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     Let G be a locally compact group and H its closed subgroup. We 

denote the left cosets space H\G by X . The purpose of this paper 

is to extend the Pontrjagin-Tannaka duality theorem for groups (see [3]) 

to factor spaces X  .

     In 1966, N. Iwahori and M. Sugiura [2] gave a notion of "repre-

sentations of X " for the case G is a compact Lie group. And they 

proved a duality relation which holds between the categories of such 

factor spaces and of families of these "representations".

     After their works, in this paper we shall give an analogous defini-

tion of "representations" for general pair (G,H) , and consider a 

duality property for these categories, which is essentially similar to 

so-called weak duality for the case of groups. We call this property

I-S duality.

     The biggest difference between the duality theories for factor 

spaces and for groups is as follows. As is well-known, the group duality 

is always valid, but for factor spaces, the I-S duality doesn't hold in 

general. In addition, a necessary condition (we call it  (P-1)) for our
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I-S duality leads us to some, even somewhat strict, structural rest-

riction for the closed subgroup H in the pair  (56). We have not able 

to determine yet a satisfactory criterion for the validity of I-S 

duality. But we give a sufficient condition (P-3) for it  (55, Theo-

rem 1). In the case that G is a Lie group, this is necessary at the

same time.

   In  51, we set up our definitions and give the notion of I-S duality. 

And in these words, our main aim can be stated as "to investigate for 

what pair (G,H) I-S duality holds".

     In 52, we consider the key separating properties which play im-

portant rolls for our theory, and establish some relations between them.

 §3 supplies tools for the proof of our duality, and using this we 

define an important subgroup (the core subgroup) in  G (54).

 §5 is the main part of this paper. In this section we give the main 

theorem (Theorem 1) which gives our duality.

 §6 is  devoted  to discuss that the requirement of I-S duality 

deduces a strict structural restriction for the subgroup H  .

 51. Description of the problem

    Notations.

 G  : a locally compact group. 

H : a closed subgroup of  G ( for simplicity, we assume

H  G  ).

Hereafter we write such a pair by  (G,H)  . 

    X  = H\G. 

 g  E  Tr(g)  : the canonical image of g  E  G in X  .

 G operates on X as a transformation group, X x  ^4- xg e  X. 
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 Co(X)  : the space of all complex valued continuous functions

with compact supports on X  .

 2 E  { unitary representation  w of G  } . (We can avoid the 

   set theoretical difficulties by bounding the dimensions of

representations by some sufficiently large cardinal number.)

w  E { H(w), T
g(w) } . Here  H(w) is the space of repre-

sentation w  , and  T  (w) are the representation operators

 HH(w)  E { H-invariant vector v in H(w) }  . 

Obviously HH(w) is a closed subspace of H(w)  .

HvE{gEGI T(w)v = v  } for a vector v E  H  (W) . 
 HW =fgeGIT(w)v  =v for any  v  E  HH(w)  } 

                           for a representation  w  E  S2  .

It is easy to see  H
y and  Hw are closed subgroups of G  .

 a  E IneH1H=  { H(6), T (a)  } : the representation of  G 

 induced from the trivial representation 1H of H

Definition 1. A representation of X is a pair  {w,  0 of

a unitary representation w of G  , and a map  P from X to H(w)

such that

    (1-1)  “xg) = T  _1(w)  (11(x)) for any  xEX,gEG.
 g

Lemma 1. For any representation  iw,  0 of X  , 

(1-2)  Th(w)(*(e)) =  tP(eh  1)  =  tii(e) for any h  E H  . 

That is,  IP(e)  E  HH(w).

Proof. Trivial from (1-1) in Definition 1.

Conversely, for an  w  E  D and a v  E HH(w) , if we define a vector

valued function  tf.) on X by

   (1-3)  Ip(g) = T -1(w)v  ,
 g

then the following is valid. 
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Lemma 2. The pair  {w,  0 is a representation of X  . 

Proof. It is easy to see that satisfies (1-1). 

By  Lemmata 1 and 2, giving a representation  fw,  0 of X is

equivalent to giving a pair (w,v) of a representation  w of G and

vector v in HH(w) . Therefore, hereafter, we use the notation

(1-4) =  (w,11)

to show a representation  {w,  0 of X such that v =  0(e) E  H  , 

following the convenience.

We show the set of all representations  IP of X , by  T  . 

Definition 2. For two  representations  = 
 3  3  J

  = 1, 2) of X  ,

 1)  02  ,  01 is equivalent to  02 by U , if 

(1)  wi is equivalent to  w2 with the intertwining operator U  ,

and

(2)  Uv1  =  v2  ' 

2)  11)1elp2  = (wEElw2 2  'v1$v2) (direct sum), 

3)  *1 ®  4)2 =  ( wl  0  w2  ,  vl  0 v2) (tensor product)

Lemma 3. For any x E X , and any  0,  01,  -02 E  T  , 

1)  IP].U  2 U(  4)1(x))  =  4)2(x)  ' 
2)  $  2)(x)  =  yx)  (13'  q)2(x) 

3)  ®  IP2)(x)  =  'l(x)  1p2(x) 

4)  IIIP(x)11  =  IIK6)11• 

Proof. Applying (1-2) to Definition 2, we obtain 1)  '1, 3)

easily. And 4) follows from (1-2) immediately. q.e.d. 

     In a similar way as in the case of group duality theory, we define

our notion of  "birepresentation" over  T  . 
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Definition 3. A vector field  U  E {  u() } over  T is called

a birepresentation over  T when U takes its value  u(V) in H(w)

for  V  =  (0,v) and

1) 4)1U'lb211( u OP1) ) = u (lb2) 

2)  11(1)1ED  1P2) =  "Pl)  (°  "P2) for V1° E 'Yl'2 

3)  "l ®  1P2) =  "Pl)  ®  "P2) for Vl'V2 E  T 

  •

4) there exists a common finite number M such that

 Ilu(V)11  M  11V(e)11=  M  111711 for any  V  e  T  . 

Moreover, we call s-birepresentation, if a birepresentation

U =  iu(1)1 satisfies the following additional condition. 

5)  u(V) 0 for any  V =  (w,17) E  T ( v 0 ). 

Lemma 3 means that for any x  E  X , the vector field UxE {11)(X)}

gives a s-birepresentation over  T

The zero vector field 0  =  {0(V) = 0}V cis also a birepresen-                                   T

tation. We call it the trivial  birepresentation. In §5 , we shall 

give an example of non-trivial birepresentation which is not the form 

of U
xfor any x EX.

     Now we can state a duality property, which we shall discuss in this 

paper.

[I-S duality] For any s-birepresentation U  E  {u(V)} over

 T  , there exists a unique element x in X such that  U = u
x ,

that is,  u(14) =  V(x) for any  V  E  T  . 

     Our main problem is as follows. 

     Problem. For what pair (G,H), does I-S duality holds? 

    Lemma 4. Under the assumptions 1) and 3) of Definition 3, the

constant M mentioned in 4) can be take as  M  =  1  . 

