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 Whittaker Models for Representations with Highest Weights 
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Introduction 

The concept of Whittaker models for irreducible admissible

(g, K)-modules was first introduced by  Jacquet-Langlands [4] 

in connection with the theory of automorphic forms. The 

existence and the uniqueness of such models were studied by 

many authors (see for example [1], [3], [6],  [8] and [10]).

      In this article we consider the class of irreducible 

admissible (g, K)-modules with highest weights (including the 

holomorphic discrete series) introduced by Harish-Chandra  [2]. 

Unfortunately except for the case when g is isomorphic to 

 ,e,(2, IR), they cannot have Whittaker models in the usual sence 

(see Corollary 3.2). Hence we generalize the concept of 

Whittaker models (see Definition 2.1) and discuss the existence 

and the uniqueness of such generalized Whittaker models for 

irreducible admissible (g,  K)-modules with highest weights 

(see Theorem 4.4).

      Throughout the paper we denote the dual space of a real 

or complex vector space V by  V* and in addition we denote 

by Vc the complexification of a real vector space V. For 

a Lie group G with Lie algebra g, the action of X  eg  on 

a smooth function f on  G as a left invariant vector field 

is denoted by  f(x; X) or  R(X)f(x)  (x E  G)  .
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§1. Preliminaries 

Let g be a simple Lie algebra over  R. Let g =  (a + p

be a Cartan  decomposition'of g. We assume that the center z 

of  k is non-empty. Then dim z = 1 and there exists an 

element Z in z such that ad(Z) on p gives a complex 

structure on p. We set

     =  {X  E  p
c:  [Z, X] =  iX],  p_  {X  E  pc: [Z, X] =  -iX}. 

Then  p+ and  p _ are abelian subalgebras of  gc stable 

under the adjoint action of  kc.

     Let  G
c be the simply connected complex Lie group with 

Lie algebra  gc. Let  G and K be the analytic subgroups 

of  Gc corresponding to g and  k respectively. Then G/K 

has a  G-invariant complex structure such that  pi _ can be 

identified with the space of holomorphic tangent vectors at 

the origin of G/K.

     Let t be a Cartan subalgebra of  g contained in  k. 

Let A be the set of non-zero roots of  gc with respect to 

 tc. A root a is said to be compact (resp. non-compact) if 

the root space  ga is  in  kc (resp.  pc ). Let  Ak (resp. 

 A ) be the set of compact (resp. non-compact) roots in A. 

Then A =  Ak U  A (a disjoint union). Choose a system 

of positive roots  A+ in such a way that if we set  Ak =

AknA, A+- Ap

p+ = + g'
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—+ = A+ U (-A+) . Then A is again a system ofPut A = A 

positive roots.

     To make computations with root vectors, we fix a 

normalization of them. Let B( , ) be the Killing form on 

g and let ( , ) be the inner product on  it* induced by 

the Killing form. We denote by 0 the Cartan involution 

corresponding to g =  (z +  p and by X  -+  Y (X  Eg c) the 

conjugation of  g c relative to  g. Select  Ea  Ega (a  E  A)

such that

 B(Ea,  E_a) =  2/(a, a) and  0Ea =  -E_a. 

Set Ha=[Ea'E-a] (aE A).Then HaE itand a(Ha) = 2. Note 

that if a E Athen E+ E'i(E- E -a)are in g and           a-aa                 P' 

if a E Ak a-a           then E-.Ei(E+ E) are also in g. Two              a -a'

roots a,  (3 are said to be strongly orthogonal if neither 

a +  (3 nor a -  (3 is a root.

Let  P
o = fy'yIbe the maximal set of strongly 

           °r

orthogonal non-compact positive roots which is constructed 

inductively as  follows. Let  yi be the highest non-compact 

positive root. For each j  � 1, let y. be the highest                                          3+1

one among the non-compact positive roots strongly orthogonal

 toi.  Put

A. = E
I-+ E             �r)       3  Yj

and

a  = g ., RAJ.
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Then a is a maximal abelian subalgebra in p. Let E be 

the set of restricted roots of g with respect to a. For 

X  EE, we denote the corresponding root space by  n  . Choose 

lexicographic order on a* relative to the basis  {A1,..., A 

of a. Let  E+                   be the set of positive roots in  E. If we

set 

 X
 n  =  n 

 XE

Then we get an Iwasawa decomposition

 9 =  n + a +  k. 

