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Preface

     In 1980 Fall, Professors  Le  Dung  Trang of Paris VIE and 

Fluvio Lazzeri of Pisa stayed at the Research Institute for 

Mathematical Sciences, Kyoto University for several months. At 

that occasion a big group of active researchers in the theory of 

singularities, including both resident and visiting members of 

the Institute, carried out a series of vigorous seminars of 

approximately 60 sessions, which I hope were extremely stimulating 

to all  participants.

     The present volume consists of the lectures given by 

Professor  Le  Dung  Trang in these  seminars, Mr. Tohsuke Urabe 

took the notes and prepared the  manuscript. The Department of 

Mathematics, Kyoto University has given the chance of publishing 

these notes in the present form which, I believe, makes them 

easily accessible to a large number of  mathematicians. I would 

like to express, personally and on behalf of the Research Institute 

for Mathematical Sciences, deep thanks to Professor  Le  Dung  Trang, 

to Mr. T. Urabe, to the Department of Mathematics and to all the 

participants of the seminars. Thanks are also due to the  secre-

taries of the RIMS for their splendid typing work.

     There is a plan to publish the notes of other lectures of 

the seminars. Many of them will be written in Japanese and will 

appear in other places.

Shigeo Nakano 

  May 1981
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Geometry of Tangents on Singular Spaces and 

                 Chern Classes

     By 

 Le Dung  Tramg

 (Notes prepared by T. Urabe) 

Chapter  I. Geometry of Tangents

     Let  (X,O)C(CN,0) be a germ of analytic space. For a 

smooth point  xE.X, we can define the tangent space  Tx of X 

at  x. In this chapter we study the behaviour of  Tx when x

tends to the origin 0, which may be  singular. 

 §1, Nash Modification

Let (X,O) C  (TN,O) be a germ of reduced analytic space.

We consider a  rep•esentant X of (X,0) which is the space of 

common zeros of a finite number of analytic functions defined

on an open subset  UCTN. We assume that (X,0) has pure

dimension d.

There is a natural map

 TN-(0)  FN-1                  , (a1"---aN)  >  (a1N)

Let  1 denote the restriction of this map to X-(0). For 

 xEX--(0), 1(x) is the secant at 0 through x.

 -  1  -



//

 x secant at 0 through x

Let  X' =  Gr.X  C  X  x7PN-1                               be the closure of the graph Gr A 

of  A  : Gr  A  =  {(x,0x)ECN  x  I  xEX-(0)}

     Lemma 1.1 (Remmert). X' = Gr  A is a reduced analytic 

 subspace.

As for the proof, see H. Whitney  [18].

Definition 2. LetJbe the ideal of (X,0) in (TN,c).

Every element  TELr can be expressed as

 (fik is a homogeneous polynomial of 
 =  (Pk 

 k=m degree k. SOm 0.

 (pm =  In0(19 is called the initial part of  P. Let I be the 
ideal in  C[X1,..  XN] generated by the set  {In0  pp€7.}. 

The tangent cone CX0of X at 0 is the analytic variety

defined by the homogeneous ideal I.

Remark 1.3.  
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(1) If  Jis principal i.e.  J  = (f) for some element f, 

I  = (In0f). 

(2) If I  =  (inof,,...,inofr), then  J  = (ff) 
                        1"r

However, the converse of (2) does not always hold.

     Remark 1.4. Let e : X'  -=..›X be the map, induced by the 

projection  X  xIPN  X.

(1) The restriction of e to  Gr  AC  X' is an isomorphism. 

e Gr  A  --->X-(0). 

(2)  e-1(0)  ti Proj Cx0CIPN-1, where Proj Cx0 is the 
  ,,

projective  variety associated with the cone  CX0  C  CN.

     This e  :  X'  X is nothing else but the blowing up of 

the origin (0). (See  R. Hartshorne  [31.) 

                                         n

     Let  E.  be  the singular locus of X,  X- =  X-E. We can 

define the Gauss map

yo Xo =  X\E-->  G(d,N),

where G(d,N) is the Grassmann variety, which parametrizes all 

linear d spaces passing through the origin in CN. For xEX0, 

 0  y  (x) is the parallel translation to 0 of the tangent space

T of X at x.
 x

Let X  = Gr  yo C X x G(d,N) be the closure of the graph

of the map  yo, and  v  : X  -4- X be the induced map.

Remark 1.5. If  (X,O) C  (0+1,0) is a hypersurface, the

map X X is the  blowing up of the Jacobian ideal J(f) =

 (1'where f is the generator of the ideal  J 

  0 

 9x"xdX'
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of X.

This

=  f
k  =  0}

minors of

fact

 in 

the

 'fl/'xi'  Bfl/BxN

9fk/x1"afk/x1,1 

ap y' : Xo3pr-1                       de

       0

in X  xipr-1. The 

is by definition th 

1.6. Let X be a

 X1  X2  CX  x G.

also holds for complete

 CN. Let  A1,---,A r (r  =

Jacobian matrix

intersections {f11 

 (k)) be the k x kbe the k x k

The map  y'  :  X  ÷  IP1  - defined by  y' (x)  =  (A1(x)  :  •  •  •  :

 n
 A(x))  coincides with the composition of the  Gauss map  y-: 

 X° G(N-k,N) with the  PlUcker imbedding  G(N-k,N)c÷1Pr-1.

Therefore the closure X  = Gr  y- is isomorphic to the closure 

 r-1   0
of Gr y' in X x  JP-  -.  The map  Gr  y  X induced  by  the

projection is by definition the blowing up of the Jacobian ideal. 

     Remark 1.6. Let X be a union of two germs. X  =  Xit./X2.

Then X =  X1  Li  X2  C  X x G.  Because we take the closure of smooth 

parts.

     Lemma 1.7. Let  (X,O) be a germ of reduced analitic space 

of pure dimension d. 

(1)  (X,P) is a union of irreducible components  of a reduced 

complete intersection  (X7,0). 

(2) X is contained in  X1. Moreover,  X ='yI1(X-E1) where 
 E1 is the singular locus of X1, and v1: X1  X1 is the map 

induced by the projection X1 x G(d,N) onto  X1. 

(3) The map  v  : X X coincides with the blowing up of the 

ideal  J1aX' werhe J1  is the Jacobian ideal of  X1.

 -  4  -



     Proof It is left for readers as an excise. (Cf.  L6- 

Teissier [10].)

     Corollary 1.8. X is an analytic space. We call this 

map  v: X X, the Nash modification of X.  

(1) v is an isomorphism over X0. 

(2)  v is proper.

The tangent bundle  TX° of the smooth part  X0 is the pull 

back of the universal bundle over G(d,N) by  yo. Over  R, we 

can define the map y G(d,N) as the restriction of the 

projection X x  G(d,N)  G(d,N). Let  T be the pull back of 

the universal bundle over G(n,N) by y. We call  T the Nash

bundle of X.

 V*  (TX()) 

 V-1(X13)

 4
Example 1.9 Let X =  P1U  P  2C  C  '  , where  Pi  1=1,2 is a

 4
plane in  Cr such that  P1  P2  = (0). 

                  Pl

 P_  I  X

(1) The Nash modification X is a union of two disjoint plane 

 f2' (Cf. Remark (1.6) above)
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(2) Since the inverse image v-1(0) of the origin is two

points, it can not be a divisor in X and the map v : X  + X 

is not the blowing-up of any ideal which has its support at the

point  (0). 

(3) Notice that this space X is never a complete intersection.

                              111 For a sphere SE={(z1,z2,z3,zv) E CaIElzi2 =  El the inter- 

section  XA  SE  'is a disjoint union of two copies of 3-spheres. 

If X was a complete intersection  XASE should be connected

by a local version of Lefschetz theorem.

(4) Let  P/.=  {z1=z2=0} , P2 =  {z3=z4=0}, and  X, =  {ziz3=z2z4 

 =0}. X1is a complete intersection containing X  =  P1UP2. 

The Jacobian matrix of X1is the following.

Thus it is easy to see 

the blowing-up of the 

lines.

 z3,  03 

0,  z4,

that

ideal

 z 0 

0, z2 

the Nash modification  v: X  .4- X is

of the union of four coordinate

 P

However, one sees one can choose any set of defining four 

coordinate lines.

 -  6  -



Example 1.10 Let X  =  {f=xz-y2=0}  C  T3 be a quadratic

cone. For this X, we can see clearly the structure of X. 

     Let  X be the total space of the line bundle  B-  1(-2)

on IP1. Then

(1)  R  U1L)U2,.  U1  ti  C2,  U2  q,  C2 

(2)  (,,t)Ei.  Ul and  (ii,u)  E  U2 represent the same point on 

if and only if u =1T,n=  Vu2

(3) There is a map  v: X X such that

 (,t)  (t,ct2) = (x,y,z) on U1 

(11,u)   (flu2,11u,n)  =  (x,y,z) on  U2.

(4) A map y  X 0(2,3)  %-_10P2 is defined by 

 y(t) =  (t2: -2t:1) on U1 

 y(71,u) =  (1:-2u:u2) on  U.

Obviously  (v,y):  X  xx1p2 is an embedding, and  (R'(v(p)): 
 3f( v(p)):.311(v(p))) =  y(p) for a generalpoint 3

z  P E  R.

Thus  v: X  .+ X is the Nash modification of X.

     Now, let T be the Nash bundle over X. It should be 

noted that in this case T  Ti. Since the universal bundle

over  G(2,3)=ED2 is isomorphic to 'BP2v      q, ®Cf)-  2(1), T 
 IF 

y*(TEP2v00- 2(1)). Let E = v-1(0). E is nothing but the
 IP

zero-section of the line  bUndle  0-  1(-2). It is easy to find

the Chern number  c1(T)*E = -2. On the other hand

c1(TX)E--c1(NX/E) + c1(TE), 

c1(NX/E).E =  E.E = -2,

 -  7  -



 cl(TE)•E  = 2 , (since E

Therefore  c1(TR)•E  = 0  4  c1(T)•E and T  9' TX. 

                        §2.  Whitney Lemma

We use the following notation throughout the rest

article but the last section. Let  (X,O)  C(0,0) be a

germ of analytic space of pure dimension d. 

 e

  >X 

 vt 

 v  e

 X'   >X

(1) e : X'  4. X is the blowing up of the origin. 

(2) v : X X is the Nash modification.

(3)  e :  3E X is the blowing up of the ideal  m00-5c, 

is the maximal ideal of 0..                                X,0 

 (4). By the universality of the blowing-up, there is a 

map  vy : X' such that  ev' =  vê  =  n.

We denote

 Y'  =  e-1(0) 

 v-1(0)
          - 1

   (0).

T is the Nash bundle over X as before. T  =  VT is 

back of T. Let  CY be the pull back of the canonical

 -  8  -

of this 

 reduced

 where  m
 0 

unique

the pull 

 line



 N-1 N-1     N-1  N-1bundle  a  N-1(-1) over  V  J-  by  the map  X'C..ipX  x12- 
         IP 

where X x PINT-1 :0-1 is the projection. Let  =  vf*C.