 —265—



Proof. If there exists an  E > 0 and  IP such that

 Ilu(P)II >  (1+6)1(11)(-e)1(  , from 3) 
 116 

 Huai  011=1111  u(v))11=110011  >  (1+6)111P  Ce)I  1m (i-Fs)m1111 (e)II

This contradicts 4).

    Example 1. When G is a compact Lie group, I-S duality 

holds by the results of Iwahori and Sugiura[2].

    Example 2. When H is a normal subgroup of G , by 

Lemma 1, we can restrict ourselves to representations of the factor 

group H\G . This reduction leads us easily to the equivalency of I-S 

duality for  H\G as a factor space and the group duality as a factor 

group. That is, I-S duality holds in this case too.

    Example 3. Put G =  SL(2,U) , the group of  2x2-matrices 

g=la b)dwith determinant one on the complex field . And put 
H = q 0ab-1 1 , the subgroup of all upper triangular matrices. 

          a

It is well-known that for any irreducible representation w of

G  , the restriction  WIH of w to H is irreducible too. This

asserts the trivial representation 1G of G is the only irreducible

 W  E  Q which has non-trivial H-invariant vectors, i.e.,  H  00 0.

This means, for any  IP  = (w,v) in  T ,  11)(g)  =  tP(e) for any

 g  E G.

  Therefore representations on H\G do not separate elements of 

X = H\G . So I-S duality fails in this case.

Example 4. We must remark that I-S duality is a duality

for factor spaces but not for homogeneous spaces. In other words,  I-S 

duality depends not only on the structure of homogeneous space H\G  ,
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but also on the pair of groups (G,H) . The 

Prof. T. Hirai shows this fact.

    Put G1= SL(2,C)H=1 t(0l                        _1)1 
And put G2 = SU(2) and H2 =SU(l). Then

as homogeneous spaces.

     By Example 3, I-S duality fails for the 

since SU(2) is compact, Iwahori and Sugiura 

assures I-S duality for the right hand side.

following 

 , just as 

obviously 

 left hand 

 's result

example given by 

in Example 3.

H1\  G1  = H2\ G2

side. However 

(Example 1)

 §2. Separating conditions 

Definition 4. We introduce the following different separating

conditions for the pair (G,H) 

 (P-0) There exists an  w  E Q such that  Hw G  . 

 (P-1) H =  n  HW , where w runs over  Q  . 

    (P-2) H =  Ha . That is, H-invariant vectors of

 G = IndH1H               separate the pointe from other points in X .

     (P-3) There exists a fundamental system of neighborhoods 

of  e in X , consisting of H-invariant sets.

Lemma 5. (P-2)  (P-1)  (P-0)  . 

Proof. This is trivial from the definitions. 

Lemma 6. I-S duality  =0.  (P-1)  . 

Proof. If I-S duality holds, representations  11JE  T of X

must separate each points of X . Therefore for any  g  e in X  , 

there exists a  IP = (w,v) such that  1P(g)  = T  -1(w)  (e)  1P(e) , i.e.,
 g

g 4  Hy . This leads us to  (P-1) . q.e.d.
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The following property is important. 

Proposition 7. If (G,H) is a  (P-1) pair, there exists a

non-trivial G-invariant measure on X  .

This Proposition 7, excludes Example 3 from candidates for (I-S)

pair. 

     To prove Proposition 7, we prepare some supplementary  lemmata which

are also useful in later  Ps.

Lemma 8. Let  X1 be a locally compact space, and F  = {F} 

                                                                  a

is a family of closed sets in X1 , satisfying  nF =  {x} (x E X). 

    Then for any compact set C1 in  Xi and any neighborhood  V1 of

x in X1 , there exists a finite subset  {Fj} 1  <  j  <  N in F ,such

      N  . 
that  Cin(rIF.)c  V1  .  J  J 

    Proof. We can assume V1 is open without loss of generality.

                                                      l 

Then C1 - V1 is compact, and {(Fa)c}is its open covering.

Thus we can take a finite open covering,

 U C1 - V1  '

This means the conclusion.

Corollary. For a  (P-1) pair (G,H) , any compact set C

                                                 - 

in X , and any neighborhood V ofe in X , there exists a finite

family of H-invariant open sets {F.}1  5 � N                                                      such that            ]j

 N

C  n( n F. ) c  V.          3

Proof. For any v  E HH(w) and  e > 0 , put 

(2-1)  E(E,v) E  {g  E G  1  l<v,v> -  <T  (w)v,v>1  5  E 

(2-2)  F(E,v)  E  ff(E(W,v))  . 

Since v is H-invariant,

(2-3) HE(E,v)H = E(E,v)  .
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     By the definitions, E(E,v) is a neighborhood of e , therefore 

F(E,v) is an H-invariant neighborhood of  e in X . And the assum-

ption  (P-1) assures

(2-4) H =  nE(E,v) (  w  E Q,  vEHH(1) ,  6 > 0 ), 

(2-5)  fel =  nF(E,v)  . 

Put  XEX1' F  E  F(S,v) C = C1 in Lemma 8, and we obtain a

 finite family  {F.  :E F(6v.J)} such that 

 c  n  ( n F.
3) c  V  .

Lemma 9. For a  (P-1) pair (G,H) , any compact set  Co in

H , and any neighborhood V of e in X = H\G , there exists a neigh-

borhood W of e such that W  C V and WC0 C  W

    Proof. We may assume V is compact. In Corollary of 

Lemma 8, put C = VC0 and W = C n(  n F.)  c  V . Then WC0 C VC0 = C 

 ,

 j

and WCo C WHC(nF.)H =  (nF.) . Therefore ICocCn  (nF.)  =W. 
  A J•  J                           3

Lemma 10. Assume that for any  h/  E H and any neighborhood

of  e , there exists a neighborhood W of e in V such that

 Whlc  W

Then there exists a non-trivial G-invariant measure in X = H\G  . 

    Proof. Let AGAHbe the modular functions for Haar

measures on G and H respectively. A.  Weil'S criterion ([6] p 45) 

shows, the existence of G-invariant measure on X is equivalent to

(2-6)  S(h)  E AG(h) /  AH(h)  = 1 for any h  E H  .

So if there is no non-trivial G-invariant measure on X , for some

 hl  E H ,  6(h1) > 8. Let  C be a positive  continuous function such 

that  E(hg)  =  6(h)E(g) for any  hE H and g  E G  , then there 

exists a quasi-invariant measure p on X satisfying

 (dp(gg/)/dp(g)) =  E(ggi)/E(g) (see [1]).
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Take an open relative compact neighborhood W1 of e in G such

that,

 (C  (e)/2) <  E(g) <  2“e) for any g in  W1. 

                      1 Put V1=-W1n h1W1h1and V = 7 (V1)3-e.

From the assumption, there exists a neighborhood W of e in V

and

(2-7) Wh1-1c W .

