Lec. in Math., Kyoto Univ. No. 14
Lectures on Harmonic Analysis on Lie Groups and Related Topics pp. 319-341

WEIL'S REPRESENTATIUNS AND SIEGEL'S MODULAR FQRMS

By Hiroyuki Yoshida

CONTENTS

Introduction

Notation
§1. Canstruction of autamarphic forms via weil's representations
§2. Results an Hecke operators
§3. Translation into the classical terminology
§4. The case of the prime level.
§5. A characterization

References

The purpose of this report is to present an explicit construction of a Siegel modular form of genus 2 , which is a common-eigenfunction of Hecke operators, from a pair of elliptic modular forms or from a Hilbert modular form over a real quadratic field, as an application of Weil's representations.
T. Shintani [18] successfully applied Weil's representations to a construction of modular cusp forms of half integral weight. Afterwards many authors employed Weil's representations for constructions of automorphic forms with Euler products, in various cases. Especially R. Howe [B] has given fairly general frame work called "dual reductive pairs". In this report, we shall exclusively be concerned with the case of the weil representations of the symplectic graup of genus 2 associated with quaternary positive definite quadratic forms for the construction of Siegel modular forms of genus 2. Even in this particular case, we shall encounter a few important problems and conjectures, which would be suggestive far the development of general theoryo Here we only mention the following problem of global nature. Dur Siegel modular forms are written as linear combimations of theta series (ef. (23)). As an inevitable obstacle which lies in such a construction, it is difficult to know whether the constructed modular form does vanish or not. However we can at least show that several non-zero Siegel modular cusp forms arise by our construction in every prime level (cf.Thearem 6). We farmulate a precise conjecturefor the nonvanishing property of our construction in the case af the prime level (§4). In §5, we shall propose a characterization of the image of our comstruction, which can be regarded as a preliminary stage for the application of the Selberg trace formula to resolve the above mensiana ed difficulty. Most ot the results will be stated without proofs. The full details will appear elsewhere.

Notation. For an associative ring R with a unit, R^{x} denotes the group of invertible elements of R. We denote by $M(m, R)$ the set of $m \times m$ matrices with entries in R. For a matrix $A,{ }^{\prime} A$ denotes the transpose of A, and $\sigma(A)$ denotes the trace of A if A is a square matrix. The diagonal matrix with diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$ is denoted by $\left[a_{1}, a_{2}, \cdots, d_{n}\right]$. If R is commutative, we put $G L(m, R)=M(m, R) \times$ and assume that the group of R-valued points $S p(m, R)$ of the symplectic group of genus mis given explicitly by $\operatorname{Sp}(m, R)=\left\{x \in G L(2 m, R) \mid{ }^{t} \times w x=w\right\}$, where $w=\left(\begin{array}{cc}a_{m} & 1_{m} \\ -1_{m} & a_{m}\end{array}\right)$ and 1_{m} and \square_{m} denate the identity and the zero matrix in M(ms) respectively. For a positive integer N_{8} we put $\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, Z) \right\rvert\, c \equiv 0 \bmod N\right\} \quad$ and $\tilde{\Gamma}_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in\right.$ $\operatorname{Sp}(2, \not 又) \mid c \equiv 0 \bmod N\}$, where, in the second equality, $c \equiv 0$ mod N means that $c \in M(2, \mathbb{Z})$ is congruent to the zero matrix modulo No The space of elliptic modular forms(respo modular cusp forms) of weight k with respect to $\Gamma_{0}(N)$ is denated by $G_{k}\left(\Gamma_{\square}(N)\right)\left(r e s p o S_{k}\left(\Gamma_{0}(N)\right)\right)$. The space of siegel modular forms(respe modular cusp forms) of genus 2 and of weight k with respect to $\widetilde{\Gamma}_{\square}(N)$ is denoted by $\widetilde{G}_{k}\left(\widetilde{\Gamma}_{0}(N)\right.$) (resp. $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{\square}(N)\right)$) Let k oe a global field and v be a place of k. Then k_{v} denotes the completion of k at v. For an algebraic group G defined over k, G_{A} denotes the adelization of G and G_{v} denotes the group of k_{v} wrational points of G. For $g \in G_{A}, g_{v}$ denotes the v-component of g and g_{f} (resp. g_{∞}) denotes the finite(respe the infinite) component of 9. For a quasi-character χ of k_{A}^{X}, X_{V} denotes the quasi-character of k_{v}^{x} which is naturally obtained fram X. We denote by oo the archimedean place of $\mathbf{Q}^{\text {Q }}$. For a commutative field F and a quaternion algebra D aver F, Notr and* denote the reduced norm, the reduced trace and the main involution of D respectively. Ey $[H$, we denote the division ring of Hamilton quaternions. For a locally compact abelian group $G, f(G)$
denotes the space of Schwarz-Bruhat functions on G. For $z \in \mathbb{E}$, we set $e(z)=\exp (2 \pi \sqrt{-1} z)$.
§1. Construction of automorphic forms via Weil's representations

Let F be a totally real algebraic number field of degree m and D be a totally definite quaternion algebra over F. Let R be an order of D. We put $R_{v}=R \otimes_{\theta} \theta_{v}$ for every finite place of F, where θ and θ_{v} are maximal orders of F and F_{v} respectively. For every place v of F, we define a subgroup K_{v}^{\prime} of D_{v}^{x} by $K_{v}^{\prime}=R_{v}^{x}$ if v is finite, and $K_{v}^{\prime}=B^{x}$ if v is infinite. we put $K^{\prime}=\int K_{V}$, which is considered as a subgroup of D_{A}^{x}. Let C_{0} be an injective homomorphicm of \mathbb{H} into $M(2, \mathbb{C})$ as algebras aver \mathbb{R}. For a non-negative integer n, let ξ n denote the symmetric tensor representation of $G L(2, \mathbb{C})$ of degree $n ; \xi_{\Pi}: G L(2, \mathbb{C}) \longrightarrow G L(n+4, \mathbb{C})$. We set $\sigma_{n}(g)=\left(\xi_{n} C_{0}\right)(g) N(g)^{-n / 2}$. Let $\left(n_{1}, \cdots, n_{m}\right)$ be an m-tuple of non-negative integers and v be the representation space of $\sigma_{\eta_{1}}^{n_{1}} \otimes$ $\cdots \otimes \sigma_{n_{m}}$ - Let $Z \cong F_{A}^{x}$ be the center of D_{A}^{x} and ω be a character of Z. By $S\left(R, n_{1}, \cdots, n_{m}, \omega\right)$, we denote the vector space of all V-valued functions φ on D_{A}^{x} which satisfy the following conditions (A) $\sim(C)$.
(A) $\varphi(\gamma \mathrm{g})=\varphi(\mathrm{g})$ for any $\gamma \in \mathrm{D}^{x}, g \in \mathrm{D}_{\mathrm{A}}^{x}$.
(日) $\varphi(g k)=\left(\sigma_{n_{1}} \otimes \cdots \otimes \sigma_{n_{m}}\right)\left(k_{\infty}\right) \varphi(g)$ for any $k \in k^{\prime}, g \in D_{A}^{x}$ 。
(ㄷ) $\varphi(g z)=\omega(z) \varphi(g)$ for any $z \in Z, g \in D_{A}^{X}$.
If the class number h_{F} of F in the narrow sense is 1 , we have $S\left(R, \Pi_{1}\right.$, $\left.\cdots, \eta_{m}, \omega\right)=\{0\}$ if $\omega \neq \omega_{0}$, where ω_{0} is the trivial character of $Z_{\text {. }}$. Hence if $h_{F}=1$, we assume that $\omega=\omega_{0}$ and abbreviate $S\left(R, n_{1}, \cdots, n_{m}\right.$, ω_{0}) to $5\left(R, n_{1}, \cdots, \Pi_{m}\right)$. We define the action of Hecke operators on φ. as follows. Let v be a finite place of F at which D splits. We assume that R_{v} is a maximal order of D_{v}. We fix a splitting $D_{v} \cong M\left(2, F_{v}\right)$ so that R_{v} is inapped onto $M\left(2, \theta_{v}\right)$. Let W be a prime element of F_{v} and
let $R_{v}^{x}\left(\begin{array}{cc}1 & 0 \\ 0 & \infty\end{array}\right) R_{v}^{x}=\bigcup_{s} h_{s} R_{v}^{x}$ be a disjoint union. For $\varphi \in S\left(R, \Pi_{1}, \cdots, n_{m}, \omega\right)$, we put

$$
\begin{equation*}
\left(T^{\prime}(v) \varphi\right)(h)=\sum_{s} \varphi\left(h \varepsilon_{v}\left(h_{s}\right)\right) \tag{1}
\end{equation*}
$$

where C_{V} denotes the natural injection of D_{V}^{x} into D_{A}^{x}. Clearly $T^{\prime}(v) \varphi$ $\in S\left(R, \Pi_{1}, \cdots, \Pi_{m}, \omega\right)$.

