Lec. in Math., Kyoto Univ. No. 14 Lectures on Harmonic Analysis on Lie Groups and Related Topics pp. 1-8

Paley-Wiener Type Theorem

for Certain Semidirect Product Groups

Shoichi ANDO

Kyoto University

§1. Introduction.

We begin with a general setting. Supose we are given a family of representations (T_g^{α}, H) $(\alpha \in A)$ of a Lie group G on a linear space H and that it contains "sufficiently many" representations. We consider Fourier transforms $T^{\alpha}(f)$ of functions $f \in C_0^{\infty}(G): T^{\alpha}(f) = \int_G f(g) T_g^{\alpha} d_r g$, operator fields on A.

If we can restore a function $f \in C_0^\infty(G)$ from the corresponding operators $T^\alpha(f) \cap \alpha \in A$, we may consider that the family contains important informations about "non-unitary" dual of G and we may say that we get a Paley-Wiener type theorem.

It would be desirable that the members of the family are constructed in a same space and that almost all of them are irreducible. But even for regular semidirect product groups this seems to be a difficult problem. So we permit ourselves to employ not necessarily irreducible representations and to proceed in the setting above.

In this paper we deal with a semidirect product goup $G = N \cdot W$ of a commutative normal subgroup N and a connected Lie group W. We assume that N is isomorphic to a real vector space.

§2. Construction of representations.

Let $\hat{\mathbb{N}}$ be the dual vector space of N and $<\lambda$, n>; $\lambda \in \hat{\mathbb{N}}$, n $\in \mathbb{N}$, denote a dual pairing. We extend linear forms $<\cdot$, n> on $\hat{\mathbb{N}}$ to its complexification $\mathbb{N}^* = \hat{\mathbb{N}} \otimes_{\mathbb{R}} \mathbb{C}$ by complex linearity. Put $\lambda(n) = \exp \sqrt{-1} < \lambda$, n>. If $\lambda \in \hat{\mathbb{N}}$; the real part of N*, $\lambda(n)$ is a unitary character. We construct a representation π^{λ} of G induced from N by $\lambda(\cdot)$, which we realize in a space $L^2(\mathbb{W}, d_{\mathbf{r}} \mathbb{W})$:

(1)
$$T_g^{\lambda} \phi(w) = \lambda (wnw^{-1}) \phi(ww_0)$$
 for $g = nw_0$.

Representations π^{λ} are not in general irreducible. These appear in the process of the decomposition of a regular representation into irreducibles, for details see [1].

For non-unitary characters $\lambda \in \mathbb{N}^*$, we follow the same method as in [2]. Let $\| \mathbf{w} \|$ be an operator norm of the action of $\mathbf{w} \in \mathbb{W}$ on \mathbb{N} ; $\mathbf{n} \to \mathbf{w} \mathbf{n} \mathbf{w}^{-1}$ in which we fix once an Euclidean norm $\| \cdot \|$. Put $\mathbb{M}(\mathbf{w}) = \max(\| \mathbf{w} \|, \| \mathbf{w}^{-1} \|)$. Clearly it holds for all $\lambda \in \mathbb{N}^*$.

$$\left|\lambda(wnw^{-1})\right| \leq \exp\left|\left|\operatorname{Im}\lambda\right|\right|\left|\left|\left|\operatorname{n}\right|\right|\right| M(w).$$

For every $t \in R$ consider a space $H(t) = L^2(W, \exp[tM(w)]d_r w)$. Obviously if s < t, we have $H(s) \supset H(t)$ and the inclusion is continuous. Between the spaces H(t) and H(-t) there exists a natural dual pairing

$$\langle \phi, \psi \rangle = \int_{W} \phi(w) \psi(w) d_{\mathbf{r}}^{w}, \quad \phi \in H(t), \quad \psi \in H(-t).$$

<u>Proposition 1.</u> (i) Projective limit $H = \underbrace{\lim_{t \to t} H(t)}_{t}$ is a Frechet space with norms $\|\cdot\|_{+}$.