For later use, we shall study about the relation between A 

and  E and study more closer structure of n.

Let  t be a real linear  subspace of  t defined by

 r

 t _ = RH  . 
 J=1  Yj

Note that  7.(H  ) =  26.. and iy1"y r1 defines a basis

of  t*.  Set  for  1�i<j�  r

      CP.=ISE Ap•= (i- Y-)/2}                         t -

and  for 1  �  i  � r

 13--=.0  EA:  1  =  y421. 

Then from the results of C. C. Moore  [7], it follows that

 Ap =  Po  u  (u  P..)  u  Cu  P.) (a disjoint  union). 

Let c  e  G
c (the Cayley transform) defined by

a
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       71(E -E
_ 

 r 

 y-)}.  c = exp{-TLyj j             j=i

Then Ad(c) induces a linear isomorphism of  t _ onto a.

each j (1 j  �  r), let  Xj  Ea* such that

               1  X.  (A) =(Ad(c(c)A)  (A  E  a).

Then the following two cases occur. Namely the set  E+ is

either of the form

 .)/2:

1 j  r}

or of 

(case

Case 

to a

by

the form 

 II)E+=f(X.-A.)/2: 1  �

 i 

I occurs if and only if G/K 

tube domain. 

We introduce linear subspaces

             (R1 
 no =

 1!,:i<j�r 

 X•/2
n= n 1 
 1/2-  '     1<i<lc 

 (X.
 n1 = 

 1�i�jr

 h_  n1 +  n//2

 < 

 <

 is

For

j  U +  X.)/2:

j  �  r1u  {X./2: 1  � i  �

analytically equivalent

no,

 -X .)/  2

 +A.)/  2

 n1/2,  nl and h of
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It follows that [np,nq] c np+qfor p, q E  {0, 1/2,  1} where 

n
p+q= (0) if p  + q > 1. This implies that  no' n1 and h 

are subalgebras of g. Clearly  ;,_1 is the center of h and

h is an ideal of  n =  h + no.

     Let A,  No' N1, H and N be the analytic subgroups of 

G with Lie algebras a,  no,  ni, h and n respectively. 

Then N1 is the center of H , N =  HN
o is the semidirect 

product of H and  No and G = NAK (an Iwasawa decomposition

of  G).

We state the key lemma which describes the Iwasawa

decomposition of EE A+  -Rp). We denote thekc-component, 

 ac-component and  nc-component of the Iwasawa decomposition of 

 X  E  gc by  PkX, PaX and  PnX respectively.

     Lemma 1.1. (i) For  yj  E  Po (1  � i  � r), we obtain 

 P = -H/2,= A./2 and consequently PnEy 
           3

 E  +  H  /2  -  A./2.
- Y33             Y-

(ii) If we set

X. = iH/2 - i(E- E)/2 for 1�j�r,    1 -Yi1- 
 3

 X.

then  X.  En  J and  PnE -y. =  -iX..

 P li�i < j  � r) orSEP. (1�is r), 

then  PkE _ = -[E,,PaE_= 0 and PnE_13=+ 
                         11 

                                                      1. 
 [Ey, E_0. Moreover  PkE_.,(3E9 1-R and  yi  -  R  E

(iv) For  13  E  Pij (1 i < j  �  r), set

 U  = (P nE-[Ey,PnE ])/2 

       .  3
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and

 X = i(P n0E+ [E1' Pn0E])/2. 

            (X.-A.)/2  (X.+X.)/2 
Then U13En c 1 3  ,  x  E  nc  3                                    ' PnE  S = U0- iXand 

 [U6, =  X6. Here we put

x=x. o3=1.3 

                       A./2
(1,-)Fori3eP.(1�i  � r),weget Pn0EEnc1 n  n1/2' 

                                             Here we set a complex subspace  n1/2 of  (n1/2)c by

 n1/2  =  (n1/2) cn(kc +  p_). 

          13 (vi){1J.'EP.jp.}(res{X(3..j}) forms a basis of       0i.EP.. 

