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Let G be a locally compact group and H its closed subgroup. We
denote the left cosets space H\G by X . The purpose of this paper
is to extend the Pontrjagin-Tannaka duality theorem for groups (see [3])

to factor spaces X .

In 1966, N. Iwahori and M. Sugiura [2] gave a notion of '"repre-
sentations of X " for the case G 1is a compact Lie group. And they
proved a duality relation which holds between the categories of such
factor spaces and of families of these 'representations'.

After their works, in this paper we shall give an analogous defini-

" for gemeral pair (G,H) , and consider a

tion of ''representations
duality property for these categories, which is essentially similar to

so-called weak duality for the case of groups. We call this property

I-S duality.

The biggest difference between the duality theories for factor
spaces and for groups is as follows. As is well-known, the group duality
is always valid, but for factor spaces, the I-S duality doesn't hold in

general. In addition, a necessary condition (we call it (P-1)) for our
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I-S duality leads us to some, even somewhat strict, structural rest-
riction for the closed subgroup H in the pair (86). We have not able
to determine yet a satisfactory criterion for the validity of I-S
duality. But we give a sufficient condition (P-3) for it (85, Theo-
rem 1). In the case that G is a Lie group, this is necessary at the

same time.

In 81, we set up our definitioﬁs and givé the notion of I-S duality.
And in these words, our main aim can be stated as "to investigate for
what pair (G,H) I-S duality holds".

In §2, we consider the key separating properties which play im-
ﬁortant rolls for our'theory, and establish‘some relations between them.

§3 supplies tools for the proéf of our duality, and using this we
define an important subgroup (the core subgroup) in G (84).

§5 is the main part of this paper. In this section we give the main
theorem (Theorem 1) which gives our duality.

' §6 is devoted to discuss that the requirement of I-S duality

deduces a strict structural restriction for the subgroup H .

§1. Description of the problem

Notations.
G ‘¢ a locally compact group.
H : a closed subgroub of G ( for simplicity, we assume
H#G).

Hereafter we write such a pair by (G,H) .

X H\G.

m(g) : the canonical image of g e¢ G in X .

i

g
G operates on X as a transformation group, X 2 x* xg € X .
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CO(X) :  the space of all complex valued continuous functions
with compact supports on X .

Q= { unitary representation W of G 1. (We can avoid the
set theoretical difficulties by bounding the dimensions of
representations by some sufficiently large cardinal number.)

w= { Hw), TgG») } . Here H(W) 1is the space of repre-
sentation w , and Tg@w) are the representation operators.

HHGD) = { H-invariant vector v in ka) }
Obviously HHG») is a closed subspace of H(w) .

v } for a vector v € H(W)

B ={geo | T, @)V

it

H ={ge o l Tg(w)v v for any v € HHGD) }

W
for a representation w € £ .,

It is easy to see HV and Hm are closed subgroups of G .
g = Indg lH = { H(), Tg(G) } : the representation of G

induced from the trivial representation 1H of H.

Definition 1. A representation of X is a pair {w, Y} of

a unitary representation w of G , and a map YV from X to H(w)

such that
(1-1) P(xg) =T _l(w) W(x)) for any x¢ X, g€ G .
g
Lemma 1. For any representation {w, ¥} of X,
(1-2) T, @) (V(&)) = vGEh Yy = Y@ for any h e H .
That is, Y(a) « HH(m) .
Proof, Trivial from (1-1) in Definition 1.

Conversely, for an w €  and a Vv ¢ HH(w) » 1f we define a vector

valued function Y on X by
a-» VR =T v
g

then the following is wvalid.
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Lemma 2. The pair {w, ¥} is a representation of X .
Proof. It is easy to see that ¥ satisfies (1-1).

By Lemmata 1 and 2, giving a representation {w, Y} of X is
equivalent to giving a pair W,v) of a representation W of G and a
vector v in HHQ») . Therefore, hereafter, we use the notation

(1-4) V= ,v)

to show a representation {w, ¥} of X such that v = Y(e) ¢ HHG») R
following the convenience.

We show the set of all representations Yy of X, by Y .

Definition 2. For two representations wj = (wj,vj)

(G =1, 2) of X,

1) wl ¥ wz > ¥y is equivalent to wz by U, if

(1) Wy is equivalent to w, with the intertwining operator U ,
and

(2) le =V,

2) wl @ wz = ( Wy ® Wy, s vy ® v2) (direct sum),

3) wl ® wz = ( Wy ® Wy 5 vy ® v2) (tensor product).

Lemma 3.‘ For any x € X, and any V, wl’ wz eV,

1 by b, = TR ) = U,

2) Wy @ V)00 = V) e Uy

3) W @V = B ) @ Yyx)

4) vl = Hv@ll.

Proof. Applying (1-2) to Definition 2, we obtain 1) Vv 3)
easily. And 4) follows from (1-2) immediately. q.e.d.

In a similar way as in the case of group duality theory, we define

our notion of "birepresentation' over VY .
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Definition 3. A vector field V = { u@) } over Y is called

a birepresentation over Y when UV takes its value u®) in H(W)

for ¢ = (W,v) and

1 Yy oy v, = U =ul,)
2) uly @ V) = u@) e u®,) for Vi, ¥, ¥,
3) u®@, ®v,) = ul;) ® u@,) for Vi, ¥, ¥ .

4) there exists a common finite number M such that
Haa) ! s m[[v@E)|]=u|]v]] for any Ve ¥ .

Moreover, we call s-birepresentation, if a birepresentation

v o= {u@)} satisfies the following additional condition.

5) u@) # 0 for any Yy = (W,v) € ¥ (v #0).

Lemma 3 means that for any x € X , the vector field UX = {W(x)}
gives a s-birepresentation over VY .

The zero vector field 0 = {o@) = 0}¢ cy 1is also a birepresen-
tation. We call it the trivial birepresentation. In §5 , we shall
give an example of non-trivial birepresentation which is not the form

of UX for any x ¢ X .
Now we can state a duality property, which we shall discuss in this
paper.

[I-S duality] For any s-birepresentation U = {u(@)} over

¥ , there exists a unique element x in X such that v = UX s

that is, u(yP) = P(x) for any Y e V¥ .

Our main problem is as follows.

Problem. For what pair (G,H), does I-S duality holds?
Lemma 4. Under the assumptions 1) and 3) of Definition 3, the

constant M mentioned in 4) can be take as M =1 .
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Proof. If there exists an € > 0 and ¥ such that

Hu@)l] > @e)lv@]] , from 3)

m . ng
lluc%%’w>ll=llr?® u@)| =l e > @e)Mv@™ = @) Ty @l].

This contradicts 4).

Example 1, When G 1is a compact Lie group, I-S duality

holds by the results of Iwahori and Sugiura[2].

Example 2. When H is a normal subgroup of G , by
Lemma 1, we can regtrict ourselves to representations of the factor
group H\G . This reduction leads us easily to the equivalency of I-S
duality for H\G as a factor space and the group duality as a factor

group. That is, I-S duality holds in this case too.

Example 3. Put G = SL(2,C) , the group of 2X2-matrices
g = ’[f 3] with determinant one on the complex field € . And put
= .

H= {[ 3 :—l]} s the subgroup of all upper triangular matrices.

It is well-known that for any irreducible representation ® of
G , the restriction wIH of w to H is irreducible too. This
asserts the trivial representation lG of G 1is the only irreducible
we 2 which has non-trivial H-invariant vectors, i.e., HHGD) # 0.
This means, for any ¥ = (w,v) in ¥ , ¥(g = y() for aﬁy
ge G. |
Therefore representations on H\G do not separate elements of

X = H\G . So I-S duality fails in this case.

