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1. 1Introduction. Let X be a locally compact, non-discrete,

totally disconnected topological field, and ® be a representation of
G = SLZ(k). We shall discuss tensor-products Rl® RZ of irreducible
unitary representations of the continuous series of G and give their
decompositon formulae into irreducibles. Analogous problems for some
real or complex semi-simple Lie groups are discussed by many authors.
for the case of SLz(k), R.P.Martin [2] discussed ﬁn® ® of represen-
tations @n of the principal series and any irreducibles &, and gave
their decomposition formulae by using Mackey's tensor product theoxem,
subgroup theorem, and Mackey-Anh's reciprocity theorem. The formulae
are expressed as a direct integral on (A;u with respect to the
Plancherel measure, where éu - denotes the unitary dual of G.

Here, we give the decomposition formulae of ﬁn1® ﬁnz ;, where ﬁn,

[

(1 =1, 2) are representations of the continuous series. Our method is
to use essentially only the Plancherel formula on G, and we give inter-

twining projections of the product space to each irreducible component.

Dennfe in Aa+zi1 will ke ~uthldicha’d alcanthara

2. Preliminaries. Let k be as above, k*  its multiplicative

group, O the ring of integers in k, P the maximal ideal in O, and
p an element of x* such that P = pO. Let dx denote the Haar mea-

sure on the additive group k, normalized that O has measure 1.

The valuation is determined by dfax) = |aldx, a € k™, and lo] = 0,
and put ¢ = ]pi‘l =#( O0/P ). We assume that ¢ is odd. Put € a
primitive (g - l)st root of 1 in k. Any quadratic extension of Kk,

up to isomorphism, is given by k{ vT ), where 1t is an element of the

set {e, D, ep} . For fixed T and z = x + /T y, we define 1z =
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x - /T y, and NT(Z) = zz. We set ki = Nr(k( /T ¢ ¥° and c. =

- — . . X

NTl(l) c k( VYT ). Then ki is a subgroup of k" including (k )2 as
. X X X X 2
its subgroup, [ k : k_ ] = [ kT : (k)

- 1 = 2, and a complete set of

X X :
representatives of k /(k )2 is given by {l, €, P, ep} :
2

X

K= K920 ex9H% U pxH2 U epx)2.

Let G be SLz(k) and D, N+ and N be the following subgroups

of G :
ato 9
D={d(a) = lae x },
0 a
1 v 1 0
vt ={nty = lyex}y, m={nm = |x e k).
1 X
0 1 a B
Put w = . Every element g = , & # 0, is decomposed as
-1 4] Y &

a[g]-n+[g]°n[g]-

Q
I
I
o QL
i
s
o o
| —1
o
]
—t
——
I
=
A V—
il

3. Representations of the continuous series. Let Qp be the set
X X
of unitary characters mn of k , QS the set of characters of k of

the form m(x) = ]x}x, -1 < A <0, Qsp = {nspk where nsp(x) = §x|_l,

~ ~

Qd = r=s,8,epcr where CT is the set of characters T of CT with

the exception of the characters of order two, and Qsd = {né}» where ng
is the character of order two of Ce' We set Qu = Q U Qs U Qs U Q

P P d
U Q and Q=0Q U U Q, U Qsd' As shown later, corresponding to

sd P sSp d
every o € Qu' irreducible unitary’representations of G are naturally
constructed, and by such representations nQn—trivial ones of G are
all exhausted. So for the simplicity we roughly identify Qu and éu,
and then use Qu instead of éu’ and the Plancherel measure for G

is supported on Q.

The signature of’ k* with respect to T is a character of k> ’
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which is defined as follows
1 "X € k.,

X

-1 xe X' -k .
T

For 1 € Qp U Qg s we define an irreducible representation Rn =

{ T, Sn}. We identify mn and the character of the group DN+ by n(d(a)

n+(y)) = n(a). Let Sn be the vector space of locally constant functions
o(n(x)) = ¢(x) on the group N (== k ), satisfying the condition that
np-l/z(d[nw])@(n[nw]) are again locally constant, where p(x) = \x}z.

