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Whittaker Models for Representations with Highest Weights

M. Hashizume
Introduction

The concept of Whittaker models for irreducible admissible
(g, K)-modules was first introduced by Jacquet-Langlands [4]
in connection with the theory of automorphic forms. The
existence and the uniqueness of such models were studied by
many authors (see for example [1], [3}, [6], [8] and [10}).
In this article we consider the class of irreducible
admissible (g, K)-modules with highest weights (including the
holomorphic discrete series) introduced by Harish-Chandra [2].
Unfortunately except for the case when ¢ 1is isomorphic to
s2(2, R), they cannot have Whittaker models in the usual sence
(see Corollary 3.2). Hence we generalize the concept of
Whittaker models (see Definition 2.1) and discuss the existence
and the uniqueness of such generalized Whittaker models for
irreducible admissible (g, X)-modules with highest weights
(see Theorem 4.4).
Throughout the paper we denote the dual space of a real
or complex vector space V by V* and in addition we denote
by VC thé complexification of a real vector space V. For
a Lie group G with Lie algebra g, the action of Xe€g on
a smooth function f on G as a left invariant vector field

is denoted by f(x; X) or RMX)f(x) (xe€G).



§1. Preliminaries

Let g be a simple Lie algebra over [R. Let g =+f + p
be a Cartan decomposition of g; We assume that the center z
of k is non-empty. Then dim z =1 and there exists an
element Z in z such that ad(Z) on p gives a complex

structure on p. We set
P, = {Xezpc: Iz, X] = iX}, p_ = {Xespcz [z, X] = -iX}.

Then p, and p_  are abelian subalgebras of 9. stable
under the adjoint action of kc.

Let GC be the simply connected complex Lie group with
Lie algebra a.- Let G and KX be the analytic subgroups
of GC corresponding to g and k respectively. Then G/K
has a G-invariant complex structure such that p, ‘can be
identified with the space of holomorphic tangent vectors at
the origin of G/K.

Let £ be a Cartan subalgebra of g contained in k.
Let A be the set of non-zero roots of 9 with respect to
£.. A root o 1is said to be compact (resp. non-compact) if
the root space g% is in k. (resp. p_. ). Let 4, (resp.
Ap ) be the set of compact (resp. non-compact) roots in A.
Then A = A, U Ap (a disjoint union). Choose a system
of positive roots A¥ in such a way that if we set A; =

+ + - +
A n A , A = A n oA then
k P P

P, =1 . 4
€A
BeL,



Put A~ = A; U (-A;). Then B  1is again a system of

positive roots.

To make computations with root vectors, we fix a
normalization of them. Let B( , ) be the Killing form on
g and let ( , ) be the inner product on iZ* induced by
the Killing form. We denote by 6 the Cartan involution
corresponding to g = k + p and by X » X (X€g.) the
conjugation of 9 relative to‘ g. Select Eu ega (a €N)

such that

B(Ea’ E ) =2/(a, o) and GEa = —E_OL°

Set H =1[E ,E ] (a€d). Then Huééit and u(Hu) = 2. Note
that if ae€eA , then E + E , i(E - E ) are in g and
P o -0 a -0
if o EAk then E - E , i(E + E ) are also in g. Two
o -0 o -a
roots o, B are said to be strongly orthogonal if neither
¢ + B nor o - B is a root.
Let Po'= {ylsuuo, yr} be the maximal set of strongly

orthogonal non-compact positive roots which is constructed

inductively as follows. Let Y1 be the highest non-compact

positive root. For each j = 1, let Yj+1 be the highest
one among the non-compact positive roots strongly orthogonal
to Yl""’ Yj' Put
A. = E + E < j <
i vy T e (1 =3 =m
J J
and
T
a = ..
j=1 [RAJ



Then a is a maximal abelian subalgebra in p. Let I be

the set of restricted roots of g with respect to a. For

A €%, we denote the corresponding root space by nx. Choose a

lexicographic order on a* relative to the basis {Al,..., Ar}
+

of a. Let I be the set of positive roots in Z. If we

set

For later use, we shall study about the relation between A
and ¢ and study more closer structure of =n.

