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Preface

In 1980 Fall, Professors L& Ding Trdng of Paris VI and
Fluvio Lazzeri of Pisa stayed at the Research Institute for
Mathematical Sciences, Kyoto University for several months. At
that occasion a big group of active researchers in the theory of
singularities, including both resident and visiting members of
the Institute, carried out a series of vigorous seminars of
approximately 60 sessions, which I hope were extremely stimulating

to all participants.

The present volume consists of the lectures given by
Professor Lé Dilng Trdng in these seminars. Mr. Tohsuke Urabe
took the notes and prepared the manuscript. The Department of
Mathematics, Kyoto University has given the chance of publishing
these notes in the present form which, I believe, makes them
easily accessible to a large number of mathematicians. I would
like to express, personally and on behalf of the Research Institute
for Mathematical Sciences, deep thanks to Professor L& Ding Trédng,
to Mr. T. Urabe, to the Department of Mathematics and to all the
participants of the seminars. Thanks are also due to the secre-

taries of the RIMS for their splendid typing work.

There is a plan to publish the notes of other lectures of
the seminars. Many of them will be written in Japaneserand will
appear in other places.

Shigeo Nakano

May 1981
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Geometry of Tangents on Singular Spaces and

Chern Classes

By
Lé Diing Trang

(Notes prepared by T. Urabe)

Chapter I. Geometry of Tangents

Let (X,O)(:(@N,O) be a germ of analytic space. For a
smooth point x€ X, we can define the tangent space TX of X
at x. In this chapter we study the behaviour of Tx when x

tends to the origin 0, which may be singular.

§1. Nash Modification

Let (X,0) C (@NSO) be a germ of reduced analytic space.
We consider a representant X of (X,0) which is the space of
common zeros of a finite number of analytic functions defined
on an open subset UC @N. We assume that (X,0) has pure
dimension d.

There is a natural map

N N-1 L

¢'-(0) —>TP s (al, ,aN) — (al.---.aN).

Let A denote the restriction of this map to X-(0). For

x €X-(0), A(x) is the secant at 0 through x.




secant at 0 through x

Let X' = Gr. X € X x ZIPN_1 be the closure of the graph Gr A
of A : Gr A = {(X,D”E)eCN x pN-L | xeX-(0)}
Lemma 1.1 (Remmert). X' = Gr A 1is a reduced analytic

subspace.
As for the proof, see H. Whitney [18].

Definition 2. Let \7 be the ideal of (X,0) in ((EN,O).

Every element ‘Pe] can be expressed as

(pk is a homogeneous polynomial of

k=m degree k. $0m £ 0.

(Pm = InO(P is called the initial part of . Let I be the
ideal in C[Xl,-”,XN] generated by the set {InO‘P |PeT?t.
The tangent cone CX,O of X at 0O is the analytic variety
defined by the homogeneous ideal 1.

Remark 1.3.



(1) 1If J is principal i.e. d? = (f) for some element £,
I = (Inof).

(2) If I = (ingfy,--+,ingf ), then J = (£1,00+,1,).

However, the converse of (2) does not always hold.

Remark 1.4. Let e : X' X Dbe the map, induced by the

projection X « PN 5 %,

(1) The restriction of e to Gr AC X' 1is an isomorphism.

e : Gr A —2 X-(0).

C EN_I, where Proj Cy is the

X,0 ,0
N

projective Yariety associated with the cone CX 0 & c.
2

(2) e"1(0) n Proj c

This e : X' = X 1s nothing else but the blowing up of
the origin (0). (See R. Hartshorne [3].)
Let I Dbe the singular locus of X, XO = X-Z. We can

define the Gauss map

YO : XO = X\NI— G(d,N),

where G(d,N) 1s the Grassmann variety, which parametrizes all

linear d spaces passing through the origin in CN. For XGXO,
YO(X) is the parallel translation to 0 of the tangent space
T of X at x.
X —————
i 0

Let X = Gr v C X x G(d,N) be the closure of the graph

of the map YO, and v : X » X be the induced map.

Remark 1.5. If (X,0) < (¢%*1,0)

is a hypersurface, the
map X -+ X 1is the blowing up of the Jacobian ideal J(f) =

(%g_’...,%ég)c9 , where f 1is the generator of the ideal g7



of X.

This fact also holds for complete intersections {f, =

_ _ . N . _ /N,
= f, = 0} in €. Let Al, >4, (r = (k)) be the k x k

minors of the Jacobian matrix

Bf /3%y, ++v, BE1/Bxy
BF, /3%, tee 5 B /Xy

¢ . 0 r-1 . . - i .

The map Yy' : X~ +1P defined by vy'(x) = (Al(x)..--.

Ar(x)) coincides with the composition of the Gauss map YO

XO - G(N-k,N) with the Pllcker imbedding G(N—k,N)¢+]Pr_1.

Therefore the closure X = Gr YO is isomorphic to the closure

of Gr y' in X XIEP—l. The map Gr YO -+ X induced by the

projection is by definition the blowing up of the Jacobian ideal.

Remark 1.6. Let X be a union of two germs. X = X1\)X2.
Then X = X1L1X2 C X x G. Because we take the closure of smooth

parts.

Lemma 1.7. Let (X,0) be a germ of reduced analitic space
of pure dimension d.
(1) (X,0) dis a union of irreducible components of a reduced

complete intersection (Xl,O).

(2) X is contained in Xl' Moreover, X :'vil(X—Zl) where
Zl is the singular locus of Xl’ and B Xl -+ X1 is the map
induced by the projection X1 x G(d,N) onto Xl'

(3) The map Vv : X - X coincides with the blowing up of the

ideal JlC}X, werhe Jl -is the Jacobian ideal of Xl'



Proof It is left for readers as an excise. (Cf. Lé&-

Teissier [101]1.)

Corollary 1.8. X is an analytic space. We call this

map v: X + X, the Nash modification of X.
0

(1) VvV 1is an isomorphism over X
QZ) V  is proper.

The tangent bundle TXO of the smooth part XO is the pull
back of the universal bundle over G(d,N) by YO. Over X, we
can define the map vy : X + G(d,N) as the restriction of the
projection X x G(d,N) + G(d,N). Let T be the pull back of
the universal bundle over G(n,N) by Y. We call T the Nash

bundle of X.

e~ V¥ (TXO)

!

« v 1 x%

Pl

Example 1.9 Let X = PlbfP < Cu, where Pi i=1,2 is a

2

plane in Cu such that Pl(\P2 = (0).

(1) The Nash modification X 1is a union of two disjoint plane

5 (Cf. Remark (1.6) above)



(2) Since the inverse image v_l(O) of the origin is two
points, it can not be a divisor in X and the map v : X » X

is not the blowing-up of any ideal which has its support at the
point (0). .

(3) Notice that this Spéce X 1is never a complete intersection.
For a sphere 8_ :{(Zl’ZZ’ZB’Zv) e ¢? | Z]zi]2 = €} the inter-
section X/\SE “is a disjoint union of two copies of 3-spheres.
If X was a complete intersection X?\S€ should be connected
by a local version of Lefschetz theorem.

(4) Let P, = {Z1:ZE:O} » Py @ {ZB:ZM:O}’ and X, = {21Z3:2224

=0}. Xl is a complete intersection containing X = Pl&)P

The Jacobian matrix of Xl is the following.

ZB, 0, z 0
0, Z) s 0, z

Thus it is easy to see that the Nash modification v: X + X is
the blowing-up of the ideal of the union of four coordinate

lines.

However, one sees one can choose any set of defining'four

coordinate lines.



Example 1.10 Let X = {f:xz—y2=0} C:G)3 be a quadratic

cone. For this X, we can see clearly the structure of X.

Let X be the total space of the line bundle & 1(—2)

1 P
on 7. Then
ot 2 2
(1) X =0,UU,, Uy 2 €, 0,0 ¢
(2) (z,t)€ Ul and (n,u)et&z represent the same point on X
if and only if u = %, n = §t2.

(3) There is a map Vv: X > X such that

2
(g,t) — (L,zt,0t7) (x,y,2) on U

1

il

2
(n,u) = (nu” ,nu,n) (x,y,2) on U,.

(4) Amap vy : X - g(2,3) ;:EE is defined by

(t2:=2t:l) on U

Y(z,t) 1

y(n,u) (l:=2u:u2) on U

5-
Obviously (v,Y): X - X><[P2 is an embedding, and (%g(v(p)):
%g(v(p))i %g(v(p))) = y(p) for a general point p & X.

Thus v: X - X 1is the Nash modification of X.

Now, let T be the Nash bundle over X. It should be
noted that in this case T ¥ TX. Since the universal bundle
over G(2,3) ;ZP2 is isomorphic to TPEV ! 2(1), T N
y* (P2 8% ,(1)). Let E=v 1(0). E is Sithing but the
Zero—secti;i of the line bundlé (% l(—2). It is easy to find
the Chern number cl(%)'E = =2, O;Tthe other hand

¢y (TXg= ¢y (Ng,p) + ¢  (TE),

Cl<N§/E)'E = E-E = -2,



cl(TE)-E = 2 , (since E ;ZPI).

Therefore cl(Ti)-E =0 # cl(f)-E and T % TX.

§2. Whitney Lemma

We use the folloWing notation throughout the rest of this
article but the last section. Let (X,O)CZ(CN,O) be a reduced

germ of analytic space of pure dimension d.

é
ES X
iv' n lv
e
X! X

(1) e : X* - X 1is the blowing up of the origin.

(2)y v i + X 1is the Nash modification.

(3) & : % - X is the blowing up of the ideal mOOLX’ where m
is the maximal ideal of 69X,O'

(4) By the universality of the blowing-up, there is a unique

map v' : ¥ > X' such that ev' = v& = n.

We denote

Y' o= e_l(O)
¥ o= v o
Y = 0 0).

T 1is the Nash bundle over X as before. T = &*T is the pull

back of T. Let &' be the pull back of the canonical line

0



bundle & N-1(-1) over PN by the map X'<5 X x TP + 1P
i

N-1 , pN-1

where X X IP is the projection. Let & = v'*g'.

g' £ T T
LN,
X'e— E —m X

Remark 2.1.
e Y' and 2¥. are Cartier divisors.

e However Y is not necessarily a divisor.