The operator Tg on S is defined by
T o (n(x) = o Y2 (@m(x)91) o(ninx)gl),

or, more usually,
a B
T - -1 ax + vy _
Tg(p(X)—T[(B.X+6) |BX+6| (D(m)r g“{

The representation ﬁn is the induced representation ind -+ m. For T
€ Qp, it is of the principal series and for nEQS, it is of the supple-
mentary series and they are unitary with respect to their natural inner
products. The special representation ﬁ=l = { TnSp, S_l} is defined
as a limiting case ( A—> -1 ) of the supplementary series, where

S_1 is the space of functions ¢ (x) in Snsp’ satisfying -YQ(x)dx = 0.

4, Tensor product representations and bilinear forms. We discuss

(ﬁ. = { T T2 1 .
the tensor product n1® ﬁn TR T ,SEIXSEZ} of the following cases:

2

(1) Ty Ty EQP. ﬁnl ® ﬁnz is unitary with respect to the inner product

<@y 9y > = gglpl( Xy x2) mz( X9 x2) dxldxz.

(2) mEQ s T, egp. ﬁn1® an is unitary with respect to the inner

product
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1

< @1 @ > —
1 2 F(nll)
-1 -1/2 ot —_—e .
g&j'nl o) ( Xy Xl) o X, X5) @, ( xi, xz)dxldxldxz,
where T'(*) 1s a gamma-function on k.
(3) 14, MLEQR.. R B & is unitary with respect to the inner product
1 27 %"s Ty T2 .
_ 1 -1 -1/2 _ o -1 ~-1/2 _
SRS LA T NS | ggg TR Ty m %)) myTe T (xy - X))
(g )T (ny,™) ’

@ ( xl} x2)—GET_ETTﬂggydxldxidxzdxé.
The integrals jﬁ dx are all taken over k.
Further we treat the following cases as limiting cases,
(2) — (4), (3) —> (5) and (6) :

(4) Ty € QS ro Ty € Qp. (5) n,e€eQ__, 1, € QST (6) T

P 1 sp 1’

Let ¥( Ty, nz), Ty and T, € Qp U QS, be the space of functions

2

o{ Xq x2) in Sn1® Snz , vanishing on some neighborhoods of the

diagonal subset of k x k. And let S(G) be the space of locally

constant and compactly supported functions £ on G, and T the

g

right regular representation of G, tgf(-) = f(-g). Then we have a
continuous surjective G-morphism U of S(G) to H( Ty nz)
Uf = ¢, and o Xy x2) is given by

1 +

ol x - * x) = ¢( n(x), nlwn (y)In(x))
- 2, .+ - +
= ;b 2 atmt 1) gnllnzm(an £(d(a)n" (y)n()d"a
And
— miti T2
U( rgf ) ( X4 X,) = Tg ® Tg (Uf) ( Xyr X,) .

For fl’ f2 € S (G) we consider a sesquilinear form

f Uf, >

B( fl, 2) = < Ufl' 5
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where < , > 1s the inner product on ¥ ( Ty nz) C Sn ® S _
1

Then it 1is continuous and by the kernel theorem we have a distribution

h(g) € S'(G) such that

B( fl, f2) = gg~}ﬂgd fl(gg') fz(g')dgdg'.

Proposition 1. Corresponding to the cases (1), (2) and (3), the

kernel distributions h(g), related with the inner products for

ﬁn1® an , are written as follows : for g = d(a)n+(y)n(x),
(1) h(g) = nitn,(a) aly) a(x),
(2) nlg) = —i—— niln, @ aw 1200,
r(mqy™)
(3) h(g) = L @ e Y2y w20,

rmih v ngh

where A{(x) is the delta function at 0 on k.