Let #%_ be a real linear subspace of 1. defined by

Note that «y.(H ) = 28§.. and {v.,,..., v.} defines a basis
iy i 1 T
J

of t*. Set for 1 =<1i<j <r

+
Pi_] = {BE:ﬁp: B‘/t‘ = (Yl + YJ)/Z}
and for 1 <1 < r
P. = i = }
i = {BEAP. Ble. = v3/2)-

Then from the results of C. C. Moore [7], it follows that
+ . . - N
Ap = PO U (u Pij) U (u Pi) (a disjoint union).

Let ¢ EGC (the Cayley transform) defined by



c = exp{— % E (EYv - E*Yi)}'

Then Ad(c) induces a linear isomorphism of £ onto a. For

each j (1 = j =< 1), let Aj € a®¥ such that

A () =yjmdm'HA) (A€ a).

Then the following two cases occur. Namely the set b ois

either of the form

(case I) =" = {(}; - 2)/2: 1

A
=
N
[t
A

r} U{(Ai + Aj)/Z:
1 <1i<3j<r}
or of the form

(case II) 7 o= {(Ai - Aj)/Z: 1

IA
ju
A
e
A

rhu{(A; + xj)/z:

A
A
A

1 <i<js<ryu{r./2:1<1is<rt},

Case I occurs if and only if G/K 1is analytically equivalent
to a tube domain.

We introduce linear subspaces nys ”1/2’ ny and h of

g by
(A;-rs)/2
ny = y n Y3
l<i<jsr
A-/2
Ny g = Y n o,
I<i<r
(A:+2.)/2
= Lo
l<i<j<r
ho=nyp *ny



It follows that [np, nq]c:np+q for p, qe{0, 1/2, 1} where

np+q = (0) if p + ¢ > 1.  This implies that nys Mg and h

are subalgebras of g. Clearly 1 is the center of h and

h is an ideal of n = h + ng-

Let A, No’ Nl’ H and N be the analytic subgroups of

G with Lie algebras a, n nys h and n respectively.

O’

Then N1 is the center of H , N = HNo is the semidirect

It

product of H and No and G NAK (an Iwasawa decomposition

of G).
We state the key lemma which describes the Iwasawa

decomposition of E_ (B EA;). We denote the kc—component,

8

ac-component and nc—component of the Iwasawa decomposition of
Xe;gc by PhX, P X and P X respectively.
Lemma 1.1. (i) For Yj EPO (1 =1 < 1), we obtain

PkE—yi = —HY_/Z, PaE—y. = Aj/Z and consequently PnE-y. =
J J J J
E + H 2 - A./2.
-y v,/ i/

J

s

(ii) 1If we set

Xj = iHY‘/Z - i(Ey_ - E-Y-)/Z for 1 <j<r,
J J J
kj .
then Xj €n and PWE-Yj = —1Xj.
(iii) 1If B¢e€ Pij (1 <i<j<cr) or BezPi (1 =1=<r1),
then PkE—B = —[EYi, E—B]’ PEg=0 and PEg=Eqg+
Y-'B +
[EYi, E-G]' Moreover PhE-B €g t and v; - BEAL,.
(iv) PFor B € Pij (1 =1i<3j =<r71), set
u, = (PE - [E P E 2
o = CuPg 7[5, 0 B/

— 56 —



and

X = i(Pl’!E'B + [EY ’ PVLE“B])/Z.

? i

(xi-xj]/z (xi+xj)/z .
Then UBean s Xg€ng s PnE—B = Ug - iXg and
{UB, XO] = XB. Here we put

_ 7T
X, = Zj=1 X5
) Ai/Z B

(v) For SEPi (1 =1 < 1), we get PnE_BGnC 0”1/2'

Here we set a complex subspace ”1/2 of (”1/2)c by

Mgz = Oy n (e +p).