We denote by [|Z| the underlying topological space of the

analytic space Z.

Lemma 2.2. (Whitney lemma)

iy € Ty

Remark 2.3. The meaning of this lemma is taken in one of
the following ways.
(1) By definition, £ and T are subbundles of the trivial

pundle €y . After restricting on [%], & is included in
* 1yl

iy

In other words,

(2) (Cf. H. Whitney [18]) For every sequence xne,XO =X -
such that
D 1im x_ = 0 (the origin).

n>0 '

1 N-1 N-

1

Z,

3



(®) There exists the limit,

T = 1im T_ X.
n-+o n

() There exists the limit
2 = 1lim Ox
n->co n
we have LCT.
(3) * can be regarded as a subspace of X x PV« G(n,N).
Let
N-1

H = {(2,p)e P+ x G(n,N) | &< P}.

Then, ]yﬂ c {0} x M .
Remark 2.4. 1In the condition (2), we shall see that for a
general limit line &, we have T = TllCX Ol’ where we denote by
>

T, |C | the tangent space of the cone |C | at the general
L1vX,0 , X,0

point of the generatrix L.

- 10 -



Proof of Whitney lemma. We introduce a continuous function

a : X >R

in order to measure the angle between 0x and TxX'
Let <v,w> be a Hermitian metric of @N.
Let

<V,W>

a(x) = sup .
ve€(0x)=-(0) ||| ||l
eTXX—(O)

w

It is obvious that:

a(x) = 1 < 0x c>TXX‘
Similarly we can define

G: ¥ —— >R
XN IxG (n,N)

For (x,%,P) € X x Pt

6(x,%,P) = sup Lvw)|
vel=(0) |||

weP-(0

X G(n,N), we set

Note that for every point XeX* 3such that n(g) € XO, &(}7:) = al(n(x)).

What we want to prove now is that:

a||}[ = 1.
It is obvious that the lemma follows from this assertion.
Pick an arbitrary y € ry\ and an analytic path p such

1

that p(0) = y, and p(t) € Z\n () for t # 0. We have

- 11 -



to prove that

lim @(p(t)) = 1lim a(nep(t)) = 1.
t-+0 t->0

Let g = NoP, Then q{(0) = 0 and for t # O

ale) € XN, Fe) €T (X

Therefore

agq
| (a(t), ag<t>>l

A < alg(t)) < 1.
a1 o) |

If we write
a(t) = at? + (higher order terms) O # a € CN,
then
%%(t) - patt 1 4 (higher order terms),

and the left hand side of the above inequality is equal to

rHaH2t2r—l
: = 1 + @(t)
N
with @(0) = 0.
Consequently
1+ :@(t) <al(q(t)) <1
and 1 = a(q(0)). Q.E.D.

- 12 -



(Once we notice that the problem can be expressed by limits

along analytic paths then everything become trivial.)

Theorem 2.5. If 2 in Remark 2.3 (2) is sufficiently
general, then T. is the tangent of the reduced tangent cone

along 2.

Remark 2.6. The tangent cone is deformation of the corre-

sponding analytic space.

n+1

Case 1. Let XCC be a hypersurface defined by r=0.

Let

be the Taylor expansion of f, where £ is a homogeneous

polynomial of degree k and f, £ 0. We set

- h'd h'd 2 s @
F(x,t) = £ (x) + tfml(ﬂ) + ot fm+2(x) +
= = r(tx).
t
Let 72 C Cn+l x € be the analytic space defined by F = 0,
®: Z >+ C be the map induced by the projection Cn+1 x € > C.
-1 -1 R .

Then, ¢ ~(0) ;CX,O and @ “(t) » X if t # 0. Since the
element t 1s not a zero-divisor in C9Z, the map ¢ is flat.

Case 2. Let XC CN be a arbitrary analytic space. We

can choose fl,---,fk such that inofl,--', inofk define

CX,O' We set )

Fi(x,t) = fi(tx) i=1,2,+**,k
g 1 .

- 13 -



where m. = ord f..
i i

Let ZC N ox ¢ ve the analytic space defined by

¢>: Z - € Dbe the map induced by the projection to the t-axis.

One can show that the element t 1is a non-zero divisor in

GFZ’(O’O). Thus ¥Y: Z - ¢ 1is flat.

Definition 2.7. The family of smooth analytic subset Si

ieI of a analytic épace X dis called a stratification of X

if the following conditions are satisfied.

(1) X = AJ_ S5 (disjoint union) where I is a finite set.
ieT

(2) Si - 85,

(3) 1If sinéj # 0, then S;C SJ..

éi are analytic subsets.

Each Si is called a stratum. The condition (3) 1is
equivalent to the next (3')

(3") éi is union of strata.

Let : (Z,0) - (€,0) be a analytic map, and Z = }L Si
be a stratification. We assume that the rank of @ is 2§£stant
on each stratum. We say that the stratification Z = 4J_ Si‘
satisfies the Thom condition if the following conditio;eis

satisfied: Let S, Sj be a pair of strata such that SjC §i.

Let 2y [ Si be a sequence of points of Si such that

(1) it converges to a point z&f%

(2) the sequence of tangent spaces T, GP-1¢(ZH)(\Zi) have a
limit T. «

Then, we have

- 14 -



-1
TOT, @ “(P(z)) N0 sj).

Remark 2.8. In [6], H. Hironaka shows that under the

condition that for every t € & 99_1(t) is contained the

closure of Z - P_l

(t) in Z, there exists a stratification such
that

(1) the rank of ¢ 1s constant on each stratum

(2) it satisfies the Thom condition

-1

(3) Each stratum is contained ¢ ~(0) or Z = @‘1(0).

The proof of Theorem 2.5. Let @ : Z »~ € be the map

described in Remark 2.6. Case 2. It is easy to see that because
of flatness for every t € C, Z—?rl(t) :)|¢—l(t)]. By Remark
2.8, we know that there exists a stratification which satisfies
the above conditions (1), (2), (3).

Let U Clkfal(o)l be union of the stratum which is contained
|?—1(O)| = ‘CX,OI and which has the same dimension as [CXSO[.
U is dense in ,CX,OI‘

Let Ek € X\ Z be an arbitrary sequence such that
(i) 1im Ek =0
(ii) there exists the 1limit T = lim Tg X
n

(iii) there exists the limit & = 1lim EnO C:CX 0
>

(iv) moreover LOU £ 0.

The condition (iii) implies that for the sequence &y ~ (glk,gzk,

L€ ) € @N, there exists an index o such that ¢ £ 0
N,k o,k

for sufficiently large k and that the sequence

- 15 -



e = (B /B > Eop/Eppes ™" Tl By

has a limit éeqﬂY By multiplying a non zero element to
coordinates if necessary, we may assume & & 20N U by (iv).

Let = (E5E,) € ¢" x ¢. By definition sz, € Z and

k -
lim z, = (£,0) € U. And Tzkf¢'l¢(zk)) =T X (0). Thus

there exists a limit T = 1im TZ «P-l(¢(zk)) Then, by the Thom
- k

condition
To>T,: 90y = T.]C, .
(2,0 " glx,00-

This inclusion implies T = TéIC because these spaces have

x,0|

the same dimension. Q.E.D.

§3. Surfaces
In this section we apply our general results to surfaces in
¢>. (Cf. Lé-Teissier [91).
Let (X,0) C (CB,O) be a surface defined by f(x,y,z) = 0,

where f 1is a holomorphic function on a open neighbourhood U

of the origin 0.

Theorem 3.1.

(2

<

3
e/

<

- 16 -



We consider the diagram explained in §2. We denote

y' = e 1(0), ¥ = v71(0), and Y - violyny = a7y = n7ho).
Note that dim % = dim Y' = 1.
(1) wv' |%¢l =~ |Y'| is generically one to one. Let {8;,%5,"""

2,} be the set of the point & such that dim vl = 1.
Each Qi can be regarded as a generatrix of the tangent cone

Cx 0"
-1

(2) For each i = 1,2,...,k, V' (zi) can be regarded as the

pencil of planes containing Qia

(3) The components %{l,ce,,‘?Q of }%%], which are finite
over |Y'| are in one-to-one correspondence with the components

YiI,ct,Yy of YU,

] .
l’
(W) ]é<%¥j)! is the dual variety of Yj,

Definition 3.2. Generatrices & 22,"°SQ are called

1° k

exceptional tangents of X at O.

Proof of Theorem 3.1. (1),(3),{4) are easy consequences of

Theorem 2.5.

(2) follows from the Whitney lemma.

Q.E.D
Next we introduce some notions.
Definition 3.3. Let PL : XO =X -3 > @2 be the
projection along the line L. The closure C(P.) of the critical

L

locus C(PL) of PL is called a polar curve assoclated with

_17_



the line L, if it is an analytic set and has dimension 1,

] v
Remark 3.4. Let (&JC G(2,3) =ZP2 be the set of planes

containing the line L. We have

TPy = v(y_l(CL)-:v_l(O)).

Let . (x,y,2z) be the coordinate of 03 such that L 1is

defined by x =y = 0. CiPLS is the closure
{r =0, %g = 0} \singular locus I.

The following Proposition 3.5 is a consequence of the

preceding results. (See Henry-Lé& [4], L& [8]1, Lé-Teissier [9].)

Proposition 3.5. Let p : Z > Y be a flat map of reduced

analytic spaces such that for every point y € Y, the fibre

Zy = p_l(y) has dimension 1 and Zy is reduced. We assume for
every ye€Y, Zy has imbedding dimension 2 at évery point of

z € Zy' For given points y€&Y and zeo_l(y), the following
conditions are equivalent.

(1) There exists an open neighbourhéod U of =z in Z, such
that denoting the open set p(U) by B and denoting, for every
y'€ B the singular points of the curve Zy,n U by zi (1<i<k),

we have

k
u(Zy,z) = 1i u(Zy,;zi),

where u(Zy,z) denotes the Milnor number of Zy at =z.