In this report, we shall exclusively consider the case where $F=$ Q or $(F: \mathbb{Q})=$ 2. If $F=\mathbb{Q}_{\text {, we put }} X=D \oplus D, V=D$ and define the action P of $D^{x} \times D^{x}$ on x by $P\left(g_{1}, g_{2}\right)\left(x_{1}, x_{2}\right)=\left(g_{1}^{*} x_{1} g_{2}, g_{1}^{*} x_{2} g_{2}\right)$. We put $H=$ $\left\{(a, b) \in D^{x} \times D^{x} \mid N(a)=N(b)=1\right\}$. Then H is an algebraic group over Q which acts on x through P as an group of isometries. If F is real quadratice we assume that $D=D_{0} \otimes_{{ }^{F}}{ }^{F}$ with a definite quaternion algebra D_{0} over \mathbb{R}. Let σ denote the extension of the non-trivial automorphism of F over \mathbb{R} to the semimautomorphism of D. We have $\left(x^{\sigma}\right)^{*}=\left(x^{*}\right)^{\sigma}$ for $x \in D$. We put $y=\left\{x \in D \mid x^{\sigma}=x^{*}\right\}$ and $x=y \oplus y$, we define the action of D^{x} on x by $P(g)\left(x_{1}, x_{2}\right)=\left(\left(g^{\sigma}\right)^{*} x_{1} g,\left(g^{\sigma}\right)^{*} x_{2} g\right)$. We put $H=$ $\left\{a \in D^{x} \mid N(a)=1\right\}$. Then H is an algebraic group over F which acts on X as an group of isametries. We call the former gituation Case (I) and the latter one Case (Π). Let X be the character of $\mathbb{Q}_{A}^{\times} / \mathbb{Q}^{x}$ which corree sponds to F by class field theory if we are in Case (II) and let χ be the trivial character of $\mathbb{Q}_{A}^{x} / \mathbb{Q}^{x}$ if we are in Case (I).

Let G be the symplectic group of genus 2 . We take an additive character ψ of $\mathbb{Q}_{A} / \mathbb{Q}$ such that $\psi_{\infty}(x)=e(x), x \in \mathbb{R}$ and $\psi_{p}(x)=$ $e(-F r(x)), x \in \mathbb{Q}_{p}$ for every rational prime p, where $F_{r}(x)$ denotes the fractional part of x. For every place v of \mathbb{Q}, we have the sa called Weil representation π_{v} of G_{v} realized on $\mathcal{S}\left(X_{v}\right)$ which is characterized by the following conditions (i) ~ (iii). (cf. Weil [19], Yoshida [21]).
(i) $\left.\left(\pi_{v}\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right)\right) f\right)\left(x_{1}, x_{2}\right)=\psi_{v}\left(\sigma\left(u\left(\begin{array}{cc}N\left(x_{1}\right) & \operatorname{Tr}\left(x_{1} x_{2}^{*}\right) / 2 \\ \operatorname{Tr}\left(x_{1} x_{2}^{*}\right) / 2 & N\left(x_{2}\right)\end{array}\right)\right)\right.$

$$
x f\left(x_{1}, x_{2}\right)
$$

(ii) $\left.\left(\pi_{v}\left(\begin{array}{cc}a & 0 \\ 0 & t_{a}-1\end{array}\right)\right) f\right)\left(x_{1}, x_{2}\right)=\chi_{v}$ (det a)|det a $\left.\right|_{v} ^{2} f\left(\left(x_{1}, x_{2}\right) a\right)$,
(iii) $\left.\left(\pi_{v}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)\right) f\right)\left(x_{1}, x_{2}\right)=\gamma_{v} f^{*}\left(x_{1}, x_{2}\right)$,
where $\left(x_{1}, x_{2}\right) \in Y_{v} \oplus y_{v},| |_{v}$ denotes the absolute value of \mathbb{Q}_{v} and f^{*} is the Fourier transform of f with respect to the self-dual measure on X_{v}. (γ_{v} is a certain complex number of absolute value 1 . We have $\gamma_{v}=1$ for every place v of Q if we are in case (I)). The global Weil representation π of G_{A} realized on $\mathcal{A}\left(X_{A}\right)$ is defined as follows. For $f \in \mathcal{S}\left(x_{A}\right)$ of the form $f=\prod_{V} f_{u}, f_{v} \in \mathcal{S}\left(x_{v}\right)$ such that f_{p} is equal to the characteristic function of $R_{p} \oplus R_{p}$ (resp. $U_{p} \oplus U_{p}$) for almost all.p, we put $\pi(g) f=\prod_{v} \pi_{v}\left(g_{v}\right) f_{v}, g \in G_{A}$ if we are in Case (T) (resp. Case (II)), where $U_{p}=\left\{x \in R \mid x^{\sigma}=x^{*}\right\} \otimes_{Z} Z_{p}$ for the Case (II). Then, extending by continuity, we obtain the representation π.

To construct an automorphic form on G_{A}, first we assume that we are in Case (I). Take $\varphi_{1} \in S\left(R, n_{1}\right), \varphi_{2} \in S\left(R, n_{2}\right)$ and let $V_{i} \cong \mathbb{C}^{n_{i}+1}$ be the representation space of $\sigma_{\pi_{i}}, i=1,2$. Then $\varphi=\varphi_{1} \otimes \varphi_{2}$ defines a $V=V_{1} \otimes V_{2}$-valued function on $D_{A}^{x} \times D_{A}^{x}$. We take $f_{p} \in \mathcal{S}\left(X_{p}\right)$ as the characteristic function of $R_{p} \oplus R_{p}$ for every rational prime p and take any $f_{\infty} \in-\delta\left(x_{\infty}\right) \otimes V$. (The choice of f_{∞} will be clarified in §3). Let \langle,$\rangle be the inner product in V$ such that $\sigma_{n_{1}} \otimes \sigma_{n_{2}} \mid H^{(1)} \times H^{(1)}$ is unitary with respect to \langle,$\rangle , where \mathbb{H}^{(1)}=\left\{x \in \mathbb{H}^{x} \mid N(x)=1\right\}$ 。 we set
(2) $\Phi_{f}(g)=\int_{H_{R} \backslash H_{A}}\left\langle\sum_{x \in X_{\mathbb{R}}}(\pi(g) f)(p(h) x), \varphi(h)\right\rangle d h$.

Now suppose that we are in Case (II). Take $\varphi \in S\left(R, n_{1}, \Pi_{2}, \omega\right)$ and let V be the representation space of $\sigma_{n_{1}} \otimes \sigma_{n_{2}}$. We take $f_{p} \in \mathcal{S}\left(x_{p}\right)$ as the characteristic function of $U_{p} \oplus U_{p}$ for every rational prime p and take any $f_{\infty} \in S\left(x_{\infty}\right) \otimes V$. We set
(3) $\Phi_{f}(g)=\int_{H_{F} \backslash H_{A}}\left\langle\sum_{x \in X_{\mathbb{Q}}}(\pi(g) f)(P(h) x), \varphi(h)\right\rangle d h$.

In（2）and（3），dh denotes invariant measures on $H_{Q} \backslash H_{A}$ and $H_{F} \backslash H_{A}$ resm pectively，and G_{A} acts on $\mathcal{S}\left(X_{A}\right) \otimes V$ through the first factor．The integrals in（2）and（3）exist since $H_{G} \backslash H_{A}$ and $H_{F} \backslash H_{A}$ are compact and the integrands are continuous functions of h．By virtue of proposition 5 of Weil $\left\{19\right.$ ，，one can see that Φ_{f} is a left $\mathbb{E}_{\mathbb{R}^{-i n v a r i a n t ~ c o n t i n u o u s ~}}$ function on E_{A} 。

For every rational prime p ，let \check{R}_{p} and \breve{U}_{p} be the dual lattices of R_{p} and U_{p} respectively．Let $\left(p^{-l(p)}\right), l(p) \geqslant 0$ be the \mathbb{Z}_{p}－ideal gene－ rated by norms of all elements of \breve{r}_{p} or \breve{u}_{p} ，according to the cases（I） and（II）．Define an open compact subgroup $K_{p}\left(l(p)\right.$ ）of $s p\left(2, Q_{p}\right)$ by $K_{p}(\ell(p))=\left\{\left.\left(\begin{array}{ll}a & b \\ e & d\end{array}\right) \in S p\left(2, \mathbb{Z}_{p}\right) \right\rvert\, e \equiv 0 \bmod p l(p)\right\}$ ，and define a represen tation M_{p} of $K_{p}(l(p))$ by $\left.M_{p}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=X_{p}($ det $d)$ 。

Proposition 10 We have $\pi_{p}(k) f_{p}=M_{p}(k) f_{p}$ for any $k \in k_{p}(l(p))$ ． We set $K_{p}=K_{p}^{(l(p))}$ and $K_{f}=\prod_{p} K_{p}$ ．We define a representation
 （4）$\Phi_{f}(g k)=M_{f}(k) \Phi_{f}(g)$ for any $g \in E_{A}, k \in K_{f}$ 。

§2．Results on Hecke operators

Let \widetilde{G} be the group of symplectic similitude of genus 2 ，which is considered as an algebraic group over 贝．We assume that for any comm－ utative field k which contains \mathbb{M} ，the group \widetilde{G}_{k} of all k－rational points of $\widetilde{\mathbb{E}}$ is given explicitly by $\widetilde{\mathbb{E}_{k}}=\left\{\left.g \in \operatorname{GL}(4, k)\right|^{\mathrm{t}} \mathrm{g} \boldsymbol{\mathrm { g }} \mathrm{g}=\mathrm{m}(\mathrm{g}) \mathrm{w}\right.$ ， $\left.m(g) \in k^{x}\right\}$ ，where $w=\left(\begin{array}{rl}0 & 1 \\ -1 & 0\end{array}\right) \in G L(4, k)$ ．To define the action of Hecke operators on Φ_{f} ，we must extend Φ_{f} to a suitable automarphic form on \widetilde{G}_{A} ．Let M be a subgroup of \widetilde{G}_{A} which consists of all elements $\nu \in \widetilde{G}_{A}$ such that $\nu_{v}=\left[1,1, \mu_{v}, \mu_{v}\right]$ with $\mu_{v} \in \mathbb{Z}_{v}^{x}$ if v is a finite place and $\nu_{v}=\left[\mu_{v}, \mu_{v}, \mu_{v}, \mu_{v}\right]$ with $\mu_{v} \in \mathbb{R}_{+}^{x}$ if v is the infinite place．By virtue of the decamposition $\mathbb{Q}_{A}^{x}=\mathbb{Q}^{x} \cdot \prod_{p} Z_{P}^{x} \cdot \mathbb{R}_{+}^{x}$ ，every $g \in \widetilde{\mathbb{G}}_{A}$ can be
written as $g=\gamma g_{1} \nu$ with $\gamma \in G_{\mathbb{Q}}, g_{1} \in G_{A}, V \in M$. We put
(5) $\quad \widetilde{\Phi}_{f}\left(\gamma g_{1} \nu\right)=\Phi_{f}\left(g_{q}\right)$.