Example 4. : We must remark that I-S duality is a duality
for factor spaces but not for homogeneous spaces. In other words, I-S

duality depends not only on the structure of homogeneous space H\G ,
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but also on the pair of groups (G,H) . The following example given by

Prof. T. Hirai shows this fact.

Put G1 = SL(2,C) , Hl = {{3 Z—l)} s just as in Example 3.
And put G2 = SU(2) and H2 = SU(1) . Then obviously Hl\Gl = H2\G2

as homogeneous spaces.
By Example 3, I-S duality fails for the left hand side. However
since SU(2) 1is compact, Iwahori and Sugiura's result (Example 1)

assures I-S duality for the right hand side.

82, Separating conditions

Definition 4. We introduce the following different separating

conditions for the pair (G,H) .

(P-0) There exists an W ¢ £ such that Hw £ G .
(P~1) H= nH , where ®w runs over & .
(P-2) H = H(j . That is, H-invariant vectors of

o= Indg 1, separate the point e from other points in X .

(P-3) There exists a fundamental system of neighborhoods

of e in X , consisting of H-invariant sets.

Lemma 5. (P-2) = (P~1) = (P-0) .

Proof. This is trivial from the definitions.

Lemma 6. I-S duality = (P-1)

Proof. If I-S duality holds, representations P ¥ of X

must separate each points of X . Therefore for any g # é in X ,
there exists a Uy = (w,v) such that Y(g) = T _l(w)w(é) # P , i.e.,

g
g & H . This leads us to (P-1) . q.e.d.
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The following property is important.

Proposition 7. If (G,H) is a (P-1) pair, there exists a

non-trivial G-invariant measure on X .

This Proposition 7, excludes Example 3 from candidates for (I-S)
pair.
To prove Proposition 7, we prepare some. supplementary lemmata which

are also useful in later 8§'s.

Lemma 8. Let X, be a locally compact space, and F = {Fa}
is a family of closed sets in X1 , satisfying nF, = {x} (xe x).
Then for any compact set Cl in Xl and any neighborhood Vl of
. . PR » . F
X din Xl , there exists a finite subset {Fj} 1<j<N in ,such
N .
that Cln (rj Fj)cvl .
J
Proof. We can assume Vl is open without loss of generality.

Then Cl - Vl is compact, and {(Fa)c} is its open covering.

Thus we can take a finite open covering,

c

q (Fj) o Cl - Vl .
J
This means the conclusion.
Corollary. For a (P-1) pair (G,H) , any compact set C

in X , and any neighborhood V of e in X , there exists a finite

family of H-invariant open sets {Fj} 1<j<N such that
N
cn( n F,) c V.
. J
J
Proof. For any vV ¢ HH(w) and € > 0 , put
(2-1) E(e,v) = {ge G| |<v,v> - <Tg(w)v,v>| <e},

(2-2) F(e,v) W(E(N,V)) .

1l

Since v 1s H-invariant,
(2-3) HE(e,v)H = E(g,v) .
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By the definitions, E(€,v) dis a neighborhood of e , therefore
F(e,v) 1is an H-invariant neighborhood of e in X . And the assum-

ption (P-1) assures

(2-4) H = nE(e,v) (w e &, VEHH(‘*’) » €2 0),
(2-5) {&} = nFE,v) .
Put X = X, , F = FE,vy) , C= C, in Lemma 8, and we obtain a

finite family {Fj = F(€j,vj)} such that

cn (nF,)cvV.,
3 J

Lemma 9. For a (P-1) pair (G,H) , any compact set C0 in
H , and any neighborhood V of e in X = H\G , there exists a neigh-

borhood W of e such that W& V  and WCO cW.

Proof. We may assume V is compact. In Corollary of

Lemma 8, put C = VCo and W=Cn{(n Fj) <V . Then WCO c VC0 =C ,

J
and WCO cWH< (nFHH=(n Fj) . Therefore WCO ccn (n Fj) =W .
3 h| 3
Lemma 10. Assume that for any hl € H and any neighborhood V

of & , there exists a neighborhood W of e din V such that
Whl W .

Then there exists a non-trivial G-invariant measure in X = H\G .

Proof. Let AG s AH be the modular functions for Haar
measures on G and H respectively. A. Weil's criterion ([6] p 45)

shows, the existence of G-invariant measure on X 1is equivalent to

(2-6) §(h) = AG(h) / AH(h) =1 for any he H .

So if there is no non-trivial G-invariant measure on X , for scme
h, ¢ H, 5(h1) > 8. Let £ bea positive continuous function such
that &(hg) = 6(h)E(g) for any he H and ge€ G , then there
exists a quasi-invariant measure U on X satisfying

(du(ggl)/du(g)) = E(ggl)/i(g) (see [1]).
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Take an open relative compact neighborhood Wl of e in G such
that,

(E(e)/2) < E(g) < 26(e) for any g in W, .

- -1 _ -
Put Vl = Wl n thlhl and V = ﬂ(Vl) 3 e .

From the assumption, there exists a neighborhood W of e in V

and

(2-7 Wh c W,

Evidently ﬂ-l(W) C;ﬁ-;(v) = HVl . Thus

r
0< u@wh, ™Y =f du(gh,)y = | (E(gh,)/E(g))au(g) < +=
1 . 1 JW 1

Any element g in ﬂ_l(w) can be written as hgl (he H, g, < V)
(E(ghy)/E (@)= (E(hg h))/E(hg ) = (g hy)/E(g)
8 (h)) (E(h, \gh;)/E(gp))

-1
(€ (hyhy g h )/ (gp))

> 8((E(e)/2)] 28(e)) = 2 .
Finally we obtain
-1 ~
u@Wh, 7 > ZJ du(g) = u(W) > 0 .
W
This contradicts (2-7)
Proof of Proposition 7. - It is sufficient to see that for a

(P-1) pair the assumption in Lemma 10 is satisfied. This is a direct
result of Lemma 9 for the case C = {hl} .

Lemma 11. (P-3) = (P-2) .

Proof. (P-3) assures the existence of an H-invariant

neighborhood W of e in an arbitrary given neighborhood V of e .
This supplies the assumption in Lemma 10, thus there exists a non-

trivial G-invariant measure u on X . Therefore the induced repre-—
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sentation 0 = Indg lH is realized on LZU(X) as

Tg(G)f(x) = f(xg) for any f € LZU(X) = H) .

The family of characteristic functions Xg of H-invariant compact
neighborhoods E of e gives a family of H-invariant vectors in H(0)

which separates @ in X from other points. q.e.d.

Based on the result of Proposition 7, hereafter we assume that

there exists a G-invariant measure U on X .

If E 1is an H-invariant measurable set in X , ﬂ—l(E) is a set

of type HElH in G for some measurable set El . Put

E—l -1

; B o= {3 ¢ mac | g_le E} .

il

T (HE

Obviously E—l is an H-invariant measurable set in X .

Analogously for two H~invariant sets El and E2 in X , we can

define their product by

-1 -1
ElE2 = n(rw (El)v (Ez)),
If an H-invariant set E 1is compact, there exists a compact set
F din G such that HFH = HF and E = 7(F) . This concludes that for
compact H—lnvarlant‘sets El y E2 s, the product ElE2 = W(HFlFZH) =

ﬂ(Fle) is also compact in X .

Lemma 12, The nullities of E and El with respect to U

are equivalent.