 (X.-X.)/2  (X.+X.)/2  1 J
nc  c                      n c  1  3 ). Furthermore {Pnf3°E-13E P.                              -- 1

1 i  � r} forms a basis of  n1/2°

     Sketch of proof. The assertions (i) and (ii) are well 

known (see [9]). The former assertion in (iii) is a special 

case of proposition 5.2 in [5]. The latter follows from our

choice of  Po. The assertion (iv) follows from direct

computations with the brackets [A,  UO, [A,  X6] with  A  E  a 

and  [U Xo].(iii) implies PnESEkc+  p_. The assertion

P
laE13EnXc1/2-(13EP.)is proved in the same way as in (iv). 

Finally the assertion (vi) follows from the linear

independence of root vectors.
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§2. Definition of Whittaker models 

By a (g, K)-module we  will  mean a g-module and a

K-module V such that 

     1) if  vEV,  XEg,  k  E  K then  k•  (X  •  v) =  Ad(k)X  •  (k  •  v)  , 

     2) if v  E  V then  IX  • v:  X  E  k} spans a finite

dimensional subspace, on which K acts continuously (hence 

 smoothly),

3) if  X  E  k, v  EV then exp tX •  v  t=0 = X  • v.

Let  K be the set of all equivalence classes of

irreducible K-modules. A (g, K)-module is said to be 

admissible if each K-isotypic component of type T with 

 TEK is finite dimensional.

     Now we introduce the notion of a Whittaker model of an 

irreducible admissible (g, K)-module.

Let  x be a unitary representation of N on a  Hilbert

space  H(x). We denote by  C(G,  x) the space of  smoOth 

functions f on G with values in  H(x) such that f(ng) = 

 X(n)f(g) for  n  E  N,  g  E  G. The right translation of f by 

 g  EG is denoted by  R(g)f. We define the action of  X  E  g on 

 r(G,  x) as a left invariant vector field by

 R(X)f(x) = —dt  f  (x exp tX) t =o (x E  G)  ,

which we often denote by f(x; X). 

Let (T, V )  EK and let (T*, V*) be the K-module

contragredient to (T, V
T).  A function f in  r(G,  x)  is 

said to be K-finite of type T if {R(k)f:  k  E} spans a

finite dimensional subspace of  C(G,  x) on which K acts
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according to T. Let  e(G, x)T be the subspace of those 

functions and let  r(G,  x)° be the subspace of all K-finite 

functions in  r(G,  x), that is,

 Cw(G; x)° =  I Tck  r(G,  X),.

If we introduce the space  C  (G,  x, T) of smooth functions 

F on G with  values in  H(x)  OV* such that

 F(n g  k) =  x(n)1T*(k)F(g) (gEG,  n  EN,  k  EK)

and define for  v  E  V and  F  E  r(G,  x, T) 

 f v(g) = <F(g),  (g  E  G)

then clearly  fvEr(G, x) T and all elements in  r(G,  X),

can be written in the form described above.

     The space  C°°(G, x)° is clearly a  (g, K)-module under

R.

     Definition  2.1. Let  (7, V) be an irreducible admissible 

(g,  K)-module, We say that  (7, V) has a Whittaker model of 

type x if it is isomorphic to a submodule of  C°°(G,  x)°.

     We recall the definition of irreducible admissible

(g, K)-modules with highest weights introduced in [2]. Let

A E  it* such that

 (2.1)  2(A,  a)/  (a, a) E  7+ for all  a  E  A+k and 

(2.2) A lifts to a character of  T, where T is the

       Cartan subgroup of G corresponding to  t. 

For such A, Harish-Chandra showed in [2] that there exists 

an irreducible admissible (g, K)-module  (7, V) which contains
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a non-zero vector  fA  EV satisfying

1)  Tr  (H)  fA =  A  (H)  fA for  H  E  tc  ,
•-••••+

2)  Tr(Ea)fA = 0 for  a  E

Such a (g, K)-module is unique up to equivalence. We call 

it an irreducible admissible (g, K)-module with highest weight

A relative to a positive root system  A and denote it simply

by TA. 

     We will consider the problem for what kind of x  TrA

has a Whittaker model of type x. For that purpose we will 

study whether there exists a non-zero function  fA in 

 r(G, x)° such that 

(2.3) R(H)fA  = A(H)fA for  H  E  tc,

(2.4) R(Ea)fA = 0 for  a  E  A+  k'

(2.5)  R(E_dfA = 0 for  f3  e  A+

In view of (2.1) and (2.2) there exists an irreducible

K-module (TA, VA) with highest weight A relative to  4+t
z. 