- (ii) The dual space H' of H is the inductive limit : H' = \varinjlim H(t).
- (iii) The expression (1) gives a representation $\pi^{\lambda} = (T_g^{\lambda}, H)$ also for every $\lambda \in N^*$. It holds that
 - (2) $\|T_g^{\lambda}\phi\|_{\mathbf{t}} \leq \|\phi\|_{\tau}\lambda_{(\mathbf{t};g)},$ where the seminorm τ^{λ} depends on t as follows; for g=nw

$$\tau^{\lambda}(t; g) = \begin{cases} M(w) & (t + 2 \|Im\lambda\| \|n\|), \text{ when } t \geq -2 \|Im\lambda\| \|n\|, \\ \\ M(w)^{-1} & (t + 2 \|Im\lambda\| \|n\|), \text{ when } t \leq -2 \|Im\lambda\| \|n\|. \end{cases}$$

(iv) There exists an equivalence relation:

Remark. When the group W is compact, M(w) is bounded and so $H = L^2(W, d_r^w)$. Euclidean, Cartan motion groups are in this case, cf. [4], [5].

Hereafter we are concerned with a non-compact case of W, while our method works well also for compact cases. We put the following assumption.

Assumption : for any $\alpha \ge 1$, the set $\{w \in W; M(w) \le \alpha\}$ is compact.

When a non-compact group W acts on N through a unitary representation, this property does not hold. For example the universal covering group of 2-dimensional Euclidean motion group is this case.

For this group Paley-Wiener type theorem is given in [6] in a different way.

§4. Fourier transforms.

We take a right Haar measure on G so that $d_r g = dn d_r w$.

where the semi-norm $\tau^{\lambda}(t)$ is defined as follows:

$$\tau^{\lambda}(t) = \tau^{\lambda}(t; Q_{\gamma,\alpha}) = \begin{cases} \alpha & (t + 2\gamma \|\operatorname{Im}\lambda\|), & \text{if } t \geq -2\gamma \|\operatorname{Im}\lambda\|, \\ \\ \alpha^{-1}(t + 2\gamma \|\operatorname{Im}\lambda\|), & \text{if } t \leq -2\gamma \|\operatorname{Im}\lambda\|. \end{cases}$$

Proof is easy.

§5. Differential operators.

To each element X of the Lie algebra \subseteq of G, we attach differential operators:

 $X_{\ell}f(g) = \frac{d}{dt} f(g exptX) \big|_{t=0}$, $X_{r}f(g) = \frac{d}{dt} f(exp(-tX)g) \big|_{t=0}$.

For an element $X \in W$, we define a differential operator $\Im(X)$ on W as follows

$$\partial(X)\phi(w) = \frac{d}{dt}\phi(w \text{ exptX } w^{-1})\big|_{t=0}.$$

To a pair (λ, X) , $\lambda \in \underline{N}^*$, $X \in \underline{N}$, we attach a multiplication operator λ_X by a function

$$\lambda_{X}(w) = \frac{d}{dt} \lambda(w \cdot \text{expt } X \cdot w^{-1}) \big|_{t=0}$$

The correspondence $X \to X_{\ell}$ (or $X_{\mathbf{r}}$) extends to the whole $U(\underline{G})$ and the correspondence $X \longrightarrow \partial(X)$ to the whole $U(\underline{W})$. For later use we define operators $\partial_r(\mathbf{X})$ and $\partial_\ell(\mathbf{X})$ as follows

$$\partial_{\chi}(X) \ = \begin{cases} \partial_{\zeta}(X) \ - \Delta_{G}(X) & \text{for } X \in \underline{\underline{W}}, \\ \\ \lambda_{\chi} & \text{for } X \in \underline{\underline{N}}, \end{cases} \quad \partial_{\ell}(Y) \ = \begin{cases} -\partial_{\zeta}(Y) & \text{for } Y \in \underline{\underline{W}}, \\ \\ -\lambda_{Y} & \text{for } Y \in \underline{\underline{N}}, \end{cases}$$