Dne can verify easily that a well-defined function $\widetilde{\Phi}_{f}$ on $\widetilde{G}_{\mathbb{G}_{A}}$ is obtained by (5). The restriction of $\widetilde{\Phi}_{f}$ to G_{A} coincides with Φ_{f} For a rational prime p, we put $\widetilde{G}_{\mathbb{Z}_{p}}=\widetilde{G}_{p} \cap G L\left(4, Z_{p}\right)$. If $K_{p}=K^{(\ell(p)) \text {, we set }}$ $\widetilde{K}_{p}=\left\{\left.g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, g \in G_{Z_{p}}, c \equiv 0 \bmod p l(p)\right\}$, and define a representat$\operatorname{ion} \widetilde{M}_{p}$ of \widetilde{K}_{p} by $\widetilde{M}_{p}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\chi_{p}\left(\right.$ det d). we put $\tilde{k}=\prod_{p} \widetilde{K}_{p}$ and $\widetilde{M}_{p}=$ Q \bar{M}_{p}. Then we have
(6) $\quad \widetilde{\Phi}_{f}(g k)=\widetilde{M}_{f}(k) \widetilde{\Phi}_{f}(g)$ for any $g \in \widetilde{G}_{A}, k \in \widetilde{K}_{f}$.

Let p be a rational prime such that $\widehat{k}_{p}=\widetilde{G}_{\mathbb{Z}_{p}}$. For a double coset $\widetilde{K}_{p} \theta \widetilde{K_{p}}$, $\forall \in \widetilde{G}_{p}$ and for any function $\mathcal{\Psi}$ on $\widetilde{\mathbb{G}_{A}}$ which satisfies (6), we put (7) $\left(\left(\widetilde{K}_{p} \theta \tilde{K}_{p}\right) \Psi\right)(g)=\sum_{i} \Psi\left(g c_{p}\left(g_{i}\right)\right)$,
where $\widetilde{K}_{p} 8 \tilde{K}_{p}=\bigcup_{i} g_{i} \widetilde{K}_{p}(d i s j a i n t$ union $)$ and C_{p} denotes the natural injection of \widetilde{G}_{p} into \widetilde{G}_{A}. We can see that ($\left.\widetilde{K}_{p} B \widetilde{K}_{p}\right) \Psi$ also satisfies (6). The double coset $\widetilde{K}_{p}\left[p^{d}, p^{d}, p^{e}{ }_{1}, p^{e_{2}}\right]_{K_{p}}, d_{1}+e_{2}=d_{2}+e_{1}$ is denoted by $T\left(p^{d_{1}}, p^{d_{2}}, p^{e_{1}}, p^{e_{2}}\right)$.

To state the results on Hecke operators, first let us assume that we are in Case (I). For each rational prime l, let N_{ℓ} be the image of R_{l}^{x} under the reduced norm. We have $N_{l}=Z_{l}^{x}$ for almost all ℓ. Set $N=$ $\prod_{l} N_{l}$ and let $\mathbb{Q}_{A}^{x}=\bigcup_{i} \mathbb{Q}^{x} a_{i}\left(N \times R_{+}^{x}\right)$ be a double coset decomposition. such that $\left(a_{i}\right)_{\infty}=1$ for every i. Take $\widetilde{a}_{i} \in D_{A}^{x}$ so that the reduced norm of \widetilde{a}_{i} is a_{i}. We may assume that $\left(\tilde{a}_{i}\right)_{\infty}=1$ and that $\left(\widetilde{a}_{i}\right)_{l}=1$ if $N_{l}=$ \mathbb{Z}_{l}^{x}. We set $f_{i, j}(x)=f\left(P\left(\tilde{a}_{i}, \widetilde{a}_{j}\right) x\right)$ for $x \in X_{A}$ and $\varphi_{i, j}(h)=\varphi\left(h\left(\widetilde{a}_{i}, \widetilde{a}_{j}\right)\right)$ for $h \in D_{A}^{\times} \times D_{A}^{\times}$Let $\Phi_{f}^{(i, j)}$ be the function on $G_{\mathbb{R}} G_{A}$ defined by (2) usimg $f_{i, j}$ and $\varphi_{i, j}$ instead of f and φ. Let $\widetilde{\Phi}_{f}^{(i, j)}$ be the extension of $\Phi_{f}^{(i, j)}$ to $G_{A} d e f i n e d$ by (5). We see that $\widetilde{\Phi}_{f}^{(i, j)}$ satisfies (6). We put $\Phi_{f}^{*}=\sum_{i} \sum_{j} \widetilde{\Phi}_{f}^{(i, j)}$.

Theorem 1．Let p be an odd prime at which D splits．We assume that R_{p} is a maximal order of D_{p} and $\varphi_{i} \in S\left(R, n_{i}\right)$ are eigenfunctions of $T^{\prime}(p), i=1,2$ ．Put $T^{\prime}(p) \varphi_{i}=\lambda_{i} \varphi_{i}, i=1,2$ ．Then we have
（8）$T(1,1, p, p) \Phi_{f}^{*}=p\left(\bar{\lambda}_{1}+\bar{\lambda}_{2}\right) \Phi_{f}^{*}$ ，
（9）$T\left(1, p, p, p^{2}\right) \Phi_{f}^{*}=\left\{\left(p^{2}-1\right)+p \bar{\lambda}_{1} \bar{\lambda}_{2}\right\} \Phi_{f}^{*}$ ，
where－denotes the complex canjugation．
Nous let us assume that we are in Case（II）．For each finite place v of F ，let N_{V} be the image of R_{v}^{x} under the reduced normo Set $N=\prod_{V} N$ and let $F_{A}^{x}=\bigcup_{i} F^{x} a_{i}\left(N \times \mathbb{R}_{+}^{x} \times \mathbb{R}_{+}^{x}\right)$ be a double coset decompositiono We may assume that the idele norm of a_{i} is 1 and that $\left(a_{i}\right)_{\infty}>0_{1}\left(a_{1}\right)_{\infty}$ ＞0．Let $\widetilde{a}_{i} \in D_{A}^{x}$ be an element whose reduced norm is a_{i} ．We may assume that $\left(\widetilde{a}_{i}\right)_{\infty} \in H^{\times} \times H^{x}$ belongs to the center of $H^{x} \times H^{x}$ ．We $\operatorname{set} f_{i}(x)=$ $f\left(\hat{P}\left(\widetilde{a}_{i}\right) x\right)$ for $x \in x_{A}$ and $\varphi_{i}(h)=\varphi\left(\tilde{a}_{i}\right)$ for $h \in D_{A}^{x}$ Let $\Phi_{f}^{(i)}$ be the function on $G_{\mathbb{Q}} G_{A}$ defined by（3）using f_{i} and φ_{i} instead of fand $\varphi_{\text {．}}$ Then $\Phi_{f}^{(i)}$ satisfies（4）．Let $\widetilde{\Phi}_{f}^{(i)}$ be the extension of $\Phi_{f}^{(i)}$ to $\widetilde{\mathrm{G}}_{\mathrm{A}}$ defined by（5）。 be see that $\widetilde{\Phi}_{f}^{(i)}$ satisfies（G）。 we put $\Phi_{f}^{*}=\sum_{i}^{(\underset{\Phi}{f}} \underset{f}{(i)}$ and assume that
（ α ）$R^{\sigma}=R$ 。
Then we have

Theorem 2．Let p be an odd rational prime which is unramified in Fo We assume that D_{0} splits at D 。 If p remains prime in F ，we assume that R_{p} is a maximal order of D_{p} and φ is an eigenfunction of T＇（p）． Put T＇（p）$\varphi=\lambda \varphi$ ．Then we have
（10）$T(1,1, p, p) \Phi_{f}^{*}=0$ ，
（11）$T\left(1, p, p, p^{2}\right) \Phi_{f}^{*}=-\left\{\left(p^{2}+1\right)+p \bar{\lambda}\right\} \Phi_{f}^{*}$,
where－denotes the complex conjugation．If p decomposes into twa prime divisors v_{1} and v_{2} in F ，we assume that $R_{v_{i}}$ is a maximal order of $D_{v_{i}}$ and that φ is an eigenfunction of $T^{\prime}\left(v_{i}\right)$ for $i=1,2$ ．Put
$T^{\prime}\left(v_{i}\right) \varphi=\lambda_{i} \varphi$ for $i=1,2$. Then we have
(12) $T(1,1, p, p) \Phi_{f}^{*}=p\left(w_{v_{1}(p)} \bar{\lambda}_{1}+\omega_{v_{2}}(p) \bar{\lambda}_{2}\right) \bar{\Phi}_{f}^{*}$,
(13)

$$
T\left(1, p, p, p^{2}\right) \Phi_{f}^{*}=\left\{\left(p^{2}-1\right)+p \bar{\lambda}_{1} \bar{\lambda}_{2}\right\} \bar{\Phi}_{f}^{*}
$$