Proof. From the relation between nullities on U and on

Haar measure T on G , we get
-1 ' -1 -1
WE) = 0&= 1(m (E)) =0&1((m "(E)) ) =0

<> u(E—l) =0 . gqg.e.d.
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By the reason of Lemma 12, for any H-invariant U-measurable

function f on X , we can define an H-invariant U-measurable func-

tion 23 = £GTY) .
Definition 5. An H-invariant set E in X is called sym-
metric if E=g7T.

And an H-invariant U-measurable function. f is called symmetric
if f* = £ .
For a U-measurable function fl and an H-invariant U-measurable

function f2 on X ; if the following integral on the right hand side

has a meaning, we write,

Ty £y, £ F Jx £, (xg) T,(0) du(x) .

This function is U-measurable, and if fl is H-invariant , it is

H-invariant as a function of g . We put

el = (fo £GP awENP G =1,2;1¢<p).
Lemma 13.
(2-8) <15 £, £201 = gyl HEyll, for e x.
@9 <z g, 1201, = eIl lIgel for £, £ e o
R o PR I PPN P T A s
for f) e L2u<x) and f,, f,%e Llu(X)..
@1 |l<ry g, f2>|]2_=vilf2*]l2llfllll
| for ¢ LlU(X) and £% e LZU(X)
Proof. (2-8) . is given by Cauchy-Schwarz's inequality
directly.
H<Té fl, £,201 = [X [JX|f1(Xg) £,(0) du(x)l du(g)
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< J J £, (xe) E,G0 lanedu(e) = f J £, | 15, Gg™) | duGau@
X X X X
JX in £ @) 1E* G, ™D @ auGp = JX £, G HE* ) auE)

= Ilfllll llfz*lll . This shows (2-9) .

<ty £, £ 1122 = J | JX £(xg) £,(0) dux)]| 2 au (@)

<

J <f £, Gee) | 21, G0 [ane) ¢ J l£,G0 | du@))du(@
XX X

= g, Il jx\fl<x>l 2Jle2<xg‘1>! an@ancy = e, 1y el 11,7 .

This is (2-10)

) ¢ | g

) l(x)l!fzcng1>l 24y Go)du ()
X

m £ 2
[[<;§ £, f2>|[2 < JX(JXIfl(xg)

e 1y [ £, @ (J £, (Gey, D) [ Pau@)au @)
X X

= dleg g e, y2 . Thus (2-11) is shown .

Definition 6. Define the following conditions.

H-invariant neighborhood of

(A-1) There exists a compact

e in X .
Aa-1") There exists an ®w in © , and a non-zero v in

HH(w) and 1 £ p < 4+ « guch that

E® = <T@y, v ¢ Lpu(x>

(A-2) X 1is locally connected.

There exists a normal closed subgroup N of G in

(a-3)
H such that the factor group N\H is generated by a compact set.

(P-1) + (A-1) <= (P-3)

Proposition 14.

Proof, e==) Trivial.
(= Let V be a neighborhood assumed in (A-1) . The proof

— 273 —



of Lemma 9 gives a fundamental system of neighborhoods of P s
{reewynv]ivea ,vet @ ,e>0l,

which is proposed in (P-3)

Definition 7. We introduce other conditions.

a-1") There exists an H-invariant symmetric uy-finite

yU-positive set in X .

(A-1'") There exists a symmetric continuous £ in HH(G) n L
Lemma 15. (A-1"), (A-1") and (A-1"') are all equivalent.
Proof. (A-1') = (A-1") . - The set

E = {x|] |€&)| > &(e)/2} 1is an example of the set for (A-1") .
(A-1") == (A-1""") . Let E be a set given in (A-1"),

then its characteristic function Xg is in HH(O) and by (2-9) the

function £(g) = <Tg(O)XE, Xg> 1is the one asked in (a-1"")

1

LX)

(A-1"") ==> (A-1") . (A-1"") 1is a special case of (A-1")
Proposition 16. (P-1) + (A-1") => (P-2) .
Proof. Take the set E given in the first step of the proof

of Lemma 15 and F(e,v) in the proof of Proposition 14. Next construct

the family of the sets
{F=FEVnE| we@ ,vehH@ ,e>0}.
The family of vectors {XF} in HH(G) separates e in X , that is,

(P-2) is satisfied.

Proposition 17. (P-1) + (A-2) == (P-3)

Proof. We assume X dis locally connected. Let V be
given relative compact open neighborhood of € in X . Put C = v,

and adapt Corollary of Lemma 8, then there exist finite H-invariant
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{r} ne n c
open sets Fj 1<9<N such that W = C n( : Fj) V.
Because of locally connectedness of X , the connected component Wo
(:BYE) of W 1is a neighborhood of e . For any h in H , Woh is
connected and
VAaWheCnWhecen( nFDh=Cn(nPF,)=Wc¥v.
X (o] (0] . J7 jJ
This asserts Vo Woh =Cn th and this set is a relatively
open and relatively closed in the connected‘set Woh . Since this set
contains e , it is nbn—void, therefore is equal to Woh . That is,
e eWh=VnWhcw.
o o)

Thus we obtain an H-invariant neighborhood WO in V , and the

condition (P-3) is proved.

Corollary. If G 4is a Lie group, for a pair (G,H) ,

(P-1) is equivalent to (P-3) .
Proof. In this case H\G is locally connected. So by

Proposition 17, it is direct.

Proposition 18. (P-1) + (A-3) = (P-3) .

Proof. Because H\G ~ (NM\H)\(N\G) , we may assume N ={e}.

Let C be the compact set generating H . By Lemma 9, for given

compact neighborhood V of & in X , we get a neighborhood W of &
in V such that WCo c W . Repeating adaptation of this relationm
leads us to WCOn c W for any n . And lastly 'we obtain
WH = y WC n o W .
n o
§3. Approximate identity and operator TE .

At first we remark that if H-invariant fl R f2 are in LZU(X) R
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they can be considered as elements in HH(O) and

< e > = <7 (0 >
Tgfl’ f2 Tg( )fl’ fz

Lemma 19. For (P-3) pair (G,H) , any k € CO(X) and € > O,
there exists an H-invariant neighborhood V of e such that

l k(xg) - k(é)l <€ for any x € V, and any g € G .

Proof. Since k is continuous, for any g € G , there

exists a neighborhood V(g) of e in G such that

1 k(églg).— k@] < € /2 for any g; €V(g) -
By -(P—3) assumption, there exists a symmetric neighborhood W(g)
such that w(g)2 c V(g) and
(3-1) HW(g)H = HW(g)

Therefore we can determine W(g) depending only on the H-coset which

contains g . Thus we show it by W(g)

Take'a finiﬁe cbvering [k] < E EW(g%)gj , and put W = § W(gj)
and V= 7(W) = éW . This V is the asked one.
In fact, any g ¢ [k] dis writtem as g = Egogj for some j and
8y € W(gj) . Similarly for any xe V, xg = ég'gogj . Herg

g' e Wc W(gj) so g'go € (W(gj))2 c V(gj)

| kGe) - k@] = Jk@g's,8) - k@D + [k(E) - kGaye)]

e/2 +e/2 =¢ .
Let g4 [k] satisfying @éWgn [kl # ¢ , by the symmetricity of
W , for any g € HWg n ﬂ-l([k]) sy 8¢ Hng .  That is, g ¢ éng = Vg

This means }k(gl)} < e .

Proposition 20. For a (P-3) pair (G,H) there exists an

1
approximate identity {ea} in L u(X)n Lmu(X) with respect to
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<T§f, 8, in LZU(X) . That is for amy f€ Lzu(x) ,

2
s < 6 > = :
%;m Tgf, o f in L U(X)
Proof. Let V = {V(a)} be a fundamental system of neigh-

borhoods of e in X , consisting of symmetric H-invariant sets. Put

8, = ugv(om'lxm)
2

For arbitrary given f € L u(X) and € > 0 , select a k¢ CO(X)
such that ||f - kl]2 < £€/3 . Then evidently [ITg(o)(f - k)[|2 < g/3.
By Lemma 19, for some Ve U ,

/2

lk(xg) - k(g)] < €/3M1 for any xe¢ V , and any ge G .