-1  -1
Evidently  it  -(W)  (V) = HV1 . Thus 

0 < p(wh1 1)  du(ih  ) = I(E(ghl)/E(g))&1(i) <  +w  •           J
w

Any element g in 7-1(W) can be written as  hgl (h  E H,  g1Cr V)  .

 Mghl)A(g))=  (E(hglyg(hg1)) =  ((gilli)g(g1)) 

 =  (C(h
1h1-ig1h1)/(g1))  =  d(h1)(“h1-igh1)/C(g1))

               >  8((C(e)/2)/  2  (e)) = 2  .

Finally we obtain

(Wh11) > 2 jdla=1-1(W) > 0
This contradicts (2-7)  . 

Proof of Proposition 7. It is sufficient to see that for a

 (P-1) pair the assumption in Lemma 10 is satisfied. This is a direct

 result of Lemma 9 for the case C  =  {h1}

 Letma  11.  (P-3)  =4. (P-2)

    Proof. (P-3) assures the existence of an H-invariant

neighborhood W of  e in an arbitrary given neighborhood V of  e  .

This supplies the assumption in Lemma 10, thus there exists a non-

trivial G-invariant measure  II on X . Therefore the induced  repre-
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sentation a = IndGH1His realized on L2V(X) as

2
           T

g(0-)f(x) =  f(xg) for any f  E L` (X)  E  H(a)  . 

The family of characteristic functions XE of H-invariant compact

neighborhoods E of  e gives a family of H-invariant vectors in  H(o) 

                    - which separatese in X from other points. q.e.d.

Based on the result of Proposition 7, hereafter we assume that

there exists a G-invariant measure  P on X  . 

 -1
 It  I is an  H-invariant measurable set in X  ,  7r(E) is a set

of type HE1H in  G for some measurable set E1. Put 

                         _ 

              E-1=7 (HE11H) ={ g E  H\  G Ig-1 E  E} .

     Obviously E-1is an H-invariant measurable set in X  .

Analogously for two H-invariant sets E1 and E2 in X , we can

define their product by

E1E2  E11(Tr-11 (E)71--1(E2)).

If an H-invariant set E is compact, there exists a compact set

F in  G such that HFH = HF and E =  7(F)  . This concludes that for

compact H-invariant sets  E1 ,  E2 , the product  ElE2 =  ff(HF1F2H) = 

 7(1.1E2) is also compact in X . 

Lemma 12. The nullities of E and E-1 with respect to  P

are equivalent. 

Proof. From the relation between nullities on  P and on

Haar measure  T on G , we get

                                       1 
 V(E) = 04==T(7-1(E)) = 04.--*T((7(E))-1) =

     < >  p(E  1) = 0 . q.e.d.
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     By the reason of Lemma 12, for any H-invariant  P-measurable 

function f on X , we can define an H-invariant  Ti-measurable func-

tion  f*(g)  f(i-1)  •

Definition 5. An H-invariant set E in X is called sym-

-1
 metric  if  E  =  E  . 

     And an H-invariant  P-measurable function. f is called symmetric

if  f*  =  f  .

     For a  li-measurable function f1 and an H-invariant  Ti-measurable 

function f2 on X , if the following integral on the right hand side

has a meaning, we write,

   <T-gf1,f2> Elfi(xg) f2(x)  dP(x) • 

                   X

This function is  Ti-measurable, and if f1 is H-invariant , it is

H-invariant as a function of  g . We put

[1f11 (  I Iflx)113dP(x))111)= 1, 2 ;  1 pi. 
 3PXj‘

Lemma 13.

(2-8) f1<T-            g1 f2>1 =  11f1112  11f211  2 for  g  E X  . 

(2-9)  _  11<Ti  fl, f2>111  =  11f111111f2*11, for  f1,  f2  C  Li  (X) 

(2-10) II<Ti f1 , f2>112 = Ilf111211f21111 /211f2*1111/2 

                                             "

                  for f1 L2 (X) and f2,f2*  E L1p(X) . 

(2-11) f11<T-          g1'  f2>112 =  I[f2*11211f1111

                   for f1'Li (X) and  f2* E  L2 (X) . 

Proof. (2-8) is given by  Cauchy-Schwarz's  inequality

directly.

11<T-fl,f>11=   g21 If If1(xg) f2(x) dii(x)1  dp(g) 
            X  X
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 H

 H

X fXIf1(xg) f2XX(x)Idu(x)du(i) =Ifi(x)I If2(xg-1)1  dP(x)dP(i) 

 J J I  fi(ii)11f2*(igi-1)1  d1-1(g1) =  J  If 1(g1)1  11f2*1I1  at(g1) 
 X  X X 

11'1111 11f2*111 ° This shows (2-9)  .

<T-f,f2>1122 =f1f ft(xg)  f2(x) dl,i(x)I 2 du(g) 
g1  X  X 

 I X(I Ifi(xg)1  2If2(x)Idp(x))( fXIf2(x)I dli(x))dp(g) 

          - 

Ilf2II1  If1(x)1  21  1f2(xg-1)1  di-1(0(111(x) =  11f2111  11f2*111  11f11122 
 X  X

This is (2-10) .

1<T- f1,f2>II22 �f
X(If1(xejXldp(x))(1'2(xg-1)1 2dp(Odli(g)   J •

=  11f
1111  Ifi(ii)1  (  If2*(igi-1)12du(i))du(i  ) 

 X  'X 

 = (I1f11rlf*11 
     1122 )2  . Thus (2-11) is  shown  .

Definition 6. Define the following conditions. 

 (A-1) There exists a compact H-invariant neighborhood of

in X  .

 (A-1') There exists an  W in  52 , and a non-zero v in

H(w) and 1  � p < +  co such that 

 E  <T  (w)v,  v>  E LP
P(X)

(A-2) X is locally connected. 

(A-3) There exists a normal closed subgroup N of G in

such that the factor group N\H is generated by a compact set. 

 Proposition 14.  (P-1) +  (A-1)  4=4-  (P-3)  . 

 Proof.   -) Trivial. 

  (  ;-) Let V be a neighborhood assumed in  (A-1) . The proof

— 273 —



of Lemma 9 gives a  fundamental system of neighborhoods of e  ,

 F(E,V)nVIWEQ ,vci4H(W) ,E> 0 },

which is proposed in (P-3)  .

Definition 7. We introduce other conditions.

 (A-1") There exists an H-invariant symmetric p-finite 

p-positive set in X  . 

 

•  . „  

 1

 (A-11")  There exists a symmetric continuous  f  in  HH(a) n(X). 

    Lemma 15.  (A-1'),  (A-1") and  (A-1") are all equivalent.

Proof.  (A-1')  ==  (A-1") . The set

E  =  {xl  IE(x)I >  C(e)/21 is an example of the set for  (A-1")  . 

 (A-1")  ===9-(A-1") . Let E be a set given in  (A-1"),

then its characteristic function  XE is in HH(a) and by (2-9) the 

function  f(g) =  <T
g(6)XE XE> is the one asked in  (A-1")  . 