 El

 X'  <    >5C

Remark 2.1.

•Y' and  If are Cartier divisors.

 

. However Y is not necessarily a divisor . 

We denote by  IZI the underlying topological space of the 

analytic space Z.

Lemma  2.2. (Whitney lemma)

    C

    Remark 2.3. The meaning of this lemma is taken in one of 

the following ways. 

(1) By definition, and T are subbundles of the trivial

bundle  (Ux. . After restricting on  iyi  ,  Eliy1 is included in

In other words,

(2)  (cf. H. Whitney [181) For every sequence  xnEX° = X -  E, 

such that

    lim xn0 (the origin).
 n-*0  - 

                          - 9 -



 ®

 0

we 

(3) 

Let

There

There

have 

 Z

Then

0

exists the limit, 

 T  =  lim TxX.
 n÷00  -n 

exists the limit

 R =  lim  Oxn

 n÷00 

 C  T  .

can be regarded as a subspace

 -  {(2 ,,P)  E  EP-1  x G(n,N)

 

j  c

Remark 2

 {0} x  . 

.4. In the condition

line  Z, we have T  =

tangent space of the

generatrix  R.

of  X  x

 C  P}.

(2), we shall see

 Tk1CX01' where 

cone  ICX01 at

 G(n,N).

general

 TtIc
,01

point of

limit 

  the

the

 that for a 

we denote by 

the general

- 10 -



Proof of Whitney lemma. We introduce a continuous function 

     a :  X°  +JR

in order to measure the angle between Ox and  TxX.

 N
Let <v,w> be a Hermitian metric  of  ii 

Let

 

1<vw>Ia(x)  =  sup   . 
 ve(0x)-(0)

 wtsTxX-(0)

It is obvious that: 

 0 < a(x)  <  1 

        a(x)  = 1 Ox  T xX,

Similarly we can define 

 a 

 n  N-1  xG( n,N)

For  (x,k,P)  €  X  x]PN-1  x G(n,N), we set 

 6i(x,Z,P) sup I(v,w)I 
 v6k-(0) 

 we,-(0)

Note that for every point  5t  E  3E such that  n(fe) 6  x°,  a  (X) =  a(n(X)) .

What we want to prove now is that:

 _  1.

It is obvious that the lemma follows from this assertion.

    Pick an arbitrary y  E  11I and an analytic path p such 

that  p(0) = y, and p(t) E  Xvi-1(E) for t  # 0. We have

- 11 -



to prove that

 lim  a(p(t))  =  lim  a(nop(t))  = 1. 
 t-)-0  t÷0

Let q  =  floP. Then  q(0)  = 0 and for t 0 

                        dq 
         q(t)  6  X\ ,a-(t)  E Tg(t)X.

 Therefore

 I(q(t),  R(t))1
                < a(q(t))  < 1. 

 licl(t  )1111  -I:c171(t)  II

If we write

q(t) = atr + (higher order terms) 0

then

dq   (t) =          rat + (higher order terms)

and the left hand side of the above inequality

   et2r-1 rI4
 1

         Jr2                Ila ift2r-2+.
with  92(0) = 0. 

Consequently

         1  +  Ap(t) <  a(q(t)) < 1 

and 1 =  a(q(0)).

is

+

a e  CN,

equal to 

 T(t)

Q.E.D.

- 12 -



(Once we notice that the problem can be expressed by limits 

along analytic paths then everything become trivial.)

     Theorem 2.5. If  g. in Remark 2.3 (2) is sufficiently 

general, then  T. is the tangent of the reduced tangent cone 

along  I.

    Remark 2.6. The tangent cone is deformation of the  corre-

sponding analytic space.

Case  1. Let  X C  Tn+1                              be a hypersurface defined by  f=0.

Let

          f = f
m + fm+1  + 

be the Taylor expansion of f, where  fk is a homogeneous 

polynomial of degree k and  fm  0. We set

F(x,t)  = fm(x) + tf m+1(x) + t2fm1.2(x)  +... 

       =1f(tx). 
          tm

Let Z  Cn+1  c be the analytic space defined by F  = 0, 

 Cp: Z  T be the map induced by the projection Cn+1 x  C T.

Then,  90-I(0)  ti CX
,0andV)(t)tiX if t O. Since the

element t is not a zero-divisor in  0'Z, the map  92 is  flat. 

 Case  2. Let  X  C  CN be a arbitrary analytic space. We

              •can choose f1"fksuch that in0f
1"in0fkdefine

CX0*We set 
               1   F

i(x,t) =mf.(tx)  i=1,2,•••,k 

                                                                                                .
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where m. =  ord  f..            1

Let  Z  C  CN x C be the analytic space defined by

F1  = F2  =  = Fk=  0,

  : Z C be the map induced by the projection to the t-axis. 

     One can show that the element t is a non-zero divisor in

 Q-Z ,(0,0)' Thus  99  : Z C is flat. 

     Definition 2.7. The family of smooth analytic subset  Si

ie I of a analytic space X is called a stratification of X 

if the following conditions are satisfied. 

(1) X  =  -LL  Si (disjoint union) where I is a finite set. 
 iE  I 

(2)  Si -  Si,  Si are analytic subsets. 

 (3)IfSintSj�0,thenS.  G  S..

 Each  Si  is called a stratum. The condition (3) is

equivalent to the next (3') 

(3')  Si is union of strata.

     Let  (1):  (Z,O)  (C,O) be a analytic map, and Z =  IL Si. 
 iEI 

be a stratification. We assume that the rank of  90 is constant

on each stratum. We say that the stratification Z  =  _a S. 
 ieI 1 

satisfies the Thom condition if the following condition is 

satisfied: Let  S  Si be a pair of strata such that SC.. 

 Let  zk  E  Si  be  a  sequence  of  points  of  Si  such that 

(1) it  converges to a point  zES,
 J

(2) the sequence of tangent spaces  Tz  1-1T(zn)(1Z1) have a
 k 

limit T. 

Then, we  ha:Te

- 14 -



T  Tz(CP-11)(z)) n  s•).

     Remark 2.8. In [6], H. Hironaka shows that under the 

condition that for every t  E  92-1(t) is contained the

closure of  Z  -p-1(t) in Z, there exists a stratification such 

that

(1) the rank of  cp is constant on each stratum

(2) it satisfies the Thom condition

(3) Each stratum is contained  99-1(0) or Z  -p-10).

     The proof of Theorem  2.5. Let  We Z  T be the map 

described in Remark  2.6. Case  2, It is easy to see that because 

of flatness for every t  6 C,  Z-T71(t)  IT-1(t)I. By Remark 

 2.8, we know that there exists a stratification which satisfies 

the above conditions (1), (2), (3). 

     Let U C  y-1(0)1 be union of the stratum which is contained

IT-1(0)1 - ICx01 and which has the same dimension as ICx ,01. 

,

U is  dense-in IC                   X01° 

           , 

     Let  Ck E  X\ E be an arbitrary sequence such that

(i)  lim  Ek  =  0 

(ii) there exists the limit T  = lim T X

(iii) there exists the limit  2,  =  lim  En°  CCx
,0

(iv) moreover  knu 0.

The condition (iii)  implies that for the  sequence  E  k = 

...'
Nk) 6 CN' there exists an index a such that Eak 0 ,,

for sufficiently large k and that the sequence

- 15 -



 Ck  (Clk/Cak '  C2k/Cak''CNkiCak)

has a limit ECN. By multiplying a non zero element to 

coordinates if necessary, we may assume  E U by (iv).

     Let  zk =k' ak)  E cN x C. By definition zkEZ and 

lim zk =  (,0)  e U. And T(cto-1(Azk)) =  T  X x (0). Thus                               zk  Ck 
there exists a limit T  =  lim Tzqp-1(cP(zk)). Then, by the Thom 

                               k

 condition

         T T(0) •Kp-c1(0)I = T_ICX,0I. 

This inclusion implies T  = T-ICX0I because these spaces have

the same dimension. Q.E.D. 

                              §3. Surfaces

In this section we apply our general results to surfaces in

C3. (Cf.  Le—Teissier [9]).

Let (X,0) C  (0,0) be a surface defined by f(x,y,z)  = 0,

where f is a holomorphic function on a open neighbourhood U 

of the origin 0.

Theorem 3.1.  

 e

  >  x

 V

 X'   >  X 

            e

- 16 -



We consider the diagram explained in §2. We denote

 Y'  =  e-1(0),  =  v-1(0), and  qi  v,-1(y,)e-1(Y)  .  71-1(0). 
Note that dim 'y= dim Y'  = 1. 
(1)  v'  : IY'l is generically one to  one. Let

 QkI be the set of the point  I such that dim  vt-1(2) = 1.

Each  2i can be regarded as a generatrix of the tangent cone

 C
 X,0" 

 -1

 (2)Foreachi=1,2,...,k,v1-(k.)can be regarded as the 

pencil of planes containing  2i. 

(3) The components of  IT, which  are finite 
over  11'1 are in  one-to-one  correspondence with the components 

Y'1"'"Y' of  IY'l. 

(4)  Iê(lW.)1 is the dual variety of  Y!.

Definition  3.2. Generatrices 2l'2""2,kare called 

           "

exceptional tangents of X at 0.

     Proof of Theorem 3.1.  (1),(3),(4) are easy consequences of 

Theorem 2.5. 

(2) follows from the Whitney lemma. 

                                                                            Q.E.D.

Next we introduce some notions.

Definition 3.3. Let  P :  Xo  X -  E C2 be the

projection along the line L. The closure C(PL) of the critical 

locus C(PL) of  PL is called a polar curve associated with

- 17 -



the line L, if it is an analytic set

Remark 3.4. Let  CL  C  G(2  ,  3  )  =

containing the line L. We have

C(PL)  =  v(Y-1(CL)-v-1(0)). 

Let (x,y,z) be the coordinate

defined by x  = y = 0. C(PL) is the

and has

   `" 
IP2 be

         Df= {f = 0
,-57-  0}\singular locus  E

     The following Proposition 3. 

preceding results. (See  Henry-Le

     Proposition 3.5. Let p : Z 

analytic spaces such that for  every

Z = p-1(y) has dimension 1 and

every  y  E  Y,  Z has imbedding  dimension 

z  E.  Z  . For given points  y  E  Y and z

conditions are equivalent. 

(1) There exists an open neighbourhood 

that denoting the open set p(U) by B 

 y'G B the singular points of the  cury 

we have

          u(Zy,z) = I131  p(Zy,;zi), 

where p(ZY'z) denotes the  Milnor

- 18

 dimension  1

the set of planes

of  0 such that L is

closure

5 is a consequence of the

 [4],  Le [8],  Le-Teissier [9].) 

    Y be a flat map of reduced 

 ry point y  € Y, the fibre

 Zy is reduced. We assume for 

 ension 2 at every point of

and z  E  p-1(  y  )  , the following

U of z in Z, such

by B and denoting, for every

 curve  Zy,n  U by z! (1<i<k) 
             1__

 number of  Z at z.



