By using

12. 1  q, 12. 4, we have  (a  0,  9)1) = 0 and 

        ^ yi + „Fa  +  LA  1=  2VIT

whence

 (0  Y1, +  a  5Y +  (A  Ti,A  5%)

 k-11It follows that  Cf1  E  KR (M) and hence that

k0

 J 0  E KA(M)  .  Furtheremore we easily obtain 

 ^5'  TIP  0 +  0

meaning  at0  = ,340 = 0. Thus we get  91p0  =

 k   0 514  '1914 =  UPI = 0,  .  e  .  ,  -00  E KL (M) and

We have thereby proved Propostion 13.12.

    13. 4. The groups  Ho  (M)  . Since  NSk  (M) 

N operates on the cohomology group H0 (M) . We 

operation on  H0  (M) is  trivial. Indeed, let 

that  d =  0. Then  LO? =  Jd  p  +  ( =

analytic, we have  El  9  E  Sk-1  (M)  . Hence 
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 (M). 

(13. 3) and

=  o.

 9To  = 

=  14
0 = 0

 k-2,
 KL 

 S(M),

assert that

 E  sk(m)

 d&I50.  E 

 dsk-i  043  ,

Lemmas 

= 0, i.e.,

and 

 1 __
 OA) • 

the operator

the 

be such

being 

proving



our assertion.

Consider the exact sequence

 0Hk(M)0H*k-1,1(M)  Hk-1'1(M)

(see Propostion 1. 2). By the remark above, we see that this exact 

sequence induces the exact sequences

 0  Hk(M) Hk-1'1(M) Hk-1'1(M),  0*
,(0)  (0)

          k-1,1k-1  0 4- H*
,(x)(M) H(x),1(M) (A  0). 

 k-11  k0„Since  1-1;,(6(M) =  ;1(0)  (1V!) e3 H(0)(M)  by  Corollary to Proposition

               k-1,11  13
.12 and since the map H*

,(0)(M)H(k0),1(M) is induced from the 

            ,11 orthogonal projection H
*k-10)(M)  ->  H(0) (M), we have the isomorphism 

         ,0,0  Hk(m)Hk(m)Hk(m) 
            (0)(0)

and the exact sequence 

                                    k-11         0 Hk(M)H
* ,(0)k-1'1(M)H(0)'(M)0. 

Therefore we have proved 

Theorem 13.14. For any k, we have  :

            k (1) H
ok(M)  = H' (M).            (0)

 k  k-11  k-11
(2) 0  i  H'6(M)  y H;,(0)(M)->H(0)  (M) 0  (exact). 
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Corollary. Hn0-1(M)HD(M) 

 • 

       2_,-n-1,0nn,0 Proof.  Hn-1(M)  0tt(0)(m)KA(M), Ho (M) = H(0)(M)

 Kn-1,0(M), and KnA-1                    ,0(m) =

This corollary is interesting in connection with Naruki's formula,

(N. 1), for the Milnor number 

                              1,1     13
. 5. The groups H*k

,(A)(M), A 0. In this paragraph we

state the following 

    Proposition 13.15. Let k be any integer, and A any  real

                                       ,1 number withThenk-1(M) is containedinHk-1,1 ,(M) ,         *
,(A)

and

                         -k -2 
                    TX(H-1'(M)) = 0 x H(A)'1(M),  *

,(X)

 k-11  k-21
where  TA is the injective operator of 8-(X)x o -'-onto itself  (X)

given in 13. 2. 

     Corollary. For any integer k and any real number A , we

have the isomorphism  :

 k-1,1-k-2'1 H
* , (A)(M) =H(X)(M).

The proof of these facts is left to the readers as an exercise. 
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Appendix

             Linear differential systems 

In this appendix the differentiability will always mean that of

class C unless otherwise stated. 

     Let  (I) be a sheaf of vector spaces on a manifold M. For each

p E  M,  (I) will denote the stalk of  (1) at p.  rm will denote

the space of cross sections of  (I), and  F0(1)) the space of cross 

sections with compact support of  (D.

Let X be a vector field with compact support on a manifold M.

As is well known, X generates a global 1-parameter group  W of 

transformations of M. The transformation  co which is usually 

called the exponential map generated by X, will be  denoted by  eX.

