Lec. in Math., Kyoto Univ. No. 14 Lectures on Harmonic Analysis on Lie Groups and Related Topics pp. 45-50

Certain intertwining operators for exponential groups

Hidenori FUJIWARA

0. Let G=exp ${\mathfrak F}$ be an exponential group with Lie algebra ${\mathfrak F}$, f a linear form on ${\mathfrak F}$, and let ${\mathfrak F}_{\underline i}$ (i=1,2) be real polarizations satisfying the Pukanszky condition of ${\mathfrak F}$ at f. Let $\rho(f,\,{\mathfrak F}_{\underline i},\,G)=$ ind χ_i , where ${\mathfrak H}_i=\exp\,{\mathfrak F}_i$ and χ_i (exp X)= $e^{\sqrt{-1}f(X)}$ for X $\in\,{\mathfrak F}_i$ (i=1,2). Then it is well known in the orbit theory of unitary representations

Our aime is to construct in certain cases an intertwining operator between these representations and to prove a composition formula for these operators. This is a generalization of the results due to G. Lion for nilpotent groups.

Let G be a Lie group with Lie algebra 7. We denote by K(G) the space of numerical continuous functions on G with compact support, dg a left Haar measure on G and by Δ_G the modular function of G: we have

$$\int_{G} \phi (gx^{-1}) dg = \Delta_{G}(x) \int_{G} \phi (g) dg$$

that $\rho(f, f_1, G)$ is unitary equivalent to $\rho(f, f_2, G)$.

for all $\phi \in K(G)$, $x \in G$.

Let H be a closed subgroup of G with Lie algebra f. For h & H, we set

$$\delta_{G/H}(h) = \frac{\Delta_{H}(h)}{\Delta_{G}(h)}$$
.

Then we have $\delta_{G/H}$ (exp X)=e Trad $\sigma/3$ X for X \in 3.

Let K(G, H) denote the space of numerical continuous functions φ with compact support modulo H such that

$$\phi(gh) = \delta_{G/H}(h)\phi(g) \quad (g \in G, h \in H)$$

G acts on this space by left translation.

One knows that there exists uniquely, up to a constant, the G-invariant positive linear form $\nu_{G,H}$ on K(G, H), and we write

$$v_{G, H}(\phi) = \int_{G/H} \phi(g) dv_{G, H}(g) \quad (\phi \in K(G, H))$$
.

Let U be a unitary representation of H on a Hilbert space \mathbb{X} , and let L(U, G) be the space of \mathbb{X} -valued continuous function ψ on G with compact support modulo H such that

$$\psi(gh) = U(h)^{-1} \delta_{G/H}(h)^{\frac{1}{2}} \psi(g) \quad (g \in G, h \in H) .$$
 (*)

Then, for $\psi \in L(U, G)$, the function $g \mapsto ||\psi(g)||^2$ ($g \in G$) belongs to K(G, H) and one defines the norm N_2 in L(G, H) by

$$N_2(\psi) = \oint_{G/H} ||\psi(g)||^2 dv_{G, H}(g)$$
.

By the completion we have the Hilbert space $\pounds(U,\,G)$ on which we realize the unitary representation ind U of G induced by U as left translation.

2. In what follows, let G be an exponential group with Lie algebra σ : the exponential mapping $\exp:\sigma \to G$ is a diffeomorphism Let σ * denote the dual space of σ . G acts on σ * by the coadjoint representations.

A subalgebra ${\bf f}$ of ${\bf G}$ is said to be subordinate to ${\bf f} \in {\bf G}^*$ if we have ${\bf f}([{\bf f},{\bf f}])=0$. We denote by ${\bf S}({\bf f},{\bf G})$ the set of subalgebras of ${\bf G}$ subordinate to ${\bf f} \in {\bf G}^*$, and set ${\bf M}({\bf f},{\bf G})=\{{\bf f} \in {\bf S}({\bf f},{\bf G}): \dim {\bf f} = \frac{1}{2}(\dim {\bf G} + \dim {\bf G}_{\bf f})\}$, where ${\bf G}_{\bf f}=\{{\bf X} \in {\bf G}: {\bf f}([{\bf X},{\bf G}])=0\}$.

