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 INTRODUCTION

     The purpose of this report is to present an explicit construction 

of a Siegel modular form of genus 2, which is a common-eigenfunction 

of Hecke operators, from a pair of elliptic modular forms or from a 

 Hilbert modular form over a real quadratic field, as an application of 

 Weil's representations.

T.Shintani  6E0 successfully applied Weil's representations to a

construction of modular cusp  forms  of half integral weight.  Afterwards 

many authors employed Weil's representations for constructions of  aut-

omorphic forms with Euler products, in various cases. Especially 

R.Howe (8) has given a fairly general frame work called "dual  reducti-

ve pairs". In this report, we shall exclusively be concerned with the 

case of the Weil representations of the symplectic group of genus 2 

associated with quaternary positive definite quadratic forms for the 

construction of Siegel modular forms of genus 2. Even in this particu-

lar case,  we shall encounter a few important problems and conjectures, 

which would be suggestive for the development of general theory. Here 

we only mention the following problem of global nature. Our Siegel 

modular forms are written as linear combinations of theta series (cf. 

(23)).  As an inevitable obstacle which lies in such a construction, 

it is difficult to know whether the constructed modular form does

vanish or not. However we can at least show that several non-zero 

Siegel modular cusp forms arise by our construction in every prime 

level  (cf.Theorem  6). We formulate a precise conjecture for the non-

vanishing property of our construction in the case of the prime level 

 (§4). In §5, we shall propose a characterization of the image of our 

construction, which can be regarded as a preliminary stage for the 

application of the Selberg trace formula to resolve the above  mension-

ed difficulty. Most  of the results will be stated without proofs. The 

full details will appear elsewhere.
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     Notation. For an associative ring  R with a unit,  Rx denotes the 

group of invertible elements of R. We denote by M(m,R) the set of

m x  m-matrices with entries in  R. For a matrix  A,  to denotes the tran-

spose of  A, and  a-(m) denotes the trace of  A if  A is a square matrix. 

The diagonal matrix with diagonal elements  d1,d2,---  d
o is denoted by 

 ,dn). If R is commutative, we put GL(m,R) =  M(m,R)x and ass-
ume that the group of  R-valued points  Sp(m,R) of the symplectic group

of genus m is given explicitly by Sp(m,R) =  txGL(2m,R) txwx =  wj 

  ( where w = and 1m and 0m denote the identity and the zero          -Om 1m)1  ^
matrix in  M(m,R)  respectively, For a positive integer  N, we put

 ra b.re b)  ro(N) =(d) 9L(2,Z)  1c7E0 mod N} and170(N) = 
 c d 

 So(2,Z)  I  cE10 mod  N1  , where, in the second equality, mod N means
that  c  G  M(2,1) is congruent to the zero matrix modulo  N. The space of 

elliptic modular  forms(respo modular cusp forms) of weight k with

respect to  T-0(N) is denoted by  Gk(rd(N))(resp.  Sk(Fd(N))  )© The
space of Siegel modular  forms(resp0 modular cusp forms) of genus 2  and 

of weight k with respect to  f"o(N) is denoted by  Gko(N))(resp. 

 ko(N))  )0 Let k be a global field and v be a  place of  k. Then  kv 
denotes the completion of k at v. For an algebraic group  G defined 

 Over  k,  GA denotes the adelization of  G and  G
v denotes the group of 

 k
v-rational points of  G. For  gE  Gm,  gv denotes the v-component of g 

and  gf(resp.  go , ) denotes the finite(resp. the infinite) component of 

g. For a  quasi-character 7X of  q,  7(v denotes the quasi-character of 
 kv which is naturally obtained from  X. We denote  byDQ the  archimedean

place of  Q. For a commutative field F and a quaternion algebra D over 

F, N,Tr  and  * denote the reduced norm, the reduced trace and the main 

involution of  D  respectively.  Sy we denote the division ring of 

Hamilton quaternions. For a locally compact abelian group  G,  -4(G)
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be a totally real algebraic number field of degree m and D

 totally definite  quaternion algebra over F. Let R be an order of

 Rv R 0(9vfor every finite place of F, where0-andv are

 orders of F and  Fv respectively. For every place v  of F, we 

 subgroup K'of DbyK'= Rif v is finite,andN .,Ex if v
 infinite. We put K' H K' , which is considered as a subgroup of

  be an injective homomorphicm of  M into  M(2,C) as algebras

 For a non-negative integer n, let n denote the symmetric 

 representation of  GL(2,C) of degree n;  GL(2,T)  -=GL(n+1,E) 

 ^c-
n(g)  =  n°o)(g)  N(g)-n12. Let (n1,-,',nm) be an m-tuple

 on-negative integers and V be the representation space of  0-
n1 

         Let  Z==Fx be the center of  DA and  (-Ube a character of Z.

 -.
,nm,c0), we denote the vector space of all V-valued  funct-

DA which satisfy the following conditions  (A)"' (C(.

 9(r-g)  (g) for any YE Dx, ge Dxp, 

(f(gk)  = (0-
n_ 0— cr^  )(kw)  f  (g) for any kE 141,  g  DAx

1

 gz) =  W  (z)  (19(g) for any  z  E  Z,  g  E  DA<  . 

 class number hF of F in the narrow sense is 1, we have  S(R,n1, 

 (A)) =  07) if  a)  w0, where  a). is the trivial character of  Z.
 hF =  1, we assume that  0..).  cc.)0 and abbreviate  S(R,n1,•finm, 

 R,nn m). We define the action of  Henke operators on (p

 . Let v be a finite place of F at which D splits. We assume

 amaximalorderofD v.WefixasplittingD.=M  (  2  ,  Fv  ) so 

 napped onto  M(2,  ( v).  Letbe a prime element of  Fv and
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      1 0 let R>v((01=0")Rlx/  =hI 1                      \jsev'be a disjoint union. For  ES(R,n1,-"inm,  u^-)  ),

we put

 (1)  (T' (v) )(h)  =  27_1  Y(11  tv(hs))

where  Cv denotes the natural injection of  Dx into DX'Clearly T'(v)f 

                                                   A 

  (F? , n ).