Let  vA  EVA be the non-zero highest weight vector. Then the 

first two conditions (2.3) and (2.4) imply that  fA is 

K-finite of type TA and it must be of the form 

(2.6)  fA(g) =  <F(g),  vA> (g  E  G)

for some  FE  C  (G, x, TA). Thus our problem is reduced to 

find a non-zero function fAof the form (2.6) which

satisfies (2.5).
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§3. The case of a non-degenerate character 

We treat the case when  x is a non-degenerate character

of N. We recall the definition of a non-degenerate character. 

Let  p be a Lie algebra homomorphism of  n into  R. Then 

it is trivial on [n,  a]. So if we denote by S =  {al,..., 

the set of simple roots in  E+, then  n is uniquely determined

by its restrictions na•to n (1�i�r). We say that
 i

 p is non-degenerate if all na.are not zero. Note that 
                                             1

every character of N is of the form

 X  (exp X) = exp  2Trin  (X)  (X  E  n)

with a Lie algebra homomorphism  n of  n into  R. We say 

that a character  x of N is non-degenerate if  n is non-

degenerate. In view of our choice of  F.+ in §1, we obtain

that S is either of the form

(case I) S =  1(A1 -  X2)/2,..., -  Xr)/2,  Ar)

or of the form

(case II) S =  ((A1 -2)/2'(Ar-1-Ar)/2Ar/21

     Let  x
fl be a character of N. Let  fA  Er(G,  xr)° such 

that it is of the form  (2.6). Then  fA is completely

determined by its restriction to A. Note that  fA satisfies 

 „ _ _ . - - -  •  +
 fA(a  ;  H) =  ACH)fA(a) for HE-tfA(a; Ea) = 0 for  a  E  A 

and

 fA  (a;  X) =  27rin(Ad(a)X)fA(a)  (X  E  11,  a  E  A)  .
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In view of Lemma 1.1, we can reduce (2.5) to the following 

three equations:

(3.1)fA(a;1\--3)--fA(Hi41-n(Ad(a)X.3)1fA(a) for 1sjsr, 

 (3.2)  f2Trin(Ad(a)U  ) + 2T-n(Ad(a)X)1fA5P                              (a) =  0 foru.                                                                    li, (3.2)

(3.3)  27in(Ad(a)PnE)fA(a) = 0 for  (3E UP..

First we are concerned in (case  I). Then we have only to 

consider (3.1) and (3.2). Since  n([n,  n]) = (0), (3.1)

and (3.2) are written as

(3.1)'  fA(a.;  Aj) =  A(Fy)fA(a) (1  s j  5 r - 1)

and

       fA(a; Ar) =  {A(H1  ) -  4711(Ad(a)Xr)1fA(a), 

 r (3.2)' 27in(Ad(a)UdfA(a) = 0 forISE  U P.i                                                                               1<i<r-1 

Consequently it follows that to exist a non-zero function  fA

satisfying  (3.1)', (3.2)' it is  necessary and sufficient

 (A.-A. 1)/2 
that  n = 0 on each n (1  s  i  s  r  -  1). If

otherwise, the fact that  {U5:  5  EPii+1) is a basis of 

 (Xi-Ai+1)/2 
             leads that  we can obtain n(Ad(a)U ) 0 for 

 c some 5 EPii+1° Moreover if n satisfies the condition stated 

above, we get, by using the properties of the Cayley transform

and the fact [Ar, Xr] = 2XT,

     1 (3.4) fA(a) = exp A(Ad(c)log  a)exp{-27n(Ad(a)X .)1.
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Secondly we are concerned in (case  II). In this case (3.1), 

(3.2) and (3.3) are written as

(3.1)" fA(a; Ai) = A(Hy .)fA(a)(3.1)" fA(a; Aj) = A(Hy .)fA(a) (1 j r) 

(3.2)"  27in(Ad(a)UdfA(a) = 0 for  13 E  u '-+1 
 li�r-1 

 (3.3)"  27rin(Ad(a)PnE5)fA(a) = 0 for  E  P. 