- 18 -



(2) There exists an open neighbourhocod U of =z in Z and a
section o : B+~ U of p, such that

a) p induces a submersion of non-singular variety

U- o(B) - B
B) We have

u(Zy.;c(y')) = u(Zy,Z)
for every y'€ B.
(2') The same conditions as in (2), but in addition to those,

Y) We have

m(ZyHO(y')) = m(Zy,Z)

where m(Zy,z) denotes the multiplicity of the maximal ideal of
the local ring C}Z L2

(3) There exists a% neighbourhood U of 2z din Z and a section
o : B>U of p, such that for every y'€ B, the topological

type of the germ of the plane curve (Zy,;o(y')) is constant.

(4) There exist a open neighbourhood U of =z in Z, a section
o : B> U with B = o(U) and a projection n : B x ®2 - B x €
such that

o) Oné has a local embedding

2

i (U,z) » (Y x €7, yx0)

_19.-



which makes the next diagram commutative.

U——>B x ¢

\/

and for which one has 1(o(B)) = B x {0}.
B) The ramification locus of the restriction of n to U

coincides with B x {0}.

If one of the above conditions is satisfied, we say that

Z is equisingular along o{(B) at 2z, where o¢ 1is the section

appearing in (2), (2') and (3).

Now we can state a theorem.

Theorem %.6. (Characterization of exceptional tangents.)

Let (X,0) be a germ of analytic surface in (CB,O) defined

by £ = 0. Let & be a generatrix of the tangent cone CX 0
>

of X at 0, which is not tangent to the singular locus z.

The following assertions are equivalent.
(1) The generatrix £ 1s an exceptional tangent of X at 0.

(2) For every local projection PL : (X,0) - (62,0) which has

the same degree as the multiplicity in m(X,0) of X at 0, the

generatrix % 1s tangent to the polar curve C(PLS.

(3) The surface X' is not equisingular along ]e_l(O)]

Proj|C at the point of e 1(0) which represents £.

x,0]
(4) Let @ : Z > € be the deformation defined in Remark 2.6.

- 20 -



Let Z be the smooth part of Z‘\?’_I(O), Z be the smooth

0 1
_.1 .
part of [ “(0)] = lCX,OI x {0}. Then, the pair (Z,,2;) of
strata do not satisfy the Thom condition at every point of
£ x {0} 0.
Proof. (1) = (2) {0}xc
Let P. : (X,0) +’(02,0) be a projection as in (2), where

L
L denotes the line of the center of the projection. Let cr,
be the pencil of planes containing L. Since Yé(v'_l(l)) is
. . 2V =1 . . .
a line in G(2,3) ~IP" , v&(v' (L)) 1s necessarily intersects

with ¢ Thus, @ # 8(vit(2)) n y'1<cL> - é(vrl(ﬁl))ny_l(cL)\§.

x
Here we note that le(cL) = le(cL)\i because if a certain

. . = v o,
) is contained in Y& {0} XZP2 , it should

component of Y_l(cL

be a linear component, itcoincides with V! (Ri) for some

exceptional tangent Qi’ and we have L = zi, which contradicts

to the choice of L. We have

vt n é_ly—l(cL)\Jy £ 0,

and

L € v'é_ly_l(cL)\Y' =T,

However since TI'' is the strict transform of the polar curve

- 2] -



r =C(P.), e : TI'" T in the blowing up of the maximal ideal
of C}F,o‘ Thus it follows that the generatrix £ 1is tangent
to the polar curve T.

(2) = (1)

Let & Dbe a generatrix of C which is not tangent to

X,0
the singular locus £ and which is not an exceptional tangent.

By this assumption, Yé(v'-l(z)) is a finite set. Thus, for the

general line L, e does not pass through any point of Yé(v'_l(z)),

which shows that C(PL5 is not tangent to & for a general
projection PL'
In order to see the equivalence between (1) and (4), we for
a moment assume that & corresponds to a smooth point of
|Y'| = Proj|Cy 4], in other words & x {0} N0 € Z;. The proof
3
of Theorem 2.4 shows that (1) implies (4). Conversely we assume
that (1) does not hold. Generatfix £ is not exceptional. Let
(zn,tn) € ZO “be a sequence which converges to LE Zl’ we set
=1 -1
v

x =%t z € X - X. The sequence §& = &

n nZn " (Xn) converges to

a point £ € y . By the choice of the sequence EG\)'_ll(SL).
By Theorem 3.1, v'—l(Z) consist of one element {(2,T)}, where

T 1is the tangent space of the cone |[Cy 4| along &. Since
>

T (‘P—l(t YO Z,.) = T_ X, we know that the Thom condition
(zn,tn) n 0 X,
holds for (Zl,ZO) at 2.

As for (3) and the more precise proof on (4), see L& [8].

Q.E.D.

Corollary 3.7. The tangent cone of the polar curve I for

a generic linear space L is given by

(1) the exceptional tangents
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(2) The critical locus of the induced projection

) 2
4P, |CX,Ol + €°.

Proof. By Theorem 3.l and the proof of Theorem 3.6, it is

obvious.

Q.E.D.

Corollary 3.7. If is a plane and the projection

IcX,OI

P 1is transversal to that plane, each tangent of the discriminant

of P is the image of an exceptional tangent.

Proof. The discriminant is the image of polar curve. Thus,

it is obvious by Corollary 3.6.

Example 3.8. Let X Dbe a surface defined by a Pham-

Brieskorn polynomial x2 4 yb + 2% = 0. We first assume that
a < inf (b,c).
The tangent cone ICX Ol is given by x = 0. The
3
discriminant of the projection (x,y,z) » (y,z), which is
transversal to this plane x = 0, is given by yb + z% = 0.

®a<b<c

the line x = y = 0 1s the only exceptional tahgent.

(Y+€z)(y+€jz)(y+€52) ..... (y+€2b_1z)

<
+
N
1]

=1
€ = exp(?_gb_l) .

- 2% -



We have b exceptional tangents

Moreover,

C) a=b <ec¢
a a 0.

The tangent cone is given by x° + y =

The axis of the tangent cone, x = y = 0 1is thé only one
exceptional tangent.

X : x  +y + z =0 has no exceptional tangent.

Example 3.9. The Whitney umbrella is given by

The singular locus 1is the x-axis.



7 ™

project

The projection p : (x,y,z) - (x,y) 1s transversal to the
tangent cone ICX Oi which is given by =z = 0. The critical
3
locus C(P) of P 1s given by

2 .2
Xy2 - 22 = 0, Eiﬁlgéé_l = =27z = 0,

Thus the polar curve C(P)NZ = T is defined by x = z = 0,
which is the y-axis.

The critical set of a general projection is given by

T = Xy2 - 22 = 0 and
3f 9f of _ 2 _ -
a—B—X + bsy + E = ay + 2be 2z = 0.

Since

Xy = @*y 4‘be)2: y2b<-(%Y'*bX)2}>

the equation of polar curve T is
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X - (%y + bx)2 =0

ay2 + 2bxy - 2z = 0.

1l

We note that the tangent line of ', x = =z 0, does not

depend on the parameter. Thus the line x = z = 0 1s an

exceptional tangent.

Example 3.10. The swallow tail X, discriminant of the

semi universal deformation of u4 = 0 is given by

256X5 - 27§;Ll - 128x°2° + luuxy2z + 16x2° - lly2z3 = 0.

The tangent cone ]CX OI is a plane x = 0. However, X
>
does not have exceptional tangents, since we know that the

Nash modification v : X - X is a finite map. (See B. Teissier

[141.)

In the remaining part of this section we shall state some
theorems without proof. Readers can find the proof in L& [81,

Lé&-Teissier [9].
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Definition 3.11. Let 2 = 1l S, be a stratification of
jeT
a analytic space Z. We say that the Whitney condition is

satisfied for this stratification if the following condition is

satisfied:
Let Si’ Sj— be strata such that SiC Sj' Let X, € Si and
yne,Sj be sequences of points such that
(1) 1im n = lim X, =X € Si
(2) There exists a limit T = 1im Ty Sj
n

. mmm—— - - QI = o .

(3) Lines X Vg have a 1imit 1im X V-

Then, we have & T.

Remark 3.12. For any germ (X,0) of analytic space, there

exists a representant XCICN in some @Ns which can be stratified

with the Whitney condition. (See H. Whitney [18] or H. Hironaka
[61).

Theorem 5.1%. (Cf. L& [8]). Let (X,O)C:(@BSO) be a

surface. Suppose the tangent cone is reduced. Then

“x,0
the following two conditions are equivalent.

(1) The surface X has no exceptional tangents.

(2) The deformation P : Z » € of the tangent cone defined
in Remark 2.6 is equisingular at 0 along {0} x ¢ in one

of the following senses.

C) The non-singular part of the space % obtained by blowing-
up of {0} x € in Z satisfy the Whitney condition along its

singular part.
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(®) The stratification (Z\Sing Z, Sing Z - {0} x €, 0 x € NZ)
satisfies the Whitney condition.

C) For a general projection m: ¥ = C2 x €T which is compatible
with @ and the projection"dl2 x € » €, the discriminant A
of m 1is the family of plane curves which is equisingular along

{o}y x €.

Theorem 3.13. Let (X,O)C(@B,O)- be a germ of surface

with an isolated singularity. The following conditions are
equivalent.
(1) The blowing up e : X' » X of the origin is equisingular

along the curve ]e_l(O)]}

(2) The tangent cone CX 0 of X at O i1is reduced and has
>

no singular point outside of 0.

(3) The Milnor number u(z) of (X,0) and the Milnor number

u<1) = m(X,0) - 1 of its section with a general line satisfy

an equality

L3 ()3

(4) The deformation @ : Z ~ € of the tangent cone CX,O
defined in Remark 2.6 1s equisingular in the sense that the
family @ : Z~>C has a simultaneous resolution.

(5) The blowing up e : X' » X of the maximal ideal at the
origin is a reéolution of singularities and the curve (e_l(O))

is non-singular.

