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INTRODUCTION

The purpose of this report is to present an explicit construction
of a Siegel modular form of ganus 2, which is a commaon-eigenfunction
of Hecke operators, from a pair of elliptic modular forms or from a
Hilbert modular form over a real guadratic field, as an application of
Weil's representations,.

TeShintani BB} successfully applied Weil's representations teo a
construction of modular cusp Furms‘uf half integral weight. Afterwards
many authors employed Weil's representations for constructions of aut-
omorphic forms with Euler products, in various cases. Especially
R.Howe [8) has given a fairly general frame work called "dual reducti-
ve pairs". In this report, we shall exclusively be concerned with the
case of the Weil representations of the symplectic group of genus 2
associated with guaternary positive definite quadratic forms for the
construction of 5iegel modular forms of genus 2. Even in this particu-
lar case, we shall encounter a few important problems and conjectures,
which would be suggestive for the development of general theory. Here
we only mention the following problem of global nature. Our Siegel
modular forms are written as linear combinations of theta series (cfe.
(23)). As an inevitable obstacle which lies in such a construction,
it is difficult to know whether the constructed modular form does
vanish or not. However we can at least show that several non-zero
Siegel modular cusp forms arise by our construction in every prime
level (cf.Theprem 6). We formulate a precise conjecture for the non-
vanishing preperty of our construction in the case of the prime level
(§4). In §5, we shall propose a characterization of the image of our
construction, which can be regarded as a preliminary stage for the
application of the Selberg trace formula to resolve the above mension-
ed difficulty. Most ot the results will be stated without proofs. The

full details will appear elsewhere,
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Notatign. For an associative ring R with a unit, R* denctes the
group of invertible elements of R. We denote by M(m,R) the set of
m x m-matrices with entries in R. For a matrix A, tA denotes the tran-
spose of A, and O (R) denotes the trace of A if A is a square matrix.

The diagonal matrix with diagonal elements dq,dz,---,d is denoted by

n
{dq,dz,'” ,dH]. If R is commutative, we put GL(m,R) = M(m,R)”* and ass=
ume that the group of R-valued points Sp(m,R) of the symplectic group

of genus m is given explicitly by Sp(m,R) = {xé:GL(Zm,R) txwx = u} ’

0 1
where w = < m m) and 1m and Dm denote the identity and the zero

- 1 5}
m m

matrix in M(m;R) respectively. For a positive integer N, we put

b

F’D(N) = {{\: d) € 5L(2,2) | c=0 mod N} and FUCN) = {g: Z)é
Sp(Zgz)\ c =0 mod N} , where; in the second equality, c=0 mod.N means
that c € M(2,Z) is congruent to the zero matrix moduloc N. The space of
elliptic modular forms(resp. modular cusp forms) of weight k with
respect to EﬁU(N) is denoted by Gk([ﬂa(N))(resp@ Sk(IﬂD(N)) o The

space of S5iegel modular forms(resp. modular cusp forms) of genus 2 and

~—

of weight k with respeect to ]70(N) is dencted by E;(E:D(N))(respe
gk(f¥é(N)) Jo Let k be a global field and v be =& place of k. Then Ky,
denotes the completion of k at v. For an algebraic group G defined
over k, GA denotes the adelization of G and GV denoctes the group of
kvaratiunal points of G. For gé'GA, g, denctes the v-component of g
and gf(resp. gu>> denotes the finite(resp. the infinite) component of
g. For a quasi—character/x of k;, ’Xv denotes the guasi-character of
kC which is naturally obtained from X/. We denote by oo the archimedean
place of §. For a commutative field F and a guaternion algebra D over
Fy N,Tr and X denote the reduced norm, the reduced trace and the main

involution of D respectively. By H, we denote the division ring of

Hamilton guaternions. For a locally compact abelian group G, JJ(G)
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denotes the space of Schwarz-Bruhat functions on G. For z&€ €, we set

e(z) = exp(2n/=1z),

§1., Construction of adtomorphic forms via Weil's representations

Let F be a totally real algebraic number field of degree m and D
be a totally definite guaternion algebra over F. Let R be an order of
D. We put RV = R ®¢9(}v for every finite place of F, where & and O’V are
maximal orders of F and FV respectively. For every place v of F, we
define a subgroup H\', of D: by H\'/ = R:: if v is finite, and H\'/ =W if v

is infinite. We put K' = -H—H\'j , which is considered as a subgroup of
Y

Dz. Let LO be an injective homomorphiem of H into M(2,E) as algehras
over R. For a naon-pegative integer n, let 3 n denocte the symmetric
tensor representation of GL(2,C) of degree n; gn: GL(2,0)—> GL(n+1,C).
~-n/2
s = o -
Ue set n(g) (En DD)(g) N(g) . Let (n,l, : ,nm) be an m-tuple

of non-negative integers and YV be the representation space of T &
1
g)O"n . Let Z’;FZ be the center of Df‘ and W be a character of Z.
m
By S(R,n,l,'--,nm,w), we denote the vector space of all V-valued funct-

ions ¥ on D: which satisfy the following conditions (A) ™~ (01,

(A) P(yg) = P(g) for any ¥eD™, ge D’ .

A
(B) ¥ (gk) (& @97 )(k,,) £ (g) for any k€K', g€bD

1 m

X
A ®

il

(C) Ylgz) = W(z) P(g) for any z€ Z, géDX .

If the class number h.r_ of F in the narrow sense is 1, we have S(R,n,],

,nm,w) = {D} if (dxwo, where UJD is the trivial character of Z.