     In this  report, we shall exclusively consider the case where F = 

 Q or  (F:0=  2. If F =  Q, we put X = D  4  D, Y = D and define the action

pof Dxx Dxon X byP(g1992)(x1,x2) = (g*zixig_,g1x2g2). We put H  = 
 -(a,b)e Dx x  DX1  N(a) =  N(h)  =1 Then H is an algebraic group over

 Q which acts on X through  p as an group of isometries. If F is real 

 quadratic, we assume that D = D°o.0F with a definite  quaternion aloe- 

bra  Do over  Q. Let  Cr denote the extension of the  non-trivial automorp- 

                                                                                                                               ,0- hism of F overQto the  semi-automorphism of D.We have (x(xJ 

for  xE  D. We put Y  xE  D  x =  x)  and X  = Y  e  Y. We define the 
action of  Dx on X by  t3(g)(x1x2)  = ((ga-f(x1g                                                  g((q(x2g).We put H =

 a  EDXj  N(a) =  1 Then H is an algebraic group over F which acts on 

X as an group of  isometries. We  call the former situation Case  (1) and 

the latter one Case  (IF). Let  X be the character of  Qx/Qx which  corref-

sponds to F by class field theory if we are in Case  (II) and  letX be 

the trivial character of  Q/Qx if we are in Case  (I).

Let  G be the symplectic group of genus 2. We take an additive

character of  Q4/11 such that  to(x) = e(x),  xff and  '1"  (x) = 

 e(-Fr(x)),  xQ for every rational prime p, where Fr(x) denotes the 

fractional part of x. For every place v of  Q, we have the so called 

 Well representation  TGv of  Gv realized on  __A(Xv) which is characteri-
zed by the following conditions  (i)l'-(iii).(cf.Wei109),Yoshida(21. ,)). 

 1x*)/2 (i)(Ttv((01))f)(xx2) =v(0—(uN(x )Tr(x  (,K 
                                                  N(                             vir(xIx2)/2) 12                                           N(x2) ))

x  f(x1'x2)
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       a  0   (ii) Of/v( (0to-1)f)(x1'x2) =2(v(det  a)Idet av2  f((x11x2)a)' 

          )0 1\ (
iii) (7Uv(L1 0)  )f)(x1'x2) =  ivf)k(x1'x2)' 

where  (x1'x2)E-  Yv  et,  Yv,I 1v denotes the absolute value of tav and  f4
is the Fourier transform of f with respect to the self-dual measure

on  Xv.  ( yv is a certain complex number of absolute value 1. We have

 Yv =  1 for every place v of  p if we are in case  (I) ). The global 
 Weil  representation 7Dof  GA realized on  -j(y is defined  as  follows. 

For  fEA(XA) of the form  f=  Uf, fveA(Xv) such that  fis equal 

to the characteristic function of R  e R  (resp. U  0  U ) for almost
 p  p  P  p

all p, we put  -7c(g)f=  ^ruv(gv)fv,  g if we are in Case (I) (resp.

Case  (IF) ), where  U =  xE  RI  =p for the Case  (ff). Then, 
extending by continuity, we obtain the representation  qt.

To construct an automorphic form on  GA, first we assume that we 

 n.+1

 are  in  Case  (I).  Take be2  

the representation  space of  0'n  i =  1,2. Then  99= y1 o(1°2 defines
1

a  U =  V2-valued function on  D71 x  D. We take  fpe_A(Xp) as the

characteristic function of R  e R for every rational prime p and take
 P  p

any  f,E-3(X,,,,,)  C.,  V. (The choice of  f, will be clarified in §3). Let 

 <  , be the inner product in  V such that  u-n _  o-n_  CH(1) x  11-1(1)
 1  "2

                                                          

l is unitary with respect to  (, where  H(1)xEtHx1N(x) =  13

We set

(2)  f(g) =<  )  (TU(g)f)(e(h)x),(1)(h)›dh  .         5H\H  xE-  XQ 
Now suppose that we are in Case  (T1). Take  TE  S(R,n1'n2'(A) and let  V 

be the representation space ofg-n
10Crn2. We take f) as the 

characteristic function of  U  U for every rational prime p and take 

any  fooE  (X0.,)  ®  V. We set 

(3)  T  (g) =  5                    <  (1t(g)f)( p (h)x), (h)> dh 
              HF\HA  xE  XQ
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In (2) and (3), dh denotes invariant measures on  H\HA and  1-1F2H4 res-

pectively, and  GA acts on  ....A(XA) 0 V through the first factor. The 

integrals in (2) and (3) exist since  H\HA and  H\HA are compact and

the integrands are continuous functions of h.  By virtue of proposition

5 of  Weil(19), one can see that  1?f is a left  G  -invariant continuous 
function on  GA'

For every rational prime p, let  R and  U be the dual lattices

                                                           n of Rpand Uprespectively. Let (p-/(p)),x(p)%0 be the 2" -ideal gene-

rated by norms  of all elements of  R or  Up, according to the cases  (J)

and (L7). Define an open compact subgroup K
P(/(p))  of sp(2,P) by 

           a b 
K(t(p
P1))  =) 

     (() 
          c d 

                      Sp(2,2P)i c---_,z0 mod pJ(p))  , and define a represen- 
                                  /a b\,               (O (p\• 

tation M
p of Kp by Mp(d)) =  X  P  (det  d). 