We shall sketch a proof of (11). For simplicity, we assume that $\left(\widetilde{a}_{i}\right)_{p}=1 . \operatorname{Let} \widetilde{k}_{p}\left[1, P, P_{p} p^{2}\right] \widetilde{K}_{p}=V_{g_{i}} \widetilde{K}_{p}$ be a disjoint union such that $m\left(g_{i}\right)=p^{2}$. We put $f_{p}^{\prime}=\sum_{i} \pi_{p}\left(\left[p^{-1}, p^{-1}, p^{-1}, p^{-1}\right]_{g_{i}}\right) f_{p}, f^{\prime}=\prod_{v \neq p} f_{v} x$ f_{p}^{\prime} and $f_{i}^{\prime}(x)=f^{\prime}\left(\rho\left(\tilde{a}_{i}\right) x\right)$. Let $\Phi_{f^{\prime}}^{(i)}$ denote the function on G_{A} defined by (2) using f_{i}^{\prime} and φ_{i} instead of f and φ, and let $\widetilde{\Phi}_{f}(i)$ denote the extension of $\Phi_{f}(i)$ to \widetilde{G}_{A} defined by (5). Then one can see that $T\left(1, p, p, p^{2}\right) \widetilde{\Phi}_{f}^{(i)}(g)=\widetilde{\Phi}_{f}(i)(g)$ for $g \in \widetilde{G}_{A}$. We fix a splitting $D_{p} \cong$ $M\left(2, F_{p}\right)$ such that R_{p} is mapped onto $M\left(2, \theta_{p}\right)$, where θ_{p} is the maximal order of F_{p}. Then we can prave a local relation of Hecke operators;
(14)

$$
\begin{aligned}
f_{p}^{\prime}\left(x\left(\begin{array}{ll}
p & 0 \\
0 & p
\end{array}\right)\right)= & -p\left[\sum_{v} f_{p}\left(p\left(\left(\begin{array}{ll}
P & v \\
0 & 1
\end{array}\right)\right) x\right)+f_{p}\left(p\left(\left(\begin{array}{ll}
1 & D \\
0 & p
\end{array}\right)\right) x\right)\right] \\
& -\left(p^{2}+1\right) f_{p}\left(x\left(\begin{array}{ll}
p & 0 \\
0 & p
\end{array}\right)\right)
\end{aligned}
$$

where v extends over a complete set of representatives of θ_{p} mod p. Let $\left\{h_{s}\right\}$ denote the set of elements of $R_{p} ;\left(\begin{array}{ll}p & v \\ 0 & 1\end{array}\right), v \in \vartheta_{p}, v \bmod p$
 $-p \sum_{s} \int_{H_{F} H_{A}}\left\langle\sum_{x \in X_{0}}\left(\pi(g) f_{i}\right)\left(\rho\left(h_{s}\right) \rho(h) \times\left(\begin{array}{ll}P^{-1} & 0 \\ 0 & p^{-1}\end{array}\right)\right), \varphi_{i}(h)\right\rangle \Delta h$, if $g \in G_{A}$. Let $\tilde{\boldsymbol{T}}$ be the element of F_{A}^{x} such that $\tilde{\omega}_{p}=p$ and that \mathcal{O}_{V} $=1$ if $v \neq p$. We take $\gamma \in F^{x}$ so that $\gamma^{-1} a_{i} \theta=a_{j} \Pi \Gamma$ with $n \in N, r \in$ $\mathbb{R}_{+}^{x} \times \mathbb{R}_{+}^{\times}$. Then γ is totally positive. Hence there exists a $\tilde{\gamma} \in D^{x}$ such that $N(\tilde{\gamma})=\gamma$. We have $\Xi_{s}(g)=\int_{H_{F} \backslash H_{A}}\left\langle\sum_{x \in x_{0}}\left(\pi(g) f_{i}\right)\left(\rho_{\left(h_{s}\right)}\right.\right.$ $\left.\rho(h) \times\left(\begin{array}{ll}p^{-1} \\ \square & P^{-1}\end{array}\right), \varphi_{i}(h)\right\rangle \Delta h=\sum_{s} \int_{H_{F} \backslash \widetilde{\gamma}^{-1} H_{H} h_{1} \widetilde{a}_{i}}\left\langle\sum_{x \in x_{0}}(\pi(g) f)\right.$ $\left.\left(\rho\left(h^{\prime}\right) \times\left(\begin{array}{ll}P^{-1} & 0 \\ \square & p^{-1}\end{array}\right)\right), \varphi\left(h^{\prime} h_{s}^{-1}\right)\right\rangle \Delta h^{\prime}$, where dh' denotes a suitable invariant measure on $H_{F} \backslash \widetilde{\gamma}^{-1} H_{A} h_{1} \widetilde{a_{i}}$. (Note that $H_{F} \backslash \widetilde{\gamma}^{-1} H_{A} n_{s} \widetilde{a_{i}}$ does not
depend on s). We can see that $\sum_{s} \varphi\left(h^{\prime} h_{s}^{-1}\right)=\omega_{p}\left(p^{-1}\right) \lambda \varphi\left(h^{\prime}\right)$ and that $w_{p}\left(P^{-1}\right)=1$. We have $H_{F} \backslash \widetilde{\gamma}^{-1} H_{A} h_{1} \widetilde{a}_{i}=H_{F} \backslash H_{A} \delta \widetilde{a}_{j}$ with $\delta \in \prod_{V} R_{V}^{x} \times$ $\mathrm{H}^{\mathrm{X}} \times \mathrm{HH}^{\mathrm{X}}$. We get $\Xi(g)=\bar{\lambda} \int_{H_{F} \backslash H_{A}}\left\langle\sum_{x \in X_{Q}}\left(\pi(g) f_{j}\right)\left(P(h \delta) \times\left(\begin{array}{ll}D^{-1} & 0 \\ 0 & p^{-1}\end{array}\right)\right), \varphi(n \delta)\right\rangle \mathrm{d}$ $=\bar{\lambda} \int_{H_{F} \backslash H_{A}}\left\langle\sum_{x \in X_{\text {机 }}}\left(\pi(g) f_{j}\right)\left(P\left(\delta_{\infty}\right) P(h) \times\left(\begin{array}{cc}p^{-1} & 0 \\ 0 & p^{-1}\end{array}\right), \varphi_{j}\left(h \delta_{\infty}\right)\right\rangle\right.$ dh, if $g \in G_{A}, g_{f}=1$. We can write $\delta_{\infty}=\left(p^{-k} \gamma_{1}, p^{-k} \delta_{2}\right)$ with δ_{1}, δ_{2} $\in \mathbb{H}^{(1)}, k_{1}, k_{2} \in \mathbb{R}$ such that $k_{1}+k_{2}=1$. We have $E(g)=\bar{\lambda} \int_{H_{F} \backslash H_{A}}\left\langle\sum_{x \in X_{\mathbb{Q}}}\left(\pi(g) f_{j}\right)\left(p\left(p^{-k}, p^{-k_{2}}\right)_{\infty} p(h) \times\left(\begin{array}{ll}p^{-1} & 0 \\ \square & p^{-1}\end{array}\right)\right)\right.$, $\varphi_{j}\left(h\left(p^{-k} 1_{g} p^{-k_{2}}\right)_{\infty}\right)>d h 。$
we can verify that $\varphi_{j}\left(h\left(p^{-k},^{-p^{-k}}\right)_{\infty}\right)=\varphi_{j}(h)$ and that $\sum_{x \in X_{a}}\left(\pi(g) f_{j}\right)\left(P\left(p^{-k} 1, p^{-k}\right)_{\infty} P(h) \times\left(\begin{array}{ll}p^{-1} & 0 \\ 0 & p^{-1}\end{array}\right)\right)=\sum_{x \in x_{a}}\left(\pi(g) f_{j}\right)$ $(P(n) x)$. Hence we obtain
(15) $T\left(1, p, p, p^{2}\right) \widetilde{\Phi}_{f}^{(i)}(g)=-\left(p^{2}+1\right) \widetilde{\Phi}_{f}^{(i)}(g)=\square \bar{\lambda}_{f}^{(j)}(g)$, if $g \in G_{A}$ and $g_{f}=1$. Since $\widetilde{\Phi}_{f}^{(i)}$ and $\widetilde{\Phi}_{f}^{(j)}$ satisfies (G), (15) holds for any $g \in \widetilde{\mathbb{G}}_{A}$. Hence (11) follows immediately.

§3. Translation into the classical terminology

In order to obtain a Siegel modular farm from Φ_{f}^{*}, we must choose $f_{\infty} \in \mathcal{S}\left(X_{\infty}\right) \otimes V$ appropriately. Let W_{Π} be the space of all functions p on H such that $p(a+b i+c j+d k)=q(b, c, d)$, where $1, i, j, k$ are the standard quaternion basis, $a, b, c, d \in \mathbb{R}$ and q is a homogeneous polynomial of degree n with complex coefficients. We put $\left(\mathcal{Z}_{n}(g) p\right)(x)=p\left(g^{*} \times g\right)$ for $g \in \mathbb{H}^{x}, x \in \mathbb{H}$. Then τ_{Π} defines a representation of \mathbb{H}^{x} on W_{n}. We have (15) $\quad \tau_{n} \left\lvert\, \mathbb{H}^{(1)} \cong\left\{\begin{array}{l}\left(\sigma_{\left.2 \pi \oplus \sigma_{2 \pi-4} \oplus \cdots \oplus \sigma_{0}\right) \mid \mathbb{H}}(1) \text { if } n \text { is even, }\right. \\ \left(\sigma_{2 \pi} \oplus \sigma_{2 n-4} \oplus \cdots \oplus \sigma_{2}\right) \mid \mathbb{H}(1) \text { if } n \text { is odd. }\end{array}\right.\right.$

Let W_{n}^{*} be the subspace of u_{n} consisting of all functions in W_{n} which transform according to $\sigma_{2 \pi}$. We can naturally identify π_{∞} with the Weil representation of $G_{\infty} \cong S_{p}(2, R)$ realized on $\mathcal{K}\left(\mathbb{H} \oplus(H)\right.$. (ϵ_{∞} is cham racterized by (i) $\sim(i i j)$ with $\left(x_{1}, x_{2}\right) \in \mathbb{H} \oplus \mathbb{H}$ and $X_{\infty}=1, \gamma_{\infty}=1$). Let K_{∞} be the standard maximal compact subgroup of G_{∞} defined by $K_{\infty}=$ $\left\{\left.g=\left(\begin{array}{rr}A & B \\ -B & A\end{array}\right) \right\rvert\, g \in G_{\infty}\right\} \cong U(2, E)$.