Hence if hF = 1, we assume that @ = cUD and abbreviate S5(R,n n_,

1077

‘UD) tao S(R,n,],"' nm). We define the action of Hecke operators on ¢

’
as follows. Let v be a finite place of F at which D splits. We assume
that R is a maximal order of D . We fix a splitting DVZM('Z,FV) S0

that RV is inapped onto M(2, O’V). Let @ be a prime element aof Fv and
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17 0

let R: <D {U>R: = g/ths be a disjoint union. For LPES(R,n,l,"';nm,UJ),
we put
<)) (TP )P = > L ¥eh £ h ),

s

where LV denotes the natural injection ef D: inte D:. Clearly T'(v)?

é-S(R,n1,‘“)nm,UJ)e

In this report, we shall exclusively consider the case where F =
Q or (F:Q)= 2. If F = 0, we put X =D @ D, Y = D and define the action
P of 0% x 0¥ on X by 9(91s92)(x1,x2) = <9jx1g2’9ﬁx292>° We put H =
{(a,b)é DX x Dx| N(a) = N(h) = 1} » Then H is an algebraic group over
§ which acts on X through P as an group of isometries., If F is real
quadratic, we assume that D = DD ® QF with a definite guaternion alge-
bra DD over Q. Let 0 dennte the extension of the non-trivial gutamnrpw
hism of F over [ to the semi-automorphism of 0. We have (xq_)*= oty
for x€ Do We put Y = S&xEDf x" = xX*}and X = Y @ V. We define the
action of D® on X by P(g)(xq’xz) = ((f;;ﬁ}%x,]g.E (goﬁ*ng)a We put H =

% g€ DXJN(E) = 13 o Themn H is an algebraic group over F which acts on
Ay

X as an group of isometries. We call the former situation Case (I) and
the latter one Case (II)@ tet X be the character of QE/QX which corres=
sponds to F by class field theory if we are in Case (I[) and let?{ be

the trivial character of Qz/ﬂx if we are in Case (I).

Ltet G be the symplectic group of genus 2. We take an additive
character'4/of QA/Q such that qﬁb(x) = e(x), x€R and /#E(x) =
e(=Fr(x)), x€ Qp for every rational prime p, where Fr(x) denotes the
fractional part of x. For every place v of [, we have the so called

Weil representatiaon Ttv of G, realized on .g(xv) which is characteri-

\Y

zed by the following conditions (i)~ (iii).(cf.weil (19),vashida(21)).

X
17 u N(x,) Tr(x,x5)/2
. 1 1%2
(1) (Tt ¢ (0 1) I (xgaxp) = q]pV(O,m (Tr(x1x>§)/2 NCx,) )

X f(xq,xz),
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a 0
. = 2
(11) (T ( (D ta—€> MI(x,x,) = ;XV(det a)|det a\v F((x1,x2)a),

B 1

X
(i11) (T ( (_1 D) )f)<x1,>_<2> =V F O axg)y

where (x ,xz)é tha v oL ]v denotes the absolute value o©of mv and f*

1
is the Fourier transform of f with respect to the self-dual measure

V,

on Xv' ( XV is a certain complex number of absclute value 1. We have

YV = 1 for every place v of § if we are in case (]) ). The global

Weil representation 7 of BA realized on «J(XA) is defined as follows.

For Fé,é(XA) of the form f = Tjrfu, fvé.ﬁ(xv) such that Fp is egual

to the characteristic function of Rp @ Rp(resp. UD @ Up) for almost

all p, we put ¢ (g)f= -ﬂvﬂh(gv)Fv, g€ G, if we are in Case (I) (resp.
v

Case (I ) ), where UD = {xé—Rj X’ = x*}@z ZD for the Case (J]l). Then,
extending by continuity, we obtain the representation TU.

To construct an automorphic form on GA’ first we assume that we
n.+1

1 be

are in Case (J). Take ?1655(R,n1), (PZ €5(R,n,) and let Ui?EE

the representation space of O"n , 1 = 1,2. Then ‘P: Vq @?%2 defines
i

X

A

X

a V= U1 @)Uz—valued function an D} x DA'

e take FDEVX(XD) as the
characteristic function of RD @ Rp for every rational prime p and take

any f,€_8(Xyw) ® V. (The choice of f, will be clarified in §3). Let
{ , > be the inner product in V such that RN I A \ W(1) X m(1)
1 2

is unitary with respect to { , > , where H(1) = {xé-Hx‘N(x) = 1} .

We set

2> &) - j 2L m@nP (mx, Pmd an .
H \H

e X<y

Now suppose that we are in Case (II). Take Y€ S(R,nq,n w ) and let V

21

be the representation space of o 0, - Ue take fpé_é(xp) as the
1 2

characteristic function of UD @ Up for every rational prime p and take
any f, € d(Xe) ® V. We set

(3) §f<g>= jH\H <Z> (TP (hx), Y hd)D dn .

F\Tg x &€ ><EJ
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In (2) and (3), dh denotes invariant measures on HQ\HA and HI_.\H}q res-
pectively, and GA acts on VA(XA) ® V through the first factor. The
integrals in (2) and (3) exist since HQ\HA and HF\HA are compact and

the integrands are continuogus functions of h, By virtue of proposition

5 of weilﬁ'lBj, one can see that S?F is a left Gm-in\/ariant continuous

function an GA'
N
For every rational prime p, let \R/ and U_ be the dual lattices
of Rp and Up respectively. Let (p'ﬂ(p)), Up) >0 be the Zp-ideal gene-

v’ v
rated by norms of all elements of R_ or U_, according to the cases (I)

(L(p))

and (][ ). Define an open compact subgroup Hp of Sp(Z,Qp) by

L)) a b) _ £<p>} .
Hp = {Qc d éSp(ZQZD)\ =0 mod p ; and define a represen-

a b\ ,
by Mp( (C q)) = %;j(det d)e

N

0 ¢
tation M_ of k(P)
n P

Propogition 1. We have TDD(k)f"D = Mp(k)Fp for any k€ H;Q(p))m

e set K_ = g L(pd
P P

¥ = o ! i
and HF UHD e define a representation

It

M. of ®. by M

£ & MD$ 8y Proposition 1, we have
o

) $og) = M) B (o) for any ge s, Kek, .