And k(xg) = 0 for any xe V , and any g ¢ W—l(V) W_l([k]) .  Where

w= o DN L Therefore, for 8y = M
|[<Tgks 8> - k(@] = IJXw(vflxv(él)(k(élg) - k(8)) du(gp)|
< ™t Jvlk(élg) - k@] auE) < e/BMI./2

And  k(g) = <Ték, 8y =0 for g4 vt (kD)
][<Téf, 0y - ffiz < {f<Téf - Ték, 0y iiz +

+ [l<rgk, 0> = k], + [k - £,

=1lz,e - kI, [ogx [1M2 oyl M2+ ¢ [rqék, 0, - k@[ 2au(@)/?
+ e/3

= e/3 + ((92/9M)M)1/2 +e/3=¢.

Proposition 21. Let £ and £* Dbe in HH(O) . For given
€ > 0, there exists a symmetric H-invariant neighborhood V of e in

-1
X , such that Il f - <Téev, £&> ||2 < e, here 9V = u(V) Xy -

Proof. We assume f # 0 without loss of generality. The
existence of such an f assures that of a symmetric H-invariant

p-finite p-positive set
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J

El ={ g | ff >ci u {8 ] ] f*l > ¢} in X for some
c > 0‘, and again we consider the set
E = {g e X ] U(Elg n El) > (U(El)/z) }oe
As is easily shown, E 1is a symmetric H-finite H-invariant open
neighborhood of e .

— r~

On the other hand, the set Vl' = ig ] I]f - Tg(o‘)f||22 < ¢}

gives also an H-invariant symmetric neighborhood of e .

Put v \Y E , then

1in

~8 % > 2 _ 8 (o o~ =1,-1 e | 2
e - <esby, 2 2117 = [le - fov(gl)f((glg T anGp 1,

IA

JX [ JXI6V<él)! £G) - £G@e, D] duGE Vau®

12 x

- J [ J [0_(g.)] av(z.)1 [( oG] 5@ - £Gg, ™
X X V'°1l 1 }X vV °1l 1

X du(g;)dr(g)

N - »
=119, 114 i By 1| 8@ - fleg) HI% au@) au@
X

= J Ov(él) llf - T —lf lizz dU(él) < e .
X gl

Definition 8. For an H-invariant symmetric ji-finite set E

in H\G , we- consider the operator TE on L2“(H\C) as follows. For

any f in LZW(H\G) = H() ,

}-

=) = - - = <T- >
(T (8) j Exg)Xp(x) du() Tgf, Xg
H\G <
Proposition 22. - i) TE is a bounded symmetric
operator on H(0)
i g) = 1 j 3 .

ii) TETg( ) Ig(C)TE for any ge G
iii) Take an H~invariant U-finite U-positive set F in

H\G , and consider the H-invariant subspace K = LZV(F) in H(o)

Then the restriction T p T,]
E
5 9 K K
type from L U(F) into L U(H\G)

is an operator of Hilbert-Schmidt
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Proof. i) From (2-11) ,
exge, w11, = He 1L, Tl =1ls 11, we
This shows the boundedness of T

B °

J[ Jf(xg>xE<x> du(x) 1 k(g) du(g)

< Tf, k >

j[f(§l> X (B8 E(E) d U@ du(E,)

ff<§1> [ [ Xg (B, E@ dUE) 1 du(@))

< £, TEk > for any £, k¢ Lzu(H\G)

That is the symmetricity of TE .
i1) T (T_ (O)£)(g) = <T~_ £,X.> =T (0)(T_£)(g)
) n gl( JE)(8) ve, s Xg gl( ) (T E) (g

iidi) We take an orthonormal base {fa} in K= LZU(F)

And put Pg the projection from H(o) onto K. Evidently Py is
the operator multiplying the characteristic function XF .

2 2 2
§L<TEfu)<g>l - §!< Ty Xg7lT = §I< £o0 T _q @ >
- !fPKTg_l(O)xEllzz = JX X () X (kg ™) dnGx)

Thus
Mo = T Hege 1" = 1 fxl(TEfa)<g>|2 an (&)
= JX JXXF(X) XE(Xg_l) du(x) du(g) = u@UE) < +< .
Lemma 23. For a (P—3) pair (G,H) ,

n ozt = {o} .
E
E
Here E runs all H-invariant symmetric H-finite sets.

Proof. i For (P-3) pair, a fundamental system {Eu} of neigh-
borhoods of e in X , consisting of - H-invariant symmetric p-finite
sets, exists. As in the proof of Proposition 20, the family of functions
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- 2
ea = (ME) lXE consists an approximate identity for L U(X)
. o

That is,
-1 . -1 s
0 = 1lim (H(Ey)) TE f = lim (U(Ea)) <T§f, XE > = lim <T§f, 9a>
o o. o o o
- £, for any £ in n(TE‘l(O)) < n (TE'l(O)) .
o o
84 . Core subgroup.

We introduce the following notations.

S = {g < x| H-invariant measurable and 0 < W(E) < + ® },
Sl = {ge S| E_l S
S and Sl may be void in general. But the following is trivial

by the definition.
Lemma 24, S, #0 &= (A1

Proposition 25. if Sl # ¢ , there exists the smallest

open subgroup Go in G containing H and

(4-1) WE N (G )) = U(E) for any Ee S, .

Proof. 1 If Ec¢ Sl , its characteristic function
Xg is H-invariant, and both of Xg and XE* are in LlU(X) .
Lemma 13 assures that the continuous function
(4=2) B(E, g) = <TeXps» Xg~ = L(Eg n E)
is in LIU(X) . It is also H-invariant symmetric and B(E, &) = u(g)
> 0 . Therefore for some € > 0 , the set
F=FE)={xe X| B(E, x) >c}
is H-invariant symmetric open U-finite U~-positive, and contains e .
2) Now for any E € Sl , take E = EU f and
B(E, & = u(Egn B) 2 u(Fg n E) ,
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FE, €) ={xex| BE x>} (e>0 .

Then the set GO = Uﬂ—l(F(E,E)) (the join runs over the set of pairs
(E,€) € Slx(O,“)) is the asked one.

Indeed, evidently Go is open as a join of open sets ﬂ—l(F(E,E)),
and contains H = W_l(g) . For any gj € W—l(F(Ej,Ej)) c Go G=1, 2),
the set F(El,el)gl_l n F(Ez;ez)gz—la e is a non-void open set in X .
Thererfore, if we put F = F(El,el) U F(Ez,ez) , there exists an € > 0
such that
1

~ -1 ~ -
B(F, &1 gz) =< T~ -1 Xi;‘-s Xi{- > = U(Fgl
g g
1 °2

8y N F)

-1
> (F( )
H(F(E;,E.)8; "8, 0 F(Ezsez))

_ -1

__1 .
>
n F(Ez,az)g2 ) €.
This means gl—lgz € W“l(F(F,E)) <G, i.e., 'Go is an open subgroup.
3) Next we show the relation (4-1) . For this, it is
sufficient to see that for any E ¢ Sl , LE n (FE)C) = 0. Here
F.={xe x| BE, x) >01} = Mo F(B, €) < (G .