(2) There exists an open neighbourhood U of z in Z and a 

section a  : B  U of p, such that 

 a) p induces a submersion of non-singular variety

U - a(B) B

    We have

 ut(Z  f;(Y'))  =  I-1 (Z,z)

for every  y'E  B. 

 (2') The same conditions as in (2), but in addition to those, 

y) We have

           m(ZyV,p(y')) = m(ZY'21) 

where m(ZY'z) denotes the multiplicity of the maximal ideal of 

the local ring  Z z' 
                        Y'

(3) There exists an neighbourhood U of z in Z and a section 

a B U of p, such that for every  y'E  B; the topological

type of the germ of the plane curve  (Z
y,;o(y1)) is constant.

(4) There exist a open neighbourhood U of z in Z, a section 

 a  :13-)-U with  B= p(U)  and  a  projection  :Bxc2  B  x  C 

such that

a) One has a local embedding

i (U,z)  (Y  x  C2,  yx 0)

- 19 -



which makes the next diagram commutative.

 U   >  B  x  (C2

 P  r, 

 B

and for which one has  i(a(B))  = B x  01. 

    The ramification locus of the restriction of  n to U 

coincides with B x

     If one of the above conditions is satisfied, we say that 

Z is equisingular along  a(B) at z, where  o is the section 

appearing in (2), (2') and (3).

Now we can state a theorem. 

Theorem 3.6. (Characterization of exceptional tangents.)

Let  (X,O) be a germ of analytic surface in  (C3,0) defined 

by f = 0. Let  R be a generatrix of the tangent cone  Cx
,o

of X at 0, which is not tangent to the singular locus E.

     The following assertions are equivalent. 

(1) The generatrix  k is an exceptional tangent of X at 0.

(2) For every local projection  PI, :  (X,O)  (C2,0) which has

the same degree as the multiplicity in  m(X,0) of X at 0, the 

generatrix  I' is tangent to the polar curve C(PL). 

(3) The surface X' is not equisingular along  le-1-(0)1  =

 ProjlCx01 at the point of  e-1(0) which represents  k. 

 (4) Let  co : Z C be the deformation defined in Remark 2.6.
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Let Z0be the smooth part of ZNY-1(0)' Z1 be the smooth 

part of  199-1(0)1  =  ICx,01 x  {0}. Then, the pair  (Z1,Z0) of
strata do not satisfy the Thom condition at every point of 

 Q x  {0}  \O. 

   Proof.  (1)  ---> (2)  /

 ProjlCxolv

Let  PL (X,0)  -4  (C2,0) be a projection as in (2), where

L denotes the line of the center of the  projection. Let c
L

be the pencil of planes containing L. Since ye(v'-1(2)) is 

a line in G(2,3)tiIP2v , ye-(N91(k)) is necessarily intersects 

 Y-1(c  ) =  e(v71(Z))(‘Y-1(c with cL.Thus,  0 ê(vTi(k))n            L° 

Here we note that-1(c) =  -y-1(c  )\Y because if a certain 

component of  y-1(cL) is contained in  YC:{01  xIP2\I, it should

 be  a  linear  component,  itcoincides  with  v°-1(2i)  for some

exceptional tangent  ki, and we have L =  ki, which contradicts

to the choice of L. We have

 v‘-i(z) e-ly-1(cL)\eti  � 0,

and

 Q  E v'è-ly-l(c )\Y'  =  rt.

However since  r' is the strict transform of the polar curve
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F  =  C(PL), e : F' F in the blowing up of the maximal  ideal 

of C9-ro'Thus it follows that the generatrix2is tangent

to the polar curve F. 

(2)  -› (1)

Let  2 be a generatrix of  Cx0 which is not tangent to

the singular locus E and which is not an exceptional tangent.

By this assumption,  ye(v'-1(2)) is a finite set. Thus, for the

general line L,  cL does not pass through any point of  ye(v'-1 

which shows that C(PL) is not tangent to 2 for a general 

projection  P.

     In order to see the equivalence between (1) and (4), we for 

a moment assume that  2 corresponds to a smooth point of

 

IY'l =  ProjlCx ,01, in other words  2 x  {0}  '`^  O C Z1. The proof
of Theorem 2.4 shows that (1) implies (4). Conversely we assume 

that  (1) does not hold. Generatrix  2 is not exceptional. Let 

 (zn,tn)  E Z0be a sequence which converges to ZE  Z1, we set

 x n =  tnzn E X -  E. The sequence  Cn  =  ê-1v-1(xn) converges to 

a point  C  E  %f. By the choice of the sequence  CE v'-1(2).
By Theorem 3.1,  v1-1(2) consist of one element {(2,T)}, where

T is the tangent space of the cone ICx01 along 2. Since 

   , T(
z't(S0-1(tn)(I Zo) = TxX, we know that the Thom condition    nn) 

holds for (Zl'Z0) at 2.

As for (3) and the more precise proof on (4), see  Le  [8]. 

                                                                    Q.E.D.

     Corollary 3.7. The tangent cone of the polar curve  r for 

a generic linear space L is given by 

(1) the exceptional tangents

- 22 -
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(2) The critical locus of the induced projection 

                                                            0

    aYL  :  IC 01  Q. 

Proof. By Theorem 3.1 and the proof of Theorem 3.6, it is

obvious. 

 Q.E.D.

Corollary  3.7. If  IC)(01 is a plane and the projection

P is transversal to that plane, each tangent of the discriminant 

of P is the image of an exceptional tangent.

 Proof. The discriminant is the image of polar  curve. Thus, 

it is obvious by Corollary  3.6. 

                                                                                Q.E.D.

     Example  3.8. Let X be a surface defined by a  Pham-

Brieskorn polynomial  xa  + yb +  zC = 0. We first assume that 

a < inf (b,c).

The tangent cone 1Cx01 is given by x.= 0. The 

 ,

discriminant of the projection (x,y,z) (y,z), which is

transversal to this plane x = 0, is given by  yb +  zc = 0. 

 0  a  <  b  <  c

      the line x  = y = 0 is the only exceptional tangent. 

 0 a  <  b  = c
  b,31/1   

 yb + z=u7-4-Ez)fy+6z)1/437+5Ez)  (y+E2b-1

 7  TT
 E  =  exp(  2b  -)*
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 o

We have

 Moreover 

 a  =  b < c

The

 X  =  u 

y + Ea

< c

 tangent

b 

0 

 E

 exceptional 

z  =  0  a  =  1

cone

tangents 

 ,3,5,...,2b-1.

is given by xa+ ya  = 0.

The axis of the tangent cone, x = y  = 0 is  thë

exceptional tangent.

 () a  = b = c
X :  xa +  ya +  za  = 0 has no exceptional tangent

Example 3.9. The Whitney umbrella is given by 

   2  2
    xy -  z  =  O. 

The singular locus is the x-axis.

     -  24 -
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 x

 z

The projection p (x,y,z) (x,y)  is transversal to the

tangent cone ICx01 which is given by z =  0. The critical 

,

locus  C(P) of P is given by

          x2z2= 0D(xy2-z2) _2z = 0.     y-,  @z 

Thus the polar  curve  C(P)\E =  0 is defined by x = z = 0, 

which is the  y-axis.

The critical set of a general projection is given by

 2  2
f  xy- -  z = 0 and

 f+ a  f

 Dx
+

2
 = ay

 1-' 

 z
+ 2bxy - 2z  = 0.

Since

the equation

 2a 
xy(7 ,Ty2b+xy)

of polar curve  r

2

is

y2{x -(2=Y + bx)
 2}

,
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x -(2y bx)2 =

2
     ay + 2bxy - 2z = 0. 

We note that the tangent line of F, x  = z  = 0, does not

depend on the parameter. Thus the line x = z = 0 is an 

exceptional tangent.

Example 3.10. The swallow tail X, discriminant of the 

 4 . .
semi  univers-al deformation  of  u =  U is given  by

256x3 -  27y4 - 128x2z2 +  144xy2z + 16xz2 -  4y2z3 = 0.

     The tangent cone  ICX01 is a plane x  = 0. However, X 

does not have exceptional tangents, since we know that the 

Nash modification  v : X X is a finite map. (See B. Teissier 

 [14].)

                                                     ,--- ,.--• _,,-- 
                 -----4

_, 

     .," .._ _...

In the remaining part of this section we shall state some 

theorems without proof.  Readers can find the proof in  Le [8],

 Le-Teissier  [9].
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     Definition 3.11. Let Z  =  IL Si.be a stratification of 
 ie I 

                                        a analytic space Z. We say that the Whitney condition is

satisfied for this stratification if the following condition is 

satisfied: 

     Let  S.  .  be  strata such that  S.C:S..  Let  x  ES. and    Let  i'  Sj  be  strata such that  1j.  Let  xnEsi 

yne  Sj be sequences of points such that

(1)  lim yn =  lim xn = x  E  Si

(2) There exists a limit T = lim T S. yn   

(3) Lines xnyn have a limit R =  lim xnyn.

Then, we have  kc:T. 

     Remark  3.12. For any germ  (X,O) of analytic space, there

exists a representant Xc(CNin some CN, which can be stratified 

with the Whitney  condition. (See  Ho Whitney  [18] or H. Hironaka

[6]).

Theorem 3.13. (Cf.  Le [8]). Let  (X,0)(:(X3,0) be a

surface. Suppose the tangent cone Cxo is  reduced. Then 

   ,

the following two conditions are  equivalent. 

(1) The surface X has no exceptional tangents. 

(2) The deformation  9D:  Z of the tangent cone defined 

in Remark 2.6 is equisingular at 0 along {0} x  C in one

of the following senses.

 0 The non-singular part of the space Z obtained by blowing-
up of  {0} x C in Z satisfy the Whitney condition along its

singular part.
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 0 The  stratification  ( Z  \  Sing  Z, Sing Z -  {O} x  c,  0 x  nz)
satisfies the Whitney condition.

 0 For a general projection  7:  X  C2  x  U which  is compatible 
 withyand the projection C2 x  C  c, the discriminant  A

of  7 is the family of plane curves which is equisingular along

 {0} x  C.

Theorem 3.13. Let  (X,0)C:(0,0) be a germ of surface

with an isolated singularity. The following conditions are

equivalent. 

(1) The blowing up e  : X'  i X of the origin is equisingular

along the curve  le-1(0)1. 

(2) The tangent cone  Cx0 of X at 0 is reduced and has

no singular point outside of 0.

(3) The Milnor number  p(3) of  (X,0) and the Milnor number

 p(1)  =  m(X,0) - 1 of its section with a general line satisfy

an equality

 (3) =(1))3

 (4) The deformation  cp : Z  C of the tangent cone Cx,o
defined in Remark 2.6 is equisingular in the sense that the

family  90 : Z  3  2 has a simultaneous resolution. 