We have(Dt= etX. For any differentiable function f on M, the             f 

function f0etXis expanded to a formal power series in t as

follows  : 

       tX  tm  tX  t— m  f oe tiXf 
         m!'

 m
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1. Linear differential systems

    Let M be a manifold. 0 denotes the sheaf of local differentiable 

functions on M, being a sheaf of rings. Given a subbundle P of 

the tangent bundle T(M) of M, P denotes the sheaf of local cross 

sections of P. The sheaf T(M) is at the same time an 0-module and 

a sheaf of Lie algebras with respect to the usual bracket operation 

[  •

     By a linear differential system or simply a differentiable system on 

M, we mean an  0-submodule of the  0-module T(M).

Let  0 be a differential system on M. For any integer  i 1,

we define a subsheaf  0k of T(M) inductively  by1 = and

 0 =  [ 0,0] + 0k-1  , 

i.e., each stalk  Ok of  0k is defined to be the subspace of  T(M)

spanned by the elements of the form

          adX1 adX
m-lXm, 

where X1,..., X
m0pand 1sm�i.Clearly we have

 .1 C  c  C
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and

 [(1)k,  OQik+Z.

The union  0' =  uk may be characterized as the subsheaf of the sheaf

T(M) of Lie algebras generated by  0, i.e., each stalk  01 of  0' is

the subalgebra of  T(M) generated by  0  . Note that  012                                                                 and  0'

are all differential systems.

For each p  E M, we define a subspace  V(0) of the tangent

space  T(M) by

V(0) = X  xE  1.

Then the union  V(0) =  u V(0) forms a subbundle with singularities 
                        p

of T(M). The differential system  0 is said to be regular if 

dim  V(0) is constant for all p e M. If  0 is regular, then  V(0)

is a subbundle (without singularities), and  0 =  V(0). Conversely 

if P is a subbundle of T(M), then P is a regular differential 

system and P =  V(P).

    We say that a differentiable curve u(t), a t b, in M is 

an integral curve of the differential system  0 if the tangent vector
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du 

dt 

of

(t) to the 

 T(M)
 u(t).

curve u at any time t is in the subspace  V(4))
 u(t)

2. The transformations  97(h)

Let be a differential system on a manifold M of dimension n.

Assume that, for some point  p0  e M, we have  0' = T(M) or  equiv-
                       p0  p0

alently  VW) = T(M) . Since  P
O  p0

 V(0) =  V(01) c c  V(0k)  c 
 PO  p0  p0 

and  V(0') =  u  V(0i) , there is an integer k such that  V(0k  P
o  Q  Po  p0

=  T(M)  . Putting  n = dim we  , we define a function  p(h) on 
 PO  PO 

 ,Rn by 

 n  1

p(h)  =  y  ihilk h =  (h1,..., hn)  E  Pn. 
 k=1  i=n+1             Z1

Clearly we have 

                  1

                       

1     p(h) = 0(10) at h = 0. 

These being prepared, we shall prove the following 

Proposition 1. To every h  E there is associated a

diffeomorphism  T(h) of M so that the correspondence h  y(h) has
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the following properties :

(1) 9,(h)p is C1differentiable in the two variables h  Elle

and p  E M.

     (2)  y(0) = 1, the identity transformation of M, and the map 

 F:  En  xM  D(h, p)  (p,  T(h)p)  E  M  x  M gives  a  C1 homeomorphism of a 

neighborhood of (0,  po) onto a neighborhood of  (p0,  po). 

     (3) There are vector fields ZA, 1  � A  � N, in  row and

continuous functions sA(h) on  En such that

sN(h)ZN  sA(h)ZA  s1  (h)Z1
 D(h) = e--e  e 

and such that the function  1 IsA(h)I is equivalent to the function 
A

p(h) in the sense that, with suitable positive constants C1 and C2,

C1p(h)  �1sA(h)I  �  C2p(h)'                                       h E R. 

        A

    The proof of Proposition 1 is preceded by a general consideration 

on the exponential  maps. For any real number t and any vector fields

Z1,5Z9
.,Vin Fn(T(M)), we define a transformation(k)(t.Z1,..., Z )    -'----5

                                 tZ 1 
of M inductively  by 0(1)(t; Z1) = eand  0(i)(t;  Z  Zk)

 _t7  tZ

 e (k-1)-11e(k-1)      (t; Z2,'Zk)(t;  Z2'' ,  Zk)  e
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If we put  Nt = 3 x  2k-1 - 2, we see that  0(0(t;  Z1,...,  Zd is a

product of  N transformations of the form eZ,  Z  e  rn(T(M)).

