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     1. Introduction. Let k be a locally compact, non-discrete, 

totally disconnected topological field, and  R be a representation of 

 G  =  SL2(k). We shall discuss tensor products  6110  R2 of irreducible

unitary representations of the continuous series of  G and give their 

 decompositon formulae into  irreducibles. Analogous problems for some 

real or complex semi-simple Lie groups are discussed by many  authors. 

 For the case of  SL2(k),  R.P.Martin  [2] discussed  6'i70  a of represen-

tations  Rn of the principal series and any irreducibles  R, and gave

their decomposition formulae by using  Mackey's tensor product theorem, 

subgroup theorem, and  Mackey-Anh's reciprocity theorem. The formulae

are expressed as a direct integral on  Gu with respect to the

Plancherel measure, where  G
u denotes the unitary dual of G.

Here, we give the decomposition formulae of R0R,whereR                       n
in2ILL

(i = 1, 2) are representations of the continuous  series. Our method is 

to use essentially only the Plancherel formula on  G, and we give inter-

twining projections of the product space to each irreducible component. 

 4,  T.T;11  1-wm

     2. Preliminaries. Let k be as above,  kx its multiplicative 

group, 0 the ring of integers in k, P the maximal ideal in 0, and 

p an element of kx such that P =  p0. Let dx denote the Haar mea-

sure on the additive group k, normalized that 0 has measure 1.

The valuation is determined by d(ax)  =  laldx, a 0  kx, and  101 = 0,

and put q = Ipl®1 =  #(  0/P ). We assume that q is odd. Put  e a

primitive  (q -  1)st root of 1 in k. Any quadratic extension of  k, 

up to  isomorphism, is given by k(  /7 ), where  r  is an element of the 

set  {s,  p, . For fixed  -t and z = x  / y, we define  z =
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x -7-Ey, and NT(z) =  zz. We set kx= NT(k(VT) 

      —1XX 
N(1) c k()/-). Then kis a subgroup of k 

TT 
      XX 

its subgroup, [ kx: kT ] =  [ k: (kx)2 ] = 2, and                                       T 

representatives of kx/(kX)2 is given by  {.1,  6, 
           x kx = (k)2u E(x)2u p(kx)2 u cp(kx)2.

 Let  G  be  SL2(k)  and  D,  N and N be the

of G  :

 a O-
D = d(a) =  kx}, 

 0  a

 -1 
y-

e n+(y)  =  I  y  e N = = 
         0 1

 0  l'  a  (3- 
Put w =  . Every element g = ,  8 

       -1  0 

 a  0  -1  y  -1  0- 
    g = = a[g]-n[ 

         0 a 0 1 x  1

3. Representations of the continuous series.

 

)  c  k and C =
 x 

including (k  ) as 

 a complete set of

 P.  Elp)

following subgroups

1 

 x

 0 

1
 Ix E

0, is decomposed as

 [g]•n[g]•

of unitary characters n of k ,  Qs the set of characters 

the form  n(x) =  lx1, -1 <  A < 0, 0sp=-ftsp1/4swhereu ( 
 sp 

0d  =6Twhere CT is the set of characters       T=6,131P

the exception of the characters of order two, and 

is the character of order two of C . We set  0 =

u 0sd and 0 = Qp u 0sP u 0d u 0sd*As shown later,

every  0.)  e
u, irreducible unitary representations

constructed, and by such representations  non-trivia ones 

all exhausted. So for the simplicity we roughly  identify

and then use
u instead of Gu, and the Plancherel

is supported on 0.

The signature  of°  kx with respect to I is a

Let  0 be the set 

 x
of k of

 (x) = lx1-1, 
 sp

 f  CT with

 sd =0       Lncl-where n
 US2  USZ U _ _

s _ _sp__d  p

corresponding to

of G are naturally 

 1 ones of G are

 ify 0
11 and GU,

measure for G

character of  kx
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which is defined as follows  :

1 x E kx  , 
 T

 sgnT  x  =1 
 x  x -1  x  E  k  -  k  . 