Proposition 2. For $p \in \mathcal{W}_{n}^{*}$, define $f \in \mathcal{S}(\mathbb{H} \oplus \mathbb{H})$ by $f\left(x_{1}, x_{2}\right)=$ $p\left(x_{1}^{*} x_{2}\right) \exp \left(-2 \pi\left(N\left(x_{1}\right)+N\left(x_{2}\right)\right)\right.$. Then we have

$$
\pi_{\infty}\left(\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right)\right) f=\operatorname{det}(A+B \sqrt{-1})^{\pi+2} f \text { for every } \quad\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right) \in K_{\infty}
$$

By virtue of Proposition 2, we can choose $f_{\infty} \epsilon \mathcal{S}\left(X_{\infty}\right) \otimes V$ so that the following conditions (17) $\sim(19)$ are satisfied.
(17) $\pi_{\infty}\left(\left(\begin{array}{rr}A & B \\ -B & A\end{array}\right)\right) f_{\infty}=\operatorname{det}(A+B \sqrt{-1})^{n+2} f_{\infty}$ far any $\left(\begin{array}{cc}A & B \\ -\theta & A\end{array}\right) \in K_{\infty}$.
(18) $\quad f_{\infty}\left(f\left(g_{1}, g_{2}\right) x\right)=\left(\sigma_{\square}\left(g_{1}\right) \otimes \sigma_{2 n}\left(g_{2}\right)\right) f_{\infty}(x)$ for any $x \in \mathbb{H} \oplus \mathbb{H}$ and $\left(g_{1}, g_{2}\right) \in \mathbb{H}^{(1)} \times \mathbb{H}^{(1)}$.
(19) Each component of f_{∞} has the form as in Proposition 2 .

Hereafter we assume
(β) $\quad \pi_{1}=0$ and $\pi_{2}=2 \pi$
and that f_{∞} is chosen as above. We set $M_{\infty}(k)=\operatorname{det}(A+\theta \sqrt{-1})^{n+2}$ for $k=\left(\begin{array}{rr}A & 日 \\ -B & A\end{array}\right) \in K_{\infty}$. For $K=\prod_{V} K_{v}$, we define a representation M of K by $M=\bigotimes_{V} M_{V} \cdot \operatorname{By}(4)$ and Proposition 2, we have
(20) $\Phi_{f}^{*}(g k)=M(k) \Phi_{f}^{*}(g)$ for any $g \in G_{A}, k \in k$.

Let S_{Q} be the Siegel upper half space of genus 2 . For $g \in G_{\infty}$, let $\mathbb{G} \in G_{A}$ be the adele such that $\widetilde{g}_{f}=1$ and $\widetilde{g}_{\infty}=9$. We define a function J on Sby

$$
\begin{equation*}
J(g \cdot \dot{i})=\Phi_{f}^{*}(\tilde{g})(\operatorname{det}(c \dot{i}+d))^{n+2} \tag{21}
\end{equation*}
$$

Thën we have $\Gamma=\widetilde{\Gamma_{0}}(N)$, where $N=\prod_{p} \ell(p)$. We define a character
M_{Γ} of Γ by $M_{\Gamma}(\gamma)=\prod_{\Gamma} M_{p}(\gamma)$. Since Φ_{f}^{*} is left G_{Q}-invariant and satisfies (20), we have
(22)

$$
J(\gamma z)=M_{\Gamma}(\gamma) J(z) \operatorname{det}(c z+d)^{\Pi+2},
$$

for any $\gamma \in \Gamma$ and $z \in \varsigma$, where $\gamma=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right)$.
The explicit form of J is given as follows. Suppose that we are in Case (I). We put $K^{*}=\left(K^{\prime} \times K^{\prime}\right) \cap H_{A}$ and let $H_{A}=\bigcup_{l=1}^{h} H_{Q_{l} y_{l} K^{*} \text { be a }}$ double coset decomposition of H_{A}. We assume that $\left(y_{l}\right)_{\infty}=1,1 \leqslant l \leqslant h$. We put $e_{l}=\left|H_{Q} \cap y_{l} k^{*} v_{l}^{-1}\right|$ and $f_{\infty}(x)=\left(\begin{array}{c}p_{1}\left(x_{1}^{*} x_{2}\right) \\ \vdots \\ p_{2 n+1}\left(x_{1}^{*} x_{2}\right)\end{array}\right)^{\infty} \exp \left(-2 \pi\left(N\left(x_{1}\right)+\right.\right.$ $\left.N\left(x_{2}\right)\right), x=\left(x_{1}, x_{2}\right) \in \mathbb{H} \notin \mathbb{H}$ 。Define a V-valued function F on \mathbb{H} by $F(x)=\left(\begin{array}{c}p_{1}(x) \\ \vdots \\ p_{2 n+1}(x)\end{array}\right)$ - Let L bethe isametric embedding of $D_{\text {俗 intoin der- }}$ ived from the algebra injection $D_{Q} C H$ Set $S=\prod_{p}\left(R_{p} \oplus R_{p}\right)$, which is the support of $\prod_{F} f_{P}$. Then we have

$$
\begin{equation*}
J(z)=\operatorname{vol}\left(k^{*}\right) \sum_{i=j} \sum_{l=1}^{h} \sum_{x \in x_{\mathbb{1}} \cap p\left(y_{d}\left(\widetilde{a}_{i}, \widetilde{a}_{j}\right)\right)^{-1} 5} p\left(c\left(x_{1}^{*} x_{2}\right)\right) \tag{23}
\end{equation*}
$$

$$
\left.\mathrm{e}\left(\sigma\left(\left(\begin{array}{cc}
N\left(x_{1}\right) & \operatorname{Tr}\left(x_{1} x_{2}^{*}\right) / 2 \\
\operatorname{Tr}\left(x_{1} x_{2}^{*}\right) / 2 & N\left(x_{2}\right)
\end{array}\right) z\right)\right), \quad \varphi\left(y_{i}\left(\widetilde{a}_{i}, \widetilde{a}_{j}\right)\right)\right\rangle / e_{i},
$$

Where val $\left(K^{*}\right)$ denotes the volume of K^{*} measured by dh. We can get a similar formula to (23) for the Case (II) under the assumption (α). By virtue of (23), we can see that $J(z)$ is a holomorphic function on ξ_{ρ}. Namaly we have

Theorem 3. $J(z)$ is a holomorphic Siegel modular form of weight $\pi+2$ which satisfies (22).

The classical definition of the action of the Hecke operator $T\left(p^{d_{1}}, p^{d_{2}}, p^{e}{ }_{1}, p^{e_{2}}\right.$) on J is as follows. We assume that $l(p)=0$ and put $k=n+2$. Let $\Gamma\left[p^{d}, p^{d}, p_{1}^{e_{1}}, p^{e_{2}}\right\} \Gamma=\bigcup_{i} \Gamma_{i}$ be a disjoint union. We put
(24) $\quad\left(T\left(p^{d}, P^{d}, p^{E_{1}}, p^{E_{2}}\right) J\right)(z)=\left(p^{d}{ }^{+e_{2}}\right)^{2 k-3} \sum_{i} M_{\Gamma}\left(\gamma_{i}\right) J\left(\gamma_{i} z\right)$

$$
\cdot \operatorname{det}\left(c_{i} z+d_{i}\right)^{-k},
$$

where $\gamma_{i}=\left(\begin{array}{ll}* & * \\ c_{i} & d_{i}\end{array}\right)$ (cf. Andrianov (1] , Matsuda [11]). Then we can translate Thearem 1 and 2 into the following form.

Theorem 4. Suppose that we are in Case (I) and let the assumptions be the same as in Theorem 1. We have $T(1,1, p, p) J=p^{k-2}\left(\bar{\lambda}_{1}+\bar{\lambda}_{2}\right) J$ and $T\left(1, p, p, p^{2}\right) J=p^{2 k-6}\left\{\left(p^{2}-1\right)+p \bar{\lambda}_{1} \bar{\lambda}_{2}\right\}$ J.

By Theorem 4, the p-factor $L_{p}(s, J)$ of the L-function attached to J in the classical sense is given by
(25) $\quad L_{p}(s, J)=\prod_{i=1}^{2}\left(1-\bar{\lambda}_{i} p^{k-2-s}+p^{2 k-3-2 s}\right)^{-1}$.

Theorem 5. Suppose that we are in Case (II) and let the assumptions be the same as in Theorem 2. If premains prime in F, we have $T(1,1, p, p) J=0, T\left(1, p, p, p^{2}\right) J=-p^{2 k-6}\left\{\left(p^{2}+1\right)+p \bar{\lambda}\right\} J$. If p decomposes in F, we have $T(1,1, p, p) J=p^{k-2}\left(\omega_{v_{1}}(p) \bar{\lambda}_{1}+\omega_{v_{2}}(p) \bar{\lambda}_{2}\right) J$, $T\left(1, p, p, p^{2}\right) J=\left\{\left(p^{2}-1\right)+p \bar{\lambda}_{1} \bar{\lambda}_{2}\right\} J$.