(vi) {UB: B ePij} (resp. {XB: BEEPij}) forms a basis of
(xi—xj)/z (ki+xj)/2
n. (resp. ne ). Furthermore {PnE-B° B EPi

1 <1i <71} forms a basis of ni/z.

Sketch of proof. The assertions (i) and (ii) are well
known (see [9]). The former assertion in (iii) is a special
case of proposition 5.2 in [5]. The latter follows from our
choice of Po" The assertion (iv) follows from direct

computations with the brackets [A, UB]’ [A, XB] with A€a

and [UB’ Xb]' (ii1) implies PVLE_BEI@C + p_. The assertion
A;/2
P”E_B €n. (Be Pi) is proved in the same way as in (iv).

Finally the assertion (vi) follows from the linear

independence of root vectors.



§2. Definition of Whittaker models

By a (g, K)-module we will mean a g-module and a
K-module V such that

1) if wvevV, Xeg, k€K then k(X v) = Ad(l)X-(k-Vv),

2) if v eV then {X-.v: X€k} spans a finite
dimensional subspace, on which KX acts continuously (hence
smoothly),

3) if Xe€ek, veV then é% exp tX 'V|t=o = X-.v.

Let K be the set of all equivalence classes of
irreducible K-modules. A (g, K)-module is said to be
admissible if each K-isotypic component of type 1 with
T(Eﬁ is finite dimensional.

Now we introduce the notion of a Whittaker model of an
irreducible admissible (g, K)-module.

Let y be a unitary representation of N on a Hilbert
space H(x). We denote by € (G, x) the space of smooth
functions f on G with values in H(yx) such that £(ng) =
x(n)f(g) for neN, geG. The right translation of £ by
g€G is denoted by R(g)f. We define the action of Xe€g on

Cm(G, x) as a left invariant vector field by
ROOEG) = S £(x exp 0| (x €6)
dt p t=o ’

which we often denote by f(x; X).

Let (1, V )ezﬁ and let (T*,’V*) be the K-module
contragredient to (7, VT). A function f in ¢ (G, x) 1is
said to be K-finite of type 1 1if {R(k)f: keK} spans a

finite dimensional subspace of Cm(G, x) on which KX acts



according to T. Let CW(G, x)T be the subspace of those

o]

functions and let Cw(G, Xx) be the subspace of all K-finite

functions in C (G, ¥), that is,

(G, 0° = g €6, 0,

T

If we introduce the space Cm(G, X, T) of smooth functions

F on G with values in H(x) ®'V¥ such that
F(ngk) = x(n) ® t*(k 1)F(g) (g€G, neN, kek)
and define for V’EVE and FeECw(G, Xy T)
£,(8) = <F(g), v> | (getG),

then clearly fV<ECm(G, X)T and all elements in C° (G, x)?
can be written in the form described above.

The space C€7(G, y)® is clearly a (g, K)-module under

Definition 2.1. Let (w, V) be an irreducible admissible
(g, X)-module. Welsay that (w, V) has a Whittaker model of
type x if it is isomorphic to a submodule of " (G, X)o.

We recall the definition of irreducible admissible
(g, K)-modules with highest weights introduced in [2]. Let

Aeit* such that
(2.1)  2(A, a)/{a, a) €2’ for all aEA; and

(2.2) A 1ifts to a character of T, where T 1is the
Cartan subgroup of G corresponding to Z%.
For such A, Harish-Chandra showed in [2] that there exists

an irreducible admissible (g, K)-module (w, V) which contains



a non-zero vector fA(EV satisfying
1) ﬂ(H)fA = A(H)fA for HEEIC,

——t
2) ﬁ(Eu)fA = 0 for a€Ah

Such a (g, K)-module is unique up to equivalence. We call
it an irreducible admissible (g, K)-module with highest weight
A relative to a positive root system X" and denote it simply
by LG

We will consider the problem for what kind of Th-
has a Whittaker model of type x. For that purpose we will
study whether there exists a non—zero‘function fA in
¢”(G, x)° such that

(2.3) R(E, = A(H)E, for Het_,
(2.4) R(E)E, = 0 for o EAZ,

+
(2.5) R(E_B)fA =0 for B EAP'

In view of (2.1) and (2.2) there exists an irreducible

K-module (TA, VA) with highest weight A relative to .A;.