       ,-....--^..4.4.”,A.,- have'-r-r-(1.\, . (1.^.c. forany.c v(L(P))Proposition1.We have IL(k)f  =  M  (k)f foranykE 

We set  K =  K(1(p)) and  Kf  .  TT  K
p  We define a  representation

Mf of  Kf by  Mf  =  j  M
n.  By Proposition  19  we have

 (4)f(gk) =  Mf(k)15f(g)  for any  g  E.  GA,  k 

 §2. Results on Hecke  aerators

Let  G be the group of symplectic similitude of genus 2, which is

considered as an algebraic group over  Q. We assume that for any  comm-

utative field k which contains  Q, the group  Gk of all k-rational 

points of  -8- is given explicitly by  Gk =  GL(4,k)  ( tgwg = m(g)w, 
                   0 1 m(g)E  kxj , where w = Li a) e GL(4,k). To define the action of Hecke

operators on  _If' we must extend  1?f to a suitable automorphic form 

  R. onG4. Let M be a subgroup of  GA which consists of all elements  2.}E-131 
such that  = (11-Akv) with AvE 2x if v is a finite place and 

                               v'

 v  =Cittv'  mAtv) with /44 vE-(Rx if v is the infinite place. By 
virtue of the decomposition  en = e. TT e.ex                                                     every g GA can be                              Hp
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written as g =  rgiv with  re  Gal,  gi  E  Gm,  VE  M. We put

 (5)  '1f(  Kg1V  ) =  f(g1).

One can verify easily that  a well-defined  function -`fon G[I\GAis

obtained by (5). The restriction of   fto  GA coincides withgqf° For 

a rational prime p, we put '''z, = VIGL(4,7p). If Kp = K(9-(13)), we set 
   a bP  K 

= (g/\1 P=t. dllge-G1,=                           c__0 mod  pJ(p)} 

                        P 

                                                     , and  define a representat- 

              (a b)) = ion MP4of Kpby3p(                     cd Xp(det d). We put T'i= T1 KPandrtir.=

 

. . , .  PI 

., w. Then we have 

   P 

 P 

(6)gll.!i f(gk) ='Af(k )Tf(g) for any g (Ea'k‹.t-Z 
                  A'

Let p be a rational prime such that  K = G7
_. For a double coset

i5
pBZp,BE-GPand for any functionon  GA which satisfies (6), we put 

 (7)  ((t13EIRp)1E)(g) =(ge_,p1(g.)), 

 i where  KpEii'i""P  = Lig.Kp(disjoint union) and4-Pdenotes the natural inj- 

               i ection of GPinto GA' We can see that OZPsli-Pdalso satisfies (6).
                   d1d2e1e2 

                                    P 
The double coset KCp,p,p,pjK,d1+ e2 = d2 +  el' is denoted 

 d1  d2  el  e2
,

by  T(P  ,P  ,P  IP  )• 

 , 

     To state the results on Hecke operators, first let us assume that

we are in  Case(1). For each rational  prime  I, let  NI_ be the  image of 
 qunder the reduced norm. We have Ni. = 7',; for almost all /. Set N  = 

tTIN""'Aand let QA = l.)feai(N x  Ex) be a double coset decomposition. 
 i such that  (ai)00  =  1 for every i. Takeg".eDxAso that the reduced norm 

                1 of  ai is  ai. We may assume that  ("),, =  1 and that  (C) =  1  if  NL = 

 2);.  We set f(x) = f ( P(A.-.,'A.'.)x) for xe.x,,tand Y .(h)  = SO( h (g'.  ,'. ) )    l'i 1 i1,j  1  j 
for  f-). D. 4DxAx DxALet13(fi'i) be the function on G\GAdefined by (2) 

using fi ,,i and Ti,jfinstead of f and  T. Let,41Pi'i) be the extension 
of  4.,-(1'i) to GAdefined by(5).We see that 4“fi'j) satisfies (6). 

                                               X* We put  =T,Elf(i'j)•
      1  j 
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Then we have

Theorem 1. Let p be an odd prime at which D splits. We assume

that  R is a maximal order of  D
p and  yi  eS(R,ni) are  eigenfunctions 

of  T°  (p),  i = 1,2. Put  I"  (p)  Ti = = 1,2. Then we have 
                    -r* 

(8) T( 1, 1,p,p)42f =  p(  a,1 +  2).4.)..f  9 

(9) T( 1,p,p,p2=  l(p2-1) +  pa  A21-  Ef
where  — denotes the complex conjugation.

 Now let us assume that we are in  Case  (I). For each finite place 

v  of F, let  Nv be the image of  Rv under the reduced norm. Set N  =  IT  Nv
 v

 and let FxA             = J F a (N x  Ex x  Ex) be a double coset decomposition. We
1

may assume that the idols norm of  ai is  I and that  (ai),„1  >0,  (ai),„2 

>D. Let1                  ALEDxbe an element whose reduced norm is a.. We may assume 

                                                              that(a.1) ,0E11xxHxbelongstothecenterof[ex10.Wesetf.(x)  = 
                                                  ( f(f, (2-.)x) for  xeXA and  Y.(h) =Y(h iv,as-i) for h E DA.Letfi) be the 
 function  st2ad of f and  q.

Then:_f:Lf satisfies  (4).  LetJE,f be the extension of  ftoGA 

defined by (5). We see that satisfies  (5). We put  yf  EW)
                                                                                      1 

and assume that 

 (GC)  R'r-= R  . 

Then we have

     Theorem 2. Let p be an odd  rational prime which is unramified in 

 F. We assume that  D
o splits at p. If p remains prime in F, we assume 

that  R is a maximal order of  D and  T is an eigenfunction  of  -1-1(p). 