 (A-1") .  (A-1") is a special case of  (A-1')  .

   Proposition 16.  (P-1) +  (A-1') (P-2) 

   Proof. Take the set E given in the first step of the proof

of Lemma 15 and F(E,v) in the proof of Proposition 14. Next construct 

the family of the sets

 IFEF(E,v)nEl  wc0  ,17EHH(w)  ,E>  0  }. 

The family of vectors  fx0 in  Hu(a) separates  e in X , that is,

(P-2) is satisfied.

    Proposition 17.  (P-1) + (A-2) (P-3)  . 

    Proof. We assume  X is  locally connected. Let V be

given relative compact open neighborhood of  e in X . Put C =  V  , 

and adapt  Corollary of Lemma 8, then there exist finite H-invariant
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open sets  { F.1 
             J,�j�N such that W=C1-1(nF.J)cv.

Because of locally connectedness of  X , the connected component W
 0

(  3 e) of W is a neighborhood of e  • For any h in H , W0h is 

connected and 

   VnWhcCnW=hccn(  nCn(nF.) = V. 

 o

This asserts V nW
oh = C nWoh and this set is a relatively

open and relatively closed in the connected set W h  . Since this set
 0

contains e it is non-void, therefore is equal to  W
oh  • That is,

eW
ohV n Woh c W .

Thus we obtain an H-invariant neighborhood  W
0 in V , and the

condition (P-3) is proved. 

Corollary. If  G is a Lie group, for a pair (G,H)  ,

 (P-1) is equivalent to (P-3)  . 

    Proof. In this case H\G is locally connected. So by

Proposition 17, it is direct. 

   Proposition 18.  (P-1) + (A-3)  -  (P-3)

 Proof. Because H\G (N\H)\(N\G) , we may  assume N  =lel. 

    Let  Co be the compact set generating H By  Lemma 9, for given

 compact  neighborhood V of  e in  X. , we get a neighborhood  -W of  e 

in V such that  WC
o c W . Repeating adaptation of this relation 

              n  leads us to WCo c W  for any n And lastly we obtain

 H=  u  wc  171  .
 n  0

§3. 

At first

 Approximate identity and operator  Tr 

         we remark that if H-invariant f1  , f2 are in  L2  (X)
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they can be considered as elements in  HH(c) and 

            < T-
gf1'f2= <T(a)ff2 .

    Lemma 19. For (P-3) pair (G,H) , any k  E C
o(X) and 60, 

there exists an H-invariant neighborhood V of e such that         

1 k(xg)  k(i)1 < E for any x E  V , and any g E  G  .

    Proof. Since k is continuous, for any g  E G , there 

exists a neighborhood V(g) of e in  G such that

1  k(eg/g) -  k(g)1 <  E  /2 for any g1  E V(g)  .

By (P-3) assumption, there exists a symmetric neighborhood W(g)

such that W(g)2 c V(g) and 

(3-1) HW(g)H = HW(g)

Therefore we can determine W(g) depending only on the H-coset which 

contains g . Thus we show it by  W(g)  .

    Take a finite covering [k] c u eW(g.
3)g.3, and put W  =  n w(gj)

and V  E  Tr(W)  =  eW . This V is the asked one.

     In fact, any  g  e  [k] is written as  g =  eg
ogj for some j and

 go  E W(g.)  . Similarly for any x  E V , xg = egfgog. . Here 

glEwcw(g.) so gygo e (d(g.3))2 c  V(g.)

 

1  k(xg) -  k(Di =  lk(egigogj) -  k(ipl  Ik(ij)  k(egogj)1
              =  c/2 +  c/2 =  c  .

Let  g  [k] satisfying  eWg n [k] , by the  symmetricity of

W , for any g1  E  HWgn7-1 ([M)  , g  E  HWg/ . That is,  A  E  "agl  =  Vgl

This means  ik(yi <  c

    Proposition 20. For a (P-3) pair (G,H) there exists an 

 1  00 .approximate identity  01 in n  L with respect to
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<T-
gf,ea>in L2P(X).That is for anyf E L2P(X)  , 

 lim <Tf,                        ,8a> = fin L21-I(X)  .  ag

    Proof. Let V  =  {V(a)} be a fundamental system of neigh-

borhoods of e in X , consisting of symmetric H-invariant sets. Put 

           ecv)         av(a)

    For arbitrary given f E  L211(X) and  6 0 , select a k  E  Co(X) 
such that  Ilf - k112<  6/3.Then evidently 11T(U)(f - k)II2<  E/3.

By Lemma 19, for some  VE V  ,

 Ik(xg) <  E/3m1/2                           for any x  E V , and any g  E G  .

And k(xg)  = 0 for any x  E V , and any g  7  -'(V)  7  ([k])  . Where

M =  0.1(V7-1([k])))1/2  . Therefore,  for 8VE  (0(V)).-1Xv 

i<T-gk,8V> k(i)1 = ifmv)-1xV(i1)(k(g1g) - k(g)) du(i1)1 

 X 

  p(V)1lk(g,g) - k(i)11)e/31,1.1.2 

          V

And  k(g)  = <T-
gk,8V> = 0 for id V71

                                    '([k]) 

    11<T-gf,8V> - f112  �  11<Tif -  Tik,  8v>  112+ 

 II<Tik,  eV> —  kl12 +11k  fll2

=11Tf - Tgkll2lieV* II11/211/2+II<Tik,  eV> — k(-012dP(g))                                                               1/2
IIHeV

 +C/3

=  e/3 +  ((s2/9m)m)1/2 + E/3  =  e  . 

    Proposition 21. Let f and f* be in  HH(a) . For given

 C > 0, there exists a symmetric H-invariant neighborhood V of  e in 

                                       <  6 , here 0v =  P(V)-1X
v•  X,such that 11 f - <T-8                        gV'f*> 112 

    Proof. We assume f 0 without loss of generality. The

existence of such an f assures that of a symmetric H-invariant 

p-finite p-positive set
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 ElEfgl  IfI c}  u{kllf-k  I>  c} in X for some

c > 0 , and again we consider the set 

     E  E  X  n  El)  (p(E1)/2)  T  .

As is easily shown, E is a symmetric P-finite  H-invariant open 

neighborhood of e  .

    On the other hand, the set V1  {g  I  lif - T (a)f1122  < C } 

gives also an  H-invariant symmetric neighborhood of e  .