5. The Plancherel transform. Representations ﬁn of the continuous

series are realized in another way called the x-realization. It is the

Fourier transform ﬁn = { T, Sn }of @h’ in which operators T; are

expressed by means of Kn(g] u, v) on k* x K"

A~ N _ g ~ ~ 7 A
(Tg @) (0) = k_(g| u, v) elv)av, ( olv) €S_or S_j,
if n= m_ )
2 SP
Kn(g| u, v) = na)lal alv - au) g = d(a),
= yx(xu) A(v - u) g = n((x),
= J (v g =w,

where x 1is the additive character of k which is trivial on O but

is not trivial on P—l and jn( u, v) 1is a Bessel function on k.

Let 8 be the space of functions in $(k), vanishing on some

A

neighborhoods of 0. Take n. € CT, and extend it a unitary character
of k( /T ). The discrete series representation ﬁn is realized on

T
8§*, in which operator is also expressed by means of kernel on k* x k¥
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when uv T e k;,
2
KnT(g| u, v) = sgnT(a) nt(a)]al A(v - a“u) g = d(a),
= yx(xu) A(v - u) g = n(x),
- . . 4 -
=a  c. JET( u, v) g W,

and when vt g kz,

i
o

€ G
K (g| u, v) g ,

T

where aT and . are some known real values, and

Jd (u, v) = .g _
nr tt = vu

1

- X
-1 x{ ut + vt )nT(t)d t.

Representation Rﬁ splits into the direct sum of two inequivalent

T . ) _ T ]
irreducible ones & & = { T, S'ikX? and K = = {T T8k - kX),
T, T T T
where lekz is the space of functions in s” supported on ki, and
similar for S|k - k.
ng » ng
In the case of &, = K = { T, S }, the operator T has an
0 T
analogous kernel Kno(g\ u, V), moreover when uv_l & (kx)2 it holds
£
that Kno(g[ u, v) = 0. So ﬁo splits into the sum of four inequi-
€ 0

valent irreducible representations ﬁg’l = { T €, SX|(kX)2} , ﬁg’z =

0

T _ n? _ n?
{r €, 8% e (k) %), ﬁo’l A t,lep(kX)Z}, and ﬁo,z —{r S,leep(kx)z}.

Using these kernels Kw{g} u, v), we define the Plancherel trans-
form p of f € S(G).

p: £ —> Sf(g) Kw(g| u, v)dg = Kw(fl u, v).

For every f € S(GQ), Kw(fl u, v) 1is a function on K x k7 x Q, and

it holds that

(1) K ( ogf| u, v) = g Kw(g‘ u, t) Kw(f| t, v)dt
(ii) RCE | w, v) = K (£ v, w2
(iid) K CE| w, v) = K (£] v, u),
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(iv) K ( £% u, v) = K ([ 1, vy lv)

wa)
_ w(u)
(v) : Km—l( £l u, v) = %ﬂ( £| u, v) )

where Og is the left regular representation, £ the complex conjugate
of £, £'(g) = £ (g1, £%=F7, and K' (g u, v) =K, (9] -u, -v).

We denote by dm(w) the Plancherel measure on G ( cf. [1l] or
[71). The Plancherel formula gives us the equality

S £f,(g) £,(g)dg =f

Q

f K (£, u, v) K (& Tu, -2 quav dnm(w) .
f ® 1 o 2 ()

We define the Plancherel transform Km( h| u, v) of h € S$'(G), in such

a way we have for f € S (G)

c r
B h(g) E(g)dg =§ )SK@( n| u, v) K_ (‘El T -ii%vydudv am(w) .
- Q

Then combining the equalities (i)~ (v) and the Plancherel formula

we can obtain the formula

(%) B( £,, £,) =_S§h(g) £,{gg") E,{g")dgdg
=5‘§Y§K (| uw, v) K _(£1] £, w R (E] E -2 Eauavat ano).
Q © @ o ° w (V)

As to Kw(h] u, v), the following thecrem holds.