(6) The surface X has no exceptional tangents at the origin.
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§4, Higher Dimensional Cases

Let (X,O)c:(GN,O) be a reduced germ of analytic spaces

of pure dimension d.

Let Pk: CN - m1+k be a projection i.e. a surjective linear

1+k

map. We denote ka = Pk|Xo: x% ¢

Definition 4.1. The closure of the critical locus Fk

of P is called the k polar varieties associated

k) k
with the projection Pk : CN > Cl+k.

Remark 4.2.
1. All projections CN - ®1+k constitute a Grassmann variety
G(N-k-1, N) = G. We can show that for a non-empty Zariski open
set UCG, and for every projection P& U, the polar variety
associated to P dis empty or it is reduced of dimension k.
See Lé&-Teissier [10]. \

In the following we discuss only projections belonging to
this open set U. We call them generic ones.
2. If k =4d Td = X.

3, If X dis smooth, then Fk = @ wunless k = dim X.

4, We can associate to 0 € X, d-uple of integers

e(X,0) = (my(Ty),my(T,), - ,me(Ty))

where mO(Fk) denotes the multiplicity of the generic k-polar
variety at 0. Then, e(X,0) = (0,0,--+,0,1) <« (X,0) is non-

singular. We can see that the correspondance
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X 3 x —> e(X,x)

is a constructible semi-continuous map.
5. Let v : i +~ X be the Nash modification and vy : X > G(4,N)

be the extended Gauss map.

~ Y
X — G(d,N)

!

X
We set
C = {Tea(a,N)| T and Hk+l does not span the }
da-k .
‘ ambient space €
where Hk+1 is a fixed linear subspace of CN of codimension
k+1.

By definition, we have

roo= vy i

. ),

d-k

where T, is the polar variety associated to the projection

such that its kernel coincides with H
d+1
»0)

k+1°
Let (X,0)C (¢ be a reduced germ of analytic
hypersurfaces of dimension d. Surprisingly the situation is
like the one of a surface.

The notations are the same as in §2.
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m

o) o= 190 e %

X
v Jv'
X .

Every components of |g.] has dimension d-1 because %4

rd-1

. -1
PI’OJICX,OI=[6 (O.)|=IY c x!

is a Cartier divisor.

Theorem 4.3, Let ]%;! = (z;%{a be the decomposition of
o

}?4; into irreducible components. Let Vy(ﬂ o €Iy} be the
components which are generically finite over Y'.

(1y vy = U v
qGIO o

with  Y! = v'(%}a) is the decomposition of |Y'| into irreducible
components. In particular, the set {%¥u|a E»IO}, and the
irreducible components of |Y'| are in one to one correspondence.
(2) The set |§[ of 1limit tangents of X at 0 1is the union

of the dual variety Vé of Va = v‘(%}a), where o runs over

the whole set I.

Remark 4.4, For a projective variety VW:ZPN_I, the dual
variety V* 1s defined as the closure of the set of hyperplanes
which are tangent to V. We say that a hyperplane H is tangent
to V, if H contain a tangent space TXV at a smooth point
x € V. V* 1is a subvariety of the dual projective space IPN_l v:

It is known that the dual V** of the dual variety coincides

with the original V.



In the next theorem V denotes the affine cone over the

projective variety VC EN—l.

Theorem 4.5. The tangenﬁ cone of the generic k-polar

variety Ty is the union of k-polar variety of V where

Vg = v'(%}s).

B’

Remark 4.6. If dim ﬁB < k, the k-polar variety of ﬁB is’

empty. Thus the union in Theorem 4.5 can be taken only over

VB such that dim VB > k.

The proof of Theorem 4.3%, Theorem 4.5 is done by induction
on the dimension. We don't give it here. However, the ideas are

the same as in the case of surfaces plus the following.

N+1

(1) Let (X,0)c (€ ,0) be a reduced germ of analytic space

of pure dimension d, which is not necessarily a hypersurface.

Let (x,0) » (¢d*+1

,0) be a generic projection and {Xl,O)
be its image. Then, the image of polar varieties are the polar
varieties of the image. And the multiplicity doesn't change
under this projection.

(2) There is an unhappy fact. There is no canonical map from

the Nash modification X of X to that X, of Xi.

Theorem 4.7. (Cf. Lé&-Teissier [10] appendix). Let

(X,0) (CN,O) be a reduced germ of an analytic space of pure
dimension d.

For any generic projection P : CN > Cd+l, we have:
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C) The induced map from X to Xl = P(X) by P is finite and
bimeromorphic.

(® In the Grassmann variety G = G(d,N) let C be the Schubert
variety of d-planes which are not transversal to Ker P. Then
the intersection  of C and each irreducible component Yk of

1

Y = v "(5) has codimension 2 in Yk or else it is empty.

C) The induced map § ¢ X > Xl by P can be extended to a

map : X - v ey » il’ which is finite.

Proof. (} is classical. C) follows from the fact that C
has codimension 2 in G and Kleiman's general position theorem.
As for C} the existence of the extension follows by linear
algebra. The only thing to prove is the finiteness of the
extended map. Readers can find in L&-Teissier [10] a precise

proof.,

Proposition 4.8, Let (X,0) be a reduced germ of an

analytic space of pure dimension d, v : X » X be the Nash

modification of sufficiently small representant of (X,0).

One has dim v_l(O) < d-k 1if and only if Fk = @ where Fk
is the k-polar variety of X associated to a generic projection
CN N Cl+K.

First we assume that X 1is a hypersurface. Then we can
prove this proposition by the Lé&-Teissier formula and topological
arguments. Next by Theorem 4.7, we reduce the general case to

hypersurface one.
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(3) The next theorem is useful when we use induction on the -

dimension.

Theorem 4.9. In the same situation as in Theorem 4.7, let

(H,0) C (CN,O) be a hyperplane and let CH be the Schubert
subvariety in G = G(d,N) consisted of d-planes contained in

H. We assume

y“l(cH) n vl = 0.

Then, we have the map (XF\H)O + G(d-1,N) which associates
0 _ e
x € (XN H) to TXnH,X = TX,X(\H can be extended to a finite
-~ N~
and bimeromorphic map (XNH) +XAH from the strict transform

of XAH Dby v to the Nash modification of XnNH.
The finiteness of the extended map is not obvious. The other
part is proved by standard argument. As for the precise proof

see Lé-Teissier [10].

Remark 4.10. It is easy to check that for a generic

hyperplane H, the assumption of Theorem 4.9 y'l(cH)n v—l(O) = 0

is satisfied.
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Chapter II. Singular Chern Class

In this chapter, we shall study the relation between geometry

of tangents and MacPherson's theory of singular Chern classes.

§1l. Review of Obstruction Theory

Pirst we recall basic results of obstruction theory, follow-
ing the Steenrod's book "The topology of fibre bundles" [13].

Let K be a cell complex of dimension n. Let @ Tk be
a fibre bundle over XK with fibre F. Let LCK be a subcomplex

and suppose we have a section of &L + K defined on L.

Problem. Can we extend it to K?
Let
KOC chug CKn=K
be the skeletons of K. Kj is the union of cells of K of
dimension less than or equal to j. For a given section S L +dﬂ

we can easily extend it to LUKO—>83 For xéLUKO\L we

5g¢
can choose any arbitrary point on the fibre as the value so(x),

since L(JKO\\L consists of discrete points.

A &
foo [
L C LUK, ¢ L VK,

If we have an extension s LUKl +B, for a l-cell oCKl\L,

K
the restriction sllg extends sq|, = sy|ly . Thus a sufficient
condition to get 81 is that F is arcwise connected more

precisely:
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—1(0) be an isomorphism which makes

Let ¢_: oXx F-*fﬂg =T

o"
the following diagram commutative: Such an isomorphism exists,

since o 1s contractible.

)
Bl < : o X F
\O‘ /l
o

Here Py oOXP > 0 1ig the projection onto the first factor.

Let 8: 30 - F Dbe the composition

-1

S ¢ p
30 ——Jgiﬁlaéﬂu — % soxp —25F

where < is the projection to the second factor. If F is

arcwise connected, we can extend § to éo' Then

sq (%) = $5(x,8,(x)) xX€o

gives an extension of So’ao and we have ST IJUK1-+A3 by setting

s1lg = s, for a l-cell oCX;\L.

Obviously we can procceed by induction on the dimension of cells.

Suppose F is (g-l)-connected. That is, F 1s arcwise

connected and ﬂi(F,x) = 0 for every integer 1 with 1<i<g-1.
Then, any section s, on L an be extended to the g-th skeleton
LUK .

!

Suppose for some q, wq(F,X) # 0 and F is (g-1)-connected.
Let o be a (g+l)~cell of K such that o &€ L. The extension

Sq° LlJKq-+¢3 defines a class

(5,151 € 1 (F).
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Then, the collection {[sq]aoj}O and some nice conditions on F
will define a cohomology class for some good cohomology.

However we have to check some further points.
(1) We have to eliminate the hase point problem. The choice of
the hase point of x€F does not matter if F 1is g-simple that
is, ﬂl(F,x) operates trivially on ni(F,x) for 0<1i<gq.

Note that F 1s g-simple for any q if T = 0.
(2) The cohomology should be the cohomology of (K,L) with
value in a sheaf &K“q> of abelian groups defined by associating

ﬂq(ﬂul(U)) to every open set UCK.

Then, we have the obstruction class in 'Hq+l(K,L;£(ﬂq)).
This depends only on the homotopy class of S, L~ éL
In the case that @& 1is an orientable vector bundle of rank

r minus the zero section, our cochomology 1s the usual cohomology

B (K,L; Z).

§2, Euler Obstruction

Let (X,O)c:(CN,O) be a germ of reduced analytic space of
pure dimension d.

In this section we give a interpretation of number EuO(X)
which plays an important role in MacPherson's theory.

We use the notation explained in Chapter I section 2.