    Using  0(k)(t; Z1, Z ), we now define a transformation 

 T(Z)(t; Z1,...,  Z1) by

 1

 yp(z)(t;  Z1,...;  Zz) =  6(q(107  etZl, Z2,...,  Zi), where 

 et stands for the sign of t, i.e.,  et = 1 if t >  0 ; = 0 if

t = 0 ; =  -1 if t < 0.

Lemma 2.  9(R')(t;  Z1  Zk)p is C1 differentiable in the two

variables t and p.

Proof. Let  x1,  x
n be a coordinate system of M at any

q  e M. Then, in a  neighborhood  of (t, p) = (0, q), we have 

 xi(e(k)(t; Z1,...,  Zdp) =  xi(p) + tk(adZi... adZk_lypxi 

                               Q+1  (k)                                       + t  Ri (t, p; Z1,...,

where the functions R.((t, p;Z1"Zk) are differentiable in 

the two variables t and p. (This fact can be easily proved by 

induction on the integer  2.) It follows that 

                                                                                                 A,xi(T'-'(t;  L1,...,  Zdp) =  xi(p)  + t(adZi...adZz _lypxi
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1  1

              I174p; Itl1*Ri(Z)(t' P'  EtZ1'  Z2,...,  ZR).

Lemma 2 is now clear from this equality.

     Let us now construct the  diffeomorphisms  T(h). Put n' 

= R(no- nR-1).Since V(4)k) = T(M) , we can find n vector 
                    ^"  R=1 p0  p0 

fields Y1,..., Y
n and n' vector fields Zi,m in F0(0), where 

 n+ 1 <  i  <  n 1 m  k and  1  <  R  < k, such that

Y. = adZ.adZ.  Z. if n +1  <  i < n 
1 1,2  Z-1  k

and such that the n vectors (Y  ) (Y)form a base of  1  
POnpo

 T(M) 
 PO

For any h (h1,...,  hn)EIRn, we define n transformations

J(h), 1< i  < n, by

 (k)
 Ti(h)  =(h1Z 

                                    .

1. 
                          '

91'**" Zik) if  nk_1+1  <  i  <  nk 

and define a transformation  9P(h) by

 T(h) =  Tn(h). 

Clearly we have  Ti(0) =  T(0) = 1. Furthermore we see from Lemma 2 

that  Ti(h)p and  T(h)p are all C1 differentiable in the two 

variables h and p.
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    Lemma 3. The map  F:  lexM3 (h, p)  (p,(f(h)p)EMxM gives 

a Cl homeomorphism of a neighborhood of (0,  po) onto a neighborhood 

of  (P0,  Po). 

    Proof. Let  xn be a coordinate system of  M at  p0.

From the formula for  x.(W(z)(t;  Z1,'  Z)p) in the proof of

Lemma 2, we see that 

 1
 1+Q 

 xj(y)i(h)p) =  xj(p) +  (Yixj)(p)hi +  U(Ihl  ) 

                                      if  n2
,-1+1  i  <  nQ.

It follows that

1+1

        xj(T(h)p) =  xj(p) +  (Yixj)(p)hi + 0(1111  K). 

Since (Y1
ponp0))form a base of T(M) , we have  PO 

det((Y.x.
j) (p0))  O. Thus we get Lemma 3 by the implicit function

theorem.

As we have remarked before,i(h)'n+1 i nk' are products                                 k1

 7

of  Nk transformations of the form  e. Hence  9  (h) is a product of

 k

N transformations of the same form, where N =  y  N(n - n) 
                                                                           k-1  Z

=1 

More precisely  p(h) may be expressed as
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 sN(h)ZN  sA(h)ZA  s1  (h)Z1

 (h) = e 

 

•  •  • e  „  „e

1

where ZA is of the form Z. and sA(h) is of the form  ±Ih. 
   1,m 1

1

or ±h .1h. . We have 

 1

1
 n 1

 

IsA(h)1 =  y  N2,  y IhiFf 
 A  R  i=n9

,-1+1

and hence

p(h)  �  y  IsA(h)1  �  Nol(h). 

      A

     We have thus constructed transformations  y(h) having all the 

properties in Proposition 1.