where

$$\Delta_{G}(X) = \frac{d}{dt} \Delta_{G}(exptX) \big|_{t=0} \text{ for } X \in W_{\epsilon}$$

and $\Delta_{\mathbf{G}}(\mathbf{g}_0)$ means the modular function on $\mathbf{G}:\Delta_{\mathbf{G}}(\mathbf{g}_0)=\mathbf{d}_{\mathbf{r}}(\mathbf{g}_0\mathbf{g})/\mathbf{d}_{\mathbf{r}}\mathbf{g}$. Correspondences $X \longrightarrow \partial_r(X)$, $\partial_\ell(X)$ extend to the whole $U(\underline{\underline{G}})$ by associativity. Now we have

Proposition 3.

(i)
$$T^{\lambda}(X_{r}^{p}Y_{\ell}^{q}f) = \partial_{r}(X)^{p} \cdot T^{\lambda}(f) \cdot \partial_{\ell}(Y)^{q}$$
 for $X, Y \in \underline{W}$,

(ii)
$$T^{\lambda}(X_{r}^{p}Y_{\ell}^{q}f) = \partial_{r}(X)^{p} \cdot T^{\lambda}(f) \cdot \partial_{\ell}(Y)^{q}$$
 for $X, Y \in \underline{\mathbb{N}}, p,q = 0,1,2...$

As for (i), equality holds on a subspace H_{∞} of H, which consists of the functions ψ on W whose distribution derivatives $\partial(X)\psi$ also belong to H for any $X\in\underline{W}.$ Now we have

Lemma 1. $H_{\infty} \subset C^{\infty}(W)$.

This comes from Soboloev's lemma.

Lemma 2. Every functional F on H_{∞} has a form $\langle F \ , \ \psi \rangle = \sum_{j} \int_{W} h_{j}(w) \partial(U_{j}) \psi(w) \ d_{r}w,$ with a finite number of $h_{j} \in H'$ and $U_{j} \in U(\underline{W})$.

This is well known in the distribution theory.

We conclude from Propositions $1 \sim 3$ and Lemmas 1,2

<u>Proposition 4.</u> Suppose a function $f \in C_0^{\infty}(G)$ has a supprot in a compact set $Q_{\gamma,\alpha}$. Then the Fourier transform $T^{\lambda} = T^{\lambda}(f)$ has the properties $1^{\circ} \sim 3^{\circ}$ below:

1° continuity: for any U , V \in U($\underline{\underline{G}}$), there exists a constant C(U , V) such that

$$\begin{split} \left\| \, \partial_{\chi}(U) \, T^{\lambda} \cdot \partial_{\ell}(V) \psi \, \right\|_{t} \, \leq \, C(U, \, \, V) \, \left\| \, \psi \, \, \right\|_{\tau^{\lambda}(t)} \, , \\ \text{for any } t \, \in \, R \quad \text{and} \quad \psi \, \in \, H \, , \, \, \text{while} \quad \tau^{\lambda}(t) \, = \, \tau^{\lambda}(t; \, Q_{\chi, Q}) \, . \end{split}$$

2° equivalence relation:

$$L_{w} \cdot T^{\lambda} \cdot L_{w} - 1 = T^{w \star \lambda}$$
 for $w \in W$ and $\lambda \in N^{\star}$.

3° weak analyticity: for any $F \in H_{\infty}^{\dagger}$, $\phi \in H$ and U, $V \in U(\underline{\underline{G}})$ <F, $\partial_{\mu}(U)T^{\lambda}\partial_{\rho}(V)\phi$ > is an entire function of $\lambda \in N^{*}$.