Proposition (L. Pukanszky [6]). Let $f \in S(f, g)$. Then, the following conditions are equivalent:

- 1) H.f = f + f^{\perp} , where H = exp f and f^{\perp} = {l $\in \sigma_f^*$; l(f_f) = 0};
- 2) $f + f' \subset G.f$ and $f \in M(f, \sigma)$;
- 3) $f \in M(f+l, \sigma)$ for any $l \in f^{\perp}$.

A subalgebra $f \in S(f, G)$ is said to satisfy the Pukanszky condition if f satisfies the equivalent conditions of the above propositon.

For $\mathbf{f} \in S(\mathbf{f}, \mathbf{f})$, $\chi_{\mathbf{f}}(\exp X) = \mathrm{e}^{\sqrt{-1}\mathbf{f}(X)}$ (X \mathbf{e} \mathbf{f}) gives a unitary character of the analytic subgroup H=exp \mathbf{f} of G corresponding to \mathbf{f} . We denote by $\rho(\mathbf{f}, \mathbf{f}, \mathbf{G})$ the unitary representation ind $\chi_{\mathbf{f}}$ of H+G G induced by $\chi_{\mathbf{f}}$, H(f, \mathbf{f} , G) the representation space of $\rho(\mathbf{f}, \mathbf{f}, \mathbf{G})$ and by I(f, \mathbf{f}) the set of $\mathbf{f} \in S(\mathbf{f}, \mathbf{f})$ such that $\rho(\mathbf{f}, \mathbf{f}, \mathbf{G})$ is irreducible.

Then, the following theorem is fundamental in the orbit theory.

Theorem (P. Bernat [1], L. Pukanszky [6]). Let f be an element of J*.

- a) M(f, 切) コ I(f, 切) ≠ φ.
- b) For $f \in S(f, f)$, f belongs to I(f, f) if and only if f satisfies the Pukanszky condition.
 - c) For f_1 , $f_2 \in I(f, G)$, $\rho(f, f_1, G)$ (i=1,2) are equivalent.
- d) The mapping $f \mapsto \rho(f, f, G)$ (fe I(f, T)) induces a bijection of the orbit space σ */G onto \hat{G} , the set of equivalence classes of irreducible unitary representations of G.
- 3. When $f_i \in I(f, \sigma)$ (i=1,2) are given, how can one construct an intertwining operator between two equivalent representations $\rho(f, f_i, G)$ (i=1,2)?

For this problem, M. Vergne [7] gave an idea as follows:

Suppose that all groups in question are unimodular. We put $\mathrm{H_i}=\exp\ f_i$ (i=1,2). Let $\mathrm{g}\ \epsilon \mathrm{G}$ and let $\mathrm{\phi}\ \epsilon \mathrm{H}(\mathrm{f},\ f_1,\ \mathrm{G})$, then the function $\mathrm{h_2} \mapsto \mathrm{\phi}(\mathrm{gh_2}) \, \chi_\mathrm{f}(\mathrm{h_2})$ on $\mathrm{H_2}$ is right invariant under the subgroup $\mathrm{H_1} \cap \mathrm{H_2}$ of $\mathrm{H_2}$. We put formally

$$(\mathbf{T}_{2}, \mathbf{f}_{1}, \mathbf{\phi})(\mathbf{g}) = \int_{\mathbf{H}_{2}/\mathbf{H}_{1}\cap\mathbf{H}_{2}} \mathbf{\phi}(\mathbf{gh}_{2}) \chi_{\mathbf{f}}(\mathbf{h}_{2}) d\dot{\mathbf{h}}_{2}$$

where \dim_2 denotes a H₂-invariant measure on the homogeneous space $\operatorname{H}_2/\operatorname{H}_1\cap\operatorname{H}_2$. If this integral converges for any $g\in G$, it is clear that the function $\operatorname{T}_{\mathfrak{Z}_2}\mathfrak{F}_1$ ϕ satisfies the relation (*) for H_2 and that the operator $\operatorname{T}_{\mathfrak{Z}_2}\mathfrak{F}_1$ commutes with the left translations of G.