 T

     For  -Rao  u0
s , we define an irreducible representation  Rn = 

 {  Tn,  S We identify  n and the character of the group  DN+                                                                 by  n(d(a) 

 n+(y)) =  n(a). Let  S be the vector space of locally constant functions
 rt

 Q(n(x)) =  (p  (x) on the group N k  ), satisfying the condition that 
  -1/2 

Thp (d[nwl)(1)(n[nwl) are again locally constant, where  p(x)  =  lx12.

The operator  TX on  S is defined by

 TX  (p(n(x)) = no-1/2(d[n(x)g])  cp(n[n(x)g]ir

or, more usually,

                                            a 
,

13axY                                       8 
TXp(x) =(+ 8) D xI®15(I)k Xg  = 

                                                    8

The representation  & is the induced representation indDNn. For n

 G  0  , it is of the principal series and for  negs it is of the supple-

mentary series and they are unitary with respect to their natural inner

products. The special representationR-1=-Tsp'S_l}is defined 
as a limiting case (  -1 ) of the supplementary series, where

 -1is the space of functions  cp(x) in  S , satisfying (p(x)dx = 0. 
 sp

4. Tensor product representations and bilinear forms. We discuss

the tensor product

(1)  n1, n2  EQp.

 (17)1'  (1)2  = 

(2)  u1COs2  COp

product

a 0 = Tni Tn2 ,S 
ni n2

  R 0 R =I Tn/0 Tn2,S ESn2of the following cases:  nin2ni 

 R  0  R is unitary with respect to the inner product 
 ni .  n2 

 -

(1)1(  xl, x2)  (1)2(  xl, x2)  dxidx2.

. R0  R is unitary with respect to the inner 
 ni  M2
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1 <   -1'  (P2  >  -1 
 r(n,) 

                     -1-1/2 
                            (x- x')cp(xx)(p)dxdx'dx          C_C5-n1P111 x1'22l'( x' x2112'

where  F(•) is a gamma-function on k.

(3)  7l' 72C52s Rn
i0  6 is unitary with respect to the inner product

     1     <(P1' (4)2 >)J) -1/2(x11- x°)7.2-1p-1/2(x22- x') 

                                                                         - 

                                             TL 
          `1 2 ' 

                                (1)(XX)(f)( X'x)dxdx'dxdx'                       1 x1,22l'2122'

The integrals dx are all taken over k.

Further we treat the following cases as limiting cases,

(2)  (4)  , (3) (5) and (6)  :

(4) TEasp'72 E.(5) nsp'72Es.(6)l'n2a. 11sp

      Let  H(  7l'  72), n1 and 72 E S2p Us' be the space of functions 

 cp(  x1, x2) in S7
10 Sn2, vanishing on some neighborhoods of the

diagonal subset of k x k. And let  S(G) be the space of locally 

constant and compactly supported functions  f on G, and  zg the 

right regular representation of G,  T  f(.) =  f(•g). Then we have a 

continuous surjective G-morphism U of  S(G) to  R(  n2) 

Uf =  (1), and  p(  xl, x2) is given by

cp( x , 1+ x) =  cp( n(x),  n[wn+(y)]n(x))

   -11/2+1+x          = 72p(diwn(y)l)7172(d(a)) f(d(a)n(y)n(x))da 

And 

              U( Tgf  )( xl' x2) = T
gM'0 TgTE2(Uf)(  xl'  x2).

For  f1,  f2  C  S  (G) we consider a sesquilinear form 

 B(  f  f2) = <  Uf Uf2 >
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where < > is the inner product on  H(  ni,  n2)  C ST1
10 S .                                                                                          n2

Then it is continuous and by the kernel theorem we have a distribution 

h(g) E  S'(G) such that 

               B( f1,f2)  = h(g)  f1(gg') f2(g')dgdg'.