(5) The blowing up e :  X'  -4- X of the maximal ideal at the 

origin is a resolution of singularities and the curve  (e-1(0))

is non-singular. 

(6) The surface X has no exceptional tangents at the origin.
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 §4. Higher Dimensional Cases

Let  (X,O)C:(TN,O) be a reduced germ of analytic spaces

of pure dimension d.

Let Pk'•CNl+k                       be a projection i.e. a surjective linear

map. We denote  Pk  =  PkIxO:  X0-4-  Cl+k.

Definition  4.1. The closure of the critical locus  r
 k

 = C(Pk) of  Pk is called the k polar varieties associated 

with the projection Pk  :CN Cl+k

Remark 4.2.

1. All projections  CN  Cl+k                                      constitute a Grassmann variety

 G(N-k-1, N) =  G. We can show that for a non-empty Zariski open 

set  UGG, and for every projection  PE  U, the polar variety 

associated to P is empty or it is reduced of dimension k. 

See  Le-Teissier [10].

     In the following we discuss only projections belonging to 

this open set U. We call them generic  ones. 

2. If k = d  rd  =  X. 

3. If X is smooth, then  rk  = 0 unless k  = dim X.

4. We can associate to 0  E X, d-uple of integers

 e(X,0)  =  (mo(F1),m0(f2),—,m0(rd)) 

where  m0(Fk) denotes the multiplicity of the generic k-polar 

variety at  O.  Then,  e(X,0)  =  (X,0) is non-

singular. We can see that the correspondance
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 Xaxi  >e(X,x) 

is a constructible semi-continuous map. 

5. Let  v  : X X be the Nash modification and y  : X  4- G(d,N) 

be the extended Gauss map.

     I 
X   >  G(d,N)

 X

We set 

                        T and Hk+1does not span the      Cd-k= {TEG(d,N)I 
                           ambient space  CN

where Hk+lis a fixed linear subspace of CN                                                         of codimension

 k+1.

By definition, we have 

 -1 ,
 rk  v(y  (Cd -k)), 

 - where Fk is the polar variety associated to the projection 

such  that  its  kernel  coincides  with  H, k+1* 

Let (X,O)C.(Cd+1,0) be a reduced germ of analytic

hypersurfaces of dimension d. Surprisingly the situation is 

like the one of a surface.

The  notations are the same as in §2.
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Iv-i(0)1  =  c 

 ProjICx
901=le-  id-1  C  X'

Every components of  I  y

is a Cartier divisor.

     Theorem  4.3. Let 

 111 into irreducible compone
components which are 

(1)  Y' = y'
 a6I_ a

 U

with Ya=  v'( a) is the

components. In particular, the 

irreducible components of 

(2) The set  IY1 of limit tan 

of the dual variety  V* of  Va

the whole set  I.

     Remark 4.4. For a projec 

variety V* is defined as the 

which are tangent to V. We sa 

to V, if H contain a tangent 

x  G V. V* is a subvariety of 

It is known that the dual V** 

with the original V.

 e

 e

      be the 

 Let  al

 Ltion of

set  {Vala  €
are in one  tc 

 nts  of X at

 

° )

space T
xV at

he dual proj 

of the dual

 X

 X'    >X 

 has dimension  d-1

 U
 oteI

e  components. Let -17,11 

generically finite over  Y°

 decomposition

 I0}

tangents of X at 

 Va y'(qi a), where

projective variety  V  C 

s the closure of the set

say that a hyperplane 

 nt space TxV at a sm 

f the dual projective 

* of the dual variety

31

 v'

because  y

decomposition of

a El0} be the

 IYTI into irreducible

 and the

one correspondence. 

 0 is the union

a runs over 

 N-1
 IP  -,  the dual 

 of hyperplanes 

 le H is tangent

a smooth point

 Lve space  IPN-1

 Letv coincides



     In the next theorem V denotes the affine cone over the 

projective variety  VC  IPNT-1.

Theorem 4.5. The tangent cone of the generic k-polar

variety  Pk is the union of k-polar variety of  V6, where 

V6
u= y'().      11

     Remark 4.6. If dim  V6 < k, the k-polar variety of  V6 is 

empty. Thus the union in Theorem 4.5 can be taken only over

 V  such  that  dim  V >  k.
 — 

 The  proof  of  Theorem 4.3, Theorem 4.5 is done by induction

on the dimension. We don't give it here. However, the ideas are 

the same as in the case of surfaces plus the following.

(1) Let (X,0) C (e+1,0) be a reduced germ of analytic space

of pure dimension d, which is not necessarily a hypersurface.

Let (X,O)  (Cd+1,0) be a generic projection and  (X  0)

be its image. Then, the image of polar varieties are the polar 

varieties of the image. And the multiplicity doesn't change 

under this projection. 

(2) There  is  an  unhappy fact. There is no canonical map from

the Nash modification  X of  )( to that )CofXi. 
                                                                             1' 

     Theorem 4.7. (Cf.  Le-Teissier  [10] appendix). Let

 (X,0) C  (CN,O) be a reduced germ of an analytic space of pure

dimension d.

For any generic projection P : CN Cd+1, we have:
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 0 The induced map from X to  X,  = P(X) by P is finite and
bimeromorphic. 

 0 In the  Grassmann variety G  = G(d,N) let C be the Schubert
variety of d-planes which are not transversal to Ker P. Then 

the intersection of C and each irreducible component Yk of

 -1
(0) has codimension 2 in Yk or else it is empty. Y  =  v

 c) The induced map P  : X  .4- X1by P can be extended to a 
map : X - y-1(C) X1, which is finite.

 Proof.  0 is  classical.  0 follows from the fact that C 

has codimension 2 in G and  Kleiman's general position theorem. 

As for  a the existence of the extension follows by linear

algebra. The only thing to prove is the finiteness of the 

extended map. Readers can find in  Le-Teissier [10] a precise 

proof.

     Proposition  4.8. Let  (X,0) be a reduced germ of an 

analytic space of pure dimension d,  v : X X be the Nash 

modification of sufficiently small representant of (X,0).
 -1

(0) < d-k if and only if Fk = 0 where rkOne has dim  v  -(0) < d-k if and only if Fk = 0 where rk 

is the k-polar variety of X associated to a generic projection 

CNC1-Ek

First we assume that X is a hypersurface. Then we can

prove this proposition by the  Le-Teissier formula and topological 

arguments. Next by Theorem  4.7, we reduce the general case to

hypersurface one.
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(3) The next theorem is useful when we use induction on the 

dimension.

     Theorem 4.9. In the same situation as  in Theorem 4.7, let 

 (H2O)C  (CM,O) be a hyperplane and let CH be the Schubert 

subvariety in G  = G(d,N) consisted of d-planes contained in

 H. We assume

                                -1 
         Y-1(CH) n(o)  =  0. 

Then, we have the map  (xnH)o  G(d-1,N) which associates 

x E (xnEl)0to  TXnH
x  =  TX,xn  H can be extended to a finite

and bimeromorphic map  (x(1H)  -4-XnH from the strict transform 

of  X  (I  H by  v to the Nash modification of  X  (1  H.

     The finiteness of the extended map is not obvious. The other 

part is proved by standard argument. As for the precise proof 

see  Le-Teissier  [10]. 

     Remark 4.10. It is easy to check that for a generic

 _-1-1
hyperplane  H, the assumption of Theorem 4.9  y  (cH)n  v  -(o)  =  0

is satisfied.
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Chapter II. Singular Chern Class

     In this chapter, we shall study the relation between geometry 

of tangents and MacPherson's theory of singular Chern classes.

§1. Review of Obstruction Theory

     First we recall basic results of obstruction theory, follow-

ing the Steenrod's book "The topology of fibre bundles"  [13].

Let K be a cell complex of dimension n. Let  A K be

a fibre bundle over K with fibre F. Let  LCK be a subcomplex 

and suppose we have a section of  d3 K defined on L.

     Problem. Can we extend it to K? 

Let

K0CK1CcKn =K

be the skeletons of  K.  K. is the union of cells of K of

dimension less than or equal  to j. For a given section sL: L  ±4, 

we can easily extend it to  so:  LUK0÷4e: For  x€LUK0NL we 

can choose any arbitrary point on the fibre as the value  so(x),

since LUK0consists of discrete points.

 o3

 /sL  /s0 
LCLUKLk)K   01

If we have an extension  s1

the restriction  s]l _ extends

condition to get  sl is that F

precisely:

 

:  L  UKi  +113, for a 1-cell  aCK1\L, 

s = s0. Thus a sufficient 13a @a

is arcwise connected more
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Let (f)a.• a  a xF-4- 61=7-1(q) be an isomorphism which makes

the following diagram commutative: Such an isomorphism exists,

since  a is contractible.

          (Pa 
4310.<  0-  x  F 

 Ntria  /1
 a

Here  p1:  axF-4-a is the projection onto the first factor. 

Let  -6:  as F be the composition

                                    ci)-1                s0a
sp2  as431aa >axF--->i,F 

where p2 is the projection to the second factor. If F is 

arcwise  connected,  we can extend  S to  -6a. Then

 sa(x)  =00-(x)) x 60- 

gives an extension of  s  0  I  @a and we have  s  •  L  UK1--,a3 by setting

 si  la =  sa for a 1-cell  aCK1\  L.

Obviously we can procceed by induction on the dimension of cells.

     Suppose F is (q-1)-connected. That is, F is arcwise 

connected and Tr.(F'x) = 0 for everyinteger i with  1<i<q-1. 
                                                      - -

Then, any section  sL on L an be extended to the q-th skeleton

 L  UK  .  q

Suppose for some q,  7
a(F,x) 0 and F is  (q-1)-connected.

Let a be a  (q+1)-cell of K such that a L.  The'extension 

 s  L  UK  ,d9 defines a class

EsqI(:)-] eq(F).
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Then, the collection {EsqCY11 and some nice conditions on F 
 CY

will define a cohomology class for  some good cohomology.

     However we have to check some further points. 

(1) We have to eliminate the hase point problem. The choice of 

the  hase point of  xEF does not matter if F is q-simple that

is,  71(F,x) operates trivially on  7i(F,x) for  0<  i<  q.

    Note that F is q-simple for any q if  71  =  O. 

(2) The cohomology should be the cohomology of (K,L) with

value in a sheaf  dB(7  ) of abelian groups defined by associating

7(7-1(U)) to every open set  UC:K.

Then, we have the obstruction class in  Hq+1(K,L .4(7  )). 

     This depends only on the homotopy class of  sL: L  d3.

In the case that is an orientable vector bundle of rank

r minus the zero section, our cohomology is the usual cohomology

Hr(K,L;  E.

§2. Euler Obstruction

Let  (X,O)C(CN,O) be a germ of reduced analytic space of

pure dimension d.

In this section we give a interpretation of number  Eu0(X)

which plays an important role in MacPherson's theory.

We use the notation explained in Chapter I section 2.

 >  X Y' =  e-1(0)

 v  iv  -  y =  v-1(0) 

 X   >  X = n-1(0)
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T X is the Nash bundle.