§2. Results an Hecke operators

Let § he the group of symplectic similitude of genus 2, which is
considered as an algebraic group over f. We assume that for any comm-

utative field k which contains @, the group vak of all k~rational

points of B is given explicitly by vak {géGL(h,k) tgmg = m(glu,
0 1
-1 O

operators on §f" we must extend 5421, to a suitable automorphic form

on /5“. Let M be a subgroup of rl_‘;ln which consists of all elements iJérG/A

i}

m(g)€ kx} , where w = ( >EEGL(h,k). To define the action of Hecke

\ P . s
such that Uv = [’!,LMV,MVJ with A € Z° if v is a finite place and

v, :[MV, My M Mvj with M ER, if v is the infinite place. By

X

4 0 every gé@n can be

virtue of the decompositiaon QE = ux- W 2;-@!
p
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written as g = g,V with re . g,IGGA,I/éM. We put

m'
5) $.(ro V)= .

~ A d
One can verify easily that a well-defined function §F on GQ\GA is

obtained by (5). The restriction of §f, to G, coincides with SPF. For

A
a rational prime p, we put ﬁz = ﬁpﬂGL(h,Zp). If Hp = H(k(p)), we set
K = g = ge b, , c=0 mod p , and define a representat-
p c d Zp
on T o % by W (0 D)) = A (det ). ue put B = T|F and
10n i8] = e - e 1} = a =
D p BY MyCle 4 P P P Fe

p
NS
® M_. Then we have
n p
r~

(6) §Ef.(gk) = /l‘\’llf(k)§f(g) for any géﬁ;\, kéflz/f‘.

Let p be a rational prime such that /H:’ = /E/Z . For a double coset

p
8K B€B and for any Functinnﬂf an ,G\l/l which satisfies (6), we put

(7) (K E%’p)‘f)(g) = > ¥ (a5,
i

P
where /vaeﬁp = Li/g.lﬁ/p(disjuint union) and (/D denotes the natural inj-
ection of E; into E/A' We can see that (H BR )Y also satisfies (6).
d g, e,
The double coset [p ,p ,p ij, d’l + By = l:t2 + 84, is denoted

d d e
1 b 1 _Bp
By T(p ",p “,p ,p ")

To state the results on Hecke operators, first let us assume that
we are in Case(l). For each rational prime £, let Ny be the image of

Rf under the reduced norm. We have N, = Z}i for almost all £. Set N =

x X X s s
EFNL and let !HA UIQ ai(N X R+) be a double coset decomposition,

i
such that (ai)bo = 1 for every i. Take /a\gé D: so that the reduced norm

~ . N\ .
of &, is a,. We may assume that (a.)x, = 1 and that (’E/i)L = 1 if Ny =

Zz. Ue set Fi,j(x) = F(P (5, ,a )x) for x € X, and "Pi’j(h) = ‘P(h(/avi,%‘j))

A

for he D: X Dg. Let @gl’“}) be the function an G\G defined by (2)
using F J i and ‘-[7 5 instead of f and Y. Let §(1 J) be the extension

of §(1’3) to G, defined by (5). We see that ,‘P(l"]) satisfies (6).

We put @ ZZ§(1'J)
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Then we have

Theorem 1. Let p be an odd prime at which D splits. We assume
that Rp is a maximal order of DD and ‘PiéS(R,ni) are eigenfunctions
af T'(p), i = 1,2, Put T’(p)“f’i = Ai&Fi’ i = 1,2, Then we have

X = o~ X
8 T¢1,1,p,m P = (A, ANEL,
2.*% _ {2 T ~} *
(9)  T(1,p,p,p )§F = {(p -1) + p)\1>\2 QEF ’

where — denotes the complex conjugation.

Now let us assume that we are in Case (H). Faor each finite place

v of F, let Nv be the image of R: under the reduced norm. Set N =ﬂ Nv
v
and let FY = U F¥a, (N x R x RY) be a double coset decomposition. ue
i

may assume that the idele norm of a, is 1 and that (ai)w,'}{], (ai>°°2
>0. Let %T.lé DE he an element whose reduced norm is a; . We may assume
that (%’i)ao(‘ﬂ%x x H* belongs %o the center of H* x H*. We set f‘i(x) =

‘F(f‘(gi)x) for x€& X, and \Pi(h) = iP(_hfa\/i) for hGDE, Let §§.i) be the

A

function on GNG, defined by (3) using f‘i and “Fi instead of f and ‘70,.

oA
Then ,@él) satisfies (L). Let §§,l) be the extension of §§.l) to EA

o~
. (i) e , X (1)
defined by (5). We see that §f‘ satisfies (6). We put Ejf‘ = §1;§f

and assume that
(x) R” =R .

Then we have

Theorem 2. Let p be an odd rational prime which is unramified in
Fe We assume that DD splits at p. If p remains prime in F, we assume
that RD is a maximal order of Dp and ¥ is an eigenfunctian of T'(p).