Put  T°(p)T  =2L19. Then we have

 (ID)  T(1,1,p,p).SPf =  0  , 
       --TR-* —) (11) T(1,p,p,p2)�Lf =l(p2+1) +  pAjTf  9 

 where  — denotes the complex conjugation. If p decomposes into two 

prime divisors  v1 and v2 in F, we assume that  Rv . is a maximal order
1

 ofpv .aricithatTisarleigenfulictionof1-1(v.)for i = 1,2. Put
1 
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 T'  (vi)  f =  A  iT for i  = 1,2. Then we have 
      .--•

,,* , —* 
(12)  T(1,  1,p,p)Y.f = p(4)(p)a1+60v(p)A 2)/f y         vi2 

                                                                                 -m--* (13)  T(  1,p  ,p,p2  )1f =  1(p2-1) +  P11)2.4..)_f
We shall sketch a proof of (11). For simplicity, we assume that

(6.1 )p = 1.LetIS-P(1,p,p,p2)P= Ug.}7-'be a disjoint union such that 
 1 p 

m(g.1) = p2.We put f'' = ETD( Cp-1,p-1,p-1,p-1) g. )fp, f' =Ffvx      p•P3.     1\A ID 

flandf).Let  I  (i)  denote  the  function  on  GAdefin- 
P 1 1  f'  ,...., 

ed by (2) using  fl and  yi instead of f and  T , and let  f;i) denote 
the extension of ..(i) (i)  toA defined by (5). Then one can see that 

 f ' 

 T(1,p,p,p2)Ci)(g) =  Alft.f;i)(g) for  gelpt. We fix a splitting  D  == 
 P M(2,F

P) such that RPis mapped onto M(2,0p),P), where(.,-is the maximal

order of  F  . Then we can prove a local relation of Hecke operators;

      P 0) p p v)(1 o\ 
     yx `0 pi) = -p ( E fp(( (0 11)x) +.fp(? ((0 p))x)) 

 v (14)P 0)                     - (p2+1)fP(x (0 P) )  , 
where v extends over a complete set of representatives of 0-mod  p. 

                                                           P 

      p -1v) Let115denote the set of elements of  Rp  ;(0 1/,v e'v mod p 
and (0 pIa) .  By (14), we  get  T(1  IP,P,P2)1)(g) =  -(p2+1)Ii)(g) 

 -1 0 -  P  ) i'<>----7,1 M3 .i)(g)f.)((Lis) p (h)x(P...1)),CIi(h)> dh,     sJ F\ HAxE XQ(P 

              ^ 

                                                   p 

if  ge  GA,  Let  W be the element of  Fx/1 such that --
i: j = p and that w 

=  1 if v p. We take  r  e  Fx so that c1a. 3.tz/- =  a.nr with  n  E  N,  r  e 
0xmx.           Then  I is totally positive. Hence thereexists a IEDx such 

 +", 

that  NO' ) =  Y. We have L,'(g) =  T.' 5-‹:> • (1t(p)fi)(  P(hs) 
                             shi\Hx G X                         FAIII

             -1 )(h)x ( P[1 _1)),Ti(h)> dh =<  (qt(g)f) 
   \p/s HFHAh1 

a.xE  X
 -1

 

(  (h'  )x (P -1) ), y(Wh-1)>dh° , where  dh' denotes a suitable 
 0p 

invariant measure on HF\7 -1Hilh 121. (Note that HFV-iHmhs'C does not
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depend on  s). We can see that  E  ythihs =  cO  (13-1)20f(h°  ) and

that  4.)p(p-1) = 1. We have HFV -1HAh11'.6:= HF\ HAy T with 5EFtxvx 

      j  v 

 Hx x  Nx.  We get 
                                                       -10 

s-7_,(0 =--A-1<Eru of .xp  (h  Y  )x (p.....) ) ,({)(0-)> dh 
    F\ Hm  xe  X4J 0  p 

 r  -1 n
-),  =7, <F, (IO                  T(f .)( P (5-,0) P (h)x ( P-)Tj(11m)› dh, 

  illF\HA x EEJX\ 0p

                     ®k-k2 

if gEGA,gf = 1. We can write Yx,= (p1p y  2) with Y  1,  Y2

 E  NI(1)'  k1'k2  IR such that k1+ k2 = 1. We have 

 -k
,-kr,®1 

•(g) = A((g)f,)((pI,p')j(h)x (P u-1)'       5I-1‹             F\HAx-5-7,11-       EXQ J \F-1P/

-k  -k (I)  .(h(p  ,p  )00);›  dh.
 ®k  ®k

We can verify thatY.(11 1,p(P,P)to .3() = T.11) and that 

 J 

                                           n  E ( 7t(g)fj)( p (P-k1,P-k2)por(h)x (P®1 0-1) ) =  )1 (gt(o)f.) 
 x  E  XE fl p                                                              x6-X                 R3

 

(  P(h)x). Hence we obtain 
         r(

1:(
f) (15) T(1,p,p,p2)ifi)(g) = -(p2+1)_T - POW)(09 

 4Tif  gE  GA and  gf =  1. Since (i)andjr(j)satisfies  (6), (15) holds 
for any  g  e%. Hence  ( 11) follows  immediately.

 §3. Translation into the classical terminolo

     In order to obtain a Siegel modular form from  N!f' we must choose 

fooEA(X.„.) ® V appropriately. Let Wn be the space of all functions p

 on N such that  p(a+bi+cj+dk) =  q(b,c,d), where  1,  i,j,k are the standa-

rd quaternion  basis,  a,b  c,  (R and  q is a homogeneous polynomial of

degree n with complex coefficients. We put  (17  n(g)p  )(x)  =  p(Fxg) for 

 ge  (Hx,  xe  N. Then 1.1--n defines a representation of le on Wn. We have 

           ( 1)(cr-2n2n-4cro )1111(1)if n is even, (16)'t
n1111                                        1(1)                                                      if n is  odd

.  (°-2n63cr2n -4 e.--(r2)11.1
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Let  W' be the  subspace  of  Wn consisting of all functions in  Wn which 
transform according to  02n. We can naturally identify  it with the 

 Weil representation of  30.0=Sp(2,53) realized on  -A(H  N). is  cha-

racterized by  (i)"-(iii) with  (x1,x2)E-  11-1(1511-1 and  Xbo=  1,  T = 1). Let 

 K05,be the standard maximal compact subgroup of  G„defined by  K,„„,  = 

 A B\I 

{_g =(A) gE  Goolj(2,1C).
     Proposition 2. For  4, define  f,e_A(H  Et+  H) by  f(x1,x2)  = 

 p(x1x2)exp(-27t(N(x1) + N(x2)). Then we have

 (A B A  8  'Moo  (Le A) )f = det(A + 8121)T/4-2f for every  A)"co  ° 

   By virtue of Proposition 2, we can choose  f..e..A(X,,„)  i so that
the following conditions  (17)"-"(19) are satisfied.