     Proposition 1.  Corresponding to the cases (1), (2) and (3), the 

kernel distributions h(g), related  with the inner products for

 &  e  R  , are written as follows  : for g =  d(a)n  (y)n(x),
 nl  11,2

                   -1 
(1)  h(g) = n1n2(a)  A(y)  A(x), 

(2)  h(g)  = 1 -IT1n,(a)  A(Y) n-11p-1/2(x),        1,Z
              F(n/-) 

(3) h(g)  -ni1n2(a) n2-1p-1/2(Y) nT.1lc)-1/2(x), 
            F(n-11) r(-21)

where  L(x) is the delta function at 0 on k.

     5. The Plancherel  transform. Representations R
TI of the continuous 

 series are  realized  in another way called the  x-realization. It is the

                                                                           n                                   l Fourier transform 61n =1TTE, SnofRn, in which operators Tgare 

expressed by means of Kri(g1 u, v) on  kx x  kx  :

(Tn  (p) (u) =  Kn  (g) u, v)  (p(v)dv, (  (1)(v)  G  Sn or  S-1,
 if  n=  n  )

 sp 

K (g1 u, v) = n(a)lal A(v a2u) g = d(a),= n(a)lal A(v a-u) g = d(a), 

=  x(xu)  A(v  - u) g =  n(x) , 

=  J
T1( u, v) g = w,

where x is the additive character of k which is trivial on 0 but

is not trivial on  P-1 and  J
n( u, v) is a Bessel function on k.

Let  Sx be the space of functions in S(k),vanishinq on some

neighborhoods of 0. Take  n  E  C  , and extend it a unitary character

of k(  ). The discrete series representation  R
n is realized on

 sx, in which operator is also expressed by means of   T  kernel on  kx x  kx: 
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when uv-1 kx,

 K
n  (g1 u, v) =  sgnT(a)  nT(a)lal  A(v - a2u) g =  d(a),
 T

=  x(xu)  A(v -  u) g =  n(x), 

= a
scTJd (  u,  v) g = w,  n

and when uv-1 9'  kx, T 

 Kn  (g) u, v) = 0 g E G,
 T

where a
Tand cTare some known real values, and 

 Jd  ( u,v) =  I  X( ut +  vt-1)n (t)dxt. 
nT       Ttt = vu-1

     Representation splits into the direct sum of two inequivalent 

 T 

    {r-T  irreducible ones 61  + =1TmT,Sx1kx1'and R=.(11m,Sxlkx- kxf' 
   nnI T

 T  T

where sxikx
Tis the space of functions in  SX supported on kxT, and I 

similar for  Sx  Ikx  -  kx. 

                                                                        

• . 

 T 

       { S Eno7,0      In the case ofR0=Rn =1T , Sx}, the operator Thas an 
analogous kernel Kn0(gl u,  v), moreover when  uv-1 V (kX)2                                                                  it holds

that  Kn0(g1 u, v) = 0. So  Ro splits into the sum of four  inequi-
                                                       I 0 I " valent irreducible representations R+' =  IT 6, Sx1(kx)2}614-'2 = 

                                                             0 

  nE     ,SXis(kX)2\fr R-,1 = {TITG,sx/p(kx)2).,R-o-                                        and'2 =E,Sx1cp(kx)T

 Using these  kernels  Kw(g1 u,  v), we define the Plancherel trans-

form p of f E S(G).

 p  : f   >  \f(g)  Kw(g1 u, v)dg  =  Kw(fl u, v).