If not, there exists a compact C in En (FE)c such that

u(C) > 0 . Take a finite covering by open sets ng's as
N

Ce | ng (ﬂ(gj) e 0)
. ~ c
Since gj = ﬂ(gj) e C c (FE) R
N N
M(C) = UWEN C) < WEn | ng) < JuEN ng)
N ~ ~
< z B(E, gj) =0 .
That is a cotradiction.
4) Go must be the smallest. In fact, all F(E,€) is open

and in Sl . So W_l(F(E,E)) is contained in the group which is stated

in this proposition.

Definition 9. We call Go given in Proposition 25, the core
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subgroup of (G,H) and write Xo = TT(GO)

Lemma 26. For a (P-3) pair (G,H) , Sl is non-void, that

is, the core subgroup GO exists.
Proof, As a consequence of propositions in §2, we get

(P-3) = (A-1) =#'(A—lf) . And Lemma 24 leads us to the result.
Lemma 27. If Sl # ¢ and G is connected, G = GO .

Proof. Since GO is an open subgroup of G , Go =G .

Example 5. If “H 4is compact, the pair (G,H) always satisfies
G =6G.
[
Indeed, for any g € G and any relative compact open neighborhood
V of g in G , the set W = HVH y HV—IH is also relative compact and

open. Thus (W) dis din Sl and GO oW g, i.e., GO =G . And by

the same reason, (G,H) is a (P-3) pair.

Example 6. When G = Lor'(2) (2-dimensional inhomogeneous
Lorentz group) and H = Lor(2) (2-dimensional Lorentz group), then H\G
~ RZ s and G-invariant measure ﬂ on it is just the Lebesgue measure.
The group H operates on it as Lorentz transformations. So any H-
invariant open set has infinite measure.

That is, this is a case of Sl = ¢ , its core subgroup doesn't

exist. Easily shown that the pair (G,H) is not even (P-0).

Example 7. However if we introduce the discrete topology
in G given in Example 6, the G-invariant measure on H\G must be
the point mass. There is a unique W —-finite H-invariant set {e} in

H) exists but is not

it. This gives an example for which Go (
equal to G . And since H\G is discrete, this pair (G,H) is also

(P=3) .
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Example 8. Consider discrete additive groups Dj =Z

(~o<j <+w) and Gl'g i Dj with discrete topology. Let G2 = ol

be the group of automorphisms s, on Gl given by
3

. Ixg € .
Sn . Gla ( -o.,xj,ooo) (oo-,Xj_n’--.) Gl

Construct the semidirect product G = G2 x Gl with discrete
topology, and take the discrete abelian subgroup HE= I Dj (1 £ j < +4)
3
Then any element in X = H\G is parametrized by
w(n,x) = (sn, x = ( °‘°,x_l,-xo)) .
the = H-orbit passing through w(n,x) bhas isotropy subgroup in H

according to n as follows.

1) H for n

£ 0 . Mass of the orbit = 1 .
2) il Dj (n<j<4°) for n>0 .
3

Mass of the orbit = + .
It is easy to see that the inverse of the orbit corresponding to
n 1is the one corresponding te -n . This shows Go = Gl # G , and
gives an example such that there exists an H-invariant H=finite
U-positive set which is not contained in XO (= ﬂ(Gl)) . And the

discreteness of H\G 1leads us to (P-3) property of the pair (G,H) .

Example 9. An example of pair, which is (P-1) but not
(P-2) , is given by a restricted direct product as follows.

Let '(Aj, Bj) (L 53 <+ be (P-3) pairs. Assume that there

are compact open subgroups Kj of Aj » which are not contained in each

core subgroups A? of (A., B.) . This includes that the sets Kj - A?

J J
is open in Aj , and the Bj—invariant canonical image of (Kj - A}D)Bj

in Xj = Bj\Aj has infinite mass.

Take the restricted direct product G = H'Aj with respect to
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{ Kj} , that is, for an element g = (gl, Bys "ttt ) in G, gj € Kﬁ
except finite j's, and the topology of G is given by the one of a
compact neighborhood II Kj of e as an ordinary product of compact
groups K.j .

Put H = H'Bj the restricted direct sum with respect to

{ Kj n Bj } , then H is a closed subgroup of‘ G , and X = H\G =
= H’Xj . The restricted direct sum of the last term is taken with
‘ respect to KjAn Bj \ K.j = ﬁij) .

Under this situation, for any finite set F = {j} of indices, we
consider the finite direct product GF =1 Aj , HF =1 Bj s XF = 1II Xj
(= HF\GF) (each product is taken for j € F). Then representations
of HF\GF is considered aé representations of H\G in natural way,
which separate the image EF of e in XF from other points. Running
F , we obtain a separating family of representations of H\G . That is,
this.pair G,H) is (P-1) .

On the other hand, a G-invariant measure U 1is given by

U= Ty, , where yu, is the A,-invariant measure on X. ,
3 J J J J
normalized as Uj(ﬁ(Kj)) = 1 ., And any neighborhood of e in X

contains a set of the form

1l I
T( <N Ej X 15N Kj) for some N .

Here Wj(Ej) are relative compact open Bj—invariant sets in Bj\Aj

respectively. This set contains the open set

i) II
X - X
m( <N Ej Ky AN) >N Kj) .
And the smallest H-invariant set containing this set also contains the

set
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I o I
E=TC jop By x Ky = APBy o0 Ky ).

U(E) = jEN M (E) X uyC (R = ADBY) X J.EN k) -
This concludes that any H-invariant neighborhood of €& in X
has infinite mass, therefore the pair (G,H) is not (P-2) .
A concrete example of this case is given as follows. Let

{s}= {bn}_OO < be a discrete multiplicative group, and K

n < 4%
is the automorphism group {e, a} on s, given by
K»>a : S2b" #»a() Zb Tes .

Put B0 = K X S the discrete semi-direct product group. And
consider the group B of inner automorphisms on B0 with discrete
topology. Take again the semi-direct product A = B & Bo . We adopt as
., Bj’ Kj) in the above arguments the replicas of the same triplet
(A, B, K) . Since the factor space B\A is discrete, the pair (A,B)

is a (P-3) pair, and its core subgroup is Ao = B . Thus we obtain the

result.

§5 Duality theorem,

In this 8§, we shall prove one of our main results as follows.
Theorem 1, For any (P-3) pair (G,H) , I-S duality holds.
To show Theorem 1 , we prepare a series of lemmata.

Lemma 28. For a fixed w ¢  and B-invariant vectors

1t

Vj € HH(w) , let Y (w, vj) (G =1, 2) and wo = (w, avy + bv

3 2)

(a, be C) in VY .

Then for any birepresentation v = {u(w)} over V¥ ,
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(5—'1) u(wo) = avu(wl) + b u(wz)

Proof. If a=b=0, by 4) of Definition 3 , u(wo) =0
and (5-1) is trivial. Therefore using the symmetricity, we can assume
a 1is non-zero.

In Hw ® w) = Hw) @ H(w) , consider two subépaces‘

v, =lve G/ayv | v e il
v, = Lb/a)v e (-v) | v e Hw},
then H(w & w) = V1 o Vé gives a direct sum decomposition of

w & w , the both components of which are eduivalent to w by inter-

and U respectively. Direct calculations

twining bperators U1 2

show that the componets of vector W, ® W, in  H(w ® w) are brought

by U.'s to

J
' (5-2) E_(awl‘+ bwz)(]alz + lblz)—l,
(5-3) | a (Bﬁl - 3@2)(]a|2 + lb|2)_l

in H(w) respectively. We write c, = a ({a!z + |b|2)—l.