Let Vo EVA be the non-zero highest weight vector. Then the
first two conditions (2.3) and (2.4) imply that fA is

K-finite of type = and it must be of the form

A
(2.6) £,(8) = <F(g), vp> (g €G)

for some FéECm(G, X TA). Thus our problem is reduced to

find a non-zero function fA of the form (2.6) which

satisfies (2.5).



§3. The case of a non-degenerate character

We treat the case when ¥ is a non-degenerate character
of N. We recall the definition of a non-degenerate character.

Let n be a Lie algebra homomorphism of n into R. Then

it is trivial on [u, n]. So if we denote by §S = {al,..., oyt

the set of simple roots in Z+, then n 1s uniquely determined
. o

by its restrictions Ny, to n (1 <1 <71). We say that

i

n 1is non-degenerate if all n are not zero. Note that

Rt

every character of N is of the form
xn(exp X) = exp 2min(X) (Xen)

with a Lie algebra homomorphism n of #n into R. We say

that a character Xp of N 1is non-degenerate if n 1is non-

. . + . .
degenerate. In view of our choice of I in §1, we obtain

that S is either of the form
(case I) S = {(Al - AZ)/Z,.B., (Ar—l - Ar)/Z, Ar}
or of the form

(case II) S = {(}\1 - AZ)/Zf"" (Ar_l - Ar)/z, Ar/Z},

Let Xy be a character of N. Let fAEECw(G, Xn)o such
that it is of the form (2.6). Then fA is completely
determined by its restriction to A. Note that f satisfies

A
. = AC . = AT
fA(a, H) A\H)fA(a) for H(Etc, fA(a, Eu) 0 for aEEAk

and

fA(a; X} = Zﬂin(Ad(a)X)fA(a) (Xen, a€l).



In view of Lemma 1.1, we can reduce (2.5) to the following

three equations:

(3.1) fA(a; Aj) = {A(HYj)»- 4ﬁﬂ(Ad(a)Xj)}fA(a) for 1 <j <,

(3.2) {Zﬂin(Ad(a)UB) + Zﬂn(Ad(a)XB)}fA(a) =0 for B EUPij,
(3.3) Zwin(Ad(a)PnE_B)fA(a) =0 for BEEUPi.

First we are concerned in (case I). Then we have only to
consider (3.1) and (3.2). Since n([n, n]) = (0), (3.1)

and (3.2) are written as

(3.1)° fA(a; Aj) = A(HYi)fA(a) ; (1 =3 1 -1)
and
£h(as A = CA(H ) - 4m(Ad(2)X)IE (a),
(3.2)° ZWin(Ad(a)UB)fA(a) = 0 t for B Elsi:r lPii+1

Consequently it follows that to exist a non-zero function £

satisfying (3.1)', (3.2)' it is necessary and sufficient
(l;'Ki+1)/2
that n =0 on each n -~ (1 i< -1). 1If
otherwise, the fact that {UB: BeP
A372549072

n

c

some RBeP

. is a basis of
11+1} ©

leads that we can obtain n(Ad(a)UB) # 0 for
1i+1° Moreover if n satisfies the condition stated
above, we get, by using the properties of the Cayley transform

and the fact [Ar, Xr] = ZXT’

(3.4) £,(a) = exp A(Ad(c_l)log a)exp{-2mn(Ad(a)X,)}.



Secondly we are concerned in (case II). In this case (3.1},

(3.2) and (3.3) are written as

(3.1)n fA(a; Aj) = A(HYj)fA(a) (1 £3j =71)
3.2)" Z2win(Ad(a)u, )f,(a) = 0 for Be U P.. ,
(3.2)"  2min(Ad(a)Up) £, (s) L Piin
(3.3)" Zﬂin(Ad(a)PnE_B)fA(a) =0 for geP..