 Put VEV1 nE, then 

             >11
22I 

 

Ilf - <T-geV, f*>1122=  Ilf -J'1761)f(61g-1))  dP(gi)L122 

                             X

 I [  I  lev(g1)1  1f(i) -  f(ig1-1)1  dv(g1)  12a1(g) 
 X  x 

  X [ IX10V(g1J)1 di-161)] [I10 6 )1 If(i) - f(igi-1)12 X  V 1

 X  du(g
1)dl-P(g) 

        r1 -12 , =110
V1Iev) [iI                    f(i) - f(ggi)1dPkg)]  dP(i) 

                    X =  J  0V1)  Ilf T  -1f  1122  dP(g1)  E  • 

 X

Definition 8. For an  H-invariant symmetric  p-finite set E

in  H\G , we consider the operator TE on  Lp(H\G) as follows. For 

any f in  L2  (H\G) = H(a)  ,

 (TEf)(g)  =  f(xg)xE(x)  du  (x) = <Tif,  XE>  • 
 )H\G

Proposition 22.  i) TE is a  bounded symmetric

operator on  Ho)

ii) TET
g(a) = Tg(a)TE

ii) TET
g(a) = T (a)TE for any  g  E G  . 

iii) Take an H-invariant  P-finite  P-positive set F in

H\G , and consider the H-invariant subspace K L2 (F) in  H(0)

     Then the restriction T  = TE1 is an operator of Hilbert-Schmi 

          22K t
ype from L (F) into L (H\G)  .
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That

 And 

 the

Proof. i) From (2-11)  ,

 11<T  f,  XE>112  11f 112  11XF111  =11f 112  1,1(E)  . 

This shows the boundedness of  TE  .

< TEf, k > =  f[  ff(xg)XE(x) dP(x)  ]  k(i)  dP(i)
=  fif(g1)  XE(ilg-i)k(i) d  11(g) 
=  ff(g1) [  XE(ggi-l)k(i)  dP(g)  di-1(g1)
= < f, T

Ek > for any f, kEL2(H\G)

is the  symmetricity of TE 

ii)  TE(T
g  (a)f)(g)  =  <T- f,XE= Tg (G)(TEf)(i)            gg   1 1 1 

iii) We take an orthonormal base {fa} in K = L2 

put  PK the projection from  H(6) onto K. Evidently 

operator multiplying the characteristic function XF 

/1(TEaf)(g)12 =Tgfa'XE>12 =fa,  T  _1(G)XE  >12 

= 11PKT-1(G)XE'112= X(x) XE(xg-1) dP(x) 
 g'XF

(F)

 PK is

Thus

 

III 012

Lemma

 a

  X

23.

 X 
 'X

Here E runs

     Proof.  

borhoods of  e 

sets, exists.

all

As

          LITEfa1122=L1(TEfa2)(g)1 dP(i) 
 a  'X 

 F(x)  XE(xg-1)  dP(x)  dli(g) =  11(F)P(E) < +  .

For a (P-3) pair (G,H) 

                                                               _

 n (TE-J-(0)) = {0}  . 
E

H-invariant symmetric P-finite sets.

For (P-3) pair, a fundamental system  {Ea} of neigh-

X ,  consisting. of H-invariant symmetric p-finite

in the proof of Proposition 20, the family of functions 
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 8
a = (11(Ea))-1)(consists an approximate identity for L2(X) .                         .ma

That is,

0 =  lim (1-1(Ea))LT, f = lim (P(Ea))--L<T-f,XE> = lim <T-f,> 
 a,a                 gEa  a ga

= f , for any f in  n(T
E  (U))  c  n  (TE  (0))  . 

 a  a

 §4 Core subgroup. 

We introduce the following notations.

S  =  {E  c  XI  H-invariant measurable and 0 <  P(E) < +  0  }. 

S
1EE  {E  E SI1                  -E  S}

S and  S
1 may be void in general. But the following is trivial

by the definition.

Lemma 24. S1(1)4--> (A-1") . 

Proposition 25. If  S1 # there exists the smallest

open subgroup  Go in G containing H and 

    (4-1) p(E  n  1r(G0)) =  p(E) for any E  E  Si  .

Proof.  1) If E  E S1  , its characteristic function

XE is H-invariant, and both of  XEand XE* are in L-(X)  .

Lemma 13 assures that the continuous function

(4-2) S(E,  g)  E <T-gXE,XE> =  P(Eg  n E)

is in  LI  (X)  . It is also H-invariant symmetric and  E,  e) =  p(E)

> 0 Therefore for some  8 > 0 , the set 

 F= F(E) E  {xE  X  I  ((E, x)  >  )

is H-invariant symmetric open  la-finite  P-positive, and contains e  . 

    2) Now for any  EE  S1  , take  EEEL)  F  and

 g)  =  11(4 n  p  (Fg  n E)  , 
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 F(E,E)  {X  E  X  I  (3(E,  X)  >  6  )  (  E  >  0)  . 

 Then the set Go=Uff-I(F(E,E)) (the join runs over the set of pairs 

 (E,E)  6  S1X(0,w)) is the asked one.

Indeed, evidently  Go is open as a join of open sets  TT-1(F(E,E))
                1 and contains H ="IT(e) . For any g E1(F(E.,E.))  c  Go = 1, 2)                                       J J 

                         -1- 
the set  F(E1,E1)g1-1 n F(E2'E2)g2.9  e is a non-void open set in X  . 

Thererfore, if we put  P E  F(E1,E1)  u F(E2,E2) , there exists an >  0

such that

                                               -1 
    g1g2)= <  T  -1XP' XP> = P(Yg1g2 n  P) 

               g1 g2
 -1

 p(F(EE1)g1 g2  n  F(E2,E2)) 

 - =  P(F(EE
1)g1  n  F(E2'E2)g2-1)  E.

                 -1 
This means g1g2  E-1(F(P,E)) c  Go , i.e.,  Go is an open subgroup.

3) Next we show the relation (4-1) . For this, it is

sufficient to see that for any E  C S1 , p(E n  (FE)c)  = 0. Here

FEx) >01-=IIPCP'Elc1-1(G) E'E>0' o'

    If not, there exists a compact C in E n  (FE) such that 

p(C) > 0  . Take a finite covering by open sets  Fg.'s as

 Cc   N  Fg. (7r(g.) E C) 
 Uj3

Since  ij  =  Ir(gj)  E C c  (FE)c  , 

        p(C) = p(E n C)  �  gE  n Fg.) � p(E  n Fg.)         ujJ

 N

 �  ij) = 0  .

That is a cotradiction.

4)  Go must be the smallest. In fact, all F(E,E) is open

and in S1 So  71(F(E,E)) is contained in the group which is stated

in this proposition.

Definition 9. We call  Go given in Proposition 25, the core
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subgroup of (G,H) and write  X
o  =  71-(Go)  .

    Lemma 26. For a (P-3) pair (G,H)  ,  S1 is non-void, that 

is, the core subgroup  G
o exists. 

 Proof. As a consequence of propositions in §2, we get

(P-3)  (A-1) . And Lemma 24 leads us to the result. 

   Lemma 27. If S1and G is connected, G =  G
o  .

Proof. Since  G
o is an open subgroup of G ,  G = G  . 

Example 5. If H is compact, the pair (G,H) always satisfies

G
o= G .

    Indeed, for any g c G and any relative compact open neighborhood 

V of g in G , the set W = HVH u HV-1H is also relative compact and 

open. Thus  Tr(W) is in  S1 and  G
o W g , i.e.,  G = G . And by 

the same reason, (G,H) is a (P-3) pair.