  ABA\ 

 

(  17)-(A)      1%0 (= det(A + 81/=-1)11+2fao  for any Le - 
(18)  f, ..0(  P(gl,g2)x) =  0-2n(g2))f,,o(x) for any  xE  M  ®  N

and  (g1'g2)E  N(1)  x(1).

(19) Each component of  f, has the form as in Proposition 2.

Hereafter we assume

   ) n1=  ^ and n2 = 2n 

and that  fc„, is chosen as above. We set  Ma  k) = det(A +  84)  n+2 for 

  ( A  8 k =-8 A) E-Kco •For  K  =v, we define a representation M of K by
 v

 M  =  M
v. By  (4) and Proposition 2, we have

 (20)  jf(gk) =  M(k)LEf(g) for any  ge  GA,  ke K. 

Let  )be the Siegel upper half space of genus 2. For  ge  Goo , let  ^d'EGA 
be the adele such that  gf =  1 and  -0-00= g. We define a function  S on 

  by 

(21)  3(g-i) =  f(r6--)(det(ci +  d))11+2, 
 I  0t* 

where =and g =k c di  • We put  F= G..,K_ .                                                                     g4.P

 Then we have  r=  r o(N), where N =  TT  Pt(p)• We define  a  character
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 M  of  r by  Mr,(') = i) P(r ). Sinceis left  G -invariant and
satisfies (20), we have

(22) J(  z) = M (?( )J(z)det(cz+d)n+2  , 

for any  rE  r and ZE where r =1* '\ 

                                     d

The explicit form of  J is given as follows. Suppose that we are

in Case  (J). We put  15* =  (KI x  15')(1HA and let  HA  = U Huyt.14* be a                                                                         .C=1 

double coset decomposition of  HA. We assume that (yt)tv= 1,  1Q4h. 

                               (pi(x.'lx2)                     1-1 We put  et =1(1yLKys711 and f,,,(x) =exp(-2-1L(N(x ) + 
                                          P2n+1(x1x2) 

 N(x2)), x =  (xx2)E11-1  9,H. Define a  V-valued function P on  CH by 

 pi(x) 

P(x) =. LetLbathe isometric embedding of  D(IiintoD-ider- 

         P2n+1(x) 

ived from the algebra injection D071Set  5 =  (R0 R )„ which is 

the support of  TT  f  . Then  we have
                     h 

 3(z) = vol(h 
     A:)=ID( C (>elcx))     -EiT^ .,=112 

 i,j,2=1>‹xr\P(v(1,'a-))'-,                               14°%2j
(23) j                                                        %

,  N(x1) Tr(xix2)/2) 
                                               z)), T(y'E;-.)) ,›/2                e(Q-(T

r(xx*)/2            12 N(x2)LjJ2_  '

where  vol(N*) denotes the volume of  K measured by  dh.  We can get a 

similar formula to (23) for the Case  (1r) under the assumption  (CO.

 By virtue of (23),  Ws can see that  J(z) is a holomorphic function on

   . Namely we have

     Theorem 3.  J(z) is a holomorphic Siegel modular form of weight 

n+2 which satisfies (22). 

     The classical definition of the action of the Hecke operator

 ddee 

T(p1,p2,p1,p2) on  J is as follows. We assume that Q(p) = 0 and put

k =  n+2. Letapd1,pd2,pel,p =  urvi be a disjoint union. We
1

put 

 —331—



            ddee2        121- 
(24) (T(p,P,P,p)3)(z) = (pdI+e2)2k-3    M  (r  ).J(Y  z) 

                                                                     1 

•  det(c
i1 z+d.) - , 

                   Jc 
where r =c .\  (of.  A  ndrianov  (1),  Matsuda  01)).
Then we can translate Theorem  1 and 2 into the following form.

     Theorem 4. Suppose that we are in  Case  (I) and let the assumptions 

be the same as in Theorem 1. We have T(1,1,p,P)0 = Pk-2(/k1  +A2)3 and 

T(1,p,p,p2)3 = p2k-6(p2-1) +  p  A  2/5  J.

By Theorem 4, the p-factor  L
p(s,J) of the L-function attached to

 J in the classical sense is given by

                  2                                                    2k -3-2s)-1 
(25)  Lp(s,J)  =  )1 (1k-2-s                                         +p 

                       1=1

Theorem 5. Suppose that we are in  Case  (I) and let the  assumpt-

ions be the same as in Theorem 2.  If p remains prime in F, we have

 T(1,1,p,p)J = 0,  T(1,p,p,p2)J = -p2k-6(p2+1) +  ;35%  J. If p decompo-

ses in F, we have  T(1,1,p,p)J  =  pk-2(adv (OA1+(Ai(P)!(2)J, 
 1 v2 

 T(1,p,p,p2)J =  (p2-1) +  pA1-A2  J.