          N12 Let  SE1 and B = 

                                             1 

 i=1

 {(z1,...,zn)  EcNixizi12 _  <62}. denote the  shere and the ball with

center 0 and with the radius  E. We denote a fixed hemitian

form on CN by < >. 

     Lemma 2.1. For a sufficiently small real number  E>  0, one

has a section

 a:  v-1  (S  (1  X)  .÷  T

-1(
5n  X) Re<x'a x> > 0 (The acute angle condition)such that for  x  E  v

Remark 2.2 Every fibre of T  -+ X can be regarded as a linear

space in  TN. Thus  <x,ax> has meaning. In particular the acute

 _1

angle condition implies  ax 0 for  x  E  v  (Se  A  X)  .

     Proof of Lemma 2.1 A point  pex is a triple (x
P,ZP'TP) 

 E  X  x1DN-1  X G. Consider the map

 Cp : ZP-›-T  P

induced by the orthogonal projection for every point  pE.X. By

the Whitney lemma  (pp is the identity map for  pEy since 
Z

PCTP. Thus for a sufficiently small  S >0, one has a neighbour- 

hood  9z with 11C'ZCXsuch that for every point  pOt and for 

every v€ Z'(v) II <vil holds.

     A section  T:91+ T is defined by T(p) =  T(x.p,i10,Tp) =

 P  P" 

    We have 
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if2  -  Re<x Mx  11  -  Re<x  ,T(p)>p

= Re< x,x> - Re< x
P99,  PPP

Thus

 Re<x,T(p)>
 0  <  1-cS  <P        —II

xpli2

for  pe9t\11. 

    Now  -6:91,4  + X  \Y is

a sufficiently samll  e>  0,

a  =  v-1  (Ss  el  X) ±

angle condition. 

We now have an obstruction 

to extend a as a non-zero

     Lemma  2.3 The class 

the section satisfying the

 Proof. Let  a,a' be

Re<x,ax> > 0 

Re<x,a; c> >  0.

We set

 at =  to +  (1-t)01

 at also satisfies the 

the homotopy between  00 =

(x )> = Re<x,x         PPP H-611x(x)> <Mx H. 
 Pp P

an isomorphism by definition and for

 v-1( SE  r)  X)  C  -6(911,) We set

Then this a satisfies the acute 

 Q.E.D.

 '*( 2d, -1class  ca€H  (B  n  x),v  (S  X);

 -1(
B  n  x).section over  v

 c does not depend on the choice of

actue angle  condition. 

sections on  v-1(S  (1X) such that

for  0  <  t  <  1.

 acute angle condition and  at gives 

a' and  a1 = a. Thus  c
a =  ca'.

Q.E.D.

 L)
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Definition 2.4 The Euler obstruction Eu0(X)of X at
 -1

is the degree of the obstraction class  ca where a:  v  -(S  nX)

is a section satisfying the acute angle condition.

That is,

Eu0(X)= deg  ca = <ca'w>

where w is the fundamental class of  (  v-1(  BE  n  X  )  ,v-.1(Se  (I  X)  )

Theorem 2.5  (Gonzalez-Verdier formula)

 Eu0(X)  =  deg(cd_1(T-E)(1  71)

(Cf. G. Gonzalez-Sprenberg [2]) 

     Remark 2.6 We consider  T-6 as  an  element in the K-group

generated vector bundles we have

 cd -1(T-E) = the degree  d-1 part of  c(T)/c(6)

 (_1

 =  (-1)  cd -k-1(T)c  (E)k. 
 k=0

Thus the above equality is equivalent to

 (_1

 Eu0(X) =  (-1)k deg(cd -k-1(T)c1(E)k 
 k=0

The rest of this section is devoted to the proof of Theorem 2.5.

     Lemma 2.7 Let  '7.:X  36 be the normalization of  3E. Let 

 F be the pull  back of a by  en  6 is the section of T =

 9T.,*  T  k  on  (ve_.-1(S En x)  n  (ve7c.)  -(ss  n X) .  Then, we have 

deg  co, = deg  c-o-.

Proof. We set  0 =  e9t. By definition 
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 T

 0



 ecT. =  e*ca.

On the other hand 

 0*0 = w 

 —1
where  (resp.  w) is the fundamental class  of  ((v0)  -(BenX), 

 (ve  )-1(se  x)) (resp.  (v-1(Be  n  X),  v-1(Sen  X)).  ), because  0 is

generically one to  one.

By the projection formula, we have 

 <c
a'w>  =*0>

 =  <846c
6'0> 

 =  <ca,O>.  Q.E.D.

(1) Fix an hermitian metric on  CN. We can define the orthogonal

 projection

 projL:  CN L

for a linear space  L. The collection

 E0  = UprojT  (Ex) 
     xE3E-

defines a vector bundle over  4 if the representant of the germ 

 (X,O) is small enough, since by the Whitney lemma  E  CT for

every  y  €Y. We denote  =  ft*E0  ,  T =  9toeT  , and  9= One
has an exact sequence

0  4.  Eo -4- T  T/C0  4 0

and
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 T = To ® T6L

 (2)  Consider  a  section  51 of f/0                                 Tover  111 with isolated
zeros. We can  build 61in the way that 

 a) it has zeros outside  Sing IV and Sing  Xrdfil. 

 40

 Sing  ry                         Ito 4( 

 Sin9  r,  Pa  1 
 Oppw4) 

 al has non-degenerated zeros of index ±1.

 —1
 We  can  extend  a1  as  a  section  E0 (.= T/E0).We denote the 

extension by the same letter  al. 

(3) Consider the section  a2 of0                                    Tobtained by pulling back 

the natural section  projT  Ox. Then,  a' =  02  al  , is a section
 x

of T. The zeros of  6' are the zeroes of  a1ly.

     Remark 2.8  a' is actually defined  on  a neighbourhood  97, 

of  1 and non-zero  outside If  1>>6>0,  (ve'AO-1(B  nX)C2Z.

     Lemma 2.9 The section a' satisfies the acute angle  condi-

tion.
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Proof. Obvious.

Though the zeroes of is is non-degenerated  a2 may have

multiple zeroes 

 IF  zeros  of  a
 1 

zeros of  a_
 2

Lemma 2.10 (1) The index of  a at  x

 = (the index of  a2I zeros of a )x (the index of a I ) 
    1 1 

(2) (the index of a21zeros of c
l) = the multiplicity of  at

Proof. (1) is obvious.

(2) Let  E2 be the section of obtained by pulling back the 

natural section  Ox. We can build a homotopy connecting  (T0,a2) 

and  (T,E2). We have that (the index of 62l                                                      zeros zeros of a
1) 

= (the index of E2I
zeros of al). However, the right hand side 

agrees with the multiplicity of  V at x by definition. Q.E.D.

Proof of Theorem 2.5 By Lemma 2.7

 Eu0(X)  = deg  C.

By Lemma 2.3

deg  C.Fy = deg  GE,.
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Lemma 2.10 implies

deg  Ca-, =  deg(  cd -1(T-E)n  [  ]).

Since

 cd -1 =  ecd-1 

   =  9t0.3 (*)

one has by projection formula

 deg(cd_1(T-E)n  [if) =  deg(cd_1(T-E)n  .

In conclusion we have

 Eu0(X) =  deg(cd-1(T-E)n  11)  •

     Remark (by T. Urabe) The above equality (*) is 

evident. However, once we establish equalities

 [1] =  n  [x] 

 [V] =  -ci(c)n  Ezi

the equality (*) follows from the projection formula. 

since  T =  90E, and  *[:.i-e] , we have

 It*CV  =  ---)2*(**cl(E)n  [it]) 

 =  -c
1()(11t*I-1

 =  -c  (E)n  Ex] 

=  [u] .
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§3.  Le-Teissier Formula

Theorem 3.1  (Le-Teissier formula) 

 r-1

Eu0(X) = (-1)kmd -k  k =0

where  m is the multiplicity of the generic  Si—local polar variety

at  O. (cf.  Le-Teissier  [10].)

This theorem is an easy consequence of the next lemma. 

Lemma 3.2

                                            - 

deg(cd _1_k(T)c1(E)kr1(-1)dlink.

We recall our diagram

 XxG  P 
xxiit,,N-1xG"\2 

 3S ------- I  iG=G(d,N)

v' v 

 V

  N-12X' eXDX- X>13.=X\E

 N
Let H =  H(k+2) be a linear space in  C- of codimension  k+2.

 cd -k-1 =  ed-k-1(H) 

       =  {T  G:  dim(T  I-1(
k+2)  >  d-k-1}

is a special Schubert variety. Let PH:  CN  CN-k-2                                                             be the pro-

jection such that KerPH = H(k+2). We denote the critical locus 

of  PHX0:  Xo  CN-k-2 by  C(PH) where  Xo denotes the smooth

part of X. A point  x  EX° belongs to C(PH) if and only if the 

tangent space  Tx of X at x and H do not intersect trans-

versally. This is equivalent to saying that
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C(PH) =  (Y°)-1(cd _k_1).

By Kleiman's general point theorem (See Kleiman  [7].) we can

expect that for a general H,  1-1(cd -k-1) intersects  v-1(E)

properly. Thus for such H, one has

 C(PH) =  v(y-j-(cd _k_1)). 

Let V G = G(d,N) be the universal bundle. It is well-

known that the dual of the Chern class  of  U is the homology 

class of the above mentioned Schubert cycle up to sign.

 (-1)-d -k-1(U)  [G] =  Lcd-k-lJ

Now we can prove that

     deg          cd-l-k(T)cl()r‘13 is (-1)d-1mk 

Notice that  31 is a passibly non-reduced analytic space in
 {01  xIPN-1 x G. Moreover (-1)d-i-kcd -l-k(T) corresponds to

(0)>clipN-1 x) = Z1                (H(k+2)

and (-1)kc1k corresponds to 

           (0) x Hx=Z2,                                  2'

where H' is another generic linear subspace of CN       (k)where H' is another generic linear subspace of C- of  codi-      (k) 

mension k.

     Lemma 3.3 For generic linear spaces  H(k4 .2) and  H'00 

(1)  #(Zir%  z2  n < 

(2)  z1nz2  rl  I  I  c  iyi  good" 
Here 141

goodis some non-empty Zariski open set contained in the 

  g
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smooth part of

     Proof. This is an obvious consequence of "General Pasition 

Theorem" by S. Kleiman. (See S. Kleiman  [7].)

Corollary  3.4 For general  H(k+2)3 

 deg(cd_i_k(T)ci(  )k  [Itt]  ) =  (-1)d-1cz1n  z2.y).

Here is counted with multiplicity.

Remark In the age of Todd, one defined characteristic classes

using polar  varieties. Here our viewpoint is actually a local 

version of his.

Lemma  3.5 We set W  =  Zi  n  Z2  . For  x  6  we')  y the equality 

   mI-) = m    xwx riw
,x)

 holds. Here  mx( ) denotes the multiplicity  Iw is the ideal 

of W and  Iy is the ideal of  y.