For every  f  E S(G),  K
w(f1 u, v) is a function on  kx  x  kx  x  52, and 

it holds that

 (i) Kw( ogfl u, v) =  1 Kw(g1 u, t)  Kw(f1 t, v)dt

 (v)(ii) Kw( f'1 u, v) = Kw( fl v, u)  w(u) 

(iii) Kw( F1 u, v) =  K'  (f1 v,  u),
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(iv)  Kc0( u, v) =  Kw(f u, v) w(v)   CO  (u)  
r

CO (U)(v)w -111(u, v) = Kw(flu,  v)                            LU  

 CO  (V)

where  o is the left regular representation,  Y the complex conjugate
 y

                            -- 

of f,  f'(g) =  f (g-1), f4= f', and  K' w(g1 u, v) = Kco(gl -u,  -v).

    We denote by  dm(w) the Plancherel measure on G ( cf. [1] or 

[7]). The Plancherel formula gives us the equality

 fl (g)f2(g)dg  =f  IKco(f1 u, v)  K-(f2!u, v)  w(u) dudv dm(co).  co  co  (v) 

We define the Plancherel transform  K  (  hl u, v) of h  0  S'(G), in such

a way we have for f  E  S(G)

 rr   co(u)

(v)  h(g) f(g)dgKw( hl u, v) Kw( fl u, v)wdudv  dm(w).

Then combining the equalities (v) and the Plancherel formula 

we can obtain the formula

 ( * ) B(  fl,  f2)  -4(h(g)  f1(gg')  f2(g')dgdg' 

   JSZffKco(h u,v)  K (f"t, u)  K (fT-t, v)   w(t)dudvdt dm(w)
. 
            co11w  w(v)

As to  Kw(hi  u,  v), the following theorem  holds. 

Theorem 1. Let  n  E0  Usip' then K7(h1 u, v) = 0 if n1IT27(-1)

  1. Let  n
Te0,  u  0s,, then  Ku  (h1 u, v) = 0 if  nin2nT(sgn1)  (-1)

 T

   1. 

     By this theorem, we know that in the integration domain of  w in

 ( *  ),  co =  n such that  nin2n(-1) 1 and  w =  n such that12n

(sgn  )  (-1)  1 disappear.

 Again  by  this  theorem, we can take the square root of the chara-

cters  (  nin27)(x) and  (  n1n2n
i(sgn  ))(x) if  n and  nT are in

the above restricted integration domain. So we can set

     -1/21/21/21/2
(X). A(x) = ( 71721n-1p)(x), A(x) = (nn-1n-1(sgnT)p) 712T

 T
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      In the following, we treat 

homogeneous distributions on k.

6. Results of calculations

these 

 of

 multiplicative 

k  (111 u, v) and

charactere as 

 the decomposi-

tion formula of the case (1). Now, we give explicitly  Kw(hl u, v) 

of the case (1). For every  w  e Q, u, v) are obtained as the

sums of four terms of homogeneous distributions of types of

A  p-1/2(u)A—„,-1/2,v,  ( ) or A N                                   _-1/2(u,A _-1/2(v). 
       R/

For  w  =  n  EQ  Pi   T  T 

 •

Kw (h1u, v) =  y A o-1/2(sgns)(u) A p-1/2(sgns)(v).
 5=1,6  ,p,cp 

 

(  (sgry (x) = 1  )

For  w  = m
sp Esp' 

   K
w(h1 u, v)  =  An p-1/2                                       (sgns)(u)asp(sgns)(v) 

 s=1,s,p,sp  sP sp

For  w =  m  Ed' 

 Kw u, v) =  y  A p -1/2a(u)  A p-1/2ua(v) 
 a=±

                        --- -1/  y  
An p -1/2va (u)  Ap2va(v), 

 a=±  T

where  4 and v are following functions  :

and 

 T'(k

 T

 x) 2

 (x) =

 and 

U T"

 0 

1

 T  II

 (kx) 2

 X  E  kx,  T

X E k - kx,

are elements of 

=  kx -  k<.

v (x) =

 ID,  EP  }

 0 

-1 

1

 X E  k  T' 

X E  T1(kx)2, 

 x E T"(kx)2,

satisfying
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For  w  =  n°

-1/2   -1/2
K CO(h)u, v) =  X Anop-1-11s(u)An00ns(v)  , 

 s=1,6,P,sip

where  /i
s is the characteristic function of  s(kx)2. 