Indeed, $\partial_{\mathcal{H}}(U) \cdot T^{\lambda}(f) \cdot \partial_{\ell}(V) = T^{\lambda}(U_{\mathcal{H}}V_{\ell}f)$ by Proposition 3 (i). The right hands side is a bounded operator on H by Proposition 2, so we can take $C(U, V) = \|U_{\mathcal{H}} \cdot V_{\ell}f\|_{L^{1}(G, d_{r}g)}$. Proof of 3° is reduced by Lemma 2 to a special case $\langle h, T^{\lambda}_{\varphi} \rangle$, $h \in H'$.

Conversely, properties 1° \sim 3° characterize the Fourier transform of f.

<u>Proposition 5.</u> Suppose to each element $\lambda \in \mathbb{N}^*$, there corresponds an operator T^{λ} on the space H with the properties $1^{\circ} \sim 3^{\circ}$, where 1° is satisfied for a given scale $\tau^{\lambda}(t) = \tau^{\lambda}(t; Q_{\gamma,\alpha})$. Then there exists a unique function $f \in C_0^{\infty}(G)$ such that $T^{\lambda} = T^{\lambda}(f)$ and the support of f is contained in the given compact set $Q_{\gamma,\alpha}$.

Remark. When the group W is compact, the property 3° is sufficient only for F $_{\epsilon}$ H', cf. [4], [5].

Proof is quite similar to the ones given in [2], [3].

§6. Paley-Wiener type theorem.

Now for a compact set $Q_{\gamma,\alpha}$ we consider the set $B(Q_{\gamma,\alpha})$ of operator-valued functions $T=(T^\lambda)$, of $\lambda\in\mathbb{N}^*$ such that each member T^λ is an operator on H, having the properties $1^\circ\sim 3^\circ$. We endow the space $B_{\gamma,\alpha}$ with a topology by the seminorms

$$\|T\|_{U_1,U_2} = \sup_{\lambda \in \mathbb{N}^*} \sup_{t \in \mathbb{R}} \sup_{\phi} \|\partial_{\pi}(U) \cdot T^{\lambda} \partial_{\ell}(V) \phi\|_{t} / \|\phi\|_{\tau^{\lambda}(t)}.$$

For compact sets Q_1 and Q_2 in G such that $Q_1 \subseteq Q_2$, we have $B(Q_1) \subseteq B(Q_2)$ and the inclusion is continuous. We can reformulate our results as follows.

Paley-Wiener type theorem. (i) Fourier transformation is a topological isomorphism from $C_0^{\infty}(Q_{\gamma,\alpha})$ onto $B_{\gamma,\alpha}$.

(ii) If we endow $B = \cup B_{\gamma,\alpha}$ with inductive limit topology, Fourier transformation $f \to T^{\alpha}(f)$ is a topological isomorphism from $C_{\Omega}^{\infty}(G)$ onto B.

Our result is also obtained independently by Mr Shigeru Aoki,
Tokyo University.

References

- [1] A. Kleppner-R. L. Lipsman, The Plancherel formula for group extensions, Ann. Scient. Ec. Norm. Sup. t-5(1972), 459-516.
- [2] S. Ando, Analogue of Paley-Wiener type theorem for the group of linear transformations of a straight line (in Russian),

 J. Math. Kyoto Univ. 14-2(1974), 195-213.
- [3] S. Ando, Analogue of Paley-Wiener type theorem for some matricial groups (in Russian), ibid, 16-2(1976), 375-393.
- [4] K. Kumahara, Fourier transforms on the motion groups,
 J. Math. Soc. Japan 28(1976), 18-32.
- [5] K. Kumahara-K. Okamoto, An analogue of the Paley-Wiener theorem for the Euclidean motion group, Osaka J. Math. 10(1973), 77-92.
- [6] T. Nomura, Harmonic analysis on the universal covering group of certain semidirect product Lie groups, to appear in Japanese Journal 6-1(1980).