If G is nilpotent, this idea is verified by G. Lion [5].

Theorem (G. Lion [5]). Let $G=\exp \mathfrak{F}$ be nilpotent, $f\in \mathfrak{F}^*$, \mathfrak{f}_i \in I(f, \mathfrak{F}_i) (=M(f, \mathfrak{F}_i) in this case) and let $H_i=\exp \mathfrak{f}_i$ (i=1,2). For any function $\phi \in H(f, \mathfrak{f}_1, G)$ with compact support modulo H_1 , the integral

$$(T_{f_2} f_1^{\phi})(g) = \int_{H_2/H_1 \cap H_2} \phi(gh_2) \chi_f(h_2) dh_2$$
,

is convergent for any $g \in G$. By continuity we can extend this operator to obtain an intertwining operator between $\rho(f, f_1, G)$ and $\rho(f, f_2, G)$.

Furthermore he obtained a composition formula for these operators which are supposed to be normalized.

For an ordered triple (f_1, f_2, f_3) of $f_i \in I(f, \mathcal{F})$ (i=1,2,3), one diffines the Maslov index $\tau(f_1, f_2, f_3)$ as the signature of the quadratic form Q on the vector space $f_1 \oplus f_2 \oplus f_3$ defined by

$${}^{T}\boldsymbol{f}_{1}\boldsymbol{f}_{2} {}^{\circ}{}^{T}\boldsymbol{f}_{2}\boldsymbol{f}_{3} {}^{\circ}{}^{T}\boldsymbol{f}_{3}\boldsymbol{f}_{1} = e^{i\frac{\pi}{4}\tau(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3})}$$
 id ,

where id denotes the identity operator on the space $ext{H(f, f_1, G).}$

4. Now we make some studies of intertwining operators for exponential groups. Let $G=\exp \mathcal{T}$ be an exponential group with Lie algebra \mathcal{T} as before. Let $f \in \mathcal{T}^*$ and let $f \in \mathcal{T}$ (i=1,2).

Proposition. We have

$$\text{Tr } \text{ad} \, \mathbf{f}_{1} / \mathbf{f}_{1} \cap \mathbf{f}_{2}^{X} + \text{Tr } \text{ad} \, \mathbf{f}_{2} / \mathbf{f}_{1} \cap \mathbf{f}_{2}^{X} = 0$$

for $x \in f_1 \cap f_2$.

$$(\mathbf{T}_{\mathbf{f}_{2}\mathbf{f}_{1}}^{\Phi}) (g) = v_{\mathbf{H}_{2},\mathbf{H}_{1}^{\bullet}\mathbf{H}_{2}} (\Phi_{g})$$

$$= \oint_{\mathbf{H}_{2}/\mathbf{H}_{1}^{\bullet}\mathbf{O}\mathbf{H}_{2}} \Phi (gh) \chi_{f}(h) \delta_{G/\mathbf{H}_{2}}(h)^{-\frac{1}{2}} dv_{\mathbf{H}_{2},\mathbf{H}_{1}^{\bullet}\mathbf{O}\mathbf{H}_{2}}(h)$$

for $g \in G$. If this integral converges, it is obvious that the function $T \not = \not = \not = 0$ satisfies the relation (*) for H_2 and that the operator $T \not = \not = 0$ commutes with the left translations of G.

But, unfortunately, I cannot prove the convergence of this integral and I must put a restrictive condition:

We say that the pair (f_1, f_2) satisfies the condition N if it satisfies at least one of the following two conditions:

- 1) One of the ${\it f}_{i}$ is contained in the normalizer of the other ;
- 2) One of the f_i is of the form $f_i = f_f + f_i \cap n$, where n denotes the maximal nilpotent ideal of f.