 Similarly it follows that to exist a non-zero function  fA

satisfying (3.1)", (3.2)" and  (3.3)" it  is necessary and 

sufficient that  n is identically zero. If  n is zero,

namely,  x
n = 1, then fA(a) is given by 

(3.5)  fA(a) = exp A(Ad(c )log a) (a  A).

As a consequence we obtain:

     Theorem 3.1. Let  x
n be a  charcter of N and let  71\ 

be the irreducible admissible  (g,  K)-nodule with  highest 

weight A. Then the necessary and sufficient  condition that 

 TrA has a Whittaker model of type  x
n is  that n =  0 on 

 (A--X-)/2 a1-1+1i for  1�i�r-lif  G/K  isatube domain

and  1.1  = 0 on  n if otherwise. Moreover when  n satisfies 

the above condition, the Whittaker model is unique.

     Remark. The uniqueness follows from the fact that the 

function  fA given by (3.4) or (3.5) is the unique

solution of  -(3.1), (3.2), (3.3).

If  xn is a non-degenerate character, then the condition

about  n stated in Theorem 3.1 does not hold except for the

case r = 1 and (case  1), namely, the case when  g is
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isomorphic to  3Z(2,  R).

     Corollary 3.2. Let  xn be a non-degenerate character 

of N. Then except for the case g  ;  AZ(2,  R),  TrA cannot 

have a Whittaker model of type  x
n.

     §4. The case of unitary representations induced from 

characters of N1.

Here we treat the case when x is the unitary

representation of N induced from a character  -q) of N1, 

where  ip is given by

 (exp X) = exp  2Tri“X)  (X  E  n1) 

with  E  ni. Then the representation space  fl  (x) is given

as the  Hilbert space of functions  (I) on N such that

 (4  .1)  q)  (no)  =(n1)(1)(n) (n1  E  N1, n  E  N)  ,

                                                                  . 

(4.2)Ign)I'dn < 
           1\N 

where  do is an invariant measure on  N1\N. The representation 

x is given by 

(4.3)  x(u)cp(n) =  cp(nu) (u,  n  EN)  . 

Let  fc  r(G, x)°. Then f(g)  EH(x) for  g  EG, so it  is a 

function on N. We denote the value of f(g) at n by 

f(n: g) and we regard it as a function on N x G. Then 

f(n: g) is smooth as a function of  g  E  G and square integrable 

as a function of  n  E  N mod. N1. It follows from (4.1)

and (4.3) that
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(4.4)  f(nin: g) =  yni)f(n: g)  (n1  E  N1,  n  E  N,  g  E  G)  ,

 (4.5)  f(n: ug) =  f(nu: g) (n,  UEN,  gEG). 

Since N =  HNo (a semidirect product), we can regard f(n: g) 

 as  a  function on  H  x  N  x  G so that we may write

                  f(n: g) = f(h:  no: g)

if  n = hnowith  h  E  H, n EN      o o

    We shall find a function  fA in  C  (G,  x)° of the form 

(2.6)  satisfying  (2.5). Since  fA is K-finite of type 

TA it is uniquely determined by its restriction to NA =  HNoA.

Applying Lemma  1.1, we  obtain.:

     Lemma  4.1. In order to hold that  fA satisfies (2.5), 

it is necessary and sufficient that its restriction to  HN0A 

satisfies the following system of first order differential 

equations:

(4.6) fA(h:  no: a;  A.) = {A(11_ .) - 47E(Ad(noa)Xj)1fA(h:  no: a)                                       '
j

for 1  < j  � r,

(4.7) fA(h: noAd(a)U : a) = -2Tr(Ad(noa)XB)fA(h: no: a)

for  BEUP.,
 1  J

(4.8)  fA(h; W:  no: a) = 0 for  W  e  n1/2'

    Proof. First we notice that R(H)fA = A(H)fA for  H  E  tc

and  R(E a)fA  = 0 for a EAl2'It follows from (4.5) that for

 X  E  h
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          fA(h:  n o: a; X) = fA(h:  Ad(noa)X:  no: a). 

If  x  E  ni, using the formula (4.4) and  the  fact that  n, is

the center of  h, we obtain

          fA(h: no: a; X) =  2Tri(Ad(noa)X)fA(h:  no: a). 