     Assuming Lemma  3.5, we can verify Lemma 3.2. By definition 

and by Lemma 3.5

                     -0-) =Xmx(iteqnw,x). "1°  =m(1w7,x x
We note that

       -0-(9- 
            yAnW,x= m(1W,x 

where m is the maximal ideal ofX0By projection formula 

                                                                                                                                                 *

we have

m(I-C) =m(1709_  xyAnw
,x0'L,,,(*nWriUx),0)
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where  Ux is a neighbourhood of x in  TN  x1PN-1  x  G.

Recall that as a germ of variety

 U  n(XnWAU  ) =  k  (k)  xeynw

 where  Pk is the k-polar variety of X. Consequently we have 

 cw.y) the multiplicity of  Fkniit(k) at  0 
             = the multiplicity of  rk at 0.

By Corollary  3.4 we get the theorem. Q.E.D. 

     Now we have to verify Lemma 3.5.

Proof of Lemma 3.5 By  Kleiman's general position theorem,

we can assume that

(1)  41 and W  is smooth at x and they  intersects transver-
sally at x.

(2) Each point of  92-1(x) is a non-singular point of  x, where

 lt:  X denotes the normalization.

     Let  4t,1(x) = {z1"zk}. Around  zi' we can choose a local 

coordinate system t,such that the divisor 9t-1 \
 ai 

is defined by t = 0 for some integer  a.. We have

 m (1 0 ) . DTI (1 0-  x  w pz . w  i1Tz 
                           ,i)  cx ft ( 

           =  a . 

          = Xili
z.(I/6--1 )              i1h(irrg),z, 

          = mx(IlAnw,xi).

Q.E.D.
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We now ask the following problem. 

Problem We'd like to get rid of  genericity condition from

our Theorem 3.1.

Suppose the projections  Pi,...,Pd give local polar varieties

 r(pi),...,r(pd) of respective dimensions  1,...,d.

Find some expression e such that

Eu0(X) =  (-1)d-ke(r(Pk)) 
 k=1

holds.

Remark Let X be a surface in  C3. For a generic projec-

tion  P1, we have 

         Eu0(x) = m0(x)m0(NI,1)) (*)

since  r(P2) =  X does not depend on the choice of P2.

Suppose moreover X has an isolated singularity at  O. In

this case  Eu0(X) = 1-p(2) and the equality (*) becomes 

           1 - p(2) = m -  (11(2)+m-1)

where p(2)              is the Milnor number of  Xn  H at 0, where  H is 

a generic hyperplane passing through 0 and m =  m0(X) is the

multiplicity. Thus

m0(r(P1)) =  p(2)           m tr(?1)) =  +m-1 

is a topological character in this case.
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 §4. MacPherson's Theory of Singular Chern Classes

In this section we introduce readers to Chern class theory

for singular varieties by MacPherson. (Cf. MacPherson  [11].) 

     Definition 4.1 Let V be an algebraic variety. 

     Let F be the smallest family of subsets of V such that

(1) A Zariski open subset belongs to  97.
 k

(2) If  Wi,W2,...,Wk  E. then  (1  WiE`T. 
                                        i=1 

(3) If  V,W67, then  V-WET. 

A member of  7 is called a constructible subset of V.

     A locally closed subset of V is an intersection of a Zariski 

open subset and a Zariski closed subset of V.

     Remark 4.2 The following two conditions are equivalent 

(1)  XC  V is constructible 

(2) X is a finite disjoint union of locally closed subsets.

Example 4.3 Let V =(r- with coordinates (x,y). 

Y = f(x,y)EC2 lx=0,y01 = y-axis-origin is a locally closed

subset but it is not a Zariski closed subset. 

 Y 

                                   X

Let 

 is

 X  =  V-Y.. X  is  a 

the disjoint union

Definition 4.4  A 

    a:  V  E

constructible subset of V

of Y1= V-(y-axis) = V-Y

 function

. Obviously X 

and the origin
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is called constructible if there exist a covering V =  II Y.

 finite  -

of  V  by  a  finite  family  of  mutually  disjoint  constructible  sub-

setYiofYsuchthatforeachY.the restriction  al 
 Y. is  1

constant

     Remark  4.5 The characteristic function  ly of a construc-

tible subset Y is constructible, where  ly is defined by 

 ny(x)  = fl if  x  GY 

                0 if  x  Y.

A finite sum

 a = Yit.nY(*)
1

 isconstructible,whereAjeaandY.is a constructible subset. 

     Conversely every constructible function is expressible like

 (*  ) 

     Lemma  4.6 Let  V,V' and W be algebraic varieties, f:V  V'

be a proper algebraic map. We suppose W is a subvariety of V. 

Then, the function  V' -4- a defined by p x(f-1(p) n W) is con-

structible, wher x( ) denotes the Euler Poincaie characteristic.

     Proof. One can stratify  flw. That is, there is stratifica-

tion with Whitney property W  =.11Wk, V'  =11Vi such that:

 C) f I Whas maximal rank for every stratum Wk. 

     k

 f(Wk) = V' for some  X.

      One can see

 x(f-1(p)nW) =  ?c(Wkn  f-1(0)
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where denotes the Euler-Poincare characteristic of the

cohomology group with compact support! The ritht hand side is 

obviously constructible.

     Proposition  4.7 Let '7)- be the category of compact algebraic 

varieties and let  Od- be the category of abelian groups.
There exists a unique functor

 F:

up to natural isomorphisms such that 

(1) For every compact algebraic variety  vev- F(V) is the 

abelian group of constructible functions with values in  E. 

(2) For every morphism

f: V  -4-  V'

in  Vt- and for every subvariety  WC:V.

 F(f)(2w)(p) =  X(f-1(p)nw)

for every point  p  EV'  .

Proof. If such a functor  F exist, the uniqueness is obvious

since for a morphism f: V  -4-  V' and for a constructible function

 a =W
.on V, 

                  •

1 1

 F(f)(a)  = PsiF(f)(2w)
1

is determined by the condition (2). 

     The only point to check in order to verify the existence is

the equality 

         F(gof) =  F(g)F(f)
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where f: V  -> V' and g: V'  -> V" are morphisms in  V: We can

see it by using suitable stratification and multiplicativeness 

of the Euler characteristic of compact support. Q.E.D

     Theorem 4.8 (MacPherson) Let F: 0
67 be the functor 

in Proposition 4.7. LetIli:  qr,(2- be the functor of homology

groups. Then, there exist a unique natural map

 a:  IF  ->

such that for a non-singular object  VEV-- the equality

 a(V)(2v) =Poincare dual of the Chern class c(V)

holds.

     Remark 4.9 A natural map  a:  IF  111 is a collection of 

morphisms:  a(V):  F(V)  H(V) of abelian groups given for each 

object  Vet,- such that the diagram

  F(f)  IF(V) F(V'  )

a(V)

 II-1(V) 

is commutative

Proof of

 a  (V'  )

 111(f)                  >  E-I(V'

for any morphism f: V  -.).

uniqueness Let  a  EP(V)  .

a =  7t.1  W
.

 1

is a  Zariski 

support of

 1
V

 a

as

where 

called

 W.
 1 

the

 closed subset of 

 a. The integer d
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the dimension of the support. We proceed by induction on  d. If

d = 0, it is obvious. Assume d >0. Let W. ,...,W. be the 
 11 ik 

components of dimension d. Let  Xi  Wi be the resolution of 

singularities. We denote the compasition X.W. C-4V by fj.

 k

 Let  3 =  y  9f  ). We have 
 J=1  j  j

 a(v)(p)  =  y9ti  a(v)15,(fj)(ix  )

 =
1El(f.j)0(X.j)(2.) 

                          =  y911-1(f4)(dual of  c(X
j)). 

 J

Thus  a(V)(3) is uniquely determined. On the other hand by the 

choice of  X  's the dimension of the support of  a-3 is less 

than that of a. By induction hypothesis  a(V)(a-13) is uniquely 

determined, and we know that a(V)(a) =  a(V)(a-3)+  (V)(3) is 

unique.

     The proof of existence is more complicated. We don't give 

any complete one here. Instead we briefly sketch the MacPherson's 

proof. For an algebraic variety  VEVL, consider the abelian 

group C(V) of cycles on V. An element of C(V) is a finite 

 sumE01...V.where,t.EZandV.is a closed subvariety of V.

lc ly

 F(V) 

constructible 

functions 

on V

 C(V) 

cycles 

on V
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Consider a morphism

 T(V): C(V)  F(V).

 T(V)(Elt.V.) is defined as a function x ZOILEuV. (if x4                                                                        Vi,                   XVi,

we assume  Eu  (V.) = 0  and for abbreviation we denote this  func-
X  '  1

tion simply by  ZAiEu(Vi) in what follows.)

Lemma 4.10  

 T(V):  C(V)  p(V)

is an  isomorphism.

Proof. We have to show that for every a =  E7tilw .e  F(V),
1

there exists a unique cycle  ZmiVi such that  T(V)(EmiVi)  = a. 

     We use the induction on the dimension d  = sup dim  Wi of

the support of a. The case of d = 0 is trivial. Assume  d  >0.

Let W. ,...,W. bethecomponentsofdimensiond.   i
t1k

 the components of dimension d. Then 

 k

a -  T(V)(  1  it. Wi ) =  j=1 jj

has the support of dimension less than d since the function

 Eu(Wi) has value 1 at generic points on  Wi. By induction hy-

pothesis we have a unique  Em.V.  EC(V) with  T(V)(Em.V  ) =      J J  J 

The cycle Em.V+Z9/. W. is just what we want. Q.E.D.            j 1
jjj

    Now let  v: V V be the Nash modification of V. Let T 

denote the Nash bundle of V. We have the Chern class  c(T) of 

T. The homology class  cm(V)  =  vi(c(T)  W) is called the Chern-

Mather class of V.

We next consider a morphism 
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 cm(V):  C(V)  21(V)

defined to be

 cm(V)(/9tiVi) =  cM(Vi) 

wherecM(V.)E11(V.)is the Chern-Mather class of a subvariety 

 V. of V,  incl:  V.  3 V denotes the inclusion map.

We have two morphisms 

    T(V):  C(V)  F(V)

 c  (V):  C(V)  2I(V).

Theorem 4.11

 a(V)  =  cm(V)0T(V)-1:1F(V)  ÷11(V)

defines the morphism a in Theorem 4.8. 

     We denote c*(V)  =  a(V)(1v) and call it the Chern-MacPherson

class of V. 

     We give here some easy conclusions of Theorem 4.8 and Theorem

4.11.