~

x—° 5% ¥ o= 7o)
J«\J, ¥ =T

u n v Y = v “(0)
xr —& 3y o = n"teo)
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T - X 1is the Nash bundle.
N

Lz €| ) |z

|2
i=1 +

Let S_ = {(z = 52} and B_ =

€ 12%2 "

{(zl,...,zn)G(L‘N]ZIZilziez}- denote the shere and the ball with

center 0 and with the radius €. We dénote a fixed hemitian

form on ®N by < , >.

Lemma 2.1. For a sufficiently small real number € >0, one

has a section
-1 ~
VETRY (Sen X) = T
such that for xe\)'l(SEr\ X) Re<x,oX> >0 (The acute angle condition)

Remark 2.2 Every fibre of T - X can be regarded as a linear
space in <BN. Thus <x,0x> has meaning. In particular the acute

angle condition implies o _# 0 for xe\)"l(SC(\X).

Proof of Lemma 2.1 A point pe&s 1s a triple (xp,!Lp,'I‘p)
N-1

€ X xD X G. Consider the map

induced by the orthogonal projection for every point pé€&*¥. By
the Whitney lemma <Pp is the identity map for pe;";l; since
zpc Tp. Thus for a sufficiently small & >0, one has a neighbour-
hood 27 with %C%CE such that for every point pe® and for
every VES?,p,‘ HV—‘Pp(v)H <§||v]| holds.

A section T:?L\’loal—> T is defined by t(p) = T(x~p,£p,Tp) =
P, (x)

We have
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= lI° - Re<x,T(p)>

D
- - > = < - > < 8 .
Re<xp,xp> Re<xp,?@(xp) Re X5 X, V%(Xp) _"Xp] HXpH
Thus
Re<x ,T(p)>
0 < 1-8 < _“—"E“i“”
Tl
for pe€h\Y.

Now é:7L\y > X \Y is an isomorphism by definition and for

a sufficiently samll €>0, v_l(SEI\X)Cié(‘?t\'%)° We set

g = r°é"l: v“l(SEf\X) > T. Then this o satisfies the acute

angle condition. Q.E.D.

We now have an obstruction class CGGIfk%v_l(Ber\X),v_l(Ser\X);Z)

to extend ¢ as a non-zero section over vml(BE(\X).

Lemma 2.3 The class Cy does not depend on the cholice of

the section satisfying the actue angle condition.
Proof. Let 0,0 be sections on v 1(S_NX) such that
Re<x,0_> > 0
X

Re<x,c£> > 0.

We set
o, = to + (l1-t)o' for 0<t<1.
oy also satisfies the acute angle condition and oy gives
the homotopy between Oy = o' and 0, = 0. Thus Cq = Cgr»
Q.E.D.



Definition 2.4 The Euler obstruction EuO(X) of X at .0

is the degree of the obstraction class gy where o: v_l(SsnX)-+§
is a section satisfying the acute angle condition.

That 1s,
EuO(X) = deg Cy = <C s>
where w 1s the‘fundamental class of (v_l(BS(\X),v—l(Se(lX)).
Theorem 2.5 (Gonzalez-Verdier formula)
Bug(X) = degl(ey_; (T-€)0 [4])

(Cf. G. Gonzalez-Sprenberg [2])

Remark 2.6 We consider T-£ as an element in the K-group

generated vector bundles we have

cd_l(T—E) = the degree d-1 part of c(T)/c(&)

d-1
k k
kzo(_l) Cd—k—l(T)Cl(g) .

Thus the above equality is equivalent to
d-1 K : K
Eu, (X) = ] (-1)" deg(ec (Te, (8) " [Y]).
0 k=0 d-k-1 1

The rest of this section is devoted to the proof of Theorem 2.5,

Lemma 2.7 Let ?2t:% > # be the normalization of X. Let
0 Dbe the pull back of o by §9L 0 is the section of T =

MFT > ¥ on (véﬂm_l(sgr\X). Then, we have
deg Cy = deg c=—.

(o}

Proof. We set 0 = €. By definition
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_ = Q%

c5 0 Cy s
On the other hand

Bl = w

where  (resp.-w) is the fundamental class of ((ve)_l(BEr\X),
vo)Hs_nx))  (resp. (vTI(B AX), vTE(S,AX)).), because 0 is
generically one to one.

By the projection formula, we have

SChaw> = <c, 040>

<9*00,Q>

<e,0>. Q.E.D.

(1) PFix an hermitian metric on CNQ We can define the orthogonal

projection

projL: CN + L

for a linear space L. The collection

g, = Uproj ()
0 xex Ty 7%

defines a vector bundle over % 1if the representant of the germ
(X,0) 1s small enough, since by the Whitney lemma Eyc:Ty for
every yéy. We denote EO =m¥g,, T = A¥T, and g= 11_19. One
has an exact sequence

O+EO+T+T‘/§O+0

and
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T =t
=L ==

(2) Consider a section 0 of T/E, over |?l with isolated

zeros. We can bulld o4 in the way that

a) 1t has zeros outside Singl?[ and Sing ?6(\]?| .

X
Y
Sing’fgl—'— /

Sin\q%ﬁrg]\

B) o has non-degenerated zeros of index *

1

-1
We can extend Gq as a section EO (

i
=

1
/EO). -We denote the
extension by the same letter Oq-

(3) Consider the section o, of EO obtained by pulling back
the natural section projT 0x. Then, o' = 05 ] o is a section
X

of T. The zeros of &' are the zeroes of cl[?.

Remark 2.8 o' 1is actually defined on a neighbourhood %

of 7 and non-zero outside ? If 1>>e>0, (v%%)-l(BEnX)C%.

Lemma 2.9 The section o' satisfies the acute angle condi-

tion.
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Proof. Obvious.

Though the zeroes of Oll%; is non-degenerated o, may have

multiple zeroes

x

<

o zeros of O
—— 1

>
X

€ zeros of 02

Lemma 2.10 (1) The index of 0¢' at Eei?

= (the index of G2|zeros of Gl)><(the index of Glll?ﬂ:

(2) (the index of ¢ ) = the multiplicity of %Z at X.

2lzeros of 0y

Proof. (1) 4is obvious.
(2) Let I, be the section of T obtained by pulling back the
natural section 6;g We can build a homotopy connecting (Eo,og)

and (5,22), We have that (the index of OZ‘zeros of Gl)

= (the index of ZZ’zeros of Gl). However, the right hand side

agrees with the multiplicity of y. at x by definition. Q.E.D.

Proof of Theorem 2.5 By Lemma 2.7

EuO(X) = deg C3.
By Lemma 2.3

deg CE = deg CE"
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Lemma 2.10 implies
deg Cz, = deg(cd_l(ﬁ;g)(\ﬁgj)-

Since
caoq (T-E) = m¥cy_ (T-E)
(41 =% [P (%)
one has by projéction formula
aeglcy_; (T-E) ) = degley_; (T-E) A [H1).

In conclusion we have

Euy(X) = deg(cy_;(T-£) N (Y1),

Remark (by T. Urabe) The above equality (¥*) is not self-
evident. However, once we establish equalities
%] = -c,(T) A [#]
['?]

the equality (%) follows from the pfojection formula. Indeed,

-c,(g) n [#]

since & = m¥f, and 9,[3] =% , we have

N[ = —myla¥cy (£)n [%])
= _Cl(g)n%*[i]

= —c,(e)n [¥]

= [’g].
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§3. Leé-Teissier Formula

Theorem 3.1 (Lé-Teissier formula)
d-1
Eu, (X) = kZo( ~1)¥ My
where m, is the multiplicity of the generic f£-local polar variety
at 0. (cf. Lé-Teissier [10].)

This theorem is an easy consequence of the next lemma.
Lemma 3.2
i k _ d-1
deg(cy_1_, (e (&) f\[g]) = (-1)
We recall our diagram
XxG - P

- 2
o Ixa S 5 ~0
— G=G(4,N)

TN A

N 19X' e X:X =X\%

Let H = H be a linear space in @N of codimension k+2.

d-k-1 = Cg-x-1H)

{Teg: dim(TnH > d-k-1}

(k+2) =

is a special Schubert variety. Let Py eV s VK2 he the pro-

jection such that KerPH We denote the critical locus

H(k+2)'
0 N-k-2

of P 0: X° » ¢ by C(PH) where XO denotes the smooth

H'X
part of X. A point x:eXO belongs to C(PH) if and only if the
tangent space TX of X at x and H do not intersect trans-

versally. This is equivalent to saying that
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cey) = (O Hey 1)

By Kleiman's general point theorem (See Kleiman [7].) we can

- . -1
expect that for a general H, Y 1(cd_k_l) intersects v ~(I)

properly. Thus for such H, one has

TP = -1
C PH - \)(Y (cd_k_l))-
Let U~ G = G(d,N) Dbe the universal bundle. It is well~

known that the dual of the Chern class of U 1s the homology

class of the above mentioned Schubert cyclé up to sign.

(-1)%7 KL w)yn[cl = [e

d-k-1 k=11

Now we can prove that

deg cq 1 (Mep @yl 15 (-1 my

Notice that %{ is a passibly non-reduced analytic space in

N-1, 4 d-1-k

{0} xp Moreover (-1) Cqo1-k(T) corresponds to

N-1 ;
(0 xPT " xeg g (Hiyypy) = 23

and (—l)kcl(E)k corresponds to

(O)X}% ) xG =127

k 2°

where sz) is another generic linear subspace of @N of codi-

mension k.

1
and H(k)

Lemma 3.3 For generic linear spaces

(1) #(Z 0 zzn]’%l) <

(2) Z2;0Z5n I’%] c W'good"

Here lylgood is some non-empty Zariski open set contained in the

Hegeo)
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smooth part of |'y] .

Proof. This is an obvious consequence of "General Pasition

Theorem" by S. Kleiman. (See S. Kleiman [71.)

Corollary 3.4 For general H(k+2)’ sz).

deg(eq_1_, (T )N = 1Mz nz, Y.
Here %f is counted with multiplicity.

Remark In the age of Todd, one defined characteristic classes
using polar varieties. Here our viewpoint 1s actually a local

version of his.