Let y. E Po.Then it follows from Lemma 1.1 that E=        j .                                                   Y
j 

A./2-H, .
3/2-iX—The formula (4.6)is obtained 3 Hyj/2J

immediately from the above argument. Similarly Lemma 1.1 

(iii) and (iv) imply (4.7). For  f3EuPi, we obtain from

Lemma 1.1 that

fA(h;(h. Ad(noa)PnE -8:  no: a) = 0.

If we use Lemma 1.1 (v) and (vi), we get (4.8) immediately.

We shall find the solutions fA(h:  n o: a) of the

differential equations stated in Lemma 4.1 such that

(4.9)2                      lf,(h: no: a)Idhdno<          \HI 
               1No

where  dh means an invariant measure on  N1\H.

We define a function on  N
o x A by

     FA(no: a) = exp{-2TMAd(noa)X o))exp  A(Ad(c-1)log a), 

where X= X.  E a and c is the Cayley transform.           o 
          J=1  j 1

Since Hy= Ad(c11)A.'it is clear that 

   R(A.)exp A(Ad(c1)log a) = A(H)exp A(Ad(c)log a) 
         Y1i

for 1  � j  � r. Furthermore since [A,X] =2X. 
                J0J
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R(A.)exp(-2TrE(Ad(n0a)X0)1=-4ff“Ad(n0a)X.)exp{-27“Ad(n0a)X0)) 

                                                              for 1  � j  � r. Thus  FA(n o: a) is a solution of (4.6). 

Moreover  FA(n o: a) is, as a function of  a  EA, the unique 

solution of (4.6) because  {A1,...,  Ar} forms a basis of 

a. So we may write, by choosing a function c(h:  no) on

 H  x  N 
 U

 fA(h:  no: a) = c(h:  no)FA(no: a).

Using the fact that  [U13,  Xo] =  XS, can easily check that 

 FA(n o: a) satisfies  (4.7). Applying  (4.7) to the above 

fA'we obtain that c(h:  n
o) must satisfy

          c(h:  no;  Ad(a)US) = 0 for  a E UP.j. 

                                                              i 

 In view of Lemma  1.1, {Uf3..8  e  uPij  } forms a basis of (no)C. 

This implies that c(h:  no) is a constant function of  no  E  No.

So we may write

               fA(h:  no: a)  =  c(h)FA(no: a) 

by choosing a function  c(h) on H. Then  (4.8) implies 

that c(h) must satisfy

 c(h;  W) =  n  for  W  E  n -  1/2 

Consequently we obtain:

Lemma  4.2. In order to exist a non-zero function

fA(h:  no: a) satisfying (4.6), (4.7), (4.8) and (4.9) it

is necessary and sufficient that
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     (i) the function  exp{-2ffE(Ad(n0a)X0)1 is square 

integrable on No and

(ii) there exists a non-zero function c(h) on

such that

(4.10) c(h; Z) =  27iE(Z)c(h) for  Z  E  (11)c, 

(4.11) c(h; W) = 0 for  Weni/2, 

                                                           • (4.12)Ic(h)12dh < 
           1\H 

Moreover in the case at hand,  fA has a form 

 fA(h:  n o: a) =  c(h)FA(no:  a).

We shall decide the conditions on  E under which

and (ii) hold. We define subspaces no
,j(2  �  j� r) 

 n 0 by
              (X-X.)/2 

n.=
iX nPJ o,j,           �p‹

.)

Then no=  no
,j(a direct sum), so each element of 

can be written as a sum  U with suitable choices of 

no
,j. Note that [no,j' Xk] = (0) if j k. In view

Lemma 1.1.4.1 in [11], we see that

    Ad(no)-X. = Ad(expU.)•X. forno="P(/". 

                     ) On the otherhand we can easily check that

 (A  +A.)/2
 [U.,  x.]  e  n p  J 

 1�p<j

 (A  +X )/2 
     ' [U.[U.,X.]] eP  J  

1�p�q<j

 H

(i) 

of

 vi
 0 

 U.  E

of
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andad(y3-X.=0. Therefore we obtain

                          1 
                           3  Ad(n0)•X1 =  Xj + [U1,X.] +—[U.,[U.'X.]].          323 3

 x.