Theorem 1. Let m €@, U Qgp then Kn(h} u, v) = 0 if m{-1)

™2
# 1. Let m_€Qy U Qgg, then K“T(h| u, v) = 0 if myn,n (sgn ) (-1)
# 1.

By this theorem, we know that in the integration domain of  in

( » ), w = mn such that nlnzn(-l) #1 and o = m_ such that Ty,
(Sgnr)(—l) # 1 disappear.

Again by this theorem, we can take the square root of the chara-

cters ( nlnzn)(x) andv ( LT, (sgn Y)(x) if m  and n. are in
the above restricted integration domain. So we can set
-1 -11/2,1/2 -1 -1 1/2,1/2
An(x) = (mm, n o / ) / (x), A (x) = ( mymy"m, (sgn_)o / ) / (x

T
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In the following, we treat these multiplicative charactere as

homogeneous distributions on k.

6. Results of calculations of k (h| u, v) and the decomposi-
W
tion formula of the case (l). Now, we give explicitly Km(hl u, v)
of the case (l). For every w € Q, Km(h[ u, Vv) are obtained as the

sums of four terms of homogeneous distributions of types of

Ano_l/z(u)ﬁgb_l/z(v) or AnTo'l/z(u)KEIb'l/2<V).

For w=mneqQ_,

P
K (h| u, v) = ) Anp_l/2(sgns)(u) K;p_l/z(sgns) (v) .
s=llelplsp
( (sgny)(x) = 1)
For w = nsp (S Qsp'
Km(hl u, v) = y A_ p—l/z(sgns)(u) A p_l/znsp(sgns)(v).
S=lIEIpI€p SP SP
For o = n_ € Qd’
- —_-1/2
K (h] u, v) = ) A p 1/2,8 () A_p /2% (v)
=t T T
+ ) A o -1/2a (u) A o_l/zvq(v),
a=% T T
t T
where u and v are following functions
X, 2
1 x € k< 1 x € kD)™
7
+ - X
wheo - W) = -1 ox ekl - (k97
X X
0 x € k- k., 0 < € kx _ kx )
X
€
0 % € ki, 0 X kT,
vix) = vix) ={ -1 x€ 1 (x93,
X X
1 x €k - kr’ 1 x € T"(kx)z,

and t' and T are elements of {e, P, ep} satisfying

k2 U (k92 = kS - KX,
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_ -1/2 —_— =1/2
K (h] u, v) = ) A P ng(u) A 0 ng (V)
s=1,e,p,ep € €

where Ng is the characteristic function of s(kx)z.

Let t e kX, we set when w =1ne€Q_ U Q ’

P Sp
= '1/2
@s( t| n) = SiAnp (sgns)(u) Kn(f'| t, u)du,
when o = T, € Qd’
v Tt ) = a o Y/? i‘(u) K (£'| £, u)du
| ! = - s} H T 7 v
T T
and
- -1/2 t G
y ( €| nT) AnTp v (u) K“if I t, w)du,
and when @ = né,
_ =1/2
HS( t) ‘SAHOQ ns(u) Kngf'| t, u)du,
— +il — +12 — “rl — "12
and we set Hl = H , He = H , Hp = H , and Hep = H .
+ * - t t i
The functions @S, @S(w = nsp),w o, v , and H 7 (i=1,2)
| > - + - i,
are of functions of representations & , ® ., & ', & , and &.°
T -1 nT nT 0
respectively. Thus we obtain a mapping
- + +
f— {0 } AvtT), lv™ 7}, gtrt, wte?, wmet, w2 ]
+ +

s=1,e,p,epP

Mappings we have made of the sets of functions and the equality (i),

we have a following diagram :

©(x,%,) ¢ £ > kK (f']lu v) — P

| l l |

T1 T ¢ ]
® TS o ¢ T £ Ky 0g (£ )| u, V) ——> 7]&%@

(T
g g w
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T to* i
g

+ .
where "UééP = [ Tg @s( t] w, Tg vt nT), T H'rl(t)] .