Lemma 3.5 We set W = Z;NZ For XxE€WO |7d»] the equality

5
mx(IWQO_y,X) - mx(13=0znw,x)

holds. Here mx( ) denotes the multiplicity IW is the ideal

of W and I? is the ideal of y
Assuming Lemma 3.5, we can verify Lemma 3.2. By definition
and by Lemma 3.5

#W-Y) = )

i S A R

3: %AW, x

We note that

I}'d’ =m§

xaW,x z0W , x

where m 1s the maximal ideal of & By projection formula

X,0°
we have

mx(I%. d;enw,x) = mo(mé,t(aeanUX),o)
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where U  1is a neighbourhood of x in eV xpNL g,

Recall that as a germ of variety
U n(¥Fownu ) = 1,_AH]
x€YalW X k (k)

where Fk is the k-polar variety of X. Consequently we have

. - 1
#(W g!) t‘he multiplicity of ran(k) at 0
= the multiplicity of Fk at 0.
By Corollary 3.4 we get the theorem. : Q.E.D.

Now we have to verify Lemma 3.5.

Proof of Lemma 3.5 By Kleiman's general position theorem,

we can assume that
(1) [%J and W is smooth at x and they intersects transver-
sally at x.

1

(2) Each point of % ~(x) 1is a non-singular point of x, where

2: ¥ > ¥ denotes the normalization.

Let ﬂ;l(x) = {zl,...,zk}. Around z;, we can choose a local
coordinate system ¢, yi'l_""’y;l,—l such that the divisor 71_1(?)
a.
is defined by ¢ T =0 for some integer ay - We have
n (I,0y . ) = m_ (I.0 )
X TWO 4 x L, WYL
i 71 % (7&,21
= )a.
i
= Im_ (Iyl-, )
1% 0T (xaw),z,
= mX(I?(%f‘\W,Xi)'
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We now ask the following problem.

Problem We'd like to get rid of genericity condition from

our Theorem 3.1.

Suppose the projections P .,Pd give local polar varieties

150
T(Pl),...,T(Pd) ‘of respective dimensions 1,...,d.

Find some expression e such that

d
Bu (X)) = ) (-1)%Ke(r(p,))
0 k=1 k

holds.
Remark Let X be a surface in @3, For a generic projec-—
tion P15 we have
= - #
Buy(X) = mg(X) = my(T(P)) (%)
since F<P2) = X does not depend on the choice of P2.
Suppose moreover X has an isolated singularity at 0. In

this case EuO(X) = l—u(2> and the equality (¥) becomes

1 - u(2) =m - (u(2)+m~1)

(2)

where | is the Milnor number of XnH at 0, where H is
a generic hyperplane passing through 0 and m = mO(X) is the

multiplicity. Thus
2
mO(F(Pl)) = u( )+m—1

is a topological character in this case.
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§4. MacPherson's Theory of Singular Chern Classes

In this section we introduce readers to Chern class theory

for singular varieties by MacPherson. (Cf. MacPherson [11].)

Definition 4.1 Let V Dbe an algebraic variety.

Let F De the smallest family of subsets of V such that
(1) A Zariski open subset belongs to 91
: k
(2) If Wy,Wy,... Wy € ¥, then iglwie?’.
(3) If V,W€%, then V-WEF.

A member of _;l is called a constructible subset of V.

A locally closed subset of V 1s an intersection of a Zariski

open subset and a Zariski closed subset of V.

Remark 4.2 The following two conditions are equivalent
(1) XcV is constructible

(2) X 1is a finite disjoint union of locally closed subsets.

Example 4.3 Let V = ¢° with coordinates (x,¥).

Y = {(x,y)e¢£|x=0,y#0} = y-axis-origin is a lécally closed
subset but it is not a Zariski closed subset.

Y

Let X = V-Y.. X 1is a constructible subset of V. Obviously X

is the disjoint union of Y, = V-(y-axis) = V-Y and the origin

Definition 4.4 A function

a: V> Z
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is called constructible if there exist a covering V = dr Y.
finite

of V by a finite family of mutually disjoint constructible sub-
set Yi of Y such that for each Y, the restriction aIY 1s

i
constant

Remark 4.5 " The characteristic function lY of a construc-

tible subset Y 1s constructible, where lY is defined by

]lY(X) = {1 if xeyY

0 1f x&Y.
A finite sum
= ¥
o= July (%)
i
is constructible, where Wie;Z and Yi is a constructible subset.

Conversely every constructible functlon is expressible like

(*).

Lemma 4.6 Let V,V' and W Dbe algebraic varieties, £:V » V'
be a proper algebralc map. We suppose W 1s a subvariety of V.
Then, the function V' = Z defined by p * X(f—l(p)r\W) is con-

structible, wher x( ) denotes the Euler Poincale characteristic.

Proof. One can stratify f[w. That 1s, there is stratifica-

tion with Whitney property W =.uwk, V! =1le such that:

(@) f]w has maximal rank for every stratum Wk.
k
@ f(w) =V, for some 2.

One can see

X(ETHIAW) = Ix (0 o)),
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where X denotes the Euler-Poincare characteristic of the
cohomology group with compact support! The ritht hand side is

obviously constructible.

Proposition 4.7 Let 7> be the category of compact algebraic

varieties and let Q} be the category of abelilan groups.

There exists a unique functor
F: O~ Q}

up to natural isomorphisms such that
(1) TFor every compact algebraic variety V€U F(V) 1is the
abelian group of constructible functions with values in Z.

(2) For every morphism
f:'v-v
in T" and for every subvariety WCYV.
F(E) (1) (p) = (£ (p) A W)
for every point pe€eV'.

Proof. 1If such a functor 1 éxist, the uniqueness 1s obvious
since for a morphism f: V » V' and for a constructible function
a = g%ilw. on V,
F(E) () = JAF(0) @y )
is determined by the condition (2).

The only point to check in order to verify the existence is

the equality

F(gof) = F(g)F(F)
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where f: V> V' and g: V' > V" are morphisms in V. We can
see 1t by using suitable stratification and multiplicativeness

of the Euler characteristic of compact support. Q.E.D.

Theorem 4.8 (MacPherson) Let [F: TF~ %z be the functor as
in Proposition 4.7. Let H: U~ %} be the functor of homology

groups. Then, there exist a unique natural map
g: | >~ H

such that for a non-singular object VeV the equality

G(V)(lv) = Poincare dual of the Chern class c(V)
holds.

Remark 4.9 A natural map o:IF - H is a collection of
morphisms: o(V): F(V) - H(V) of abelian groups given for each

object V€U~ such that the diagram

F (V) FCE) > F(V')
o (V) (V")
H(V) H(f) B(V')

is commutative for any morphism f: V > V',

Proof of uniqueness Let o €F(V). o can be expressed as

a = Zzilwi

where Wi is a Zariski closed subset of V. The union lJWi is

called the support of a. The integer d = sup dim wi is called
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the dimension of the support. We proceed by induction on d. If

d = 0, it is obvious. Assume d>0. Let W, ,...,W, be the
1 Tk
components of dimension d. Let Xi - Wi be the resolution of
- J ,
singularities. We denote the compasition Xj - Wi GV by fj.
J

k
Let B = ) % F(f,)(L, ). We have

R N J X.

J=1"J J

o(V)(8) = [, o(VIF(£)(1y )

J J
= X’Ejm(fj)o(Xj)(lXJ)

ZZ&jH(fj)(dual of c(Xj)).

Thus o(V)(B)  is uniquely determined. On the other hand by the
choice of Xj's the dimension of the support of o-f 1is less
than that of ao. By induction hypothesis o(V)(a-8) is uniquely
determined, and we know that o(V)(a) = o(V)(a=-B8)+c(V)(B) 1is
unique.

The proof of existence is more complicated. We don't give
any complete one here. Instead we briefly sketch the MacPherson's
proof. For an algebraic variety V€U, consider the abelian
group C(V) of cycles on V. An elément of C(V) is a finite

sum I WEVi where '%ie Z and Vi is a closed subvariety of V.

C v )
f@ 10 H
C % )

(V) c(Vv) H(V).
constructible cycles homology
functions on V group of V
on V
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Congider a morphism
T(V): C(V) > F(V).

T(V)(Z?%,V,) 1is defined as a function x = I%EuV, (if x&V,,
we assume EuX(Vi) = 0 and for abbreviatlon we denote this func-

tion simply by ZziEu(Vi) in what follows.)

Lemma 4.10
T(V): C(V) » F(V)

is an isomorphism.

Proof. We have to show that for every a = Z&ilw € F(V),

i
there exists a unique cycle ZmiVi such that T(V)(Zmivi) = 0.
We use the induction on the dimension d = sup dim Wi of

the support of a. The case of d = 0 1s trivial. Assume d >0Q.

Let Wi ,eo,,wi be the components of dimension d. Then
1 k

k
o - T(V)( ), W, ) =8B
3=1 %5 N

has the support of dimension less than d since the function
Eu(wi) has value 1 at generic points on Wi‘ By induction hy-
pothesis we have a unique ijVj €C(V) with T(V)(ijvj) = B.
The cycle ijVj+Zmi'Wi! is just what we want. QR.E.D.
Jd d

Now let wv: % + V be the Nash modification of V. Let T
denote the Nash bundle of V. We have the Chern class c(%) of
T. The homology class cM(V) = vy (c(T)N [V]) is called the Chern-

Mather class of V.

We next consider a morphism
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CM(V): C(V) » H(V)
defined to be
cM(V)(XﬁiVi) = Z?ﬁ incly CM(Vi)
where cM(Vi)GJH(Vi) is the Chern-Mather class of a subvariety
vy, of V, inel: V, > V denotes the inclusion map.
We have two morphisms

T(V): C(V) 3 (V)

cM(V): C(V) » H(V).

Theorem ﬂ.ll

O (V) = cp(VIoT(V) T F (V) > H(V)
defines the morphism o in Theorem 4.8.