The notations being as in Proposition 1, we define, for any

h  E  Rn and any t with 0  � t  � N, a transformation  So(h, t) by

          (t-A+1)sA(h)ZAsA -1(h)ZA-1s1(h)Z1 
 T(h, t) = e 

                                       if  A-1  � t  5_ A.

Then we have  T(h, 0) = 1 and  52(h, N)  =T(h). Thus vh,  t), 

 0  � t  � N, give a homotopy between the identity and 92(h). Using 

 T(h, t), we now define, for any h and  p, a curve  sP(h, p)

in M by

 0(h, p)(t) =  (f(h, t)p, 0 t N.
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Then we have  f(h,  p)(0) = p and  f(h, p)(N) =  'f(h)p. We have 

ZA  E  r(o), and the curve  f(h, p) restricted to the interval 

 [A-1, A] is an integral curve of ZA. Hence  j(h, p) is a piece-

wise integral curve of the differential system  0 joining the two 

points p and  '(h)p. Therefore using (2) of Proposition 1, we 

have proved

    Theorem 4 (cf. Chow [1]). Let  0 be a differential system 

on a connected manifold M. If  0' = T(M), then any two points p 

and q of M can be joined by a piece-wise integral curve of  t, 

which is a composition of integral curves of vector fields in  F(0).

3. The distance functions associated with differential 

     systems

     Let  0 be a differential system on a connected paracompact 

manifold M. Assume that  0' = T(M).

     Let g be a Riemannian metric on M. Given a differentiable 

curve u(t), a  � t b, in M, we denote by L(u) the length of u
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w.r.t. g. We denote by  d(p, q), p, q  E M, the distance function 

associated with g, i.e., d(p, q) = the infimum of the lengths L(u) 

of all piece-wise differentiable curves joining p and q.

     Taking account of Theorem 4, we now define a new distance 

function p(p, q),  p, q  E M, as follows : p(p, q) = the infimum 

of the lengths L(u) of all piece-wise integral curves u of  t 

joining p and q. Clearly we have

 d(p, q)  �  p(p,  q). 

It is now easy to see that p becomes really a distance function.

The notations being as above, we have 

 k
    Theorem  S. Let  p0 E M and let  k be an integer with  0p 

= T(M). Then there is a neighborhood V of  p0 such that 
 PO 

1 
 .17

p(p, q)  �  L  d(p,  0-, p, q  E V.

Let us apply Proposition 1 to the pair  {(1),  p0}  .

Lemma 6.

    p(p,  (f(h)p)  U  p(h), h  E  flr, p  E M. 

Proof. Since the support of ZA is compact, we can find a
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constant C' such that

1(ZA)p� C',  p  e  M, 1�A 5 N,

where IX! denotes the norm of a vector X w.r.t. g. Let h E

and p  E M. Putting u(t) =  f(h, p)(t), we have 

       dt du           (t) =  sA(h)(ZA)u(t) if  A-1  5_ t A,

whence

 du 

 

laT(t)I  C'  IsA(h)1, 0  s t  � N. 

            A

It follows that  L(f(h, p))  5 NC'  IsA(h)1 . Since p(p,  T(h)p) 

 A

 5_  L((j5(h, p)) and  YIsA(h)I  Cup(h) ((3) of Proposition 1), 

 A

Lemma 6 follows. 

    Remark. Suppose that  0 is regular and that  V(0) is a standard

differential system in the sense of Tanaka [30]. Then we have 

 p(h) =  0(p(p0,  ?(h)po), implying that the estimation in Lemma 6 is 

best possible in a sense. 

                                       1

Proof of Theorem  5. Since p(h) = 0(Ih1k), there is a positive

number (50such that 

                     1

p(h)  5 C01111k ,  Ihl  <o .
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By (2) of Proposition 1 there are a positive number  6 (<  60) and

a neighborhood U of  p0 such that the map F gives a  Cl 

homeomorphism of  U6  =Ux{lli  ,hi <  6}  onto  a  neighborhood W of 

 (po, p0). The inverse map (Fly-1 of  F1U6 may be expressed

as (FIU6)-1(p, q) = (h(p, q), p). Again by (2) of Proposition 1, 

then we can  find  a  neighborhood V of  p0 such that  V  x  V  c  W and

C1 d(p, q)  � Ih(p,  q)I  s C2 d(p, q), q  E V.

Therefore using Lemma 6, we get an inequality of the form in 

Theorem 5.