Let $L_{p}(s, J)$ be the p-factor of the L-function attached to J in the classical sense. If p decomposes in F, we have (26) $L_{p}(s, J)=\prod_{i=1}^{2}\left(1-\bar{\lambda}_{i} w_{v_{i}}(p) p^{k-2-s}+p^{2 k-3-2 s}\right)-1$. If p remains prime in F, we have

$$
\begin{equation*}
L_{p}(s, 3)=\left(1-\bar{\lambda} p^{2 k-4-2 s}+p^{4 k-6-4 s}\right)^{-1} \tag{27}
\end{equation*}
$$

Concerning the question when $]$ is a cusp form, we can prove(see alsa Proposition 4),

Proposition 3. If $n>0$, $]$ is a cusp form.
Remark. The assumption (β) and the corresponding chaice of $f_{\infty} \epsilon$ $\delta\left(x_{\infty}\right) \otimes V$ is necessary because; (i) we must choose an f_{∞} so that it transforms according to a one-dimensional representation under K_{∞}, to obtain Siegel modular forms of genus 2 with the usual automorphic
factor；（ii）the assumption（ β ）is required for the coincidence of the Γ－factor in the functional equation of the L－function attached to J with that in（1）and（11），taking account of the results in §2． In general，there arises a question：Find an $f_{\infty} \in f\left(X_{\infty}\right) \otimes V$ which transforms according to $\sigma_{\Pi_{1}} \otimes \sigma_{n_{2}}$ under the action of K_{∞} through p and which transforms according to a prescribed higher dimensional rep－ resentation（which depends on n_{1} and n_{2} ）under the action of K_{∞} through π_{∞} 。 If this purely archimedean question is solved，we will be able to construct a Siegel modular form with more general automorphic factor from any pair of $\varphi_{1} \in S\left(R, \pi_{1}\right)$ and $\varphi_{2} \in S\left(R, \Pi_{2}\right)\left(\right.$ resp．any $\left.\varphi \in S\left(R, \Pi_{1}, \pi_{2}, \omega\right)\right)$ if we are in Case（ I ）（resp．Case（II））．

§4．The case of the prime level

In this section，we shall consider the simplest case and examine aur construction in detail．Namely we assume that we are in Case（I） and that D ramifies only at p and ∞ ，where p is a fixed prime number． Let F be a maximal order of D and let $D_{A}^{x}=\bigcup_{i=1}^{H} D^{x} y_{i}\left(\prod_{\ell} R_{\ell}^{x} \times H^{x}\right)$ be a double coset decomposition of 0_{A}^{x} ．Note that $N_{l}=\mathbb{Z}_{\ell}^{\times}$for gyery l 。 We may assume that the reduced norm of y_{i} is 1 and that $\left(y_{i}\right)_{\infty}=1$ for $1 \leqslant i \leqslant H$ ．For $1 \leqslant i, j \leqslant H$ ，we define a lattice $L_{i j}$ of D by $L_{i j}=D \cap y_{i}$ （ ΠR_{l} ）y_{j}^{-1} ．Note that $L_{i i}$ is a maximal order of D ．We put $R_{i}=L_{i i}$ and $e_{i}=\left|R_{i}^{x}\right|$ ．Let $S_{k}^{0}\left(\Gamma_{a}(p)\right)$ be the space of new forms in $S_{k}\left(\Gamma_{o}(p)\right)$ ． Assume that $\varphi(\neq 0) \in S(R, 2 m)$ satisfies $T^{\prime}(\ell) \varphi=\lambda(\ell) \varphi$ for every $\ell \neq p$ ，where m is any non－negative integer．Then there exists a cusp form $f(\neq \square) \in g_{2 m+2}^{0}\left(\Gamma_{0}(口)\right)$ such that $T(\ell) f=\lambda(\ell) \ell^{m_{f}}$ for every $l \neq p$ if $m>0$ ，and vice versa．If $m=0$ ，there exists a modular form $f \in G_{2}\left(\Gamma_{0}(\rho)\right)$ such that $T(l) f=\lambda(l) f$ for every $l \neq p$ ，and vice versa．Here $T(\ell)$ denotes the Hecke operator which acts on $\mathrm{G}_{2 \mathrm{~m}+2}\left(\Gamma_{\square}(\mathrm{p})\right)$ ．These results follow from the well－known work of M．Eichler on the representability of modular forms by theta series．

If f satisfies the above condition, let us call that f corresponds to φ. (f is unique up to constant multiple). We take $\varphi_{1}(\neq 0) \in S(R, \square)$ and $\varphi_{2}(\neq \square) \in 5(R, 2 n)$. We assume that φ_{1} and φ_{2} are common-eigenfunctions of $T^{\prime}(\ell), \ell \neq P$. Put
(28) $\tilde{\vartheta}_{i j}(z)=\sum_{(x, y) \in L_{i j} \oplus L_{i j}}^{\longrightarrow} P\left(L\left(x^{*} y\right)\right) e\left(\sigma\left(\left(\begin{array}{cc}N(x) & \operatorname{Tr}\left(x y^{*}\right) / 2 \\ \operatorname{Tr}\left(x y^{*}\right) / 2 & N(y)\end{array}\right)_{z}\right)\right.$, $z \in S_{\rho}$,
(29) $F\left(\varphi_{1}, \varphi_{2}\right)=\sum_{i=1}^{H} \sum_{j=1}^{H}\left\langle\vartheta_{i j}, \varphi_{1}\left(y_{i}\right) \otimes \varphi_{2}\left(y_{j}\right)\right\rangle / e_{i} e_{j}$.

Let $f_{1} \in G_{2}\left(\Gamma_{0}(p)\right)$ and $f_{2} \in G_{2 n+2}\left(\bar{F}_{\square}(p)\right)$ be the elliptic modular forms which correspond to φ_{1} and φ_{2} respectively. Let $L\left(s, f, f_{1}\right.$ and $L\left(s, f_{2}\right)$ be the Euler products in the classical sense attached to f_{1} and f_{2} respectively. Then, (23) and Theorem 3 show that the Euler product $L\left(s, F\left(\varphi_{1}, \varphi_{2}\right)\right)$ attached to $F\left(\varphi_{1}, \varphi_{2}\right)$ is equal to $L\left(s-\eta_{1}, f_{1}\right) L\left(s, f_{2}\right)$ up to the 2 and p-factors if $F\left(\varphi_{1}, \varphi_{2}\right) \neq 0$. (L(s,F($\left.\varphi_{1}, \varphi_{2}\right)$) is defined by $\prod_{\ell=2, p} L_{\ell}\left(s, F\left(\varphi_{1}, \varphi_{2}\right)\right)$. Suppose that we have taken φ_{1} as a constant function on D_{A}^{x}. Then f_{1} is an Eisenstein series of $G_{2}\left(\Gamma_{0}^{(p)}\right.$) and we have $L(s, f, f)=\zeta(s) \zeta(s-1)\left(1-p^{1-s}\right)$, where $\zeta(s)$ denotes the Riemann zeta function. For such φ_{1}, the Euler product of $F\left(\varphi_{1}, \varphi_{2}\right)$ has a similar form to the examples of Kurokawa $[9]$. For $n=0$, we have the following criterion for $F\left(\varphi_{1}, \varphi_{2}\right)$ to be a cusp form.

Proposition 4. If $\pi=0, F\left(\varphi_{1}, \varphi_{2}\right)$ is a cusp form if and only if φ_{2} is not a constant multiple of φ_{1} 。

Here the main question arises: For which pair ($\left.\varphi_{1}, \varphi_{2}\right), F\left(\varphi_{1}, \varphi_{2}\right)$ does not vanish? Hereafter we shall be concerned with this question. Let $\boldsymbol{\sigma}_{p}$ be a prime element of D_{p}. We set $S^{+}(R, 2 m)=\{\varphi \in S(R, 2 m)\}$ $\varphi\left(g C_{p}\left(\sigma_{p}\right)\right)=\varphi(g)$ for any $\left.g \in D_{A}^{x}\right\}, S^{-}(R, 2 m)=\{\varphi \in S(R, 2 m) \mid$ $\varphi\left(g C_{p}\left(\omega_{p}\right)\right)=-\varphi(g)$ for any $\left.g \in D_{A}^{x}\right\}$, where \mathcal{C}_{p} denotes the natural injection of D_{P}^{x} into D_{A}^{x}. We have

$$
\begin{equation*}
S(R, 2 m)=S^{+}(R, 2 m) \oplus S^{-}(R, 2 m)(\text { direct sum) } \tag{30}
\end{equation*}
$$

Proposition 5. If $\varphi_{1} \in S^{ \pm}(R, \square)$ and $\varphi_{2} \in S^{\mp}(R, 2 n)$, we have $F\left(\varphi_{1}, \varphi_{2}\right)=0$.

It seems natural to conjecture the converse. Namely
Conjecture. If n is even and $\varphi_{1} \in S^{ \pm}(R, O), \varphi_{2} \in S^{ \pm}(R, 2 n)$, then $F\left(\varphi_{1}, \varphi_{2}\right)$ would not vanish.

At present, we can only prove that several non-vanishing cusp forms arise by our construction (except for some numerical evidences). We put $y_{i}\left(\partial_{p}\left(\omega_{p}\right)=\gamma y_{j(i)} \delta\right.$ with $\gamma \in D^{x}$ and $\delta \in \prod_{e} R_{e}^{x} \times H^{x}$ for every y_{i}, $1 \leqslant i \leqslant H$. The map $i \rightarrow j(i)$ induces a permutation of order 2 on H lettem r5. If $i=j(i)(r e s p, i \neq j(i))$, let us call y_{i} of the first kind (respe second kind).