Propositon 2. The kernels of the mappings ¢—> £, and @———5§§

coincide.

So the correspondence ol Xy X2) g éﬁ( t[ ®) is bijective.
Now, from the surjectivity of operator U, formula ( * ),
Theorem 1, the above diagram, and Propostion 2, we have a decompsi-

tion formula of the tensor product of the case (1).

Theorem 2. The irreducible decomposition of the tensor product

ﬁn ® Rn of representations of the principal series is given by the
1 2

following formula : for of X1 x2) e g( Ty, nz),
(o x.) | 2dx dx, = m(n) {\ e ( t] my’at)dn
o xy, x5) | 7dx,dx, ) {| legC ] ™)
el ;
s=1,€e,p,EpP

n(—l)=n1ﬂ2(-l)

' 2, ., -1
+ c(nln2)5=lz€ ) gpm(nSP)J-IQS( ] mgp) | Tft] At
j +, 5 2 -2 2
o y m(n,) {S\W’(tj n e+ T T e) m) | fae
+ TLTeQd
nr(sgnr)(—l)znlnz(-l)

+ a(mnymn,) mmug){ S}H+'l(t);2dt + K}H+'2(t)]2dt

+ flﬂ"l(tuzdt + glﬂ_’z(t)izdt},

where {m(n)dn, m(nsp), m(nT), m(néf} is the Plancherel measure, and
1 nlnz(—l) =1, 1 nlnz(—l) = né(—l),

c(nlnz) = d(nlnz)
0 T, (1) £ 1, 0 mym, (-1) # mi(-1).
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Remark 1. We can compare the formula with the following one which

is discribed in [2].

R ® R ::4{& R duin) ® 4c(nm,) R_, & 2] ( R e K] ")
i3 o Q moH T 1"2 -1 nregd T .
n(—l)=nln2(—l) RT(SgnT)(-l)=Klﬂ2(—l)

+,1 +,2 -, 1 -,2
® d(nym,) {80’ o ®;'° e &' 8 & } )
where {@du(n), ® X}is the measure equivalent to the Plancherel measure.

Remark 2. Let @s( ¥| @) Dbe the usual Fourier transform of

@S( t! w) with respect to t. For mn €Q__ U QS the correspondence

.
ol X9, X5) —> %S( x| m) is written in a morepdirect manner :

o (x| m =y nytn 22 sgn )

gf( nzln“§n°lpl/2)l/zp_l/zsgns( %, = %)
( nzlnzﬂ 01/2)1/20-/ZSgnS(Xl) (nlnglnol/z)1/20_1/2Sgns(x2)
o ( X+ X, %, + x)dxldxzo

7. Formulae for cases (2) and (3). Analogous calculations to the

case (1), we obtain the formulae for the cases (2) and (3).

Theorem 3., The irreducible decomposition of the tensor product
ﬁn X ﬁn of representations of the principal and supplementary series
1 2

is given by the following formula : for of Xq x2) €  ¥H( Ty nz),

-1 -1/2 ot e el '
1—1 Syg'nl o) ( Xq xl) (o} X1 x2) @ X{ x2) dxldxldx2
)

= 7 yﬂ m () {fl@s( el m|%at} a
p

s=l,€,P:€P n(-l)=R2('l)

+ c(mny) 1 m(nsp)J’|®s( t| nsp)|2[t|_ldt
s=1,e,p,ep
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+ +
+ ¥ ¥ m(r_) { Jm*'“( tin );2dt +f|ty""( t!nr)lzdt}
i T_e® T T
- T d
nT(SgnT)(—l)=n2(-l)
+ d(m,) m(ngf{.(|H+'l(t)|2dt + j]H+'2(t)12dt
+ g}H"l(t)|2dt + ‘g{H-'z(t)\zdt}',
where c(nz) =1 if nz(—l) =1 and c(nz) =0 if nz(—l) # 1, and

d(n,) =1 if m,(-1) = ng(—l) and d(m,) 0 if  m,(-1) ¢.ng(~1).