Put T'(p)P =AY « Then we have

X
(10) T(1,1,p,p)§f, -0,
(11 T(’l,p,p,pz)ii = - {(pzﬂ) + pﬁ}@j )
where — denotes the cumplex conjugation. If p decomposes into two
prime divisors vy and Vo in F, we assume that RV is a maximal order

i
of DV and that “f’ is an eigenfunction of T'(vi) for 1 = 1,2, Put
i
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T (v )Y = lef far i = 1,2, Then we have
=X — — —%
(12) T, 1,p,mE L = P, (A, +wV2<p>A2>_4zF ,

— X R *
(13)  T(1,p,p,p) R = {<p2-1) s p A AL E, -

We shall sketch a proof of (11). For simplicity, we assume that

~ e 2N [ s s s

(ai)p = 1. Let Hp [1,p,p,p )Hp = Ugin be & disjoint union such that
2 v -1 =1 =1 -1 . L

m(g;) = p. We put £l = Eigﬁp([g 0~ e, p ]gi)fp, F1o= Vlip F, X

f1oand F1(x) = F'(P (F;)x). Let §(}) denote the function on G, defin=-
p i i f ~ . A

ed by (2) using f! and ‘Pi instead of f and f, and let §F$1) denote
the extension of §Fsi) to TB/A defined by (5). Then one can see that
T(1,p,p,00® ;1)<g) = ng.fl)(g) for geB,. We fix a splitting Dp?:’
M(Z,Fp) such that Rp is mapped anto M(2, Op), where Op is the maximal
order of Fp. Then we can prove a local relation of Hecke operatars;

1

£ (x (E D) = -p[zvfp((‘ ( (S \,:))x) +.F (R (D 2))@]

- (p2+1)fp(x (E z) )

(14)

where v extends over a complete set of representatives aof (9'!3 mod pe.

p V)
Let {hs}} denocte the set of elements of Rp; (D 1/ s \/e@p, v mod p
e & o
and (D p> . By (14), we get T(1,p,p,p )P é“(g) = -(p2+1)$]§1)(g)

-
- 30§ K20 @ P pamx (P D_1>>, (> an,
) H,__\HA X € xQ g p

if g€ GA' Let @ be the element of FE such that Q’p = p and that '(D"V
= 1 if v X p. We take ¥ € F* so that Y_qa.lfxtr = ajhr with n€N, re
X

1R+ X ER)_E. Then { is totally positive. Hence there exists a /€ 0* such

that N(?)y) = Y . lWe have S(g) = Z\[ < E ; (/TC(g)f'i)( P(hs)
s HF\HA x € Xg

-1 ‘ '
P e (7 2_1) ), P, (> dn = }S:JH T <20 (o)
F A

0 185 x € Xu
-
(P (hryx (P o )y (hrh= N dh! , where dh' denotes a suitable
0 p«-’] s

s : ¥ -1 ~ v ~
1nvar1§nt measure on HF\X HAh,]a.l.(Nnte that HF\}’ Hll\hsai does not
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depend on s). We can see that ZE; ?(h'h;1) = CUp(p-1))\?(h') and
s

"

-1 v =1 ~ ~ . X
that W (p~") = 1. we have H\Y ~'Hyn 3] = HA\H, T &) with SeURV x

A1
HX. ue get

- 0

= (g) = Aj (%(;,)fJ.)(P(nS)x(p _1> )y, @ (hd D> dh
U
-1

= %J <ﬂ<g)f.>(P(Xm>Pch)x(p D_,D ), P.(hE DD dh,

xeX J 0 p d

=Ky ko
if g€Gy, g, = 1. Ue can write § = (p ' §,, B “§,) with §, b)

n<?

2

9 kq,kzé R such that k1 + k2 = 1. We have
) - “k,‘ -=k2 - 1 0
=(g) = A (ST P e ?) Px (p :.) ),
HeNH, X €X J 0 p
q
=K =i
2
Fin e B> an.
-k -
We can verify that ?j(h(p 1,p zlb) = ffh) and that
“kqg kg -1 g
2L (e P Yp ), Perox (P _1) ) = (TECg)F )
x € X J 0 p x & X J
] Q
( P(h)x). Hence we obtain
{15) T(’iyp,ﬁ,pz)ﬁz‘iéi)(g) = —(p2+’!)§§i>(g) - pﬁgéj)(g)g

if g€ G, and g, = 1. Since §§;l) and §§;J> satisfies (6), (15) holds

far any gé:ﬁ;° Hence (11) folliows immediately.

§3. Translation into the classical terminology

— %
In order to obtain a Siegel modular form from g?f, we must choose

ﬂbé_é(xm) ® V appropriately. Let mn be the space of all functions p

on H such that p(a+bi+cj+dk) = g(b,c,d), where 1,i,j,k are the standa-
rd quaternion basis, a,b;c,d€éR and g is a homogeneous polynomial of
degree n with complex coefficients, We put (Tin(g)p)(x) = p(g*xg) for
g&iHX, x€H, Then q:n defines a representation aof H* on W_. We have

12l
1
(o e 7,
(o on ® Ty, @""”("‘2)“H

4 3"'$<fu)(H if n is even,

if n is odd.
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Let ld: be the subspace of th consisting of all functions in UJn which

transform according to U'Zn. We can naturally identify T, with the
Weil representation of G,=5p(2,R) realized on _4(H & H). (T, is cha-
racterized by (i)~ (iii) with (x,l,xz)é HelH and X = 1, ¥, = 1. Let

K, be the standard maximal compact subgroup of G, defined by K, =

{g - )| ee By U2, D).