     Let t E  kx, we set when  w =  n  E0 u  0
 p sp. 

 ti  n) =  CAmp-1/2  (sgns)  (u) KnIt,tu)du,
when w = nTEQd' 

 + +                            + - 
                      T,( tl nT) =Anp-1/2II-(u) KnWI t,  u)du, 

        T T

and

   + 

T.( t1TL T) = Arc'p-1/2v-(u)(f '1t, u)du, 
 T  T

and when  w =  m°  s' 

 Hs( t)  =
ITop-1/2ris(u) t,  u)du,

and we set  H1  =  H+'1,  HE =  H+,2,  H =  H-'1, and Hep =  H'2.

                 +

      The functionss's(w = nsp),T+,-T, and  H'1 (1=1,2) 

are of functions of representations Rn,  6 _1, Ra+ RmandR-'i                                                            0

respectively. Thus we obtain a mapping T  T 

 f   )'{(1's ,(Ty,h 
                          +,-, iT,-}H+,1,H+,2,_,1, H ,2  I 

 s=1,e,p,ep
                                          mE0p u0sp

,nE0d

     Mappings we have made of the sets of functions and the equality  (i), 

we have a following diagram

 w(xl,x2) <   f  >  Kw(  f'l u, v)  )  4P 

       1

             n, 
(TIT0T-)w <  T f  > Kw( ag(f')1 u, v)   

 -"E
g  §
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             E ++ 4 +• 
                                        -- whereTr=T gs( tJ n), T T ' ( tl n)TgH-'1(t)]

     Propositon 2. The kernels of the mappings  Cp---'30f, and  Q---14 

coincide.

So the correspondence  T(  x1, x2)  t1  co) is bijective.

Now, from the surjectivity of operator U, formula ( *  ),

Theorem 1, the above diagram, and Propostion 2, we have a decompsi-

tion formula of the tensor product of the case  (1).

Theorem 2. The irreducible decomposition of the tensor product

 61  0  61 of representations of the principal series is given by the  El  n2 
following formula : for  cp(  xl, x2)  E  X(  nl,  n2), 

 (,)(  x1,  x2)12dxidx2 =  y                                fnES-2    m(n) l'C  10s(  t12dtidn
s=1EPEP  n(-1)=nin2(-1) 

+  c(nin2)  X m(nJ los( tn11                  sp)sp)21t1-1dt 
 s=1,c,p,cp

+ y  R  Ehd m(nT)t1 nT)12dt +t1 nT)12dt1  -  T  d 

 nr(sgn1)(-1)=7.1n2(-1)

+  d(n1n2)  m(nA  1H4-'1(t) 2dt +  S-1H-1-'2(t)12dt 
                +  C1H-'1(t)12dt  +  S1H-'2(t)12dt)-,

where  {m(n)dn, m(7sp), m(n), m(no)is the Plancherel measure, and 

 n1n2(-1) = 1,  fl  n1n2(-1) =  no(-1), 
 C(R1u2) =  d(71n2)  = 

 0  n1n2(-1) 1,  0  n1n2(-1)  71.(-1).
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     Remark 1. We can compare the formula with the following one which 

is discribed in [2].

 R  0  R-- 41  $Rndii(m)ED4c(n1n2)R-1@ 2(  Rn+ eRn ) rci112 o
PnTEnd T T 

 n  (-1)=nirE2  (-1)  nT  (sgnT)  (-1  )  =nin2  (-1) 

 ED  d(rtfr12) -163:1:/;'l  ED  6i.0'2  ED  6t-,l  e  630,2). 

 •

where  (i)dil(n), the  measure equivalent to the Plancherel measure. 