The case (3), that is m (x) = 1x|)”1 and m,(x) = |x})”ze e, is
further divided into two cases :
(3a) -1 < xl + kz < 0, (3b) -2 < kl + K2 < =1.

Kw(hl u, v) for the cases (3a) and (3b) are obtained analogously
but a little more complicated than those for the cases (1) and (2).
In the cases (3a) and (3b), Kw(h\ u, v) are expressed by the sums of
homogeneous distributions with respect to u and v, same as before, but
with coefficients of products of the gamma-functions on k and on
k(/T ). We have first the formula for the case (3a), and then applying
the principle of analytic continuation to (3b), we have the formula for
this case.

For m €. U Q we set
P sp’

—101/2(

ol( ] m) =r(A; sgn,)) S Anp—l/z(sgns)(u) K (£'] t, wadu

and

YS( LAY ) = r(( nlnznpl/z)l/z(Sgns)) r(( Hlﬂzn_lol/z)l/z(Sgns)).

We extend the characters T and T, of k* to those of k( /;-)X by
ni(z) = ni(Néz)), and we denote the gamma function on k( VT ) by
FT(v), then we set
_ -1 -1 1/2 1/2
gt( . “2'“r) = TT( LS PY S (sgnr)) FT( TP (sgnx)).
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Theorem 4. The irreducible decomposition of the tensor product

@n ® ﬁn of representations of the supplementary series of the case
1 2

(3a) is given by the following formula : for of Xy x2) € ¥ ( Ty nz),

1 ( -1 -1/2 oy =1 =1/2 o
ra’h ragh gyi(nl S T U L e
1 2

—
o( Xy x2) o ( X3 xz)dxldxidxzdxé

= ) 59 m(n) v ( my, n,, n){f}@é( t] n)Jng}dn
s=1,e,p,ep ﬁ%—l)=l
2 -
+ ming ) vg( My My, M) §|®;( el ng,) [ Tlel tat
s=1l,e,p,EpP
5 +, % 2
¥ ! lo, M) gplmye my m) {V1er (el ny|%ae

nngnT(~l)=l s )
+_fﬂw T dt}

+d(-1) mmlg_ (g, my, n;){‘([H+’l(t)|2dt +‘§|H+’2(t)12dt
v (aleer 24 (=02, 1250\
J|H (t)y|“at + .)|H ()| at ¢,

where d(-1) = 1 if -le€ (k92 and d(-1) = 0 if -1¢ (kK9°%.

Theorem 5. The irreducible decomposition of the tensor product
ﬁn ® Rn of representations of the supplementary series of the case
1 2
(3b) is given by the following formula

for o Xy, x2)€ H( Ty, nz) NSRS,

1 ggfxﬂn—l -1/2 o -1 =172 ,
— — o} (%, - x3) , P ( x5, - xJ)
D b 1 17 %) T 2 T %)

(nl

T el Ty, 1 ]
o ( Xy, %,) 0 ( X1 xz)dxldxldxzdx2

= the similar form to the right hand side of the formula in Theorem 5

— 315 —



T -1 -1
1 Tog 5 ) 1 - C]_l - l"(Ttl ) F(th )
1/2)—1)

+2,( 1+ 1) ( tan”
a q

l}\.1+)\.2+],| lOg q r ( (TElTI,ZD

l/2)|2|t]A2+K1+ld

§|®'( t] T TP t,

where o' ( tf nlnzpl/z) = F(nzpl/z)—glul_xz_l K /2 ( £'] £, uw)du.

Mim20

The last formula shows the in the irreducible decomposition of

ﬁn ® ﬁn of (3b) occurs a representation & of the supplemen-
1 2

imept/ ?

tary series.

8 Formulae for the limiting cases (4),(5) and (6). As the limit~

ing cases of (2) and (3b), we can obtain the decomposition formulae of
tensor products of representations, at least one of these is the special
representation. But in the formulae for the limiting cases of (3b),

the new appeared representation of the supplementary series vanishes.