Let  L
p(s,J) be the p-factor of the L-function attached to  J in

the classical sense. If p decomposes in F, we have 

                   2

(26)  Lp(s,J)  a (1 _Ai"jv.(p)pk-2-s p2k-3-25)-1. 
 1=1

If p remains prime in F, we have

(27) L  (s,J)  = (1  -76D2k-4-2s                                          + p 4k-6-4s)-1.
       P 

 Concerning the question when  J is a cusp form, we can prove(see also 

Proposition 4),

Proposition 3. If  n>0,  J is a cusp form. 

Remark. The assumption  (p ) and the corresponding choice of  f,,0E

 .2(Xo)  0  V is  necessary because;  (i) we must choose an so that it

transforms according to a one-dimensional representation under  15,, to 

obtain Siegel modular forms  of genus 2 with the usual  automorphic
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factor; (ii) the assumption  0 ) is required for the coincidence of 

the  F-factor in the functional equation of the L-function attached to 

 J with that in (1) and  C11), taking account of the results in §2.

     In general, there arises a question: Find an  f.0E_S(Xm)  V which 

transforms according to a017-n _under  the action of1.5,!,,through  p                   -1-2 

and which transforms according to a prescribed higher dimensional rep-

resentation (which depends on  n1 and n2) under the action of  Kthrough 

 ?Lm. If this purely archimedean question is solved, we will be able to 

construct a Siegel modular form with more general automorphic factor

from any pair of  T1  ES(R,ni) and  T2  ES(R,n2)(resp. any  /e.S(R,n1,n2,44) 

if we are in Case (I)  (resp. Case  (II)  ).

 §4. The case of the prime  level; 

In this section, we shall consider the simplest case and examine

our construction in  detail. Namely we assume that we are in Case  (17)

and that D ramifies only at p and  Do, where p is a fixed prime  number.
 H

Let R be a maximal order of D and let  D71 =  Dxy,(1-1-Rx  x  rtix) be 
                                                      i=1 

a double coast  decamp  osition of  Op,. Note that  NL =  2~ for  every  Q,® 
 We may assume that the reduced norm of  yi is 1 and that  (yi)o =  1 for 

        For we define a lattice Lijof D byLij= Dny. 

 (TTRJOy711.Notethatle..isamaximalorderofD.WeputR.=1_.  . and 
eiO=xl.Let S°(.17o(p)) be the space of new forms in Sk(17(p)). 

      k 

 Assume that  f  (N  0)  E  s(R,2m) satisfies  1-'(2-  )(Pe  A(Q  )f for every 

    p, where m is any non-negative integer. Then there exists a cusp 

form  f(k 0)E S2m-1-2(17  (p)) such that T(/ )f = 7(j),Cmf for every 

                              o

 / p if  m>0, and vice versa. If m = 0, there exists a modular form

fE  G2(r o(p)) such that  T(JL)f  =  2(/. )f for every  Q  p, and vice 
 versa. Here  T(L) denotes the Hecke  operator which acts on 

 G2m+2(I7o(p)). These results follow from the well-known work of

M.Eichler on the representability of modular forms by theta series.
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 If f satisfies the above condition, let us call that f corresponds to 

    (f is unique up to constant multiple). We take  (/91(  0)E  S(R,O) 

and  T2(  0)E5(R,2n). We assume that  (fi and  LF2 are  common-eigenfun-

ctions of  T1(11),  iN p. Put 

(2(3)1.91j(z)  =               p(L(xy))e(0-()                                    (N(x) Tr(xy*)/2                                            Tr(xylc)/2 N(y)/z))'                   (
x,y)EL

ij..4L.  lj

 ze5;D, 

                          H (29) F(Y1'T2)  =  17,ij'T1(y.)T2(yj)>/e.ej -. 
 i=1  j=1 

Let  f1E:G2(I-1o(p)) and  f2E  G2n+2(I'o(p)) be the elliptic modular forms 

which correspond to  yi and  T2 respectively. Let L(s,f1) and L(s,f2) 

be the Euler products in the classical sense attached to f1 and f2 

respectively. Then, (23) and Theorem 3 show that the Euler product

 L(s,F(Ti,  T2)) attached to  F(  (p1,  1)2) is equal to  L(s-n,f  )L(s,f2) 

up to the 2 and p-factors  if F(  (f1,  kl°2)  0.  (L(s,F(  /1'  'f)) is defi-

ned by TT  L(s'F(  y1'y92))  ). Suppose that we have taken (1)1as 
 f  N  2,p 

a constant function on D. DxAThen f1is an Eisenstein series of G2(17(p)) 

and we have  L(s,f1) =  5(s):5(s-1)(1-p1-s), where  3(s) denotes the 

Riemann zeta function. For such  'IP1' the Euler product of FOPT)                                                            P1'2

has a similar form to the examples of  Kurokawa(9). For n =  0, we have 
the  following criterion for F(l'T2) to be a cusp form.

    Proposition 4. If n =  0,  F('f1,2) is a cusp form if and only if 

 tp
2 is not a constant multiple of  (f1•

Here the main question arises: For which pair  (  ci21,17  2), F(  T1,(P2)

does not vanish? Hereafter we shall be concerned with this question.

Let  '67' be a prime element of  D  . We set  S-1-(R,2m) =  klE-S(R,2m)
 T(g LP(qrP)) =  T(g) for any  gE,  S(R,2m) =  k1/4PE  S(R,2m) 
 Y(gPP(1;0")) = -T(g) for any gE, where Cr)denotes the natural

injection of DP into '                         DxAWe have 

(30) S(R,2m) =  S1-(R,2m)  S(R,2m) (direct sum)  .
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     Proposition 5. If  131,  s  (R,0  ) and  /2  e  j(F3,2n), we have 

 T2) =  0.

It seems natural to conjecture the converse. Namely

 Conjecture.  If n is even and  yiES  (R,  0  ), 2  E  S (R,2n), then 

F(  9,2) would not vanish.

 At present, we can only prove that several non—vanishing cusp 

 farms arise by our construction (except for some numerical evidences).