Similarly it follows that to exist a non-zero function fA
satisfying (3.1)", (3.2)" and (3.3)'" it is necessary and
sufficient that n 1is identically zero. If n 1is zero,

namely, X = 1, then fA(a) is given by
(3.5) £,(a) = exp A(Ad(c T)log a) (acA).

As a comnseguence we obtain:

Theorem 3.1. Let X be a character of N and let T
be the irreducible admissible ({g, K)-module with highest
weight A. Then the necessary and sufficient condition that
un has a Whittaker model of type Xn is that n =06 on
n(xi_xi*i}/z for 1 <is<r - 11if G/K is a tube domain
and n =0 on n if otherwise. Moreover when n satisfies
the above condition, the Whittaker model is unique.

Remark. The uniqueness follows from the fact that the
function fA given by (3.4). or (3.5) 1is the unique
solution of "(3.1), (3.2), (3.3).

If Xp is a non-degenerate character, then the condition

about n stated in Theorem 3.1 does not hold except for the

case 1 =1 and (case I), namely, the case when g is



isomorphic to 5£(2, R).

Corollary 3.2. Let ¥ be a non-degenerate character

n
of N. Then except for the case g x 4£(2, R), T, cannot
have a Whittaker model of type Xp
§4. The case of unitary representations induced from

characters of Nl'

Here we treat the case when Y 1is the unitary

representation of N induced from a character wg of Nl’

where wg is given by

wg(exp X) = exp 2wig(X) (X €n1)

with £ 6n§. Then the representation space H(yx) 1is given
as the Hilbert space of functions ¢ on N such that

(4.1) $(nyn) = b, (n)e () (n, €N, neN),

f 7 .
(4.2) NREYCOIRCE IR
N, \N
1
where dn is an invariant measure on Nl\N. The representation

x is given by
(4.3) x(¢(n) = ¢(nu) (u, neN).

Let £eC7(G, x)°. Then f£(g)€H(x) for geG, so it is a
function on N. We denote the value of f(g) at n by

f(n: g) and we regard it as a function on N x G. Then

f(n: g) 1is smooth as a function of ge&€G and square integrable
as a function of néeN mod. Nl' It follows from (4.1)

and (4.3) that



(4.4) f(nln: g) = wg(nl)f(n: g) (nle NP neN, gegG),

1

(4.5) f(n: ug) f(nu: g) (n, ueN, geG).

Since N = HNo (a semidirect product)}, we can regard f(n: g)

as a function on H x NO x G so that we may write

f(n: g) = f(h: ngt g)
if n=hnO with heH, noeNo.
We shall find a function f in Cw(G, X)o of the form

A
(2.6) satisfying (2.5). Since fA is K-finite of type

T it is uniquely determined by its restriction to NA = HNOA,

A
Applying Lemma 1.1, we obtain:

Lemma 4.1. In order to hold that fA satisfies (2.5),
it is necessary and sufficient that its restriction to HNOA

satisfies the following system of first order differential

equations:

(4.6) fA(h: n_:oa; Aj) = {A(Hyj) - 4ﬂ£(Ad(noa}Xj)}fA(h: n_: a)

(4.7) fA(h: nos Ad(a)UB: a) = —ng(Ad(noa)XB)fA(h: n a)

0"

for BE€ Upij s

a)y =0 for Wen,,,.

(4.8) fA(h; W: n 1/2

o'
Proof. First we notice that R(H)fA = A(H)fA for HESIC

and R(E)f, = 0 for OLEA;. It follows from (4.5) that for

Xeh



fA(h: ng:oa; X) = tA[h: Ad(noa)X: no: a).

If Xeznl, using the formula (4.4) and the: fact that ny is

the center of h, we obtain

fA(h: ng : oa; X) = ZwiE(Ad(noa)X)fA(h: n a).