We denote ¢ (V) = G(V)(lv) and call it the Chern-MacPherson

class of V.
We give here some easy conclusions of Theorem 4.8 and Theorem
411,

(1) We have a unique cycle ZﬁiVi called the MacPherson-Schwartz

cycle such that lv = ZniEuVi. Then{ we have

cy(V) = Z%i incly CM(Vi)

Remark 4.12 Let ¥1c®3 be the Cartan's umbrellsa xy2—z2=0
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on X-I EuX(X) =1
on Z-origin EuX(X) = 2
at origin O EuX(X) =1

The macPherson-Schwartz cycle 1s X-I+0. Here the value of EuX(X)

is computed by the Lé—Teissier formula.

(2) Consider the map f:V = ¥, where ¥ denotes the one point.

We have the commutative diagram

o (V)

V) > TH(V)
;rmf)l l]H(f)
F(#) A SEH(*) 2 Z

By definition of IF(f)

F(£)(1y) = x(V).

And

deg cg(V)

H(E) (cy(V))

H(£)o0 (V) (1)

o(*)dF(f)(lv)

x (V).

Now we get the Gauss-Bonnet property

x(V) = deg cgx(V).
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Remark 4.12 What is left to verify for us now is the fo‘llo'w-

ing (@. The other parts are easy to check.

@ Let f: V> W be a map of compact algebraic varieties. Then,

the diagram

(V) > (W)
o (V) o (W)

H(V) >H(W)

is commutative for the morphisms o(V), ¢(W) defined in Theoren

4.11.

Reduction. It is enough to prove next

For any map g: X » V such that X is non-singular, the

equality
o (VIF(g) (1) = H(g)e(X) (L)

holds.
Let a€F(V). We have integers kiGZ and morphisms
g;: X:.L +~ V with non-singular Xi such that ‘

o = JkF(g;) @y ).
1

Assume . We have for f: V > W
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o (W) F(f)(a)

It

Zkio(WIF(fogi)(ﬂxi)

ZK£H(fﬂH(gi)0(Xi)(lXi)

il

H(E) (kMg o (X)) (Dy )
1

H(f) (Jky0(VIF(gy) Ay ))
1

H(£)o(V) (JkF(gy) Ly ))
1

H(f)o (V) (a)

Thus we can conclude
is equivalent to the next ©
C) Let g: X » V be a map with non-singular X. Then, there
exists a cycle [n;V, on V such that
@ InyBuv = F(g)(1y)

(@ I incly cy (V) (V) = H(g)(Dual of cu(X)).

Here TF(g)(1,) 1is the function on V defined by x » x(g™ .

The situation is very similar to where we treat polar varieties.

MacPherson is not doing like that. He picks up a certain
cycle satisfying the above condition CD,C) Each line of his
proof 1is not difficult to understand. As we have not a better

understanding at this moment, we advice the reader to consult
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MacPherson's paper ([11]). We sketch briefly MacPherson's "Graph
Construction™,

Assume V 1is embedded 1in a non-singular variety Y. The
compasition X % V&Y 1s also denoted by g.- Let d = dim X.
We denote by Gd(TX ® g*TY) T X the bundle of Grassmann varieties
of d-planes in the vector bundle TX & TY. Each fibre ﬂ-l(x) =
Gd(TX ® TY)X is the Grassmann varieties of d-planes in (TX@g*TY)X.
For each AGEC,‘a section Syt X - Gd(TX ® g¥TY) is defined to -

be SA(X) = the graph of the map Adg

x* TXX,+ Tg(x)Y’ which is

considered as a d-linear space in TXX ] Tg(x)Y' We get a map

P: XxC > G (TX & g*TY) xP with @(x,)) = (5,(x),A). Let W =
= v = ' . . .

Im¢p and ZOo ZmiVi WI\(GdX{m}), where Vi is irreducible and

m, is the multiplicity as a divisor. Then, Vi = gﬂ(Vi)'s con-

stitute the components of the cycle in C). The coeffcient n, =

p.m., is the multiple of m.

by a certain number ..
175 i y ¥ inl numoer pl

/
/\)\ ->»00
,v‘/ AN -
/ \ -

/

graph of Adg
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Chapter III. Whitney Stratification

§1., Whitney Stratification
We have the next problem.

Problem. Find the cycle ZniVi on V such that 1L, =

ZniEuvi.

Denote
e (X) = (m ,...,my),

where my be the multiplicity of the generic polar variety of
dimension 1 of X at x. xe€¢X is a non-singular point if and
only if eX(X) = (0,...,0,1). Note that there also exists a point
with eX(X) = (0,...,0,k) (k>1). For example the swallow tail
has eX(X) = (0,3). Recall that if my = 0 for 1<j<r, then
the dimension of the set v—l(x) of limit tangents is less than
or equal to d-l-r. (Proposition 4.8 in Chapter I.) Let V =

FO = FOOQ We put

s
[

1 } (the singular locus)

fl

{C, (X) # (0,...,0,1)}.

Let Fl = \U Flj be the decomposition into irreducible components
Jed
and let +
1] - .
Flj = {xeiFlj where eX(V) does not have the generic
value along Flj}‘
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Example Let ‘VC]PB be a surface.

F,o=7 = F.. 1is a union of curves.

1]
1

Fij is a finite number of "had" points.

jeJ

Next put

F, = (U Fij)UZ(Fl) = U F,

. . J?

JeJl J€J2
where Z(Fl) is the singular locus of Fl’ and sz's are irre-
ducible components. In particular Fl\F2 is non singular. Put

1 = .
F2j {x EFéj, where eX(V), eX(Flk) (k:EJi) do not have the

generic value along FQj}.

(Convention ex(Flk) = (0,...,0) if xﬁFlk.)
= '
Fa= (U P )UL(F,).
JEJ2
We repeat this procedure.
If Fr = hg Frj (Frj is irreducible.), put
jedJ
r
| I .
Frj = {XEFPJ. where ex(st) (s <r, Jer)

do not have the generic values along Frj}

and

Fy = (jLeJJrFf:" YUT(R).
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Remark 1.1 1. Obviously this procedure ends in finite steps.

2. Sij = Fij\‘;igFlk = Fij\Fi+l is smooth and by definition
Eux(Frs) is constant on Sij‘ We denote Euij(r,s) = Eux(Frs)
for xESij.

3. We can determine the coefficient 'nij step by step as follows

and we can compute the MacPherson-Schwartz cycle ) |} %ijsij
I €T,
explicitly. -
@ 7oy =12

® %ij + rgi %rSEij(r’,s) = 1.
SeJr

Let x¢€ Sijc_ve Assume the germ (V,x) 1is embedded in

eV

,X). Let Be is a ball in @N with center x and with radius
e. Let L Dbe a general linear space of codimension dim Sij+l
near enough to x however, which is not passing through x.

We denote ¥y = x(L(\Vr\BE);

i
We can prove the next theorem . We do not give the proof
here.
Theorem 1.2. (1) Xij is independent of xé€ Sij'
(2) %ij = l_Xij’ where ﬁij is as in Remark 1.1, 3.
Example

Cqu

o
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Let V be a hypersurface in IP“, (dim V = 3). Assume the

singular locus ) =(Jzi has dimension 1.
i

Let Xj'S be singular points of Z. Let yk's be the
smooth points of | where ey(X) or ey(Z) do not have the

generic value along a . ).

Then, the MacPherson-Schwartz cycle has the following form

A N

Vo-rzuijg-er.x. (%)
i J

WheI’e % - V\§
A_ } \{1[ ’S :7 'E}
i j k )

Let L be a general linear 3-space near enough a Vie Then
Lr\Vr\B€ has only an isolated singularity. Thus it is contract-
ible. We have x(Lr\Vr\BE) = 1 and the coefficients of yk's
in (¥) are zero.

Let H be a general 2-linear space passing through a general

point on Xg. It follows that My o= u(X(\Hr\BE), the Milnor
number of XnH cut out by a small ball Be with center x.

Next theorem implies that our construction is "canonical®.

Thecorem 1.3 (B. Teissier) V =Llsij is the coarsest strati-
fication of V such that

(D 5, 0 = 1D, I, = 1D,

are unlon of strata.

(2) One has the Whitney condition.

The proof of this theorem will be given in §3.
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§2. Chern-Mather Class of Projective Varieties

Let V ©be an projective variety. Let XniV:.L be the

MacPherson-Schwartz cycle of V. We have

g Anelyey (Vi)

cg(V) = )n
We can not say that the right-hand side has an explicit meaning.
What is the Chern-Mather class cM(Vi) of V,?

cM(Vi) is very complicated and incly, is not easy to compute.

The part of degree 0
cg (V) = x(V) = ZwicM(vi)o

is rather easy. In this section we give a geometrical meaning

to ¢

AEREE

B
Let XCIPN be a projective algebraic variety of dimension
d-1. We would like to define the "global" Nash modification and

"global" polar varieties. "Global" polar varieties are called

polar cycles.

Nash modification Let XO be the smooth part of X.

We can consider two different Gauss-map.
(1) We have the bundle of Grassmann varieties Gd_l(TGPN)) +ZPN.

A section YO: XO > Gd_l(TGPN)) is defined to be YO(X) =

T (0T @Y. Set X = the closure of y'(x°) in o _ (T@")).
N

]

We call a map Vv: X > X induced by the projection Gd_l(TGPN))-+E

the Nash modification and the restriction T = i of the universal

bundle U - Gd_l(TGPN)) to X is the Nash bundle of X.

For a hyperplane HCIPN, XH = X\H 1s a subvariety of

PNE ¥ ¢, We know that v: Xy = vi(xy) - X, agrees with the
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Nash modification and that TIX is the Nash bundle discussed
H

in preceding sections.
(2) For any smooth point XGIXO we have the realized tangent

space LX. LX is the union of l-dimensional projective subspaces

of ZTN which have multiplicity greater than 1 at x. LX is a
N.

linear subspace of TP and it is isomorphic to the projective

space ,Pd_l, (not the affine space ¢d 1)
A map
g s x° > a (et
. . B N+1 .
is defined to be B(x) = the cone over LX<:® . Sometimes
B is called the Gauss map for X.
N+1

Let X be the closure of the graph of B in X><Gd(® ).