Applying (5-2) and 1), 2) of Definition 3 , to the cases Wy = £
and Wj = u(wj) , we obtain

(5-4) u((, c (avy+ bv,))) = co(aU(wl)r+ bu(¥,)) .
Substituting v = v, = v, , for any c # 0, we get

(5-5) u((w, ev)) = cu((w, v))

From (5-4) and (5-5) , (5-1) follows.

Lemma 29. For ¢ = (w, v) € ¥, let H0 be the closéd subspace
of H(w) spanned by { Tg(w)v | geG}.

Then for any birepresentation v = {u(P)} over ¥ , u(P) e Ho .
Proof. Consider the direct sum decomposition w = w

@ w

1 2
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according to  H(W) = H, @ Hol , and representations Wl = (W, V),
wz = (@), 0). Then by the definition Y = wl @ wz and
u(®) = u(¥)) @ u(wz) =u() 0 €HUW) =H . - q.e.d.
Lemmata 28 and 29 show that any birepresentation v = {u(y)}. over
Y gives a family of operators
(5-6) U(wj : HH(w) 3 v » Uv = u@}) ¢ Hw
for ¢ = (w, v) € ¥ . And 4) of Definition 3 assures that these opera-
tors are all uniformly bounded by one.

Hereafter we study about this operator . And the proof of Theorem 1

is done in very similar way as in the case of group duality.

Corollary of Lemma 25. If Uwv # 0 fora v e.HH(w) .

< Tg(w)U(w)vg v>%0.

Proof. Because of Lemma 29 , the vector U(w)v 4is contained

in the space spanned by {Tg(w)v} .

Lemma 30. We fix a complete orthonormal system {Wa}u
in HH(w) , and consider the linear operator given by
° £ S P ®
B, H(w) ® H(0) » ve £ - {<Tg(w}v, W, f(g)}a e ) H(@) .
Then this operator is a bounded intertwining operator from the space

. 5]
of w ® 0 into the one of E g .

Proof. Write P the projection on H(w) onto the space

HH(w) ,» then easily, Bw is considered as the operator

B, + LT G HW) 3 vG) e BT @VE) < 1 (X, Hyw) .

g1 = [ @l a@ < [ @) am
X x &

it

[ lv@ 112 s = [1v]12 .
X
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Thus the operator norm lIBwl[ is bounded by one. And the intertwining

property is direct from the form of Bw .

Corollary. For a fixed complete orthonormal system

{ka}a in H(0) , the operator given by

B:H(E) @ H(0) > £ ® £, > (< T(@F), k> £,@, « Y®H (o)

1 1

. . . T @
is a bounded intertwinging operator from ¢ ® ¢ into Z g .

Proof. . A special case of Lemma 30.

Lemma 31. For arbitrary given birepresentation U = {u(y)}
over Y , the corresponding operators U(w) from HH(w) to H(w)
and U(0) from HH(O) to H(G) satisfy

(5-7) < Tg(w)(U(w)Vl), V2A>(U(0)f)(§) =

= U@ T @vy, v,>H1@  in H()
for any Vis Vy € HH(w), and any f ¢ HH(G)
Proof. Applying Definition 3 to the definition of Bw s, we
obtain

{< Tg(w)(U(w)vl), vy~ U(O)f}a = B (U(W)v; @ U(O)E)

D
= (Puenp,me = U@ ET.@)vy, w> DI,
Compare the oO-components of both sides and from the arbitrariness

of {Wd}a s, replace v, by v Then we get the result.

5 -
Corollary. < Tg(c)(U(O)fl), f2>(U(O)f3)(§) =
(5-8) = [U(U)(<T-(O)fl, f2>f3)](§) in H(o) ,

for any f f f, € HH(O)

1> 72 73

Proof. A special case of Lemma 31.
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Lemma 32. Let - (G,H) be (P-3) , then for any

£ € HH(O) " LX) and any f, € HH(O) s

1
(5-9) (U(9)£)(U(E,) = UO)(£,£,)  in H(O)
Proof. We substitute an approximate identity {ea}a given

in Proposition 20, into f2 of (5-8). 1If it is necessary, taking a
subsequence, we get
= 1im < >
(U(cs)fl) (U(c:)f3) 1lim Tg(o)(U(d)fl), ej U(o)f3

= U(o)(lim <Tg(o)f 6j>f3) = U(O)(f1f3)

l’
Lemma 33. For any H-invariant up-finite E in X,

there exists a Borel set U(E) and

5 mia) - in .
(5-10) J\O/XE XU(E) i H(o)
Proof. Put £, = £, = x; in (5-9) , then
2 _
U@ xx)" = V(0)xg a.e..

That is, U(O)XE must be a characteristic function of some measurable

set U(E)

Corollary 1.

(5-11) u(U(E)) < u(E)
Proof. " Jluo)|] £ 1", leads us to
BOE) = [Dgeg 57 = Hxgll,? = we
Corollary 2, For any £ ¢ HH(G) such that f > 0,
(5-12) U(o)f(x) > 0 a.e..
Proof, It is true for step functions. And for general

case, we take their limit in Lzu(x)

Lemma 34. If there exists a non-zero Vv ¢ HH(w) such
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that U(w)v = 0 , we get

2
(5-13) U(o)f = 0 for any f « HH(O) n L u(Xo)
Proof. From (5-7) , wevobtain
(5-14) O (ST (@, v £)(g) = 0 a.e..

Since v # 0 , for any neighborhood V of e which is contained in a
set of type { g | < Tg(w)v, v > >el} , we can choose an f as
<Tg(w)v, v> f(g) 21 on V . Thus by (5-12) , we get U(O)(XV) =0 .
Consequently for an approximate identity {GV} given in Proposition 21 ,
we obtain ‘U(O)(GV) =0 .
Using (5-8), for an f in HH(O) .such that f£f* ¢ HH(G);
U(o) (<Tg(G)6V, £%> f) = <Tg(O)U(o)6V, £%> U(0)f = O .
Take the limit of left side, we get
2 2
(UE)" = U()(£f7) =0 .

q.e.d.

This Lemma 34 states an ideal-like property of
Wo = (o, HH(O) n LZU(XO)) - That is, a birepresentation is an s-birep-
resentation, if it does not vanish on a element of Wo .

Thus in the following of this § , we assume that U(o) is a
non-zero operator on HH(O) n LZU(XO)

Lemma 35. Let E be a compact H-invariant neighborhood

of e . Then i) u(E) = u(U(E)) and ii) there exists a gE in X

such that U(E) c Eng .

Proof. Consider the function

0@ = ENTY <Toxp o> € (@) 0 LT 0 0 1700
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Then ©6(x) £1 for any x in X , and El ={x | 6(x) = 1} > E .

Repeating application of (5-8) , we get for n = 2,

tntl

@@NHTE = VO EN @ = GEITHE Ty gy 1) T E@0 @

That is, for g € [U(0)6] , and n =1 ,
-n n n,~ n, ,~
<T~ = =
ED Ty gy 0 Kz = W@ON@ = 1@ (67 (@
Take the limit in n + ® , Then O" *‘XE in HH(O) , so the left
1
hand side must converge to XU(E ) # 0 . This results the existence
1

of ) such that

1 2

N -1 _ -1 -
1= (UE)) < TéE Xy(g)® Xg? > = (u(E)) U(U(E)gE n ET)

wE) twE)

IA

Combining Corollary 1 of Lemma 33, we get W(E) = Lu(U(E)) and
U(E) c E2
gE B

. 2 . . . . .
Since the set E is H-invariant , gy 1s determined as H-coset

wise.

Lemma 36. Let (G,H) be a (P-3) pair , and { Eu} be a
fundamental family of H-invariant symmetric compact neighborhocods of & .
We take éa for Ea given in Lemma 35.