(1) We have a unique cycle  E9ciVi called the MacPherson-Schwartz 

cycle such that 2V= ExiEuV.. Then, we have 

 c*(V) =  incl*  cM(Vi)

Remark 4.12 Let  X  cir3 be the Cartan's umbrella xy2-z2=0

0 
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The 

is 

(2) 

We

on 

on 

at

 macPherson-Schwartz

computed

 Consider 

have the

By definition of 

 (f  )  (1

 X-E Eu x(X) = 1

 E-origin  Eux(X) = 2 

origin 0  Eux(X) = 1

cycle is  X-E+0. Here the

by the Le-Teissier formula. 

  the map f:V  +  *, where * denotes

 commutative diagram

F(V) a(V) >1H(V)

 IF(f) 11(f) 

 * 

   IF(*) a() )11-1(*).SZ-Z

of F(f)

V)= x(V)•

Euof
x

value

 point,onethe

(X)

And

Now

deg  c*(V)

we get 

 X(V) =

the 

deg

=  1-1(f)(c*(V)) 

 =  1-1(f)00(V)  (1
v) 

 =  0-  (*)  olF  (  f  )  (IL
v) 

=  X(V)• 

Gauss-Bonnet property

 c*(V). 
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ing

the

 a(V) 

is commutative for t 

4.11.

Reduction. It

 eFor any map g:
equality 

holds.

    Let  a€F(V) 

 gi  :  Xi + V with r

 a =

Assume  ®. We have

Remark  4.12  What 

 O. The other parts

Let  f:  V  .4-  W  be  a 

diagram

 ]F(V)

is left to verify for us

are easy to check. 

map of compact algebraic 

  >IF(W)

 a(W) 

  >I 

morphisms a(V),  o 

enough to prove ne 

 V such that X

 X)  =171(g)0(X)(2x) 

have integers  ki

 i)(1x).

f: V  4- W 
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 3i(V)   >E( .W) 

the morphisms a(V),  0(W)

is enough to prove next 

X V such that X is

 a(V)F(g)(1.x)

We have  integers  k.E  Z

non-singular X1 such that 

 ).

for

now is the

varieties

 w-llofo

 Then,

defined in Theorem

 non-singlaar, 

and morphisms

the



 a(W).751(f)(a) = Ykia(10F(fogi)(1.,) 
                                      Ai

= ykiE-1(f)]H(gi)d(Xi)(av) 
                         Ai

=1-1(f)(XkiE(gi)a(Xi)(1x
.)

1

 =  Ii(f)(Xk
ia(V)11(gi)(ix))

=  E(f)0(v)(ykiiF(gi)(1x )) 

                     i

 =  IH(f)a(V)(a)

Thus we can conclude  A 

    is equivalent to the next  © 

 0 Let g: X  -4- V be a map with  non-singular  X. Then, there 
exists a cycle Xn.V.1on V such that 

 0  XniEuVi  =IF(g)(2x) 

 incl*  cm(Vi)(Vi)  =1-1(g)(Dual of  c*(X)).

Here 1F(g)(2x) is the function on V defined by x  x(g

The situation is very similar to where we treat polar

T

 V1 

 

. •

 MacPherson is not doing like that. He picks up a certain

cycle satisfying the above condition  0,  a Each line of his

proof is not difficult to understand. As we have not a better 

understanding at this moment, we advice the reader to consult

 -1 -(
x)). 

varieties.
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MacPherson's paper ([11]). We  sketch  briefly MacPherson's "Graph 

Construction".

Assume V is embedded in a non-singular variety Y. The

compasition X   g   VC-4Y  is  also denoted by g. Let d = dim X. 

We denote by  Gd(TX  $  g*TY)  2;- X the bundle of  Grassmann varieties 

of d-planes in the vector bundle TX  0$ TY. Each fibre  7-1(X) =

Gd(TX  $  TY)x is the Grassmann varieties of d-planes in  (TX$g*TY)x 

For each  AEC, a section  sA: X  4- Gd(TX  $  g*TY) is defined to 

be  s  (x) = the graph of the map  XdgX:  TXX  Tg(x)Y' which is 

considered as a d-linear space in  TxX  $  Tg(x)Y. We get a map

 4P:  X  x Gd(TX  $  g*TY)  x1P1 with  (P(x,A)  =  (s(x),X). Let W = 

 Imp and  Z. =  ZmiVI =  W  n(Gdx{co}), where  VI is irreducible and 

111.isthernatiplicityasaldivisor.Thell,.                                                     V,= gTr(V! ) 's con- 

stitute the components of the cycle in  0. The  coeffcient  n.  = 

pimi is the multiple ofmiby a certain number  p..

 Y

graph of Xdg 

 X
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Chapter III. Whitney Stratification 

 §1. Whitney Stratification

We have the next problem.

Problem. Find the cycle  YniVi on V such that  I  V =

 Yn.EuV.. 
 1  1

Denote

e x(X) =  (m1,...,md),

where m. be the multiplicity of the generic polar variety of

dimension i of X at  x.  x  E  X is a non-singular point if and

only if  ex(X) =  (0,...,0,1). Note that there also exists a point 

with  ex(X) =  (0,...,0,k)  (k  >  1). For example the swallow tail 

has  ex(X) = (0,3). Recall that if  m = 0 for  I  <  j  <r then 

the dimension of the set v-1(x) of limit tangents is less than

or equal to  d-l-r. (Proposition  4.8 in Chapter  I.) Let V  = 

F0 = F00°We put

F1= (the singular locus) 

 =  {C
x(X)  (0,...,0,1)1.

Let F1 =  U Flbe the decomposition into irreducible components 
         jEJ1j 

and let

F'.lj =  {x€Flj where  ex(V) does not have the generic 

       value along  Fli}.
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Example Let  VCIP3 be a surface.

F= y Fljis a union of curves. 

 1 

        jEJ 1 

Fljis a finite number of "had" points.

Next put

F2 =  ( Fl)l.)1(F) =j1LiF2j, 
 jEJ1jEJ2

where  Y(F1) is the singular locus of  Fl, and F 

ducible components. In particular  Fi\F2 is non 

F2j= {xEF2j'.where ex(V),ex(Flk) (k E J1) do
      generic value along  F2j}. 

(Convention  ex(Flk)  =  (0,...,0) if  x0Fik.)

F3 =  (.)1 F'2j(F2). 
 jEJ2

We repeat this procedure.

If F
r = U Fr(Fr(Frjis irreducible.), put          jEj

r 

 FrJ = {xE Fri where ex(Fsj)  (s  <  r,  jEJs)

do not have the generic values along F

and

 Fr+1 =  (  U  Fr!i)UI(Fr).  jEJ
r
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singular. 

not have

 • } rj

irre-

  Put 

the



     Remark 1.1 1. Obviously this procedure ends in finite steps. 

2. S.. = F..\ UFkk=FiNF.1+1is smooth and by definition 
 Q>i  ijijj 

Eux(Frs)isconstantonSl.jl.WedenoteEu..(r,^) = Eux(Frs) 

for  xE  S...           ij

3. We can determine the coefficient  1tij step by step as follows 

and we can compute the  MacPherson-Schwartz cycle  X  X  9t. S.                                                         ijij                                                      i  jEJ .
explicitly.

 200 =  1 

        + A
rsEij(r,^) = 1.            r<i

 sEJr

     Let  xE  SijC1V. Assume the germ (V,x) is embedded in 

 (CVN,x). Let  B is a ball in  TN with center x and with radius 

 E. Let L be a general linear space of codimension dim S.+1                                                              i
j

near enough to x however, which is not passing through x.

We denote  xij =  x(LrIVrIB
E). 

We can prove the next theorem . We do not give the proof

here.

     Theorem 1.2. (1)  xij is independent of  xESij° 

(2)1!1 .ji= 1-xij'whereOfis as in Remark 1.1, 3.

Example

 x.  3
.

 6  3

 C.  20  4



    Let V be a hypersurface in (dim V = 3). Assume the 

 singularlocushas dimension 1.

     Let  xjis be singular points of  y. Let  yk's be the 

smooth points of  y where  e  (X) or  e  (1) do not have the 

generic value along  a  .yi.

Then, the MacPherson-Schwartz cycle has the following form

V0 +yp.y? 
    JJ (*) 

where V0 =  V\1 

 TO
 Y\{xj's,  yk's}. 

Let L be a general linear 3-space near enough a  yk. Then

 Ln  vn  B has only an isolated singularity. Thus it is contract-

ible. We have  x  (L  n  Vn  BE) = 1 and the coefficients of  yk  s

in (*) are zero.

Let H be a general 2-linear space passing through a general

point on Li. It follows that  Pi =  P(XCAH(ABE), the Milnor 

number of  XnH cut out by a small ball BE with center x.

Next theorem implies that our construction is  "canonical". 

Theorem 1.3 (B. Teissier) V  =LISij is the coarsest strati-

fication of V such that

(1)  Y,  Yl  =  Y(D,  X2  =

are union of strata. 

(2) One has the Whitney condition.

The proof of this theorem will be given in §3.

-  64 -



§2. Chern-Mather Class of Projective Varieties

Let V be an projective variety. Let  YniVi be the

MacPherson-Schwartz cycle of V. We have

 c*(V) =  incl*cM(Vi).

We can not say that the right-hand side has an explicit meaning.

What is the Chern-Mather class cM(V.) of V.?

cM(V.) is very complicated and incl*is not easy to compute.

The part of degree 0

 c*(V)0 =  x(V) =  TWicm(Vi)c)

is rather easy. In this section we give a geometrical meaning

to cM(V.)0.

Let  XCIPN               be a projective algebraic variety of dimension

 d-1. We would like to define the "global" Nash modification  and 

"global" polar varieties . "Global" polar varieties are called 

polar cycles.

Nash modification Let X0 be the smooth part of X.

We can consider two different Gauss-map.

(1) We have the bundle of Grassmann varieties Gd -1(T(IPN))  IP

A section y0: X0  Gd-1(T(IPN)) is defined to be  yo(x)  = 

Tx(X)CITJy0(x0)          PN). Set R = the closure ofin  Gd_1(T(IPN)). 

We call a map v:  X X induced by the projection  Gd_1(T(IPN))÷1, 

the Nash modification and the restriction  T  X of the universal

bundle U G„(TOFN)) to  X is the Nash bundle of X.
d -1' 

 N
      For a hyperplane  HCIP", XH = X\H is a subvariety of 

 IPN\H  0. We know that  v:  *H =  v-1(XH) XH agrees with the
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 Nah modification and that  TI3L is the Nash bundle discussed

in preceding sections.

(2)  For any smooth point xE X0 we have the realized tangent 

space  Lx.  Lx is the union  of 1-dimensional projective subspaces 

 of  IPN which have multiplicity greater than 1 at x.  Lx is a 

linear subspace of  IPN and it is isomorphic to the projective 

space IPd-1, (not the affine space Cd-1.)

A map

             N+1  : X°G(C )

 N+1
is defined to be  (x)  = the cone over  LxCC—. Sometimes

   is called the Gauss map for X.

Let X be the closure of the graph of  13 in  X  x  Gd(CN+1).

We can see that X is isomorphic to the Nash modification X.

