Lec. in Math., Kyoto Univ. No. 14
Lectures on Harmonic Analysis on
Lie Groups and Related Topics

pp. 1-8
Paley-Wiener Type Theorem
for Certain Semidirect Product Groups
Shoichi ANDO
Kyoto University
§1. Introduction.

We begin with a general setting. Supose we are given a family
of representations (sz H) {(o0eA) of a Lie group G on g linear space
H and that it contains "sufficiently many' representations. We con-
sider Fourier transforms Tu[f) of functions f ¢ Cg(G) : Ta(f) =
fG f(g)ngrg, operator fields on A.

I1f we can restore a function f ¢ C:(G) from the corresponding
operators T@(f) o € A, we may consider that the family contains
important informations about 'nmon-unitary' dual of G and we may say
that we get a Paley-Wiener type theorem.

It would be desirable that the members of the family are construc-
ted in a same space and that almost all of them are irreducible. But
even for regular semidirect product groups this seems to be a difficult
problem. So we permit ourselves to employ not necessarily irreducible
representations and to proceed in the setting above.

In this paper we deal with a semidirect product goup G = N+W
of a commutative normal subgroup N and a connected Lie group W.

We assume that N 1is isomorphic to a real vector space.



§2. Construction of representations.

Let ﬁ be the dual vector space of N and <A, n> ; X € ﬁ,
n € N, denote a dual pairing.' We extend linear forms <<+, n> on ﬁ
to its complexification N* = i\ ®RC by complex linearity. Put A(n)
= exp V-1<A, n>." If X ¢ Q; the real part of N*, A(n) 1is a unitary
character. We construct a representation WA of G 1induced from

N by A(+), which we realize in a space L2(W, drw):

(1) T}é o(w) = A(nw Dg(ww ) for g = nw

0] 0’

Representations ﬂA are not in general irreducible. These appear
in the process of the decomposition of a regular representation into
irreducibles, for details see [1].

For non-unitary characters X € N*, we follow the same method

as in [2]. Let ||w|l be an operator norm of the action of w e W on

N; n - wnw_l in which we fix once an Euclidean norm Put
M(w) = max(]|w]|], Hw-lﬂ). Clearly it holds for all X e N*.

[rGmw™] < expl] mmafin || M.

For every t ¢ R consider a space H(t) = LZ(W, exp [tM(w)]drw).
ObViously if s < t, we have H(s) » H(t) and the inclusion is
continuous. Between the spaces H(t) and H(-t) there exists a

natural dual pairing

<¢, P> =\/; ¢w) v(w) d_ W, ¢ e H(t), ¥ e H(-t).



Proposition 1. (i) Projective 1limit H = iig H(t) 1is a Frechet
t

space with norms | ¢ ”t'
(ii) The dual space H' of H is the inductive limit : H'=
_l_i_ng H(t).
(iii) The expression (1) gives a representation nx = (TQ,H) also
for every )\ ¢ N*. It holds that
oA
@ ol 2 11y
where the seminorm TA depends‘on t as follows; for g =
nw
[ M(w) (t + 2{jIm\]||n|), when t > -2|Im)\|{n],
T(t; g)= |
-1 ’
[ 0o e + 2pm i, when © < -2Jpm ol
(iv) There exists an equivalence relation:
W*

LWT Lw—l =T for each w e¢ W and X e N*,

T

W

® g >

Jomd

where is eft translation on W and w*p(n) = k(wnw_l).

Remark. When the group W is compact, M(w) 1is bounded and
so H = Lz(w, drw). Euclidean, Cartan motion groups are in this case,
cf. [4], [5]-

Hereafter we are concerned with a non-compact case of W, while
our method works well also for compact cases. We put the following
assumption.

Assumption : for any o > 1, the set {w ¢ W; M(w) ;:u} is

compact.

When a non-compact group W acts on N through a unitary

representation, this property does not hold. For example the universal

covering group of 2-dimensional Euclidean motion group is this case.



For this group Paley-Wiener type theorem is given in [6] in a different

way.

84 . Fourier transforms.

We take a right Haar measure on G so that drg = dn drw.

Proposition 2. If a function f e‘Ll(G, drg) vanishes outside a

compact set QY 0 {g = nw, ||n|] <y, M(W) < a}, then there exists
its Fourier tranform Tl(f) = j” f(g)Té drg. We have
G
A
I 0l < NELLI ol Ay
where the semi-norm Tx(t) is defined as follows:

o (t o+ 2v|mAlp, if ¢

ftv

-l

o) = s )

oree e v Imalp, if t < -2vfImA])

A

Proof is easy.