We can see that X is isomorphic to the Nash modification X.

1

Polar cycles Let X(:®N+ be the cone over X. Local

-~

polar varieties of (X,0) are cones. Thus we have projective
subvarieties of X associated to those cones. We call them

polar cycles of X and the one of dimension k dis denoted Mk

and called k-polar cycle.
N

Let LCI be a general linear subspace with dim L = N-k-2,
Py, :IPN—L +IPl+k be the projection with center L. Then, Mk
agrees with the colsure of the critical locus of the map X-L -
E1+k induced by Py,

Remark ft follows that for any point ;(EXH = X \H, Ml\IL
MZ\‘H’ ceey Md‘\H are the local polar varieties of ‘(XH,X).

J. A. Todd showed that for a non-singular projective variety
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xcpy,

d-1-1i

- . i
Dual of cy_4(TX) = Z (-1) (i+1)e (L) n [M;],

where L 1is the universal line bundle of IPN.
R. Piene extended this result and obtained
d-1

ey (X)), = (-1
Mo izo

)3 e ()t a g,

for any X(IPN, which is passibly singular.

By this formula we get the next proposition.

Proposition 2.1 Let XCIPN be a projective variety of

dimension d-1. Let X denote the affine cone of X. Let

N+1

0eD C:r-- CIH_CI) = ¢

da-1 0

be a general flag with codim Dk = k. Then we have
d-1 “
cy(X)y = kg Euy (X nD,).
=0
Proof cl(L)lr\[Mi] agrees with the multiplicity of the
cone and the polar variety Fj of le\Dk is equivalent to
Pj+kr\Dk where Fj+k is the polar variety of X. Thus the

Lé-Teissier formula and the Piene's formula imply the above one.

§%, Numerical Characterization of Whitney Condition

We proceed to the proof of Theorem 1.3, which is obviously
the direct consequence of the next theorem, (B. Teissier [15]).

However, we can point out some incomplete points in his proof.

Theorem 3.1 Let (X,O)C(CN,O) be a reduced germ of
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analytic spaces in (CN,O) of pure dimension d. Let (Y,0)C

(X,0) Dbe a non-singular sub germ of X. Let XO denote the

non-singular part of X. We get the following diagram.

¥* X — 5> XCXx*xG
N
n
Vy N Y v
ey\
y >
Vv : the Nash modification
ey’ the blowing up of Y
&,: the blowing up of v 1(y)
vyl induced map by universality of the blowing-up
Ny = €yVy T Ve

Then, the following assertions are equivalent.

(i) For any y €Y
my(Tk(X,y)) = my (T (X,0))

for any integer k with 1 < k < d.

(idi) nY]Y is an equidimensional map. (i.e. all fibres have
the same dimension.)

(iii) XO along Y satisfies the Whitney condition at every point
yevY.
Example 3.2 Let XcC€° be a surface, Y = )(X) be the

singular locus. We assume that Y 1s smooth and the origin o
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is on Y.

Let P : X ~ @2 be a generic projection. Assume that the
condition (i) in Theorem 3.1 is satisfied. We will see that the
condition (iii) is also satisfied.

Anyway, let Ly denote a general line in ®2 passing

through P(y) for y € ). We have an equality
-1 _
u(P (Ly>;y) + deg#P - 1= mp(y)(A)

where A is the discriminant of P. Under the assumption of

(1) deg Y P is independent of er and at every point }/e Y
the polar curve is void. It follows that P(Y) is the only
component of the discriminant and that mp(y)(A)’ 7<5Y is
constant. The above equality implies u(P_l(Ly),y) is constant

for Y € Y. By Proposition 3.5 in Chapter I, we see that the
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condition (iii) holds:

Remark 3.3 We have a surface X 1in CLl such that

. i
(0) The projection ®M = @3x_®-+ C defines a map X — D =

{|t]<1} and n"1(t) is a curve for every teD.

(1) There exist a section o : D > X and the singular locus of
X is o(D).

(2) The pair (X-GCD),OGD)) satisfies the Whitney condition.

(3) Let P : m“ > €0 be a generic prbjection Z = P(X) be the

image. Z has an aditional singular locus passing through

P(c(0)).

)

/

/ N

additional singularity

Thus for general surfaces X<:®N, the Whitney condition

does not imply the constancy of the multiplicity of the
discriminant of a generic projection X ~» @2.' (The constancy
of this multiélicity is called the equisingularity condition
in the sense of Zariski.)

However for surfaces in CB, the Whitney condition énd the

Zzariski's equisingularity condition are equivalent. (Cf. Lé&-
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Teissier [9].)

Proof of Theorem 3.1. (i) = (ii)

Step 1 (v is equidimensional.)

Let dim Y = t, dim V—l(Y) = d'. For a general VE‘Y,
dim v_l(y) < d'-t. By Proposition 4.8 in Chapter I, Fk(X, Y)
=@ for 1<k < & = d-d'+t. By the assumption (i) Tk(X,O) =
@ for 1 <k < & . Again by Proposition 4.8 in Chapter I, we
have dim v—l(O) < d'-t and since the dimension of the fibre

Loy = a'-t.

is upper-semi-continuous, dim v~
Step 2 (nY is also equidimensional.)

We use induction on d-t = codimX Y. If d-t = 1, assertion

(1) implies the equi-multiplicity of X along Y, and one sees

that ey is also finite. Thus, nY is finite.
Suppose d=-t > 1. Let 240 be an irreducible component of
n;l(O) CZPN_t><G, and U, be the projection of %%O to PN,

If dim 'Ub > 1, one can find a smooth hypersurface H such
that
(1) H containes Y.
A s .
(2) The induced map (XNH) = XnH from the strict transform
of XNH by Vv to the Nash modification of XnH, is finite.

(3) The strict transform (XNnH)'"™ of XNH by n intersects

Y
Yo
By the induction hypothesis and by the finiteness of the above

map, we have
dim((XNE)" NYy) < a'-t-1

thus, we have dimfgo < d'-t.
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If dim U = 0, we still have dbn%/o<§ d'~-t Dbecause

1

Yo C Uy xW, with W,Cv 1(0) and dim v o) = ar-t.

(ii) = (iii)
STEP 1 Let xne XO and yneY be convergent sequences

such that

C) z = lim x
n
@ the 1limt T

1

lim yne Y

lim Tx X exists
n .
1lim ynxn exists.

@) the limt £
We would like to show that 2CT.

Let P : (@N,O) > (Y,0) be a projection. One has

Y%, © ynP(xn) + P(xn)xn
By choosing a subsequence X, of X, if necessary, we
k
can assume that the 1limit of secants 21 = 1im ynPZXni' and
22 = 1im P(xnixn exist. By definition zlc TZYCLT. Thus it

is sufficient to see that ZZC_T. Consequently we can assume
that y_ = P(Xn)-
STEP 2 For XE}éh one can define the angle function

B(x) between TXX and xP(x). Namely,

B(X) = sup _lfl_’_w_d
xP(x)=-(0) || v]||p]]
TXX—(O)

Ve
we

where < , > denotes a Hermitian form on ®N. It is easy to

see that we have an extension B8 :.XY + IR such that BonY(p) =
B(p) for p En;l(XO). The Whitney condition at 0 is equivalent

to that é] -1 = 1. However, for a non-empty Zariski open set
ny~ (0) ’
Y
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UCY, and for %e€U, Al _1., .51 (Cf. H. Hironaka [5],[6]1). The
( ~_ ~_
assumption (ii) impliesYthat B l(U) is dense in B l(Y). Thus

we have B _; = 1.
(0)

Ny

(iii) = (1)

STEP 1 (We' can assume dim Y = 1.)

For any 3reY' which is sufficiently near to 0, we can choose
a smooth curve Yl passing through both 0 and y. The Whitney
condition for the pair (XO,Y) implies the Whitney condition for
(XO,YI)Q Thus, if we can prove the theorem under an additional
condition that dim Y = 1, we conclude that my(Fk(Xsy)):mO(Fk(X,O))
for any k.

STEP 2 (Whitney condition => dim v 1(0) < d-2)

Assume dim Y = 1. Let P: @N - ®l+d be a generic projection,
= P(X). Teissier used the assertion that the Whitney conditiocon
for (X,Y) dmplies the Whitney condition for (XlsP(Y)), without
proof. However this assertion is not obvious. This is one of the
incomplete parts of his proof.

So, here we only show that assuming the next lemma, we can

accomplish the proof.

Lemma 3.4 For a general projection @ : @N > @2, the union

TllJY of the polar curve F1 assoclated to Q and Y has the
following property; each 1limit direction at 0 of the secant of

FlLIY does not contained in Ker Q.

By Proposition 4.8 in Chapter I, we know that dim v_l(O)
< d-2 is equivalent to that ry = ?.
Assume Fl # @ for any generic projection Q : CN - CE. We
N

fix a retraction p: € — Y. Let x, €T\ (0) be a sequence

which tends to 0. Consider the secants pixnixn, there limit 2
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of them and the 1limit T of TX X. By the Whitney condition .
n
TDOT.Y and by the construction dim (TnNKer Q) > dim T-1. We can

0
assume, TOY'§Ker Q. Thus we have T = TnKer Q + TOY. On the other
hand, by the Whitney condition T 2% and by lemma 3.4, K(xKer Q.
We have T = Ker QNnT + L. However/ﬁ@N = 2 + TO Y + Ker Q, which

is a contradiction.

STEP 3 Since dim v_l(O) < d-2, a sufficiently general non-
singular hypersurface HDY 1is transversal to every limit tangent
space of X. Thus we can conclude that (XnH, Y) satisfies the

Whitney condition. By induction on d, we get the theorem

thanks to the next lemma.

-Lemma 3.5. Suppose dim Y = 1 and mO(Fl(X,O)) = 0. Then,
for any general smooth hypersurface H containing Y, we have

(1) my(T (X,0)) = my (T (XnH, 0)) for k > 2.

k+1
(2) 1If Fl(XfﬁH, 0) = @, then {F2(X’y>}y’€Y' is equi-

mulfiple along Y.
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