Theorem 6. Let $\varphi_{f} \in S\left(R_{g} Q\right)$ be a monmzero common-eigenfunction of $T^{\prime}(\ell), \ell \neq p$. We assume that $\varphi_{1}\left(y_{i}\right) \neq 0$ for some y_{i} which is of the first kind. We assume that n is even and that $n \geqslant 4$ if $p=2$. Then there exists $\varphi_{2} \in S(R, 2 n)$ which is a commoneeigenfunction of $T^{\prime}(Q)$, $\ell \neq F$ such that $F\left(\varphi_{1}, \varphi_{2}\right) \neq 0_{0}$

Let $U(r e s p . ~ 2 V)$ be the number of $y_{i}{ }^{s} s$ of the first kind (respo second k ind) . We have $U+2 V=H_{g} U+V=T$, where T is the type number of D. A constant function $\varphi_{1}(\neq \square) \in S(R, D)$ satisfies the condition of Theorem 6. Moreover one can see easily that there exist at least $U=$ $2 T$ - H linearly independent $\varphi \in S(R, D)$ such that $\varphi\left(y_{i}\right) \neq \square$ for some y_{i} which is of the first kind. We mote that (of. A.Pizer [12] for example)
(31)

$$
U= \begin{cases}h_{p} / 2 & \text { if } p \equiv 1 \bmod 4 \\ 2 h_{p} & \text { if } p \equiv 3 \operatorname{mad} 8 \\ h_{p} & \text { if } p \equiv 7 \bmod 8\end{cases}
$$

if $p \geqslant 5$. Here h_{p} denotes the class number of $(\sqrt{-p})$.
85. A characterization

Hereafter we fix an odd prime p and the definite quaternion algebra D qver \mathbb{Q} whose discriminant is p^{2} and assume that we are in Case (I). For $n \in \mathbb{Z}$, we set $X(\pi)=0$ if $p \mid n$ and $X(n)=\left(\frac{\pi}{p}\right)$ if $\mathcal{X} X$. In §4, we constructed a correspondence $\eta_{1}: S\left(R_{1}, O\right) \times S\left(R_{1}, 2 \pi\right) \longrightarrow$ $\widetilde{G}_{n+2}\left(\widetilde{\Gamma}_{0}(p)\right)$ which "preserves" Euler products, where R_{1} is a maximal order of D. The image of η_{1} has the following property.

Proposition 6. Let R be any order of D. For $\varphi_{1} \in S(R, 0)$ and $\varphi_{2} \in$ $S(R, 2 n)$, define by (23). Let $J(z)=\sum_{N} a_{J}(N) e(\sigma(N z))$ be the. Fourier expansion of J, where N extends over all positive semi-definite half integral symmetric matrices. Then we have ag $(N)=0$ if $\chi(-d e t 2 N)=1$. Proof. Put $N=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right), a_{g} b, c \in \mathbb{Z}$ and assume that $a_{j}(N) \neq \square$. Then there must exist $x, y \in D$ such that $N(x)=a, N(y)=c, x y^{*}+y x^{*}=$ b. Assume $x \neq 0$ and put $t=x^{-1} y$. We have $N(t)=a^{-1} c, t+t^{*}=a^{-1} 口$. We may assume that $b^{2}-4 a c \Rightarrow 0$. Then $\mathbb{Q}(t)$ is isomorphic to the imaginary quadratic field $\mathbb{d}\left(\sqrt{b^{2}-4 a c}\right)$. Therefare we must have $\chi\left(b^{2}-4 a c\right)$ $=-1$ or 0 . If $y \neq 0$, we can argue similarly. If $x=y=0$, we have $a=b=c=0$ and $\chi(-d e t 2 N)=\square$. This completes the proof.

A simple consideration about the dimension shows that η_{1} can not be surjective if n is sufficiently large. To clarify the nature of our comjecture about the characterization, let us first intraduce the twisting operator. For $F \in \widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$, let $F(z)=\sum_{N} a_{F}(N) e(\sigma(N z))$ be the Fourier expansion of $F(z)$. We put

$$
\begin{equation*}
(Q F)(z)=\sum_{N} a_{F}(N) \chi(\text {-det } 2 N) e(\sigma(N z)) \tag{32}
\end{equation*}
$$

Proposition 7. The operator Q induces an endomorphism of $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{o}\left(p^{2}\right)\right)$.

Proqf. For $F \in \widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}(2, \mathbb{R})$, put $F \mid[\gamma]_{k}=$ $F(\gamma z) \operatorname{det}(c z+d)^{-k}$. Then we have $F \mid\left[\gamma_{1} \gamma_{2}\right]_{k}=\left(F\left|\left[\gamma \gamma_{k}\right)\right|\left(\gamma_{2}\right]_{k}\right.$. Take $\varepsilon \in \mathbb{Z}$ so that $\chi(\varepsilon)=-1$. We put
$Q_{1} F=\sum_{u=0}^{P-1} \sum_{v=0}^{p-1} F \left\lvert\,\left[\left(\begin{array}{cc}1 & U(u, v) / p \\ 0 & 1\end{array}\right)\right]_{k}\right., Q_{2} F=\sum_{u=0}^{p-1} \sum_{v=0}^{p-1} F\left[\left[\left(\begin{array}{cc}1 & \varepsilon U(u, v) / P \\ 0 & 1\end{array}\right)\right]_{k}\right.$
where $U(u, v)=\left(\begin{array}{cc}u^{2} & u v \\ u v & v^{2}\end{array}\right)$. We also put $Q_{3} F=\sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \sum_{u=0}^{p-1} F \mid$ $\left[\left(\begin{array}{cc}1 & V(u, v, w) / P \\ 0 & 1\end{array}\right)\right]_{k}$, where $V(u, v, w)=\left(\begin{array}{cc}u & v \\ v & w\end{array}\right)$. We first show that Q_{1}, Q_{2} and Q_{3} induce endomorphisms of $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$. Take any $\left(\begin{array}{cc}a & b \\ p^{2} & d\end{array}\right) \in$ $\widetilde{\Gamma}_{\square}\left(p^{2}\right)$. Since a mod $p \in G L(2, \mathbb{Z} / P \mathbb{Z})$, we can find $U^{\prime} \in M(2, \mathbb{Z})$ so that $t_{U^{\prime}}=U^{\prime}, a U^{\prime} \equiv U d$ mod p, where $U=U(u, v)$. Then we have

$$
\left(F \left\lvert\,\left[\left(\begin{array}{cc}
1 & U / p \\
0 & 1
\end{array}\right)\right]_{k}\right.\right) \left\lvert\,\left[\left(\begin{array}{cc}
a & b \\
p^{2} c & d
\end{array}\right)\right]_{k}=F\left\{\left[\left(\begin{array}{cc}
1 & U i / p \\
0 & 1
\end{array}\right)\right]_{k}\right.\right.
$$

Since $d \equiv t_{a-1} \bmod p$, we can take U^{\prime} in the form $U^{\prime}=U\left(u^{\prime}, v^{\prime}\right)$ and the map $U \rightarrow U^{B}$ induces a bijection on the set of integral matrices of the form $\left(\begin{array}{ll}u^{2} & u v \\ u v & v^{2}\end{array}\right)$ taken up to madulo po Hence we get $Q_{1} F \mid(\gamma)_{k}=Q_{1} F$ far any $\gamma \in \widetilde{\Gamma}_{0}\left(p^{2}\right)$ 。By virtue of the eriterion that $F \in \widetilde{G}_{k}\left(\widetilde{\Gamma}_{0} p^{2}\right)$) is a cusp form if and only if det $(\operatorname{Im}(z))^{k / Z} F(z)$ is bounded on S, we see immediately that Q, F is a cusp form, where $\operatorname{Im}(z)$ denotes the imaginary part of $z \in S$. For Q_{2} and Q_{3}, we can use similar arguments. For $a, b, c \in \mathbb{Z}$, define a character sum $G(a, b, c)$ by $G(a, b, c)=\sum_{u=0}^{p-1} \sum_{V=0}^{p-1} e\left(\left(a u^{2}+b u v+\right.\right.$ ev ${ }^{2}$)/p). 日y a standard evaluation using Gaussian sums, we get

$$
\text { (33) } G(a, b, c)=\left\{\begin{array}{cl}
p \chi\left(b^{2}-4 a c\right) & \text { if } b^{2}-4 a c \neq 0 \bmod p, \\
\chi(a) p G & \text { if } b^{2}-4 a c \equiv 0 \bmod p \text { and } a \neq 0 \bmod p, \\
\chi(c)_{p} G & \text { if } b^{2}-4 a c \equiv 0 \bmod p \text { and } c \neq 0 \bmod p, \\
p^{2} & \text { if } a \equiv b \equiv c \equiv 0 \bmod p,
\end{array}\right.
$$

where $G=\sum_{u=0}^{p-1} \chi(u) e(u / p)=\sqrt{(-1)^{(p-1) / 2}}$. Using (33), we get $Q F=$ $\left(Q_{1} F+Q_{2} F\right) / 2 p-Q_{3} F / p^{2}$, hence our assertion. We define subspaces V_{+}, V_{2} and Y of $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$ by $V_{+}=\left\{F \in \widetilde{S}_{k}\left(\widetilde{T_{0}}\left(p^{2}\right)\right) \mid a_{F}(N)=0\right.$ if $\left.\chi(-\operatorname{det} 2 N)=1\right\}$, $v_{-}=\left\{F \in \widetilde{S}_{k}\left(\tilde{\Gamma}_{\square}\left(p^{2}\right)\right) \mid a_{F}(N)=0\right.$ if $\left.\chi(-\operatorname{det} 2 N)=-1\right\}$, $Y=\left\{F \in S_{k}\left(\widetilde{\Gamma}_{\square}\left(p^{2}\right)\right) \mid a_{F}(N)=0\right.$ if $\left.p X \operatorname{det} 2 N\right\}$.