Example 6. When G  E  Lor'(2) (2-dimensional inhomogeneous 

Lorentz group) and H  E Lor(2) (2-dimensional Lorentz group), then H\G 

 =  R2 and  G-invariant measure  p on it is just the Lebesgue measure. 

The group H operates on it as Lorentz transformations. So any H-

invariant open set has infinite measure.

That is, this is a case of  S1 = , its core subgroup doesn't 

exist. Easily shown that the pair (G,H) is not even  (P-0).

    Example 7. However if we introduce the discrete topology 

in  G given in Example 6, the  G-invariant measure on H\G must be 

the point mass. There is a unique p -finite H-invariant set {e} in 

it. This gives an example for which G0( = H) exists but is not 

equal to  G . And since H\G is discrete, this pair (G,H) is also 

(P-3) .
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    Example 8.  Consider  discrete  additive  groups Dj Z 

(  -co  < j  <  +op  ) and  G1  E  H  Di with discrete topology. Let  G2 =  {sn}n 

be the group of automorphisms  sn  on Gi given by

 s
n  : G19 (,X.)h›-(Oes yX.,oses ) C G1.                                                      j-n 

Construct the semidirect product G -G2X G1 with discrete

topology, and take the discrete abelian subgroup H  E  H  D. (1 j <  +co )

Then any element in X = H\G is parametrized by 

           w(n,x)  =  (sn, x  = (  °°°,x _1,  xo))

the H-orbit passing through w(n,x) has isotropy subgroup in H 

according to n as  follows.

1)  H for n 0 . Mass of the orbit =  1  , 

2)  H  D.  (  n  <  j  <  +c°  ) for  n  >  0  .
J 
                        Mass of the orbit = +  °°.

It is easy to see that the inverse of the orbit corresponding to

n is the one corresponding to -n . This shows  Co  =  G1 # G , and

gives an example such that there exists an H-invariant  1J-finite

 1J-positive set which is not contained in  X0 (=  71(y) . And the
discreteness of H\G leads us to (P-3) property of the pair  (G,H) 

    Example 9. An example of pair, which is  (P-1) but not

(P-2) , is given by a restricted direct product as follows. 

    Let  '(k., B.) (1 j < +  °°) be  (P-3) pairs. Assume that there 
 J J

 are  compact  open  subgroups  K.  of ,  which are  not contained in each

 core  subgroups A~  of  (A.,  B.)  This  includes  that  the  sets Kj  - A~ 
 J  J

 isopen.inA„andtheB.-invariant canonical image of  (K. - A.)B. 
                                                        J  J

in  X. = B.\A. has infinite mass. 
 J  J

 Taketherestricteddirectproductwith respect to
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 J  (g1, 2' gJK. 

 except finite  j's, and the topology of G is given by the one of a 

 compact  neighborhood  II  K.  of  e  as  an  ordinary  product of compact

 groups  Kj

Put H =  H'B. the restricted direct sum with respect to

{ K. n B.  } , then H is a closed subgroup of G , and X = H\G =  J J

=  COX . . The restricted direct sum of the last term is taken with 
 J 

respect to K. n B. \ K. =. 
  3J

     Under this situation, for any finite set F =  {j) of indices, we 

consider the finite direct product GF = 11 A. , HF = II Bj , XF = 11 X. 

(= HF\GF) (each product is taken for j  E F). Then representations

of HF\GF is considered as representations of H\G in natural way, 

which separate the image  e of e in XF from other points. Running

F , we obtain a separating family of representations of H\G . That is, 

this pair (G,H) is  (P-1)  . 

     On the other hand, a G-invariant measure  11 is given by

    1,17111.1.,16.erep.istheA.J-invariant measure on X.,  JJJ 
 i • 

normalized as  pi(yKi)) = 1 . And any neighborhood of  e in X

contains a set of the form 

               H  Tf 7(j<N
j�N             E.  xK.)                                             for some N  .      jj 

 Here7.(E.)arerelativecompactopenB.-invariant sets in B
3AA.  J J 

respectively. This set contains the open set 

 TT  TT
 7( 

j<.NEj x  (KN  -  AN) KKJ)  . 

And the smallest H-invariant set containing this set also contains the

set
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E =  7(
3.‹NE.(KN- Ac.),N)BNxj>NjK.). 

                               P(E) =.<N3jP.(E.) x VN( (KNIIN3                            - 4)BN) x V(.>K.)  . jj

     This concludes that any H-invariant neighborhood of  a. in X 

has infinite mass, therefore the pair (G,H) is not (P-2)  . 

     A concrete example of this case is given as follows. Let

 IS1=  {bn}  
n  +00 be a discrete multiplicative group, and K 

is the automorphism group {e,  a} on S , given by 

         K- a  :  S  bn  Hwa(b)  =  b-n E  S.

     Put  B
o  =  K  <  S the discrete semi-direct product group. And 

consider the group B of inner automorphisms on  B
o with discrete 

topology. Take again the semi-direct product A  = B  X  B
o We adopt as

 (A.,  B.,  K.) in the above arguments the replicas of the same triplet 
 J  J  J 

(A, B, K) . Since the factor space B\A is discrete, the pair (A,B) 

is a (P-3) pair, and its core subgroup is  Ao = B . Thus we obtain the

result.

§5 Duality theorem. 

   In this  §, we shall prove one of our main results as follows. 

  Theorem 1. For any (P-3) pair (G,H) , I-S duality holds. 

   To show Theorem 1 , we prepare a series of lemmata. 

  Lemma 28. For a fixed w E Q and H-invariant vectors

v.
3EHH(w),Iettp.E(w,17.)(j = 1, 2) and1P0(w,  av1 +  bv2)

(a,  b  E C) in  T  .

Then for any birepresentation  u E  {u(w)} over  P  ,
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(5-1) u(.0o) = a u(P1) + b u(P2)

Proof. If a = b = 0 , by 4) of Definition 3 , u()0) = 0

and (5-1) is trivial. Therefore using the symmetricity, we can assume 

a is non-zero.

    In H(w  $  w) = H(w) H(w) , consider two  subSpaces'

 V1  = {v  ®  (b/a)v  I v  E  H(w)}  ,

 V2  E {(b/a)v e (-v)  I v E  H(W)1 

then  H(w  e  w) = V1  (f) V2 gives a direct sum  deComposition of

w  e  w , the both components of which are equivalent to w by inter-

twining operators U1 and  U2  respectively. Direct calculations 

show that the componets of  vector  wl  0 w2 in H(w  e w) are brought

by  U.'s to

   (5-2) a  (awl  + bw2)(1a12 +  11312)-1, 

   (5-3) a  (TDw/ -  aW2)(Ia12 +  11)12)-1

                       ,, in H(w) respectively. We write  co E a (ial2+Ibl2)-1
Applying (5-2) and 1), 2) of Definition 3 , to the cases  w.  =  v.

 andw.=u0.), we obtain

    (5-4) u((w,  co(av1+  bv2))) =  co(au(ty +  bu(iP2)).