We put  yi  C
p(4D-p) =  ,ryj(i)S- with  re.Dx and  TelTRx x  fe for every  y., 

 Q 

 1�-:“..H.  The map  i----4j(i) induces a permutation of order 2 on H  lette.' 

 rs. If  i  = j(i)  (resp.  i j(i)  ), let us call  yi of the first kind

 (resp. second kind).

     Theorem  6.  Let  1E  S(R,O) be a non—zero  common—eigenfunction of 

 T'(i),  QN  p. We assume that  T1(y) 0 for some  y, which is of the

first  kind. We assume that n is even and that  n74 if p =  2. Then

there exists  T2E  S(R,2n) which is a  common—eigenfunction of  T'(9--), 

 S p such that F(1''2) 0.

Let  U(resp. 20) be the number of  yi's of the first  kind(resp.

second  kind). We have U  +  2V =  H, U  4-  V = T, where T is the type number 

of  D.  A constant function  f1(k 0)e  S(6,0) satisfies the condition of

Theorem  6. Moreover one can see easily that there exist at least U =

2T — H linearly independent  'P E  9(6,0) such that  f(yi)  k 0  far some 

 y. which is of the first kind. We note that (cf.  A.Pizer(12)  for  exam— 

 '

ple)

 h  /2 if  ps,71 mod  4, 

(31) U  =  2h if  paFf3 mod 8,

                   h
pif pr==7 mod 8, 

if  p7  5. Here  h denotes the class number of 612(j12-b").

§5.  A characterization  
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Hereafter we fix  an odd prime p and the definite quaternion alge-

bra D over  Q whose discriminant is p2 and assume that we are in Case 

 (1). For  nE  Z, we set  %(n)  = 0 if  pin and  ?((n) = (-1:1-) if  p%n.  In 

 §4, we constructed a correspondence  7)1: S(R1,0) x S(R1,2n)-----> 

Gn+2(17o(p)) which "preserves" Euler products, where R1 is a maximal 
order of  D. The image of1has the following property.

     Proposition  6. Let R be any order of D. For  `riS(R,O) and  72E. 

S(R,2n), define J by (23). Let  J(z) =   a.,(N)e(cr(Nz)) be  the-Fourier 

                                                         J

 N 

expansion of J, where N extends over all positive semi-definite half

integral symmetric matrices. Then we have  aj(N) = 0 if  X((-det 2N) =1.

      Proof. Put N=                        b/2 c  ) a,b,c  e7 and assume that  a3(N) 0. 
Then there must exist  x,ye  D such that N(x) = a, N(y) = c,  xy*'+  yx*= 

b. Assume x  0 and put t  =  x-1y. We have N(t) =  a-lc, t +  a-lb. 

We may assume that b2 -  4ac 0. Then  Q(t) is isomorphic to the  imag-

inary quadratic field  Q(_/b2 -  4ac). Therefore we must have  'X',(b2  -4ac)
= -1 or 0. If y 0, we can argue similarly. If x = y = 0, we have 

a = b = c = 0 and  1(-det 2N) = 0. This completes the proof.

A simple consideration about the dimension shows that  1)1 can not

be surjective if n is sufficiently large. To clarify the nature of our 

conjecture about the characterization, let us first introduce the

twisting operator. For Fek op 2, let  F(  z  ) =   aF(N)e(cr(Nz)) be

the Fourier expansion of F(z). We put

(32)  (QF)(z) =  EaF(N)V-det  2N)8(0-(Nz))  .

Proposition 7. The operator Q induces an endomorphism of

                                                      a 

    Proof. For FE-gk ( r a(p2)) and  Y=(Sp(2,FR), put  Fi  (rjk = 
 F((z)det(cz+d)-k. Then we have F  10-.1  ir2)k = (F).3Take 

                                 k2k

 EEZ so that  :<(E) =  -1. We put 
 p-1  p-1 1(1U(u,v)/p\l  p-1  p-1riEli(u,v)/1 1111F =71‘F 10 1  )J k ' Q2F= 7 1 )--7\F-1d01 

  u=o v=o u=o v=o
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       2 
p -1 p -1 o -1 where U(u,v)  = uv vu2v)  •  We also put  Q3F =   F/

 U=0  V=0  W=^

11J 
 0 11 V(u,v,w)/p)1                )k'where V(u,v,w)  = (u v)                                                   . We first show that  Ql' IA 

          ---

ka b 
 42 and Q3 induce endomorphisms ofS(T7(p22)). Take any( )  E 

                                                   p c d 

 ro(P2). Since a mod  p  'E  GL(2,7/p7), we can find  U'e  M(2,') so that
 t    = U', all'====Lidmodp, where U = U(u,v). Then we have 

    (FL\ 0t1U/1P)3rra2c d)> k= F((o1LP/                                                     1k.

 1-  -1
Since  d  -a  ° mod p, we can take  U' in the form  U' =  U(u',v') and the

map  Li  Li' induces a bijection on the set of integral matrices of the
 2form r 

      uv v2 

           uV) taken up to modulo  p. Hence we get  Q1FI()k  =1F for 
 any ye  Sy virtue of the criterion that FES k(1-7oF(-2)) is a cusp 

form if and only if det(Im(z))k/2F(z)  is bounded on we see immedi-

ately that  Q1F is a cusp form, where Im(z) denotes the imaginary part 

of  zEl. For  Q2  and  Q3' we can use similar arguments. For  a,b,c(
                                                                P-1 /71-1 

define a character sum  G(a,b,c) by  G(a,b,c) = )-: 2  e((au2+buv+ 
 u=o  v=o

 cv2)/p).  By a standard evaluation using  Gaussian  sums, we get

 0((b2-4ac) if  b2-4acN0 mod p, 

 Va)oG if b2-4acf=-7-20 mod p and  ak0 mod p,
(33)  G(a,b,c) = 

 X(c)pG                                if b20 mod p and  ck^ mod p, 
 _ .