Proposition 2. For pe w::, define f€_3(H @ H) by Flxysxy) =

p(xfxz)exp(-Z’Tt(N(x,‘) + N(xz)). Then we have

A B — A B
T, (¢ (-B A) )F = det(A + Byf-1) f for every (-B A)éﬁw R

By virtue of Proposition 2, we can choose Fwé‘_,&(xm) ® V so that

the following conditions (17) ~(19) are satisfied.

A B A B
n+2 (
(17> T ( (—B A> Iy = det(R + B4-1) fo for any -8 A)EHOO .
(18) . ( P(g'l’gZ)X) = (G’G(gq) ®@ O”Zn(gz))f’oo(x) for any xé H @ H
and (9,006 8" xwu.

(19> Each component of f, has the form as in Proposition 2.
Hereafter we assume
() n, =0 and n, = 2n

1 2
and that f,, is chosen as above. We set M (k) = det(A + B»,/-1)n+2 for

A B
k = (-B A)é—iﬁoo « For K = UHV, we define a representation M of K by

M

i

® M,. By (&) and Proposition 2, we have
v

X —X
(20) ®o(ok) = MDD (o) for any ge By, ke k.

Letfbbe the Siegel upper half space of genus 2. For g€ G, 5 let EGGA
be the adele such that ’ﬁ/f. = 1 and §,= g. We define a function J on
5 by

X
(21 3(g-p) = DLW (detlei + a7,

X X

10
where 7 = 4/~1 (U 1)6?} and g = (C d) . we put [7= 6o N\ Ky .
P

Thén we Ahave F: FB(N)’ where N = -ﬂ-pup). We define a character
p
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x
b/ = i 3 - 3 1
MT of T by MT( ) u Mp()’). Since EEF is left Gm invariant and

satisfies (20), we have

(22)  3(¥2) = MV )3(2)det(cz+d) ™2

for any Y€ and ze 9 , where ¢ = (* X) .

c d

The explicit form of J is given as follows. Suppose that we are
X h X
in Case (J). We put K = (K' x K')N\H, and let H, = {J Hy K be a
A A 421 N2

double coset decomposition of H, . We assume that (y, )
pL(xEx,)
-1 1°7172
\Hm(\%,ﬁ*¥z | and fo(x) = . " exp(=2TL(N(x,) +
Ponst(X9%2)
N(xz)), X = (xquz)é H @& He Define a V-valued function P on H hy
p1§x) \
P(x) = ¢ } » Let L be the isometric embedding of Dm into H der-
p2h+’i(X)

= 1, 1<0< h.

e put ey

[

ived from the algebra injection DQClaﬁg Set § = TT (RD @ Rp), which is
B
the support of TT qu Then we have
P

h
32y = vor (¥ 2L 5 > L POLGEx))
1,3 =1 xe ><u,/\‘,§’(y2 (’é’ig”a"jD)""S

N o XY o

e (07 ( (Tr(x::%zfz TI\;giig/é) 27, ?(Ya(g€’35>l> /eg
where VDl(H*) denotes the volume of H*'measured by dh. We can get a
similar Formula to (23) for the Case (J| ) under the assumption (X ).
By virtue of (23), we can see that J{(z) is & holomorphic function on

§> . Namely we have

Theorem 3, J(z) is a holomorphic Siegel modulasr form of weight
n+2 which satisfies (22).
The classical definition of the action of the Hecke operator

dq d e EZ
Tp sp “yp 'yp ) on J is as follows. We assume that ﬂ(p) = 0 and put

e e
1,p zllﬂ = L/IjJ; be a disjoint union. We
i

d d
k = n+2. Let [ﬁ[p 1,p 2,p
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d d e =} d, +e
(26)  (T(p e 2,0 ,p HI(z) = (p 1 2HEk=3 3T Mp(¥ )3 2)
i

-k
det(ciz+di) ’

X x _
(Ci dD (cf. Andrianov[1}, Matsudaiﬁ1)).

where fi =

Then we can tramslate Theorem 1 and 2 into the following form.

Theorem L. Suppose that we are in Case (1) and let the assumptions

be the same as in Theorem 1. We have T(1,1,p,p)] = pk-z(ji1 +;\2)J and
2 2k =6 2 3 5
T(1,p,p,p7)d = P {03 =1+ n)\ﬁ\z} Je
By Theorem &4, the p-factor Lp(s,J) of the L~function attached to

J in the classical sense is given by
2 ~
(25) L (s,3) = TJJ (1 =R pN7278 4 pBk=3-28)=1,
P i=1 *

Theorem 5. Suppose that we are in Case (I[) and let the assumpt-
ions be the same as in Theorem 2, If p remains prime in F, we have
T(1,1,p,p)d = 0O, T(1,p,p,p2)J = -p2k—6 i(p2+1) + ﬁi} Jde If p decompo-

pk-z(qu(p)j,‘ + wvz(p)iz).],

ses in F, we have T(1,1,p,p)d
2 2 = =
T(1,p,p,p )J = {(p -1) + p,quKZ} J.

Let Lp(s,J) be the p-factor of the L-function attached to J in

the classical sense. 1If p decompeses in F, we have

2
~ 3w k=2-5 _ _2k=3-2s,-1
(26) LD(S,J) = JJ1 1 AAi Vi(p)p +p )T .

If p remains prime in F, we have

(27) LD(S!J) = (1 _;Xka—h-Zs + pbk-G—hS)—1.

Concerning the guestion when J is a cusp farm, we can prove(see alsao

Proposition 4),

Proposition 3. If n>0, J is a cusp form.