0"

Let ijEPO. Then it follows from Lemma 1.1 that E_

Aj/2 - Hy./2 - in. The formula (4.6) 1is obtained
J

immediately from the above argument. Similarly Lemma 1.1

(iii) and (iv) imply (4.7). For BeuP,, we obtain from

Lemma 1.1 that

fA(h; Ad(noa)PnE_S: no: a) = 0.

If we use Lemma 1.1 (v) and (vi), we get (4.8) immediately.

We shall find the solutions fA(h: n a) of the

o'
differential equations stated in Lemma 4.1 such that

(4.9) ENCEEYE a) | %dhdn < =,

Nl\H NO

where dh means an invariant measure on Nl\H'

We define a function on NO x A by

F,(n : a) = exp{-2m£(Ad(n_a)X )}exp AAd(c D1og a),
where X _ = Z§=1 Xy eny and ¢ 1is the Cayley transform.
Since H, = Ad(c_l)Aj, it is clear that

J

R(A;)exp AAd(c H1og a) = ACH, Jexp AAd(c Diog a)
j

for 1

A
(SN
A

r. Furthermore since [Aj’ XO] = ZXj,



R(Aj)exp{—Zﬂg(Ad(noa)Xo)} = —4w£(Ad(noa)Xj)exp{~2ﬂg(Ad(noa)Xo)}

for 1 < j < r. Thus FA(no: a) 1is a solution of (4.6).
Moreover F,(n_: a) 1is, as a function of a €A, the unique
Ao

solution of (4.6) because {A . Ar} forms a basis of

1’
a. So we may write, by choosing a function c(h: no) on

H x No,

fA(h: n_: a) = c(h: nO)FA(nO: a).

(o]

Using the fact that [UB’ Xo] = XB’ we can easily check that
FA(no: a) satisfies (4.7). Applying (4.7) +to the above

fA’ we obtain that c(h: no) must satisfy

c(h: no; Ad(a)UB) = 0 for BesuPij.

In view of Lemma 1.1, {UB: BezuPij} forms a basis of (no)cn
This implies that «c¢(h: no) is a constant function of nozzNoq

So we may write

fA(h: n a) = c(h)FA(no: a)

o
by choosing a function c¢(h) on H. Then (4.8) implies
that c{(h) must satisfy

c(h; W) =0 for Wéinl/zo

Consequently we obtain:

Lemma 4.2. In order to exist a non-zero function
fﬂ(h: ng: a) satisfying (4.6}, (4.7), (4.8) and (4.9) it

is necessary and sufficient that



(i) the function exp{~2ﬂ£(Ad(nOa)Xo)} is square
integrable on NO and

(ii) there exists a non-zero function c(h) on H

such that
(4.10) c(h; Z2) = 2mig(Z)c(h) for 1 E(nl)c,
(4.11) c(h; W) =0 for Wezni/z,

(4.12) lc(h) | %ah < .

JNl\H

Moreover in the case at hand, fA has a form

fA(h: n: a) = c(h)FA(nO: a).

We shall decide the conditions on & wunder which (i)

and (ii) hold. We define subspaces n 3 (2 <j <r) of
b
n, by
A -r)/2
o 0p725)/
©rJ 12p<;
Then n_ =13 n_ . (a direct sum), so each element of n
o 0,] o

can be written as a sum Uj with suitable choices of Uje

0,j" Note that [”o,j’ Xk] = (0) if j # k. 1In view of

Lemma 1.1.4.1 in [11], we see that

n

Ad(no)oxj = Ad{exp UJ.)-Xj for n = exp () Uj).

On the otherhand we can easily check that

(Apﬂj)/z

(,*r)/2
P q
[Uj’ [Uj: Xj]}e z N n >



and ad(Uj)B-Xj = 0. Therefore we obtain

Ad(ng) Xy = Xy + (U, X + %[Uj, Uy, X;11.