If the pair $({\it f}_1,{\it f}_2)$ satisfies the condition N, using the transitivity of the integral $\nu_{\rm G,~H}$ (cf. M. Duflo [2]), one can generalize the results of G. Lion.

Theorem. Let the pair (f_1, f_2) satisfy the condition N, and let $\phi \in H(f, f_1, G)$ have compact support modulo H_1 . Then, for

g & G, the function

$$h \longmapsto \phi(gh) \chi_f(h) \delta_{G/H_2}(h)^{-\frac{1}{2}}$$

on H_2 is v_{H_2} , $H_1 \cap H_2$ integrable, and the operator T_2 , H_1 ;

$$(\mathbf{T}_{\mathbf{J}_{2},\mathbf{J}_{1}}^{\mathbf{J}_{1}}, \phi) (\mathbf{g}) = \oint_{\mathbf{H}_{2}/\mathbf{H}_{1}\cap\mathbf{H}_{2}} \phi (\mathbf{g}\mathbf{h}) \chi_{\mathbf{f}} (\mathbf{h}) \delta_{\mathbf{G}/\mathbf{H}_{2}} (\mathbf{h})^{-\frac{1}{2}} dv_{\mathbf{H}_{2},\mathbf{H}_{1}\cap\mathbf{H}_{2}} (\mathbf{h})$$

can be extended to obtain an intertwining operator between $\rho(f, f_i, G)$ (i=1,2).

Theorem. Let $\mathbf{f}_{i} \in I(f, \mathcal{T})$ (i=1,2,3) such that all pairs (\mathbf{f}_{i} , \mathbf{f}_{j}) ($1 \le i < j \le 3$) satisfy the condition N. Suppose that all operators $T\mathbf{f}_{i}\mathbf{f}_{j}$ are normalized, then

$${}^{T}\mathbf{f}_{1}\mathbf{f}_{2} \circ {}^{T}\mathbf{f}_{2}\mathbf{f}_{3} \circ {}^{T}\mathbf{f}_{3}\mathbf{f}_{1} = e^{i\frac{\pi}{4}\tau}(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3})$$
 id.

The proofs of our Proposition and Theorems are made by induction on dim \mathcal{F} , replacing a polarization $\mathcal{F} \in I(f, \mathcal{F})$ by $\mathcal{F} := \mathcal{F} \cap \mathcal{O}_f + \mathcal{O} \in I(f, \mathcal{F})$, where \mathcal{O} is a non-central minimal ideal in \mathcal{O}_f and $\mathcal{O}_f := \{x \in \mathcal{F} : f([x, \mathcal{O}_f]) = 0\}$.

Remark. If $G=\exp \mathcal{J}$ is algebraic, any $f \in I(f, \mathcal{J})$ is of the form $f = \mathcal{J}_f + f \cap n$ (M. Duflo [4]). So the condition N is always satisfied in this case.

References

- [1] P. Bernat, Sur les représentations unitaires des groupes de Lie résolubles, Ann. Sci. Éc. Norm. Sup., 82(1965), 37-99.
- [2] P. Bernat et coll., Représentations des groupes de Lie résolubles, Dunod, Paris, 1972.
- [3] N. Bourbaki, Intégration, Hermann, Paris, 1963.
- [4] M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. Éc. Norm. Sup., 10(1977), 265-288.
- [5] G. Lion, Intégrales d'entrelacement sur des groupes de Lie nilpotents et indices de Maslov, Lecture Note in Math., 587(1976), Springer.
- [6] L. Pukanszky, On the theory of exponential groups, Trans. A. M. S., 126(1967), 487-507.

[7] M. Vergne, Étude de certaines représentations induites d'un groupe de Lie résoluble exponentiel, Ann. Sci. Éc. Norm. Sup., 3(1970), 353-384.

Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka, 812 Japan