If we denote exp  A (log a) simply by a  3, then we get

- 

Ad(a)X0=la1•X. and consequently 

                3

 X,

 Ad(noa)X0  =  Xj=1 a  3-(Xj + [U1,  Xj] +  4[Uj,  [Uj,  Xj]]}.

Thus we obtain 

 A.

EP-d(rIa.)-+“[U.,X.])  oo3" 

                          yE([uj [0X]])1                                        j'j

NotethatU.--E,([U., X.]) is a linear form on n.and     J J 0
,3 

 U. -÷[U1, x.]]) is a quadratic form on n  ' 3
Jo,j

     Definition  4.3. Let  -c•0.1.  We say that is  positive 

semidefinite of rank r 1 if the quadratic forms  “[U„
 J

[i., X.]]) on n.for 2jr are all positive definite 33o,j
     The above discussion leads that  (1) in Lemma  4.2 holds  if 

and only if is positive semidefinite of rank r  - 1.

     Next we shall study for which (ii) in Lemma  4.2 holds. 

Since H is the simply connected  2-step nilpotent Lie group

with Lie algebra h =  nl +  n1,2, it can be identified with the 

group {(X, U):  X  E  n1,  UEni/2} having the multiplication law

          (X,  11)-(Y, V) =  (X +  Y +  1[U,  V], U +  V). 

We recall that  n1/2  =  (n1/2)c  n  (lac  19-)° We put  n1/2 =
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 (n1/2)cn  (kc +  p+). Then the following results are known

(see [9]). The space  (la1/2)c is the direct sum of  n1/2

and  n1/2 and moreover n+1/2= n1/2Let J be the complex 

                                                                                                                               . structure on  n1/2 such that  ni/2  ,-  1U + iJU:  U  E  n1/21. 

Since  [n1/2,  n1/2]  - (0), we have [JU, JV] = [U,  V] for

U,  V  E  n1/2. Let Q(U, V) be the  (ni)c-valued hermitian form

on  n1/2 defined by 

(4.13) Q(U, V) =  ([JV, U] - i[V, U])/4.

Then under the isomorphism U (U + iJU)/2 of  n1/2 onto

 n1/2 we obtain

(4.14)  Q(W1, W2) =  [W1,  W2]/2i for  W1, W2  E  n1/2. 

     Returning to our consideration, we define a function

 c  (X, U) on H by 

 c  (X, U)  = exp  2qTi(X)exp{-2qC(Q(U, U))).

Then it is clear that

 R(Z)cc(X, U) =  2TriE(Z)cc(X, U) for  Z  E (n),.                                                     1 c

If we notice that Q(U, U) = [JU, U]/4 and [JU, JV] = [U,  V] 

we can  easily check

         R(V +  iJV)cc(X,  U) = 0 for  V  E  n1/2'

Thus the function c on H satisfies (4.10) and  (4.11). 

Furthermore we see immediately that  cc satisfies (4.12) 

if and only if  C(Q(U, U)) with  U  E  n1/2 is a positive 

definite quadratic form on  n1/2. Finally we remark that all
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the solutions of (4.10) and (4.11) are of the form

 c  (X  1)O(U), where  “U) is an entire function on  n1/2, 

namely,  q)(U; W) = 0 for all  W  E  n1/2. The above argument
leads to the following theorem.

Theorem 4.4. Let x be the unitary representation of

N induced from a character  ip of N1 with  EE .                                              n*1Let 

 TrA be the irreducible admissible (g, K)-module with highest 

weight  A. Then the necessary and sufficient condition that 

 TA has a Whittaker model of type x is that

 (1)  C is positive semidefinite of rank r - 1 (see 

Definition 4.3) and

(ii)  E(Q(U, U)) is a positive quadratic form on  n1/7.

Remark (i) If  G/K is a tube domain, namely  n1/2  7 (0),

then the condition (ii) has no contribution.

(ii) If we extend  C to an element of h* by letting

zero on 11.1/2'then in view of (4A.4) we see that the

condition (ii) is equivalent to saying that  h is a positive 

polarization at  E.  Here  h is a complex subalgebra of  h_

given by  h  = (al)c a1/2'

     If we notice that  fA is unique as an element of 

kr(G, x)°, we obtain:

     Corollary 4.5. If  EEnt satisfies  (i) and (ii) in the 

above theorem, then the Whittaker model of type x for  7A

 is unique.
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