Substituting v =  vl = v2 , for any c 0, we get

    (5-5) u((w, cv)) = cu((w, v))  .

From (5-4) and (5-5)  , (5-1)  follows.

    Lemma 29. For  V  E v)  e  T , let Hobe the closed subspace 

of  H(w) spanned  byfT(w)vIgEG  }.

     Then for any birepresentation =  {u(01 over  W  ,  u(lp)  E  H  . 

    Proof. Consider the direct sum decomposition w =  w2
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according to  H(w) =  Ho  a Ho , and representations  IP, =  (wl, v)  ,

• 
 .(1J

2 =  (W2' 0). Then by the definition  .0  =1  02 and 

 u(4)) =  u('P1)  u(1U2)  =  u(4)1)  0 0  E  H(Wi) =  Ho  •  - q.e.d. 

 Lemmata 28 and 29 show that any  birepreSentation U =  {u(4))1. over

 T gives a  family of operators

(5-6) U(w) :  HH(w) v U(w)v  E  u(tP)  E  H(w)

for  4, = (w, v) E  T . And 4) of Definition 3 assures that these opera-

tors are all uniformly bounded by  one.

     Hereafter we study about  this operator  . And the proof of Theorem 1 

is done in very similar way as in the case of group duality.

Corollary of Lemma 29. If  U(w)v 0 for a v  E.  H  (w) 

            <  T  (w)U(w)v, v >  t 0  .

   Proof. Because  of Lemma 29 , the vector  U(w)v is contained 

 ih the space spanned by  fT  .

Lemma 30. We fix a complete orthonormal system  fweda
in  HH(w) , and consider the linear operator given by 

 Bw  H(w)  a  H(g)  3 v  0 f  (‹T  (w)v, wa> f(D1a E  X1H(a)
Then this operator is a bounded intertwining operator from the space

of w  G into the one of  2®6  . 

    Proof. Write P the projection on  H(w) onto the space

 HH(w)  , then easily,  B is considered as the operator 

 Bw  : L21-t(X,  H(w)) v(x)(PTg(w)v(D) E L2Li(X,  HH(w))

 IIB  v112  = 
XIIPTg(w)v(i)112X11Tg(w)v(D112  dp(i) 

     = Iliv(D(12 dU(g) = ilv112 . 

           X
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Thus the operator norm  11Bwil is bounded by one. And the intertwining 

property is direct from the form of  Bw  . 

    Corollary. For a fixed complete orthonormal system

 Ikala in  H(a) , the operator given by 

    B  :  H(a)  ®  H(a) ? f10 f2.+1<Tg(a)fl'k>f2(g)}acrH(u) .

is a bounded intertwinging operator from  a  ®  a into  risi  a  . 

    Proof. A special case of Lemma 30. 

    Lemma 31. For arbitrary given birepresentation U E  fu(0)

over  Y , the corresponding operators U(w) from HH(w) to  H(w) 

and  U(a) from  HH(a) to H(a) satisfy

(5-7) <  T  (w)(U(w)v1),  v2  >(U(a)f)(i)  = 

                     =  [U(u)(<T.(w)v
1,  v2>f)1(i) in  H(a)

                    for any v1, v2  HH(w), and any f  E  HH(a)  . 

Proof. Applying Definition 3 to the definition of  Bw  , we

obtain

{<  T
g(w)(U(w)v/),  wa>  U(a)f}a =  Bw(U(w)v/  ®  U(u)f) 

      = ( rU(0))Bw(v10 f) =  {U(u)(<T.(w)v1,  wa>  f)}a  .
Compare the  a-components of both sides and from the arbitrariness

of {wa}a, replace  wa by v2 . Then we get the result.

Corollary. <  T  (a)(U(Of1),  f2>(U(u)f3)(g) = 

(5-8) =  [U(a)(<T.(o)fi,  f2>f3)](g) in H(a)  ,

       for any  f1, f2, f3  e  HH(a)  .

Proof. A special case of Lemma 31. 
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Lemma 32. Let (G,H) be (P-3) , then for any

f1E HH(a) n 129(X) and any f3E HH(a) 

   (5-9)  (g(a)f1)(U(a)f3) =  U(a)(f1f3) in  H(6)(5-9)

Proof. We substitute an approximate identity  {0,,,,}0, given

in Proposition 20, into f2 of (5-8). If it is necessary, taking a

subsequence, we get

 (U(a)f1)(U(Of3) =  lim ‹T(0)(13(6)11j),0.>U(a)f3 

    =  U(o)(lim <T
g(Of8.>f3) =  U(a)(f1f3) 

   Lemma 33. For any H-invariant  p-finite E in X, 

there exists a Borel set U(E) and

(5-10)  U(a)XE =  XU(E) in H(a). 

Proof. Put  fl  = f2  =  XE in (5-9) , then

 (U(a) xE)- =  U(a)XE a.e.. 

That is,  U(a)XE must be a characteristic function of some measurable

set  U(E)

Corollary 1.  

(5-11) p(U(E))  �  p(E) 

Proof.  " 11U(011 1 ", leads us to

        p(U(E)) = IIXu(E)1122 IIXE1122 =  1-1(E)  • 

Corollary 2. For any f  E  HH(a) such that f  � 0,

(5-12)  U(a)f(x)  � 0 a.e.. 

Proof. It is true for step functions. And for general

 2
case, we take their limit in  L-  (x)  .

Lemma 34. If there exists a non-zero v  E  HH(0 such
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that U(w)v = 0 , we get

(5-13)  U(a)f = 0 for any f E  HH(a) n L2(Xo)  .

Proof. From (5-7) , we obtain 

(5-14)  U(G)(<T.(w)v, v> f)(g) = 0 a.e..

Since v 0 , for any neighborhood V of e which is contained in a 

set of type { g  I < T _(03)v, v > >  E, we can choose an f as

 <T  (w)v, v> f(g) 1 on V . Thus by (5-12) , we get U(a)(XV '= 0 . 

Consequently  for  an  approxiMate identity  {0v} given in Proposition 21  , 

we obtain  U(a)(8v) = 0  .

Using (5-8), for an f in HH(a) such that f*  E  HH(a), 

U(a)(<T
g(a)0V,f*> f) =MUM°v' f* U(o)f = 0 . g

Take the limit of left side, we get 

 (U(o)f)2 =  U(a)(f) = 0  .

                    q.e.d.

This Lemma 34 states an ideal-like property of 

                                                9
 T

o E  (G,  HH(a) n  L-il(Xo)) . That is, a birepresentation is an s-birep- 

resentation, if it does not vanish on a element ofT
o .

Thus in the following of this , we assume that  U(a) is a 

 2non-zero operator on  HH(a) n  L- (X) 

                                             o

Lemma 35. Let E be a compact H-invariant neighborhood

of  e . Then i)  1_1(E) = p(U(E)) and ii) there exists a  g
E in X 

 such  thatU(E)  cE2g_

Proof. Consider the function

 -1
       (1-1(E))--L <T-XE,XE2> E HH(a) n LI-1-1(X) n L (X) . 