J J J
A

If we denote exp Aj(log a) simply by a <, then we get

A
Ad(a)X = y a l-Xj and consequently

Ad(n_a)X_ = J*% axj{x + [U., X.] + 2[u,, [U., X.11}
oo j=1 j i’ 73 22737 7717 73 )
Thus we obtain
A

E(ad(n,a)X)) = Bip & Texy) + eCluy, X1

L1

+

1 7T T v \
fg(i‘v‘ji tu., A']]J}°

Note that Uj - E,[[UT.5 Xj]) is a linear form on n, 5 and

Uj > E([Uj, [Uj’ Xj]]} is a quadratic form on n

Definition 4.3. Let Eéznf. We say that & is positive
semidefinite of rank r - 1 if the aguadratic forms E([Uj’

{U., X.11) on n_ . for 2 < j <71 are all positive definite
J J 5,] -

The above discussion leads that (i) in Lemma 4.2 holds if
and only if £ 1s positive semidefinite c¢f rank v - 1.

Next we shall study for which & (ii) in Lemma 4.2 holds.
Since H 1is the simply connected 2Z-step nilpotent Lie group

with Lie algebra h = n, + n it ¢an be identified with the

1 1/2°
group {(X, U): Xen Ueznllz} having the multiplication law

1’
(X, U+ (Y, V) = (X +Y + 3[U, V], U + V).

5, 4 - _ e N 4 + =
We recall that n1/2 = Lnl/Z}c n(kc + p_). We put ”1/2



(nl/Z)c ﬂ(kc + p+). Then the following results are known
(see [9]). The space (”1/2)c is the direct sum of nI/z
and ni/z and moreover ,”I/Z = ﬁi/z. Let J be the complex
structure on iy, such that ni/z = {U + iJU: UéEnl/z}.

Since [ni/z, ni/z] = (0), we have [JU, JV] = [U, V] for

U, V(Enl/z. Let Q(U, V) be the (nl)c—valued hermitian form
on 14, defined by
(4.13) Q(u, vy = ([Jv, U] - i[V, U])/4.

Then under the isomorphism U - (U + iJU)/2 of /g onto

”i/Z we obtain

(4.14) QW , W) = [W, WZ}/Zi for Wy, WZEni/Z.
Returning to our consideration, we define a function

CE(X, U) on H by

c, (X, U) = exp 2wig(Xexp{-2me(Q(U, U))}.

3
Then it is clear that
R(Z)CE(X, Uj = Zﬂig(Z)cE(X, ) for L E(nl)C‘

If we notice that Q(U, U) = [JU, U}/4 and [JU, JV] = [U, VI,

we can easily check

R(V + iJV)CE(X, Uy =0 for V(Enl/z.
Thus the function Cg on H satisfies (4.10) and (4.11).
Furthermore we see immediately that ¢ satisfies (4.12)

€
if and only if &(Q(U, U)) with Uéznl/z is a positive

definite quadratic form on ”1/2' Finally we remark that all



the solutions of (4.10) and (4.11) are of the form
CE(X, U)o (U), where ¢(U) 1s an entire function on nl/Z’
namely, ¢(U; W) = 0 for all Wezni/z. The above argument
leads to the following theorem.

Theorem 4.4, Let x be the unitary representation of
N induced from a character wg of N1 with & Eni. Let
T be the irreducible admissible (g, K)-module with highest

weight A. Then the necessary and sufficient condition that

T has a Whittaker model of type x 1is that

A
(i) & 1is positive semidefinite of rank r - 1 (see
Definition 4.3) and
(ii) E&(Q(U, U)) 1is a positive quadratic form on Ry
Remark (i) If G/K 1is a tube domain, namely n1/2 = (03,
then the condition (ii) has no contribution.

(ii) 1If we extend & to an element of h* by letting

ZETO On n1/29 then in view of (4.14% we see that the

condition (ii) is equivalent to saying that h  is a positive
polarization at &. Here h  is a complex subalgebra of hc
given by h = (nl)c + CYFE

If we notice that fA is unique as an element of

¢” (6, X)O, we obtain:
Corollary 4.5. If &g ewi satisfies (i) and (ii) in the
above theorem, then the Whittaker model of type x for LY

is unique.
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