Then {ga} converges to some x_  in X .

Proof. By Lemma 33, if Ea > E

then U(E > UCE . Thus

8 ( u) ( B)

from Lemma 35, E 2g SU(E,)) c U(E ) c E 2g . This shows g,¢ E 2g 2g
B "B B8 o o o B~ B o “u

for B o . Therefore {gu} gives a Cauchy net, and has a limit point

x, in X . q.e.d.

Now we put an assumption that (G,H) dis (P-3)

2
Lemma 37. For f e HH(O) n L u(XO) .

(5-15) UE)E) =T _;(0)f (g, =x,)

€
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1

- 2
Proof. For {Ea}’ as in Lemma 36, U(Ey)g, =~ < E,” .

But by similar arguments as in Proposition 21, {(U(Eaz))_lXE 2}is an
o

approximate identity in H(0) . And this is same for the family

{(u(Eu))'nga(o)x

-1
U(Ea)} and {(u(Eu)) XEu} .

We take the limits of both sides of
-1 x> = -1 %>) (8

STElWEND T, iy 3] 5 £ = GEDT VO T Xy > ) (Fgy)
_ -1

= (WE)) Tg

and get f=T (0) U(o)f .
8o

o
@OUE) (<T. x5 5 )@
o o

That is the result.

Lemma 38. For any ¥ = (W, v) € ¥,

(5-16) u@) =UWv =T v .
&

Proof. From (5~7),

]

<T @U@V, vEEE") = <INV, v UO)EE)

U(O) (ST. (W)v, v>£)(g) = <T _l(w)V, v > f(ég;l)s
g8,
. 2
for any f in HH(w) n L U(Xo)

Let f be continuous, and put g = 8y » then

< T (@WUWv, v = ||v]]?.
&
From the boundedness [[U@)]] <1 and |ng [l= 1, we get
o
U(w)yv =T _l(w)v . q.e.d.

)
And this completes the proof of Theorem 1.

We state the remark after Lemma 34, as a proposition here again.

Proposition 39. If a birepresentation is non-trivial omn

_ 2 P
WO = (o, HH(O) nL u(Xo)) , it is not zero for any (w, v)

such that v # 0 .
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Example 11. We can show that the concrete example stated in
the after half part of Example 9, is (P-1) but not (I-S) . Here
we sketch a proof of this fact.

All irreducible representations of the group

Bo = K& § (= {e, a} x {bn}) are as follows.
1) wo =1 : the trivial representation.
2) w_ ¢ the lifting up of the character
x_. (x_(a) = -1) of K.
3) mx={¢n2,ui}:wX (JA] =1 and A #1)

_ 01 _ (A0
such that, Ua = (1 O)’ Ub = (O A) .

In general, let AOE Bl [ Bz be a semi~direct product where

Bl o B2 and Bl operates as inner automorphism group of 32 . Then

all irreducible representations U = {H, U }  of Ao are given by

(X,Y)
any pair of factor representations Dj = {H, VJX} s, (i=1, 2) such
~ H ~ ~ 1 ~ ¥
that {Vl } o {VZ } and {Vl T n {VZ } =¢1 , as
x y x v
~1 ~7
U(x, &) = \Y (e,y) = v v for (x, y) € AO .

Moreover, if Bl(: B2) is type I group , the factor representations

Vz and U
X X

Dj (i =1, 2) must be multiples of irreducible wj = {Hj, VJX}

respectively, and

B 1 2
} = {Hl ® H2 , V. e vVve ).

tH b4 Xy

. U
P o(xy)
We write this representation of A0 by wy X w, .

This representation Wy X W, has a non—trivial Bl—invariant

vector if and only if the representation

W, ® W of B has it, i.e.,

1 2 1
* = 2 i < + oo,
(1) wy w, and (2) dim wy o
And this B,-invariant vector is unique up to constant factor.

1
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After Proposition 39, for our I-S duality we can replace the
considion 5) in Definition 3 of s-birepresentation by weaker ones as

follows.
5') There exists a Y € Wo such that u(¥) # 0.

Or the same thing,

5') U(0) - is a non-zero operator on HH(O) N LZU(XO).
Example 10. In [3], we have Examples 3~ 5 of non-trivial

birepresentations which dé not correspond to any element of G in group
duality. |

In the similar way, our Example 8 in this‘paper gives an example of
a pair (G,H) which has non—trivial birepresentations not corresponding
to any x € X .

In fact, by G. W. Mackey's method [5], irreducible representations

of G are exausted by

(1) C : The 1lift up of characters of the abelian subgroup G2
to G .
(2) mX : Indg X ( X are non-trivial characters of Gl)'
1

The one-dimensional representations ¢ are trivial on G1 , SO
(z, v)'s (v € H(Z)) give representations of X . And it is easy to
see the family of representations being disjoint to all type (l) repre-
sentations, constructs a prime ideal in similar sense as [4].
Thus we can construct a birepresentation which is zero on this

prime ideal and is v for (g, v) of type (1) representations.

Remark. Wo is an ideal too, in this Example 8. But it is

shown that this ideal is not prime.
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Applying this to our example A =B K BO , all irreducible repre-—

sentations of A with normalized B-invariant vector v are-given as,

@ Do = wo " “o IA ? V=Yoo
(2) D 2w X w_ ’ —
I N Sl S v, .

The operation of the subgroup K on these B-invariant vector v are,

@ U(e,a)yo =V
(2) U(e,a)v- =-v_ ,
(3 U(e,a)vk Lowvy .

Now consider the restricted direct product G = H'Aj with respect

to {Kj} . For any given N , G can be considered as a direct product
= X X X esa X X !
G Al A2 A3 AN (jEN Aj)
Because all Aj are type I , all irreducible representatibns

= { ﬁs Eg} of G are of the form of an outer tensor product

DN

~ ~ A~

N= ® eve ® i
p=0,e0D,0 Dy @ Dy
of irreducible representations U, of A, and D ' of I 'A. .
3 J N J°N ]
We assume that 7 has a normalized H-(= H'Bj—)invariant vector Vv .
By the-continuity, we can choose an M such that
- ) < f .
[IUkv vl 1 or any k ¢ ij{ej} xng Kj

We shall show that ﬁj = jA_ for any j > M
J
In fact, since v 1is invariant with respect to the subgroups
k|

and from the uniqueness of normalized Bj—invariant vector Vj for

Hl

{{eg} x {eyd x eoe x {ej_l} X By x {ej—l} X see },

Dj’ v is written as

= e a0 1
v=v,8v,® ® v 8 v ,

here VN' is a normalized jgN'Bj—invariant vector.
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If there exists an N > M such that DN # 1 s

5

for the element

ko = (el, €gs ses ©u 13 35 Cp 15 eee )
€ O {e.} x K
JEM 3 j*M3°

[ v = w11 = gl Tyl % e x Ty
x IIU(e’a)VN_VNH X HVI:IH

- 2> “> .
IIU(e,a)VN vN|| V2 > 1
That is a contradiction.
Thus we conclude that there exists an M such that 5 is con-
sidered as a representation of the factor group
X X X
A1 A2 cee AM

and is shown as

1

©/ Ty A

D =,

)
W
<]
¥
<
I
= =
<

Next we select . € A, and ¢ K, ut x, = m(g.) € B, \ A,
85 h| 3P b (gJ) hi h|
for each j . Consider the map u ,
Dy = v = ® ® ®
HH(D) v=v,®v, @V g 1 g, 9

From the form of v , it is easy to see the family {u((ﬁ, v))}

YU v,®U v.® ...® UngM c HD).

defines a s-birepresentation over Y . But by the definition of
restricted direct product, there exists no element in H\G = HQBj\Aj)
corresponding to this s-birepresentation. That is, (I-S) duality fails

for this pair (G,H)

§6. Structure of groups in a (P-1) pair.
As is shown in the previous sections, (P-1) property of a pair (G,H)

plays an important role for the validity of I-S duality. 1In this §,
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we investigate conditions under which (P-1) axiom is satisfied and

we get some structural conditions for the subgroup H .