     Remark 2. Let  Ps(  xl  co) be the usual Fourier transform of

 s(  tl w) with respect to t. For  n  E0p  U 0spe the correspondence 

cp(  x1,  x2)  s( x  n) is written in a more direct manner

                       1 
 Os(  XI =  F((  ni n2n-1p1/2)1/2  sgns) 

 ( n-1n-21n-1p1/2)1/2p-1/2sgns( xi - x2) 

 ( nT_1n2n p1/2)1/2p-/2sgns(xi) (nin-21np1/2)1/2p-1/2sgns(x2) 

 Co(  x1 +  x,  x2 + x)dx1dx2

 7. Formulae for cases (2) and (3). Analogous calculations to the

case (1), we obtain the formulae for the cases (2) and  (3). 

     Theorem 3. The irreducible decomposition of the tensor product

 R  0  R of representations of the principal and supplementary series 
 111  n2

is given by the following formula : for cp(  x1, x2)  E  IC(  71,  T12), 

      1  .r.W -1p-1/2 

                  n 

                  i( xi -  xi)  cp(  xi, x2) cp(  xi, x2)  dxidxidx2 
     r(n)           11

 X  m(n)  j  los(  ti  12dt}  d 
 s=1,s,p,Ep  n( -1)=n

2(-1) 

     + c(112)  m(nsp)flOs(2 nsp)It1-1dt 
 s=1,E,p,Ep
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                                    ++ + X m (nT) {fiW+'( t 1ITT) 12dt + fl lir'-( t1 nT )I2 dq 
  + ll

TeQd 

    _ 

     liT(sgnT) (-1)=n2(-1)

+  d  (n2) m(ns°)H+4(t) I 2dt +H+'2(t),I2dt 

                   +  11-'  (t)  I  2dt  +  2  (t)  I  2dt  ,

where  c(n2) =1 if  n2(-1) = 1 and  c(n2) = 0 if  n2(-1) 1, and 

 d(n2) = 1 if  n2(-1) =  u°s(-1) and  d(n2)  = 0 if  n2(-1)  nts)(-1).

The case  (3), that is n1Xi(x) =  Ix'and n2 (x)=  Ix!x2E s, is

further divided into two cases  :

(3a)  -1 <  X, +  X2 <  0, (3b) -2 < X1 +  X2 <  -1.

 Koa(hi u, v) for the cases (3a) and (3b) are obtained analogously

but a little more complicated than those for the cases (1) and (2). 

In the cases (3a) and  (3b),  Kw(h1 u, v) are expressed by the sums of

homogeneous distributions with respect to u and v, same as before, but 

with coefficients of products of the gamma-functions on k and on 

 k(JT ). We have first the formula for the case (3a), and then applying 

the principle of analytic continuation to (3b), we have the formula for 

this case. 

    For  n  EQ  U  0  we  set
 p  sp. 

 01(  tl  n) = r( An-1p1/2(sgns)) 1 Anp-1/2(sgns)(u) Ku( f'l  t,  u)du

and

 Ys(111°T12' m) =  F(( n1m2uP1/2)1/2(sgns))  F(( ulm2n-1P1/2)1/2(sgns))*

We extend the characters  n1  and n2of  kX to those of k(  vT  )A by

2
ni.(z) = n.(N(z)), and we denote the gamma function on k(VT) by

F (.), then we set

 -1  _1 1/2 , 1/2
gT(1,n2,nT) =r(  ml  n2nT p(sgn  )) FT(n1n2np  (sgn )).
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     Theorem  4. The irreducible decomposition of the tensor product 

 C.  0  R of representations of the supplementary series of the case
 TC1

(3a) is given by the following formula  : for  p(  xl, x2)  E  ni,  n2),

     1 jrn1-1ID-1/2 r(n11)r(n-21)iff( X1 - Xi)T1-2-1-1/2( x2 -)q) 
 p(  x1, x2)  p(  xi,  lq)dxidxidx2dx

 m(n)  ys(  n  n2'  n)ff10;(  t1 n)12dt)drt  s=1,6,p,ep 117_1)=1 

          m(nsp) ys( n11n2'nsps(  tl nsp)12-1t1dt

 s=1,e,p,cp

     Zn
d m(nT) g1(  nl,  n2'  nT)1tl-mT)2dt   +"