Remark. The assumption (ﬁ ) and the corresponding choice of f€
,5(Xm) ® V is necessary because; (i) we must choose an f, so that it
transforms according to a one-dimensional representation under K, , to

obtain Siegel modular forms of genus 2 with the usual automorphic

— 332 —



factor; (ii) the assumption (6 ) is required for the coincidence af
the [ -factor in the functional eguation of the tL-function attached to
J with that in (1] and E11), taking account aof the results in §2.

In general, there arises a gquestion: Find an ﬂoéqg(xuﬂ ® V which

transforms according to L @(fh under the action of K! through P
1 2

and which transforms according to a prescribed higher dimensional rep-

resentation (which depends on n, and nz) under the action of K, through

1
Mewe LIf this purely archimedean gquestion is soclved, we will be able to
construct @ Siegel modular form with more general automorphic factor

from any pair of "P,‘éS(R,n,‘) and ‘-fzéS(R,nz)(respa any kfeS(R,n,l,nz,w))

if we are in Case (]) (resp. Case ([[) ).

§4, The case of the prime level

In this section, we shall consider the simplest case and sxamine
our canstruction in detail. Namely we assume that we are in Case Cf)
and that D ramifies only at p and 6o, where p is a fixed prime number.

TYRX x H*) be

2

H
Let R be a maximal order of D and let Dg = ﬁ“i nyi(
3=

X
Note that NI,Z ZL

We may assume that the reduced norm of y, is 1 and that (yi)m,= 1 for

a double coset decomposition aof O for every £ .

X
n°

1<1<H, For 1<1i,jSH, we define a lattice Lij af D by Lij = Dﬂyi

=1 . .
(TTR£>yj . Note that Lii is a maximal order of D. We put Ri = Lii and

X . PN - . e T
e, = IRi\e Let Skkfﬂakp)) be the space of new forms in § (' (p)).

Assume that ¥ (X 0) € 5(R,2m) satisfies T'(L )¥ = A(L )P Ffor every

L% p, where m is any non-negative integer. Then there exists a cusp
o

form (¥ 0)e€ 52m+2

£ X p if m>0, and vice versa. If m= 0, there exists a modular form

([7D(p)) such that T(L )f = AL YL ™F for every

Fé~82(IﬂU(p)) such that T(L)f = A(L )Ff for every L % p, and vice
versa. Here T(Q ) denctes the Hecke operator which acts on
GZm+2(Iju(p)), These results follow from the well-known work of

M.Eichler on the representability of modular forms by theta series.
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If f satisfies the above condition, let us call that f corresponds to
9. (f is unigue up to constant multiple). We take ({71(5‘ 0)¢€ S(R,0)
and (P2(¥ 0) € 5(R,2n). We assume that ¥, and ‘-Fz are common-gigenfun-

ctions of T'(Q), 1% p. Put

1 N(x) Tr(xy¥)/2
(28) 2, () = > B Ly ) e ( ) o
H (X,y)éLi.QLi. Trixy )/2 NCy) ) ’

J J
ze D,
H H 3
(23) F(Y,, P, = 1231 §5< " %’1<yi>®‘f’2<yj>>/eiej R

Let f1é.GZ(I*D<p)) and f, € G, .,

which correspond to and P, respectively. Let L(s,f,) and L(s,F,)
1 2 1 2

(Fn(p)) be the elliptic modular forms

be the Euler products in the classical sense attached to F,I and f‘2
respectively. Then, (23) and Theorem 3 show that the Euler product
L(s,F( LP’I’ ‘1‘72)) attached to F(“P,],‘f’z) is egual to L(s-n,f )L(s,f,)
up to the 2 and p-factors if F( L?,], “PZ) X 0, (L(s,F( "f,], kPz)) is defi-

ned by gUz LQ(S,F( ‘P,],(Fz)) ). Suppose that we have taken ‘F,‘ as
s B

a constant function on DE. Then £, is an Eisenstein series of GE(FD(D))
and we have L(s,f ) = 5(5)5(5-1)(1-;31-8), where G(s) denotes the
Riemann zeta function. For such ‘P,', the Euler product of F(‘Pq,tpz)
has a similar form to the examples of Hurokaua(‘i’). For n = 0, we have

the following criterion for F( (f’1, ‘Pz) to be a cusp form.

Proposition 4. If n = O, F(‘f,], ‘f’z) is a cusp form if and only if

Y_ is not a constant multiple of ¢..
2 1

Here the main guestion arises: For which pair (“P,], Y’Z)’ F( 'f,',‘fz)
does not vanish? Hereafter we shall be concerned with this guestion,

Let 'CU’D bhe a prime element of Dp' we set 57(R,2m) = {?&S(R,Zm),

¥ (g ‘p(ayb)) Y(g) for any g€ Dg} , 5 (R,2m) = %foS(R,Zm)I
‘¥ (g (/D(w’p)) = = Y(g) for any geD:} , where Lp denotes the natural

injection of D; into D:. We have

(30) S(R,2m) = ST(R,2m) ® 57(R,2m) (direct sum) .
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+
Proposition 5. If ?16:5 (R,0) and \PZGS:F(R,Zn), we have

It seems natural to conjecture the converse. Namely

+ +
Conjecture. If n is even and ?165 (R,D), ‘PZES (R,2n), then

F( “P,I, ‘Fz) would not vanish,.

At present, we can only prove that several non-vanishing cusp
forms arise by our construction (except for some numerical evidences).