 P_  it ar--7-M-Eio -a° mod p, 

 p-1 r---7777777-
where  G  =  2  X(u)2(u/p)  p . Using (33), we get QF =

 u=o

 (QiF +  Q2F)/2p Q3F/p2, hence our assertion. 

     We define subspaces V
+,V-andYofk(p2)) by 

 11+  tF e'-8.--k(1-70(p2)) aF(N) =  ̂ if  X(-det  2N) =  , 
    V- =  tFE-gk( ro(p2)) I aF(N) =  ̂ if X(-det  2N) =  -1}  , 
    YjFE  Sk(T4o(p2))  IF(N)  0 if  13,1/  bet 2N}

It is obvious that  Y  . V+nu. Let  W+(resp.  W-) be the orthogonal com- 

plement of  Y in  V+(resp.  V_.) with respect to the Petersson inner

 -  337  -



product (cf.  MaaBOO ) in  /.1,(i40(p2)). For a positive integer  m such 
that  p,4'm, let T(m) be the Hecke operator which acts on  -8"1,(j10(p2)). 

 (cf.(1),  (i1)).

     Lemma 1. V+'V -and Y are stable under the action of the  Hecke 

operator T(m) for  pjm.

     Proof. It is sufficient to show that V+,V-and  Y are stable under 

all  T(2,  ), where  Q  is a rational prime different from p and  F is a po-

sitive integer. Then our assertion follows immediately from propositi-

on  1 of  Andrianov()), noting  that 'his result holds also for our case

without any modification.

The following Lemma can also be proven using proposition  1  of  (1) 

Lemma 2.  Assume that  FE  Sk(I7o(p2)) is a common-eigenfunction of
T(m) for pXm. Put T(m)F =  a  F(m)F. Then we have T(m)QF =  AF(m)QF. 

     Take any  FE  f40(p2  )). It is clear that F  QF  e  1/... and F -  Q.F.E
V

+. Hence we have an orthogonal  decomposition 

           --- '  

  (34) SkCro(p2)) =  W+  e V  ® W-. 

                                                                                                                  f-- 

With respect to the  Petersson inner product inSk(17
0(p2)),  T(m),

(m,p)  =  1 are mutually commutative  self-adjoint operators. Hence we 

can take a basis of  W  (resp. Y, W-) so that every element of the basis 

is a  common-eigenfunction of  T(m), (m,p) = 1.

 Proposition 8. For every positive integer  m such that (m,p) = 1,

we have -Trace(T(m)°Q  1  Sk(140(p2))  )  =  Trace(T(m)IW+) -  Trace(T(m)IW_).
      Proof. It is clear that QY = 0. Let  F

1,•. ,Ft(resp.  H1,"'  ,Hu) 
be a basis of  W+(resp. W-) which consists of  common-eigenfunctions  of 

T(m), (m,p) = 1. Put  T(m)Fi =  7i(m)Fi and  T(m)Hi =  Mi(m)Hi.  Clearly 

we have  -QFi-Fi  E-Y. Put  G =  -GFi-Fi. Then we  get  -(T(m)°Q)Fi  =Ai(m)Fi

+  T(m)G and  T(m)GeY by Lemma 1. Similarly we  have  -(T(m)°Q)H.
 J

 -AL(m)H. + L with  LEY. Hence our assertion follows immediately .
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Let K =  (ALT) be a ramified quadratic extension of  Q  . We set  B

    cc.a 

    1.18-,)1  ck,pe  K  t , where  T  denotes the generator of  Gal(K/Qp) and 
uE ZxPis a quadratic non-residual element  modulo p. ThenBhas a stru- 

cture of the division quaternion algebra over  01 Hence B.Q.-.D. Let  &- 

be the ring of integers of K and let  7.=  (OF) be the maximal ideal  of 

 (5-. For non-negative integer r, set 

           ( (35)  Mr+1 ="t8I 0470ctE (5' 
                                                                                                  ° Then M

r+1 is an order of D . Especially M1 is the maximal order of Dp 

and M2 is an order of  "level p2flof D
P'which was first studied in 

 A.Pizer  03)  (cf© also  Hijikata-Pizer-ShemanskeW for more general 
cases). Let  Rr+1 be an order of D such that  (Rr+1)Q _ is a maximal order 

of  pc if  32A  p and that  (Rr+1)
pmr+1  °

 Our results in §2 and §3 give a correspondence  )72:  S(R2'0) x 

 S(R2'2n)--S n+2(I7o(p2)) which preserves Euler products if  n70. We 
have Im2+by Proposition 6. Let Z be the orthogonal projection of 

                 Im  722 to  W+. This orthogonal projection commutes with the action of

 T(m), (m,p)  = 1, by Lemma 1. In particular Z is stable under the action 

of T(m), (m,p) =  1. Let be the orthogonal complement of Z in  W. We

conjecture the following characterization (C) of Z.

(C) Let  Fl,"'  ,Fv(resp.  H1,—°  ,Hu) be a basis of  W.1.(resp.
which consists of  common-eigenfunctions of T(m), (m,p) = 1. Then v u

and IF. and 4.H.) are in one-to-one correspondence in such a way that 
 F.andH.have the same  eigenvalue for every  T(m), (m,p) 1.

Thus we expect that the trace of  T(m)oQJSn+2(fl would be
expressed in terms of the traces of Hecke operators on certain sub-

spaces of  S(R2,0) and of S(R2,2n).

     Remark. This "characterization" is somewhat similar to that of 

elliptic modular cusp forms which correspond to L-functions with 

 Grbssencharacters of an imaginary quadratic field. In the elliptic 

modular case, the trace formula was first applied to the twisting
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operator by Shimura  (16) and was exploited further by Saito-Yamauchi
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