Theorem 6. The irreducible decomposition of the tensor product
Q& ( m,€Q.. ) is given by the following formula : for o( x,, xX,)
=17 T, 27"p 17 72

ex( Ty “2) N S® S , satisfying S(p( Xy xz)dxl = 0,

. 1 {( -A,-1 D —
lim SH %, - x1] ™! e %, x,) o %I, x.)dx,dx!dx
A > -1 F(I I Al) 1 11 1 2 1 2 1771772

= the right side of the formula in Theorem 3, setting o= nsp.

The irreducible decomposition of the tensor product ﬁ_l® ﬁn
2

( THEQ ) is given by the following formula : for of Xqs x2), same as

the above,

) 1 _ -A-1 -A2-1
lim — — ffjjh|x - x| |%, - x| 2
Mm=>-1or( TP (T o 272

————e
ol Xy X2) @ X1 xz)dxldxldxzdx2

= the right side of the formula in Theorem 4, setting n o= nsp.
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The irreducible decomposition of the tensor product R_l® ﬁ_l
is given by the following formula : for ¢ X xz)e 7 ( Ty nz)f\

s ®S, satisfying'~§m( Xq X2)dxl = 0 and _§m( Xqs xz)dx2 =0,

. 1 Sg‘y v A -1 _ory A=l
lim — - %, = %3] | x x|
A==l (| | kl) r(l | kz) 1 1 2 2

Ao—> -1

o ( Xy x2) @ ( xi, xé)dxldxidxzdxé

= the right side of the formula in Theorem 4, setting Tyr Ty = nsp‘
Bibliography

[1] I.M.Gel'fand, M.I.Graev and I.I.Pyatetskii-Shapiro: Generalized

functions, vol.6. Representation theory and automorphic functions,Izdat.

Nauka, Moskow 1966; English transl. Saunders,Philadelphia,Pa.,1969.

[2] R.P.Martin: Tensor products for SL, (k), Trans,AmerQMathQSbca 239

2
(1978) ,197=-211.

[3] M.A.Naimark: Decomposition of the tensor product of irreducible
representations of the proper Lorentz group into irreducible represen-
tations.I. The case of the tensor product of representations of the
principal series, Trudy Moskov. Mat. 0b&&. 8(1959),121-153, A.M.S.
Transl. series (2) 36(1964),137-187.

[4] : Decompsoition of the tensor product of irreducible
representations of the proper Lorentz group into irreducible represen-
tations. II. The case of the tensor product of representations of the
principal and supplementary series, Trudy Moskov. Mat. Ob%d, 9(1960),
237-282, A.M.S.Transl. series (2) 36(1964)137-187.

{5] : Decomposition of the tensor product of irreducible
representations of the proper Lorentz group into irreducible represen-
tations. III. The case of a tensor product of representations of the
supplementary series, Trudy Moskov. Mat. ob%Y. 10(1961),181-216, A.M.S.

Trans. series (2) 36(1964), 187-229.

— 317 —



[6] P.J.Sally,Jr. and M.H.Taibelson: Special functions on locally
compact fields, Acta Math. 116(1966), 279-300.

{7} P.J.sally,Jr. and J.A.Shalika: The Plancherel formula for sS1(2)

over a local field, Proc.Nat.Acad.Sci.U.S.A. 63(1969),661-667.

[8] J.A.Shalika: Representations of the two by two unimodular group over
local fields.I, Seminar on representations of Lie groups, Institute

for Advanced Study,Princeton,N.J.,1966.

[9] F.williams: Tensor products of principal series representations,
Lecture Notes in Math., vol. 358, Springer-Verlag, Berlin and New-York,

1973.

Masao Tsuchikawa

Department of Mathematics
Faculty of Education

Mie University
Kamihama-cho, Tsu-shi 514

Japan

— 318 —