Corollary (to Theorem 5). Let  1) and g be as in Theorem 5.

Assume further that (Dk = T(M) with some k. Then for any compact

subset K of M, we have 

                       1

p(p, q) C d(p, q)k , p, q  E K.

Let

4 

 0

   Differential 

 be a domain of

systems 

 Rn.

and  Hdlder norms

We denote by  Ifl the maximumnorm
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of a function f in  Co(Q). Given a real number  a with 

 0 < a  � 1, we define the Wilder norm  IfIG of f by 

       Ifla= Ifl + Sup if(x)-f(Y)1  24y  lx-yIG

     Theorem 7. Let X1,...,..Xrbe vector fields on Q. Assume 

that  0k =  T(Q) with some k, where  0 stands for the differential 

system on Q generated by  Xr. Then, for any compact

subset K of  Q , we have

 IfI1 < c(If)ix.f1),   - yf  E C0(K). 

                  1

Let  x0  � Q. We apply Proposition 1 to the pair  {I), x0}  .

Lemma 8.

 l(h)*f -  fl  � C p(h)  IX.fl  ,
1

h  E IR ,  f  E  Co  (Q)  .

Proof. Let h  E  Rn and X  E  Q. Putting u(t) =  (h,  x)(t),

we have

 •\1 

f(D(h)x) -  f(x) = df
c(11-ti(t))dt, f  E  Co(Q).  

•  0

We have

df
dt(u(t))  =          sA(h)(ZAf)(u(t)) if  A-1�t�A,
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and ZA may be expressed as ZA=  y g.AgX.,where. 
                                         1iA

                                          1 

It follows that

df(u(t)) c,1 1(.11),LTII�Xifi01(t)), 0tN IdtI•

Thus we get Lemma  8. 

     Proof of Theorem 7. From the proof of Theorem 5,

a neighborhood V of x0such that 

 1

11(h(x, y)) Colh(x, y)lk, 

 Cljx -  y  �  Ih(x,  y)I  C2Ix  y!, x, y

Therefore by Lemma 8, we obtain 

                               1

 f.(x)  f(Y)1  �  Clix  1X1d
1 

 X, y E V

Now Theorem 7 can be easily derived from this fact. 

          5. Differential systems and  Sobolev norms

    Finally we shall prove the following theorem due to 

 [9].

Theorem 9. Let X1...X
rbe as in Theorem 7.
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any real number with 0 < a <1—Then, for any compact  subset

 C2, we have

 II  1(a) C( 1112 + 11X.1f112), f E CC°0(K) 

Let  x0EQ. We apply Proposition 1 to the pair  (1), x0}.

Lemma 10. For any a > 0, we have

 II  9p(h)*f -  fp2  s C  p(h)2  HX-f112,
1

 1111 < a, f  E  C-0(0).

Proof. From the proof of Lemma 8, we see

                    iN 
 If(T(h)x) -  f(x)I2 CIP(h)2 y IXJ12(5(h, t)x)dt.

 i  )0  -

We have

 

•  -NT 

dx  y IXif12TC(h, t)x)dtC"  IXifi2(x)dx,  

lhi < a,  f E  Co(0).

Thus we obtain Lemma 10. 

     Proof of Theorem 9. Let V be as in the proof of Theorem 7.

To prove Theorem 9, it is sufficient to deal with the case where

K c V. For e > 0, we define a compact subset  Ks of  0

by
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 K  =  {(x, y)  E  W.11  x  le  I  Ix  -  yl  c, x 

Fix an e with  K
5  c  V  x  V. Then, for any  fE

          IITh*f - fq 2 
I=dh 

               Ihl111-20  1
111�s

                   

1        If(x)-f(Y)12 dxdy  � C' 

= 

        Ix-YIn+20-                        I
hHCE 

                                 2

where  Th denotes the translation  IRn 3  x  k-->  x + 

           1 __
 U <k'      < it  follows  from Lemma10that 

 Ie C"  y  HX.f  112

Furthermore we clearly have

 h*f-f  H2                                g2                   dhC"'Efg 

 

1111�6  ihi n+20

Therefore using  HUrmander's lemma ([7], Lemma 2.6 

an equality of the form in Theorem 9.

E K or y  E  K}

 C0(K), we have 

 159(h)*f-f12

 

m  dh
, 

1h1114-2G

h  E  Rn. Since

 .1, p.57), we get
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