7TsgnT(-1)=1 

                                      tl nT)12dt}
                                          Ox + d(-1) m(nce')gs(  nl,  n2, ne)ff H+'1(t)12dt  +11H+'2(t)12dt 

                                       H 

                                                                                                  -I- 
                                    r'1-11(t)1-12'at +r1H-'2(t)12d-Of         .1

where  d(-1)  = 1 if  -1  0  (0)2 and d(-1) = 0 if -1  sit  (kX)2.

     Theorem 5. The irreducible decomposition of the tensor product 

 0            of representations of the supplementary series of the case
 111  17,2

(3b) is given by the following formula  : 

for  p(  x1,  X2)E  IC(  ni,  n2)  n S  O  S,

   1 -1P-1/2                              ( x
11- x') n-21-1/2( x22- x°) "n-11)"n-12)Mini_ 

 p(  x1,  x2)p(  xi,  x2)dx/dxidx2dx

= the similar form to the right hand side of the formula in Theorem 5
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 n  -1-1                                                     - r (n-1) r (n
2)        ) (t an-1   log  q 1 - q  1  +2q(1+ 1  q ) 

     q  1X1+X2+11 log q 1/2-1 
                                                r((n1n2p)) 

                       

•  Clo„  ti n1TE2p1/22.                                                     )1 1  tlX2+X1+idt,

         S where 01( ti nin2p1/2) =1-.(n2p1/2) 1111-X2-1                                                         n in2P1/2( f'l t, u)du.

The last formula shows the in the irreducible decomposition of

 R  0  61 of (3b) occurs a representation  R  1/2 of the supplemen-
n1  n2  min2P

tary series.

 8 Formulae for the limiting cases  (4),(5) and (6). As the limit-

ing cases of (2) and  (3b), we can obtain the decomposition formulae of 

tensor products of representations, at least one of these is the special 

representation. But in the formulae for the limiting cases of (3b), 

the new appeared representation of the supplementary series vanishes.

Theorem 6. The irreducible decomposition of the tensor product

R -I0R(IT2cop ) is given by the following formula : for  (p( x1, x2) 
        IT, 

 EH(  n11  n2)  n  s  s , satisfying  (1)(  xl,  X2)dX1 =  0,

     cli 

    1  

   m
llx- x1I-A1-1([0( x,x) (49( x'x)dxdx'dx           1112l'2112 A.1"÷-1  r(II-2") )

= the right side of the formula in Theorem 3, setting  ni = n. 
                                                                    sp 

     The irreducible decomposition of the tensor product  6i-10  R  TE2

 

(  TE2c52s ) is given by the following formula : for cp( x1,x2),)same as

the above,

 1   lim11(11x1- xil-X1-1 lx2 xl  -X2-1 
      r(IFx1)  r(I  I-x2)J.))) 

 cp( x,x) (p( x',x')dxdx'dxdx'                    12121122

= the right side of the formula in Theorem 4, setting  n, =  n
sp.
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     The irreducible decomposition of the tensor product  R _10  61_1 

is given by the following formula : for  cp(  xl, x2)e  nl,  n2)n 

S  03) S, satisfying  Scp(  xl, x2)dx1  = 0 and  .C.c.p(  xl, x2)dx2 = 0,
            1 -'11-X1-1l-X2-1 limI 

xi-4-1  r(( I-A.')-X 2)-rxx              ST11x2 - x
 (p( x1,x) cp( x'x')dxdx'dxdx'                       1'21°21122

= the right side of the formula in Theorem 4, setting  ni,  n2 =  n
sp.
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