It is obvious that $Y=U_{+} \cap V_{-}$. Let W_{+}(resp. W_{-}) be the orthogonal complement of Y in V_{+}(resp. V_{-}) with respect to the petersson inner
product (cf. Maab [10]) in $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{\square}\left(p^{2}\right)\right.$). For a positive integer m such that $p \nmid m$, let $T(m)$ be the Hecke operator which acts on $\widetilde{S}_{k}\left(\widetilde{T}_{q}\left(p^{2}\right)\right)$. (cf.[1],[11]).

Lemma 1. V_{+}, V_{-}and Y are stable under the action of the Hecke operator $T(m)$ for pXm.

Proof. It is sufficient to show that V_{+}, V_{-}and Y are stable under all $T\left(\ell^{\delta}\right)$, where ℓ is a rational prime different from p and δ is a positive integer. Then our assertion follows immediately from proposition 1 of Andrianov(1), noting that his result holds also for our case without any modification.

The following Lemma san also be proven using proposition 1 of (1).
Lemma 2. Assume that $F \in \widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$ is a common-eigenfunction of $T(m)$ for $口 X\left(m\right.$. Put $T(m) F=\lambda_{F}(m) F$. Then we have $T(m) Q F=\lambda_{F}(m) Q F$.

Take any $F \in \widetilde{S}_{k}\left(\widetilde{\Gamma}_{\square}\left(P^{2}\right)\right.$). It is clear that $F+Q F \in V_{\text {_ }}$ and $F-Q F \in$ v_{+}. Hence we have an orthogonal decomposition

$$
\begin{equation*}
\widetilde{s}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)=w_{+} \oplus Y \oplus w_{-} \cdot \tag{34}
\end{equation*}
$$

With respect to the Petersson inner product in $\widetilde{S}_{k}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right), T(m)$, $(m, p)=1$ are mutually commutative self-adjoint operators. Hence we can take a basis of W_{+}(resp. Y, W_{-}) so that every element of the basis is a common-eigenfunction of $T(m),(m, p)=1$.

Proposition B. For every positive integer m such that (m, p) $=1$, we have $-\operatorname{Trace}\left(T(m) \circ Q \mid S_{k}\left(\widetilde{\Gamma}_{o}\left(p^{2}\right)\right)\right)=\operatorname{Trace}\left(T(m) \mid w_{+}\right)-\operatorname{Trace}\left(T(m) \mid w_{-}\right)$。

Pronf. It is clear that $Q Y=0$. Let $F_{1}, \cdots, F_{t}\left(\right.$ resp. $\left.H_{1}, \cdots, H_{u}\right)$ be a basis of $W_{+}\left(r e s p . W_{-}\right)$which consists of common-eigenfunctions of $T(m),(m, p)=1$. Put $T(m) F_{i}=\lambda_{i}(m) F_{i}$ and $T(m) H_{j}=\mu_{j}(m) H_{j}$. clearly we have $-Q F_{i}-F_{i} \in Y_{\text {. Put }} G=-Q F_{i}-F_{i}$. Then we get $-(T(m) \bullet Q) F_{i}=\lambda_{i}(m) F_{i}$ $+T(m) G$ and $T(m) G \in Y$ by Lemma 1. Similarly we have $-(T(m) \circ Q) H_{j}=$ $-\mu_{j}(m) H_{j}+L$ with $L \in Y$. Hence our assertion follows immediately.

Let $K=Q_{p}(\sqrt{p})$ be a ramified quadratic extension of Q_{p} ．We set $\theta=$ $\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ u \beta^{2} & \alpha^{\tau}\end{array}\right) \right\rvert\, \alpha, \beta \in K\right\}$ ，where T denotes the generator of Gal（K／R期 $)$ and $u \in \mathbb{Z}_{p}^{X}$ is a quadratic non－residual element modulo p ．Then B has a stru－ cture of the division quaternion algebra over \mathbb{Q}_{p} ．Hence $\mathrm{B}_{\approx} \mathrm{D}_{\mathrm{p}}$ ．Let θ be the ring of integers of K and let $\mathcal{F}=(\sqrt{\mathrm{P}})$ be the maximal ideal of （9．For non－negative integer r ，set

$$
M_{r+1}=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \tag{35}\\
u \beta^{\tau} & \alpha^{\tau}
\end{array}\right) \right\rvert\, \alpha \in \theta, \beta \in \gamma^{r}\right\}
$$

Then M_{r+1} is an order of D_{p} ．Especially M_{1} is the maximal order of D_{p} and M_{2} is an order of＂level p^{2}＂of D_{p} ，which was first studied in A。Pizer［13］（ef。also Hijikatampizermshemanske（7）for more general cases）．Let R_{r+1} be an arder af D such that（ $\left.r_{r+1}\right)_{\ell}$ is a maximal order of D_{ℓ} if $\ell \geqslant P$ and that $\left(R_{r+1}\right)_{p} \cong M_{r+1}$ ．

Dur results in $\S 2$ and $\S 3$ give a correspondence $\eta_{2}: S\left(R_{2}, 0\right) \times$ $S\left(R_{2}, 2 n\right) \rightarrow \widetilde{S}_{n+2}\left(\tilde{\Gamma}_{\square}\left(p^{2}\right)\right)$ which preserves Euler products if $n>0$ ．We have $\operatorname{Im} \eta_{2} \leqq V_{+}$by Proposition G．Let Z be the orthogonal projection of Im η_{2} to W_{+}．This orthogomal projection commutes with the action of $T(m),(m, p)=1$ ，by Lemma 1 ．Im particular Z is stable under the action of $T(m),(m, p)=1$ ．Let W_{+}^{\prime} be the orthogonal complement of Z in W_{+}．We conjecture the following characterization（ C ）of Z ．
（c）Let $F_{1}, \cdots, F_{v}\left(r e s p . H_{1}, \cdots, H_{u}\right)$ be a basis of $W_{+}^{\prime}\left(r e s p . W_{\sim}\right)$ which consists of common－ejgenfunctions of $T(m),(m, p)=1$ ．Then $v=u$ and $\left\{F_{i}\right\}$ and $\left\{H_{j}\right\}$ are in one－to－one correspondence in such a way that F_{i} and H_{i} have the same eigenvalue for every $T(m),(m, p)=1$ ．

Thus we expect that the trace of $T(m) \circ Q \mid \tilde{S}_{n+2}\left(\widetilde{\Gamma}_{0}\left(p^{2}\right)\right)$ would be expressed in terms of the traces of Hecke operators on certain sub－ spaces of $S\left(R_{2}, O\right)$ and of $S\left(R_{2}, 2 n\right)$ 。

Remark．This＂characterization＂is someuhat similar to that of elliptic modular cusp forms which correspond to L－functions with Grässencharacters of an imaginary quadratic field．In the elliptic modular case，the trace formula was first applied to the twisting
operator by Shimura [16] and was exploited further by Saito-Yamauchi [14].

References

[1] A.N.Andrianav, Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2, Trudy Math. Inst. Steklov, 112, 73-94(1971).
[2] A.N.Andrianov, Modular descent or on Saito-kurokawa conjecture, Inv. Math. 53,267-280(1979).
(3) A.N.Andrianov and G.N.Maloletkin, Behavior of theta series of degree N under modular substitutions, Izv.Akad. SSSR 39, 227-241 (1975).
[4] M.Eichler, The basis problem for modular forms and the traces of Heake operators, Lecture notes in math. 320, 75-151, Springer, 1973.
(5) M. Eichler, Quadratische Formen und orthogonale Gruppen, Zweite Auflage, Springer, 1974.
[6] E.Hecke, Mathematische Werke, Zweite Auflage, Vandenhoeck, 1970.
[7] H.Hijikata-A.fizer-T.Shemanske, The basis problem for modular forms on $\Gamma_{0}(N)$, preprint.
[8] R.Howe, θ-series and invariant theory, Proco of symposia in pure mathematics, $\mathrm{XX} \times$ III (val.1), 275-286, 1979.
[9] N.Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Inv. Math. 49, 149-165(1978).
[10] H.Maaß, Die Primzahlen in der Thearie der Siegelschen Modulfunktiomen, Math.Ann. 124, 87-122(1951).
[11] I.Matsuda, Dirichlet series corresponding to Siegel modular forms of degree 2, level N, Sci.Pap. Coll.Gen.Educ.Univ.Tokyo 28, 21-49 (1978).
[12) A. Pizer, Type numbers of Eichler arders, J.Reine Angew. Math. 264, 76-102(1973).
［13］A．fizer，Theta series and modular forms of level $\mathrm{p}^{2} \mathrm{M}$ ，preprint．
［14］H．Saito and M．Yamauchi；Trace formula of certain Hecke operators for $\Gamma_{0}\left(q^{\nu}\right)$, Nagoya Math．J．76，1－33（1979）。
［15］G．Shimura，On modular correspandences for $\operatorname{Sp}(N, \mathbb{Z})$ and their cong－ ruence relations，Proce of the Nat．Acad．of Sciences，49， 824 － 828（1963）．
［16］G．Shimura，On the factors of the facobian variety of a modular function field，J．Math．Soc．Japan，25，523－544（1973）。
［17］GaShimura，On modular forms of half integral weight，Ann．of Matho 97． $440-481(1973)$.
（18）Toshintani，on construction of holamoxphic cusp forms of half integral weight，Nagoya Math．J．58；83－126（1975）．
［19］A．Ueil．Sur certains groupes d＇opérateur unitaires，Acta，Matho 111，143－211（1964）．
［20］A．Weilg Dirichlet series and automorphic forms，Lecture notes im mathe 189，Springer，1971。
［21］Hoyoshida，weil＇s representations of the symplectic groups over finite fields，J．MatheSoc．Japan．31．399－426（1979）．
［22］HeYoshida，On an explicit construction of Siegel modular forms of genus 2，Proce of the Japan Acad．55．Ser．A，297－300（1979）。

Hiroyuki Yoshida
Department of Mathematics
Kyoto University
Kyoto／Japan