Definition 10. We call the closed subgroup

(6~1) H =nH (W runs in Q),
the P-closure of H for the pair (G,H) .

Lemma 40. (1) H o H.

(ii) H #6 = (G,H) is (P-0) .

(1ii) H =H > (G,H) is (P-1) .

(iv) H = n Hw (w runs in E , i.e., the set of all

equivalence classes of irreducible unitary representations of G )

(v) HH(w) = HH~(w) for any W e Q.
(vi) H) =" .
(vii) If (G,H) is (P-0) , that is, if H # G ,

G,H) is (P-1) .
(viii) For an other clesed subgroup Hl( 2 H), HE > H”
(ix) If (G,H) is (P-0) , H is the smallest closed

subgroup of G containing ‘H for which (G,H) dis (P-1)

Proof. The assertions (i) (ii) and (diii) are immediate
from definitions. And from Gel'fand-Raikov's theorem, {(iv) is
shown directly.

From (i), HH(w) > HH~(w) . But any v in HH(w) is
H -invariant by the definition, so is contained in HH~(w) .

This is (v) . (iii) and (v) give (vi) and (vii) soon.
If H1 o H, we get HHl(w) < HH(w) , and (viii) also.

Moreover if (G’Hl) is (p-1) , Hl = Hl > H . This shows H”

is the smallest one, i.e., (ix) . q.e.d.
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This Lemma 40 shows that to a (P-0) pair (G,H) we can
construct a (P-1) pair (G,H”) wuniquely. Furthermore we have

a way to comnstruct a (P-3) pair as follows.

Proposition 41. For a (P-1) pair (G,H) , there exists an

open subgroup HO of H such that (G,HO) is (P-3) .
Proof. Take a compact neighborhood U of e in H ,

1 o)

and put H the open subgroup of H generated by U . Let H_  be
the P-closure of H

U
js=

1 for the pair (G,Hl) . Then obviously Ho )

and HO is‘an open subgroup of H .
By Lemma 9 , for any y~finite neighborhood V of e in X
(= HO\G), there exists an open U-invariant neighborhood W of e such
that W ¢ V . Since W dis U-invariant , it is Hl—invariant too.
The characteristic function Xy gives an Hl—invariant vector in

G

the representation space L2U (HO\G) of IndH IH (uo : invariant
c o o

measure over HO\G) . Lemms 40 (v) shows, Xw is invariant to
the P-closure Ho of Hl . Therefore for any heHd |,

uo(Wh A W) =0 . This means Wh g<ﬁ>, so WhcW, thus Wh =W .
Therefore we obtain an Ho-invariant neighborhood W of @ .in an

arbitfafy given V . This concludes that (G,Ho) is (P-3) .

Lemma 42, For a (P-3) pair (G,H), let 1 be the subrepre-
sentation of H which is the restriction of G]H to subspace sz(xo)'

Then 1 dis a discrete direct sum of finite dimensional representations

of H .
Proof. By the proof of Proposition 25, we can divide Xo

to a disjoint sum z F , of H-invariant y-finite y-positive symmetric
o
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. N . . P
sets Eu , for instance 0\ F(Ej, €,) etc. According to thie division,
J
we can wyrite the direct sum decomposition,

2
2 _ .2
L7 &) = g Hy (Hy= L9, ED),

in which each L2 (F,) is H-invariant.

Yo
By Proposition 22, for any E € Sl and o , TE,u = TEEHOL
is an operator of Hilbert—Schmidt type commuting with Th*s
(h € H) . Using the trace class operator <TE,Q)*TE9@ , we obtain

a decomposition of T on (T to a direct sum of finite

o7

dimensional subrepresentations. Repeating the same steps to e o TG

we reach the result as a maximal decompositon, by Lemma 23.

Lemma 43. The kernel N of representation 7 dim E in Lemms

is given by

(6-2) N = n gHg (¢ runs in GO}
Particulsrly N dis a normal subgroup of GO . contained in H
Proof. The kernel of 1 is characterized as
N=1{heH,] T,v =V, any Ve L‘p{xo)}
= {he¢ H | xh = x , any X ¢ XO}
={h€H | Hgh = Hg , any g¢ Go}
P -1 B . n -1
={h€H| ghg ¢H, any ge G} = L gHg — .
[} Ee (Jo

Proposition 44. The connected component of & in MH is

isomorphic to R" x K for some n and some compact group K .

®
Proof. Let T =) T, be the decomposition given in Lemma 4Z,
i.e., the spaces Ha of each components Ty &°E all finite dimensional.

Thus the group N\H has a faithfull representation in a compact
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group [ U(H) . Here [J({) show the groups of all unitary matrices
o o o

on H . Apply the following A. Weil's lemma and the result is
o

obtained.

Weil's lemma [6]. A connected locally compact group which

is represented faithfully in a compact group, is isomorphic to Rn x K

for some n and some compact group K .

Summarizing the above arguments, we obtain the following results

about the structure of groups in a (P-0) pair.

Proposition 45. Let (G,H) be a (P-0) pair, and Hl be
the connected component of e in H . Then there exists a normal
subgroup Nl in Hl and m such that

(6-3) Nl\Hll: R™ x (compact group) .

Proof. The connected group Hl is contained in the
connected component in P-clostire H of H . Therefore H1 is

also contained in the component of the open subgroup HO of H in
Proposition 41, for which (G,HO) is (P-3) . Thus by Proposition 44,
there exists a normal subgroup N , the kernel of T , and
N\Hb is faithfully represented in a compact group.

Put Nl = Nn Hl ,» then the imbedding Nl\Hl - N\HO is continuous

and an algebraic isomorphism. That is, N \H

1 is also faithfully

1
represented in a compact group. Again we can apply the Weil's lemma

and get the required result.

Corollary 1. If H in a (P-0) pair (G, H) is connected,
there exists a normal subgroup N in H and m such that

(6-4) N\H =~ R™ x (compact group)
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Proof, The case H = H1 in Proposition 45.

Corollary 2. In Corollary 1 , if G is connected, N is

a normal subgroup of G ditself.

Proof. The case that G is just equal to the core sub-
group GO of (G,H)
Corollary 3. In Corollary 2, moreover if one of G and

H has no non-trivial normal subgroup,

He=~ R"x (compact group) for some m.

Proof. From the assumption, N must be the trivial sub-

group, i.e., {e} . g.e.d.

Conversely we consider the case when N\H has the structure
as (6-4).

In the case N\H 1is compact, as is shown in Example 5, the
pair (G,H) is (P-0) , even (P-3).

However Example 6 gives an example that "N\H = R™  does not

result (P-0) property in general.

Example 12. We have a non-abelian example for which H=~R

and the pair (G,H) is (P-3) , in so-called "Mautner's group".

eit 0 zy
c=1{ o oot Zy | < t<Ho, z,z,6C),
0 0 1
it 0 0
H=1{ 0 e 0| | o< £ <t
0 0 1

(0: irrational in R).
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In fact, in the space H\G = € X € , the H-invariant sets
Ve = {(zg5 z,) | [zll » |z,] < €} give a fundamental family
of neighborhoods of (0, 0) .
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