We put y, (,p(Q’p) = Fy $ with ¥YeDd* and Xe-lJR;(_ x H* for every Yy

Jai
1< i< H, The map i~—>»j(i) induces a permutation of order 2 on H lettew

rs., If 1 = j(i) (resp. i % j(i) ), let us esll y; of the first kind

(resp. second kind),

Theorem 6., Let ‘f’,lé 5(R,0) be a non=-zerg common-eigenfunction of
T'(), L% p. We assume that ‘Pq(yi) % 0 for some Vs which is of the
first kind. We assume that n is even and that n> & if p = 2. Then
there exists "fzé S5(R,2n) which is a common~eigenfunction of T'(L),

2% p such that F( @19‘?2) X O,

Let U(resp. 2V) be the number of y;'s of the first kind(respe.
second kind). We have U + 2V = H, U + V = T, where T is the type number
of D. A constant function ‘{’,l(ég 0)€ 5(R,0) satisfies the condition of
Theorem 6. Moreover one can see easily that there exist at least U =
2T = H linearly independent ¢ € S(R,0) such that ‘?(yi) X 0 for some
vy which is of the first kind. We note that (cf. A.Pizer(‘lzj for exam-

ple)

hp/Z if p=1 mod &,
(31> U =

2hp if p=3 mod 8,
\\hp if p=7 mod 8,

if p>5. Here hD denotes the class number of 84/ -pn).

§5. A characterization
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Hereafter we fix an odd prime p and the definite quaternion alge-
bra D over {] whose discriminant is p2 and assume that we are in Case
). For nez, we set X(n) = 0 if p|ln and X(n) = (—g—) if p)’n. In
§4, we constructed a cnrrespoﬁdence 71: S(R1,D) X S(R1,2n)**'9
() (f:U(p)) which "preserves" Euler products, where R, is a maximal

n+2 4
order of D. The image of 71 has the following property.

Proposition 6. Let R be any order of D. For f1e-S(R,D) and fzé
S(R,2n), define J by (23). Let J(z) = E ;aJ(N)e(O‘(Nz)) be the. Fourier
N
expansion of J, where N extends over all positive semi-definite half

integral symmetric matrices. Then we have a (N) = 0 if X (=det 2N) =1,

a D/Z)
Proof. Put N = (b/Z c , a,b,c €7 and assume that ag(N) % 0O.
Then there must exist x,y € D such that N(x) = a, N(y) = o, xy*+ yx*:
1 -1 X -1

b. Assume x % 0 and put t = x 'y. We have N(t) = a 'c, t + £t = a~ 'b.

We may assume that bz - bLac X 0. Then Q(t) is isomorphic to the imag-

inary guadratic field Q(M%Z ~ Lagc). Therefore we must have'}((b2 ~Lag)
= ~1 or 0, If y ¥ 0, we can argue similarly. If x = y = 0, we have

a=hb=1c=10 and 'X(-det 2N) = B, This completes the proof.

A simple consideration about the dimension shows that 71 can not
be surjective if n is sufficiently large. To clarify the nature of our
conjecture abogut the characterization, let us first introduce the

o~ ~ 2
twisting operator. For Fé-Sk(Iju(p )), let F(z) = ;ZZEF(N)E(W(NZ)) be
N

the Fourier expansion of F(z). We put
(32) (QF)(2) = 2y a (MY (~det 2Me(o (Nz)) .
N

Proposition 7. The operator 0 induces an endomorphism of

~ ~ 2
5, (L7 (p™).

b

d)éSp(Z,R), put Fl(¥]), =

F{r) o }[Q}k . Take

e a
Proof. For F€ Sk(IﬁD(pz)) and { = (c

F(¢'z)det(cz+d)™ . Then we have FI[I} {Z)k

£€27 so that ’X(&) 1. We put

p=1 :? uCu, v)/pJ p=1 p=1 1 EUCu,v)/p
0, = 2] H 0 ) ko LoF uZ=c‘; g;g F{[(D, 1 )]k

u=0
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u uvy p=1 p=1 p=1
where U(u,v) = ( 2) . We also put Q;F = 25 25 2 F‘

uv v u=0 v=0 Ww=0

1 V(u,v,w)/p u v
g 1 v where V(u,v,uw) = (\/ w) . We first show that Q,

i, and Q, induce endomorphisms of /ET(T (pz)). Take any a b &
2 3 k o pzc d

rn(pz). Since a mod p€ GL(2,2/pZ), we can find U'€ M(2,2) so that
t

ur = u', al'=Ud mad p, where U = UCu,v). Then we have
G ol ()
(F ) . 20 d = F‘ k.
Since d:f'.a't:a“1 mod p, we can take U' in the form U' = UQu',v') and the

map U U* induces a bijection on the set of integral matrices of the

2 S
form (U U\Zl) taken up to modulo p. Hence we get Q,‘F!(b/]k = Q,‘F for

uv v

[

o~ —~ ~
any )/efg(DZ)g By virtue of the criterion that F€G (]~ (pz)) s a cusp

k fu}
k/2

form if and only if det(Im(z)) F{z) is bounded on 5,;-3, we see immedi=

ately that Q’iF is a cusp form, where Im(z) denoctes the imaginary part

aof zéfbs For QZ and Q}’ we can use similar arguments. For a,b,c € Z,

p=1 p=1
define a character sum G(a,b,c) by G(a,b,c) = E ? \ el (aul+buv+
U=o v=g

cev)/pde By a standard evaluation using Gaussian sums, we get

pX(bz—hac) if bzmhacﬁﬂ mod p,

X (a)pi if b%-kac=0 mod p and a%0 mod p,
(33) G(a,b,e) = 5
X (e)pG if B=4ac=0 mod p and cX0 mod p,
p2 if aZb=c=0 mod p,
p=1 T -
where G = E Xlwlelu/p) = (-1)(p 1)/213 o Using (33), we get QF =

u=o

(Q,]F + QZF)/ZD - QBF/DZ, hence our assertion.