     Polar cycles Let X CTN+1                                     be the cone over X. Local 

polar varieties of  (X,O) are cones. Thus we have projective

subvarieties of X associated to those cones. We call them

 polar  cycles  of X  and  the  one  of  dimension k  is  denoted  M

and called k-polar cycle. k 

     Let LCIPN be a general linear subspace with dim L  =  N-k-2, 

 p :TPN-L1+k be the projection with center L.  Then, Mk

 agrees  with  the  colsure  of  the  critical  locus  of  the  map  X-L

 rl+k  induced  by  pL.

     Remark It follows that for any point  x  E  XH  =  X  \  H,  M1  \  H, 

 M2\  H,  •  •  •  ,  Md  \  H are the local polar varieties of (XH'x).

J. A. Todd showed that for a non-singular projective variety 
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X CIP .
                                  d-1 

 Dualofcd -1(T)                 1i  i  i =0 

where L is the universal line bundle of  IPN.

R. Piene extended this result and obtained

 d-1 
         cM(X)0 =  (-1)d-l-i(i+l)c1(L)n[mi] 

  . 

 1=0 

for any  XCIPN, which is passibly singular.

By this formula we get the next proposition.

 Proposition  2.1 Let  XCIPN be a projective variety of

dimension  d-1. Let  X denote the affine cone of X. Let

 N+1
 0  E  Dd -1  •  •  C  D1  C.  DO  =

be a general flag with codim = k. Then we have

 d+1

cM(X)0=  Euo(Xk). 
 k=0 

Proof  c1(L)1n[Mi] agrees with the multiplicity of the

cone and the polar variety Ft of  X1f1Dk is equivalent to 

F
j.+kreDkwhere F.+kis the polar variety of X. Thus the 

•

 Le-Teissier formula and the Piene's formula imply the above one.

 §3. Numerical Characterization of Whitney Condition 

     We proceed to the proof of Theorem 1.3, which is obviously

the direct consequence of the next theorem, (B. Teissier [15]). 

However, we can point out some incomplete points in his proof.

     Theorem 3.1 Let  (X,O)C(CN,O) be a reduced germ of
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analytic spaces in  (CN,O) of pure dimension

(X,O) be a non-singular sub germ of X. Let 

non-singular part of X. We get the following

 eY  
 XY - >XCXXG

 eY

 XY

 ̂   : the Nash modificati

 e  : the blowing up of Y  

: the blowing up of  v 

 ^  : induced map by unive 

 Y = eY.vY = v."e"

     Then, the following 

 (i) For  any  y  EY

m
y(rk'(xy)) =

for any integer k with 1

(ii)  nyly  is an equidimensional

the same dimension.)

(iii) X0 along Y satisfies the

 y  E  Y.

Example 3.2 Let X CC3 be

singular locus. We assume that Y

- 68

d. Let  (Y,O)  C 

 0 X denote the

diagram.

  >  X 

modification 

ng up of Y 

 -1
 of  v  -(Y) 

universality of the blowing-up

assertions are equivalent.

 mO(Fk(X,0))

< k < d. 
— — 

map. (i.e. all fibres have 

Whitney condition at every point

a surface, Y =  1(X) be the 

 is smooth and the origin o



is on Y.

              P

Let P  C2                     be a generic projection. Assume that the

condition (i) in Theorem  3.1 is  satisfied. We will see that the 

condition (iii) is also  satisfied.

     Anyway, let L7denote a general line in C2 passing 

through P(y) for  y  E We have an equality

 _1

 p(P  -(Ly),y) +  degy  P - 1 =  mp(1)(4) 

where  A is the discriminant of P. Under the assumption of 

(i) deg  y. P is independent of  y  E  Y and at every point  yE  Y 

the polar curve is void. It follows that P(Y) is the only 

component of the discriminant and that mP(y)'(A)EY is 

constant. The above equality implies  p(P-1(Ly),y) is constant 

for  y E Y. By Proposition 3.5 in Chapter I, we see that the
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condition (iii) holds: 

 4
Remark 3.3 We have a surface X in  C. such that

(0) The projection  C4  C3  x  C  4  C defines a map X  --->  ID  = 

 {ItI<l} and  Tr-1(t) is a curve for every  t  EID.

(1) There exist a section a :  ID  4 X and the singular locus of 

    X is  a(D).

(2) The pair  (X-o-(OD),a(D)) satisfies the Whitney condition.

(3) Let  P :  C4  C3 be a generic  projection Z  = P(X) be the

image. Z has an aditional singular locus passing through 

 P(a(0))."

 )X 

           Y

 rYPneric projection

 Pa(0) 
          additional singularity

Thus for general surfaces  X  CCN, the Whitney condition

does not imply the constancy of the multiplicity of the

discriminant of a generic projection  X  3  C2.. (The constancy 

of this multiplicity is called the equisingularity condition

in the sense of Zariski.)

However for surfaces in  C3, the Whitney condition and the

Zariski's equisingularity condition are equivalent. (Cf.  Le-
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Teissier [9].)

Proof of Theorem 3.1. (i)  4 (ii) 

Step 1  (v is equidimensional.)

Let dim Y  = t, dim  v-1(Y)  = d'. For a general  /EY,

dim  v  (y) < d'-t. By Proposition 4.8 in Chapter I,  rk(X,  1) 

= 0 for  l<  k <  k  = d-d'+t. By the assumption (i)  r
k(X,O)  =

0 for 1 < k <  Q . Again by Proposition 4.8 in Chapter I, we

have dim  v-1(0) < d'-t and since the dimension of the fibre

is  upper-semi-continuous, dim  v-1(0) =  d'-t. 

     Step 2  (fly is also  equidimensional.) 

     We use induction on  d-t  =  codimx  Y. If d-t = 1, assertion

(i) implies the equi-multiplicity of X along Y, and one sees 

that  ey is also finite. Thus,  fly is  finite.

     Suppose  d-t >  1. Let  -1/0 be an irreducible component of 

 ny-(  0  )  c  I?N®t  x G, and  1.70 be the projection of  V0 to  IPN-t

If dim  1,70  > 1, one can find a smooth hypersurface H such

that 

(1) H containes  Y.

(2) The induced map  (xnEi)  -3-  xnH from the strict transform

of  X  rth by  v to the Nash modification of  X  (11-1, is finite.

(3) The strict transform  (X  fl  II)'A of  xrth by  fly intersects

 7io
By the induction hypothesis and by the finiteness of the above 

map, we have

 dim(  (X  (IFI)'A  <  d'  -t-1 

thus, we have  dim < d'-t.
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 , we still have  dimyo <  d'  -t becauseIf  dim  ijo =  0 we still have  dim
 -1

74-  0  C71-0  x  Zeo with  2/70  C  '(0)  and  aim  v  -"(0)  =  d'-t.

(ii) 
 O

 STEP  1  Let  xne  X- and  ynEY be convergent sequences

such that

 0 z  =  lim  xn  =  lim  ynE Y 
   the  limt T  lim  TX  X exists

 n

 0 the limt  i  =  lim  ynxn exists.
We would like to show that  Z  CT.

Let P  (TN,0)  (Y,O) be a projection. One has

 ynxn  =  ynP(xn +  P(xn)xn 

By choosing a subsequence xnof xn if necessary, we 
  k

can assume that the limit of secants  k1 = lim  ynP(xn) and 

 22 = lim  P(xn)xn  exist. By definition  k1C  TzY  CT. Thus it 

is sufficient to see that  2,2C_  T. Consequently we can assume 

that  yn  =  P(xn).

STEP 2 For x E X0, one can define the angle function

 R(x) between TxX and xP(x). Namely, 

 1<vw>1 13(x)  -  sup   _v3",  I  
 vExP(x)-(0)  Ilviiiwii 

       wETxX- (0 )

where < > denotes a Hermitian form  on  N.  It is easy to 

see that we have an extension  Q :  3Ey  ->.111 such that  130n1(P)  = 

 13(p) for  p  E  1-11(X°). The Whitney condition at 0 is equivalent 

to that  (3I -1 0 1. However, for a non-empty Zariski open set 
 n (0)
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 U  CY, and for  yEU,  El (Cf. H. Hironaka  [5],[6]). The 
 (Y)  --1  --1 

assumption (ii) impliesthat(U)  is  dense  in  (3 (Y). Thus 

we have S1E  1. 
          11-1(0)

(iii) (i)

STEP 1 (We can assume dim Y  = 1.)

For any  y  E  Y which is sufficiently near to 0, we can choose

a smooth curve  Yl passing through both 0 and  y. The Whitney 

condition for the pair  (X0,Y) implies the Whitney condition for 

(X0,Y1). Thus, if we can prove the theorem under an additional 

condition that dim Y  = 1, we conclude that  m
v(FOX,y))=m0(rk(X,0))

for any  k.

STEP 2 (Whitney condition =---> dim  v-1(0) <  d-2) 

Assume dim Y = 1. Let  P: CN Cl+d                                              be a generic projection,

Y1=  P(X), Teissierused the assertion that the Whitney condition 

- for (X,Y) implies the Whitney condition for (X13P(Y)), without 

proof.  However this assertion is  not  obvious. This is one of the

incomplete parts of his proof.

     So, here we only show that assuming the next lemma, we can 

accomplish the proof.

     Lemma  3.4 For a general projection Q :  CN  C2, the union 

 FluYefthepolarcurveF_associated to Q and Y has the 

following property; each limit direction at 0 of the secant of 

 F1L/Y does not contained in Ker Q.

     By Proposition  4.8 in Chapter I, we know that dim v-1(0) 

< d-2 is equivalent to that F1  =  0.

    Assume F1 0 for any generic projection Q  CN C2. We 

fix a retraction p :  CN  —) Y. Let  xnE  r1\  (0) be a sequence 

 which tends to 0. Consider the secants  p(x n)xn, there limit  2,
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of them and the limit T of TX. By the Whitney condition                                 Tx 

 T:DToY and by the construction dim  (TriKer Q) > dim  T-1. We can 

assume,  ToYLVer Q. Thus we have T  =  TnKer Q +  TOY. On the other 

hand, by the Whitney  condition  T  Dk and by lemma 3.4,  k4Ker Q. 

We have T  = Ker  OnT +  I.  However  CN  =  2 +  To Y  + Ker Q, which 

is a contradiction.

p(xF1 

/ 1  xn

      I 'Tx X
/ n

STEP 3 Since dim  v-1(0) < d-2, a sufficiently general non-

singular hypersurface  H  )Y is transversal to every limit tangent 

space of X. Thus we can conclude that  (XnH,  Y.) satisfies the 

Whitney condition. By induction on d, we get the theorem 

thanks to the next lemma.

     Lemma 3.5. Suppose dim  Y  = 1 and  m0(F1(X,0))  = 0. Then, 

for any general smooth hypersurface H containing  Y, we have

(1)  m0(Fk -1-1(X,0))  =  m0(I"k(X  n  H, 0)) for k > 2. 

 ( 2) If  ri(X  n  H, 0) = 0, then  {F2(X,y)}
y  Ey is equi-

multiple along  Y.
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