§5. Differential operators.

To each element X of the Lie algebra G of G, we attach

differential operators:

d d

X, £(e) = g £lg exptX) | o » X £g) = g £lexp(-tNe) | g -
For an element X ¢ W, we define a differential operator 3(X) on W
as follows
3 (X)p(w) = —é-¢(w exptX w~l)|
dt t=0"
To a pair (A, X), X ¢ Ef, X e 53 we attach -a multiplication

operator AX by a function

d -1
AX(W) = EE-A(w-expt Xew )[t=0'



The correspondence X — X£> (or Xr) extends to the whole
G(G) and the correspondence X — 3(X) to the whole U(W). For
later use we define operators ar(X) and aZ(X) as follows

X)) - AG(X) for X ¢ W, { -3(Y) for Y ¢

=

8,(X) = 3,(1) =

Z

¢ X for X ¢ N, -\ for Y ¢

Y =
where
- d AT
AG(X) = EE-AG(exth)}t=0 for X ¢ W.
and 'AG{gO) means the modular function on G :AG(gO) = dr(gog)/drg.
Correspondences X — ar[x), SK(X) extend to the whole U(G)

by associativity. Now we have

Proposition 3.

: AP a4
W T Y] 6

(ii) TA(XE Y3 £

As for (i), equality holds on a subspace H of H, which

2, (0P T (80,0 for X, Y e,

SY[X)p»TA(f)eaﬁ(Y)q for X, Y e

I=

consists of the functions ¢ on W whose distribution derivatives
3(X)y also belong to H for any X e W. Now we have

Lemma 1. H < Cm(W).
This comes from Soboloev's lemma.

Lemma 2. Every functional F on H_ has a form

r
<F o, ys = z‘jw ENOEICRITORNS

with a finite number if hj ¢ H' and Uj e UMW) .

This is well known in the distribution theory.

We conclude from Propositions 1 ~ 3 and Lemmas 1,2

s p,q = 0,1,2..



Proposition 4. Suppose a function f ¢ Cg(G) has a supprot in

A

a compact set QY o Then the Fourier transform T" = Tk(f) has the

3

properties 1° ~ 3° below:

1° continuity: for any U , V ¢ U(G), there exists a constant

C(U, v ) such that

o, @yt 3, wll, < cw, I A »

for any t ¢ R and 1y ¢ H, while TA(t) = (e QY a)'

<F,

2° equivalence relation:

*
L oThel -1 = A
w w

for we W and )\ ¢ N*.
3° weak analyticity: for any F ¢ H', ¢ eH and U,V ¢ UG

Bn(U)TABK(V)¢> is an entire function of A e N*.

A A L .
Indeed, a&(U) T () az(x). =T (Uhvﬁf) by Proposition 3 (i).

The right hands side is a bounded operator on H by Proposition 2, so

we

by

of

an

10

can take C(U , Vv ) = ”Univﬂf”ﬂ @, drg). Proof of 3° is reduced
Lemma 2 to a special case <h, TA¢>, h ¢ H.
Conversely, properties 1° ~ 3% characterize the Fourier transform

f.

Proposition 5. Suppose to each element ) ¢ N*, there corresponds

operator T on the space H with the properties 1° ~ 3°, where

is satisfied for a given scale Tk(t) = Tk(t; QY a)' Then there
A

exists a unique function f ¢ C;(G) such that T = TA(f) and the

support of f 1is contained in the given compact set QY Q"
>

Remark. When the group W is compact, the property 3° is

sufficient only for F ¢ H', cf. [4], [5].



Proof is quite similar to the ones given in ([2], [3].

86. Paley-Wiener type theorem.

ider the set B of
Now for a compact set Qy,a we consi (Qy,a)
operator-valued functions T = (TA), of X € N* such that each member
™ is an operator on H, having the properties 1° ~ 3°. We endow

the space BY o with a topology by the seminorms

3

1B = sup sup suplP, ()T, (v)ell. /1l ¢ |l
UppUz  dXeN* teR ¢ 7 L t )

For compact sets Ql and Q2 in G such that Q1 c QZ’ we have
B(Ql) c B(QZ) and the inclusion is continuous.
We can reformulate our results as follows.

Paley-Wiener type theorem. (1) Fourier transformation is

. - . 0 .
a topological isomorphism from CO(QY,Q) onto By,a'

(ii) If we endow B = UBY o with inductive 1imit topology, Fourier
5

transformation £ - Ta(f) is a topological isomorphism from

cg(G) onto B.

Our result is also obtained independently by Mr Shigeru Aoki,

Tokyo University.
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