We define subspaces V_,V_ and Y of 5 (1 (p )) by

v, = {FeB (T %) | st = 0 1F K (oot 20
o= ¥F ?(f(pn[a(m)
{Fes (T (P | a(m)

1},
1)

<
i

0 if X (-det 2N)

o) det 2n ).

It is obvious that Y = \1+[\U_. Let w+(resp. W_> be the orthogonal com-

<
i

I

plement af Y in U+(rasp. \l_) with respect to the Petersson inner
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product (cf. MaaB Eﬂﬂ ) inlgk(["u(pz))° For a positive integer m such
~
that pfm, let T(m) be the Hecke operator which acts an Sk(17u(p2)).

(ef. (1), (1)),

Lemma 1. V+, V_ and Y are stable under the action of the Hecke

operator T(m) for pfm.

Proof. It is sufficient to show that U+,V_ and Y are stable under
all T(Q;), where L is a rational prime different from p and § is a po-
sitive integer. Then our assertion follows immediately from pfcpcsiti-
on 1 of Andriannv[ﬁj, noting that his result holds also for gur case

without any modification.
The following Lemma can also be proven using proposition 1 nf[ﬁ).

~ N~
Lemma 2., Assume that Fé-Sk(IqD(pz)) is a common-eigenfunction of

T(m) for pfm. Put T(m)F = A (m)F. Then we have T(m)QUF = A_(m)CF.

Take any F€ gk(rm(pz)). It is clear that F + QF€V_ and F - QFe

V+. Hence we have an orthogonal decomposition
~ N L2
(34) 5. (I (") =, @y eou_.
With respect to the Petersson inner product in g;(i?ﬂ(pz)), T(m),
(myp) = 1 are mutually commutative self=-adjoint operators. Hence we

can take a basis of w+(resp. Y, w_) so that every element of the basis

is a common-eigenfunction of T(m), (m,p) = 1.

Proposition 8. For every positive integer m such that (m,p) = 1,

we have =Trace(T(m)eQ 1Sk(i?u(p2)) ) = Trace(T(m)lw+) - Trace(T(m)Iw_).

Proof. It is clear that QY = 0. Let F1,~--,Ft(resp. H c,H )

1? u

be a basis of m+(resp. m_) which consists of common-eigenfunctions of
T(m), (m,p) = 1. Put T(m)Fi = :\i(m)Fi and T(m)Hj = /“j(m)Hj. Clearly
we have -QFi—F&'GV. Put G = -QFi-Fi. Then we get -(T(m)°Q)Fi =,Ai(m)Fi
+ T(m)G and T(m)G€Y by Lemma 1. Similarly we have -(T(m)“Q)Hj =

-,uj(m)Hj + L with L €Y, Hence our assertion follows immediately.
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Let K = QD(JE) be a ramified guadratic extension of Qp. We set B =

{le )

u€ Z: is a guadratic non-residual element modulc p. Then B has a stru-

A L,pE K} , where T denotes the generator of Bal(H/ﬂp) and

cture of the divisieon guaternion algebra over mp‘ Hence BE:DD. Let Gr
be the ring of integers of K and let P = (/p) be the maximal ideal of

. For non-negative integer r, set

(35) Mg = {(:;7; 0665) ) de 0, pe ?1‘} .

Then Mr+1 is an order of Dp. Especially M1 is the maximal order of Dp

and M2 is an order of "level pz" of Dp, which was first studied in

A»Pizer[ﬁBJ (ef. also HijikatanPizermShemanske(7] for more general

N ' N . 4+ (0 3 w3 o

cases). Let Rr+1 be an order of D such that \”r+1}i ig a maximal order
s ~~

of %‘ if {X p and that (Rr+1)p==Mr+1 °

Our results in §2 and §3 give & correspondence VZ: S(RZ”D) X

S~
S(RZ,Zn)——ig' ([ﬂg(pz)) which preserves Euler products if n>0. We

n+2
have Im’?zgév+ by Proposition 6. Let Z be the orthogonal projection of
Im 72 to M+. This orthogonal prujection commutes with the action of
T{mJ, (m,;p) = 1, by Lemma 1. In particular Z is stable under the action
of T(m), (m,p) = 1. Let Wi be the orthogonal complement of Z in W _. UWe

conjecture the follpwing characterization (C) of Z.

'

(C) Let F ,Fv(resp. H ",Hu) be & basis of ml(rasp. Ww_)

10 1
which ceonsists of common-gigenfunctions of T(m), (m,p) = 1. Then v = u
and {Fis and {ﬁj} are in one~to~-one correspondence in such a way that

F, and H, have the same eigenvalue for every T(m), (m,p) = 1.

-~ =~ 2
Thus we expect that the trace of T(m)OQl5n+2(Iﬂn(p )) would be
expressed in terms of the traces of Hecke operators on certain sub=

spaces of S(RZ,D) and of S(RZ,ZH).

Remark. This "characterization" is saomewhat similar to that aof
elliptic modular cusp forms which ceorrespond to L-Ffunctions with
Griissencharacters of an imaginary guadratic field. In the elliptic

modular case, the trace formula was first applied to the twisting
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operator by Shimura ﬁﬁ) and was exploited further by Saito-Yamauchi

(14 .

™

)

()

()

(5}

(6)
()
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