                                                                      • 
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Then  e(x) 1 for any x in X , and  E/ E  {X  I  0(X) =  1}  D 

Repeating application of (5-8) , we get for n 2, 

 (U(G)0)n(i) =  U(a)(en)(i) =  (Ii(E)T1*1(<  Teu(E),  X12>)n-1(11(G)e)(i) 

That is, for  g  e  [U(a)0] , and n  � 1  ,

(1-1(E))-n(<T-X         gU(E)  XE2>)n =  (U(0)0)n(g) =  U(0)(0n)(g) 

  Take the limit in n . Then  en Xin  H (a) , so the left                                        E
l

hand side must converge to Y                              ' ,1(E1) 0 . This results the existence

of  gE such that 

      1  =  (u(E))-1< Tx 
                    gEU(E)' XE2 =  (P(E))-1P(U(E)8E  -1 n  E2) 

 (u(E))-1u(U(E))

 Combining Corollary 1 of Lemma 33, we get  u(E) =  u(U(E)) and 

U(E)  c E2gr,
E

Since the set E2 is H-invariant  gE is determined as  H-coset

 wise.

Lemma  36. Let (G,H) be a (P-3) pair  , and {  Ea} be a

fundamental family of H-invariant symmetric compact neighborhoods of  e 

We take  ga for  Ea given in Lemma 35.

Then fg a1 converges to some xoin X  .

    Proof. By Lemma 33, if  E
a  D  Eb then  U(Ea)  U(E a) . Thus 

from Lemma 35, E
132g13D U(E)  c U(Ea) a)  C Ea2ga. This showsgE E82Ea2ga 

for  8  a . Therefore  {g
a) gives a Cauchy net, and has a limit point 

x in X  . q.e.d.
 0

Now we put an assumption that (G,H) is (P-3) . 

Lemma 37. For f  E  HH(a) n L2(Xo) 

  ' (5-15)  (U(0)f) = T -1(a)f (go= x0 ) 
 go
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    Proof. For {Ea}, as in Lemma  36, U(Ba)ga-1Ea2  . 

But by similar arguments as in Proposition 21,  f(P(Ea2))-1XE21is an
 a

approximate identity in  H(a) . And this is same for the family

{MEd)1T(a)XU(E
a)1 and {(1-1(Ea))-1X,J • ,a

     We take the limits of both sides of

<T-[(1-1(Ea))-1Tg a(u)Xmcd] ,  f^› = (11(Ea))-1U(a)(< T. XEa,  f*>)(gga) 
                                                                                                               _. „....                         =  (p(E

a)) T (a)U(a)(<T.  XE  ,  f*>)(i)                                                  6a

and get f = T(a) U(a)f . g
o

     That is the result. 

    Lemma 38. For any  IP  =  (w, v) E  T  , 

    (5-16)  u(1P) =  U(w)v = T  _1(w)v  .
 go 

Proof. From (5-7),

 <T  (w)U(w)v,  v>f(gg-1) =  <T  (w)U(w)v,  v>(U(0)f(g)) 

                   =  U(a)(<T.(w)v,  v>f)(i) =  <T _1(w)v, v  f(ig01),
                                               gg--o 

for any f in HH(w) n  L2p(X 0)  . 

Let f be continuous, and put g =  go , then
                              2< T(w)U(w)v,  v> = 11v11.` 
go 

From the boundedness  11U(011  � 1 and 11T 11= 1 , we get 
      go

         U(w)v = T  _1(w)v . q.e.d.
 go

And this completes the proof of Theorem 1. 

We state the remark after Lemma 34, as a proposition here again. 

Proposition 39. If a birepresentation is non-trivial on

    To = (a, HH(a) n L2(Xo)) , it is not zero for any (w, v)

such that v 0  .
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 Example 11. We can show that the concrete example stated in 

the after half part of Example 9, is  (P-1) but not (I-S) . Here 

we sketch a proof of this fact.

     All irreducible representations of the group 

B = K a S ( = {e,  a} x {0}) are as follows.
 0

 1)  wo  = 1 : the trivial representation.

2)  w : the lifting up of the character

 X  (X  (a)  =  -1) of  K  .

3) w= {C2, UxA                  } = w  (IXI  =  1 and  X  1  )  X
 X  0 

such that, Ua=(101), Ub= (0  x)

     In general, let  A
0E  Bl  V B2 be a semi-direct  prodUct where 

 B1  = B2 and  B1 operates as inner automorphism group of B2  . Then 

all irreducible representations  V E  {H,  U( x,y)1 of  Ao are given by 

 anypairoffactorrepresentationsp.E41, x1 ,  (j  = 1, 2) such 
     ' ' 

that {V.1x} {V2} and {V1x} n iV21 = CI , as

U( xe)= V-1V-2x-2                  and U(e,y)  = Vfor (x, y)  E Ao  ,x

Moreover, if  B1(= B2) is type I group , the factor representations

 D. (j = 1, 2) must be multiples of irreducible  W. =  {H., 17-11 

                                                                 X

respectively, and               

1  2
 fH' u(x

,y)1 = {H1  a H2 ,  V'x  a  V'xy}  . 

We write this representation of  Ao by  w/  N  w2  .

This representation  wl  x  w2 has a non-trivial B1-invariant

vector if and only if the representation 

 w1  0  w2 of B1 has it, i.e.,

   (1)  wlw2 and (2) dim  w1 < +  co. 

And this  B1-invariant vector is unique up to constant factor.
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     After Proposition 39, for our I-S duality we can replace the 

considion 5) in Definition 3 of s-birepresentation by weaker ones as 

follows.

5') There exists a  11)  E  T such that  u(11))  O.

Or the same thing,

5/I)  U(G)is a non-zero operator on  HH(o) n L21.1(Xo).

 Example  10. In [3], we have Examples  3- 5 of non-trivial

birepresentations which do not correspond to any element of G in group 

duality.

     In the similar way, our Example 8 in this paper gives an example of 

a pair (G,H) which has non-trivial birepresentations not corresponding 

 to  any  x  E  X

     In fact, by G. W. Mackey's method [5], irreducible representations 

of G are exausted by

(1)  : The lift up of characters of the abelian subgroup G2

to  G  . 

                    G
(2)W:Ind- X (  X are non-trivial characters of  G1).    X G

1 
The one-dimensional representations  C are trivial on  G1 , so

 (C, v)'s  (v E  H(r)) give representations of X  . And it is easy to 

see the family of representations being disjoint to all type (I) repre-

sentations, constructs a prime ideal in similar sense as [4].

     Thus  we  can construct a birepresentation which is zero on this 

prime ideal and is v for  (C, v) of type (1) representations.

Remark. T
ois an ideal too, in this Example 8. But it is

shown that this ideal is not prime.
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Applying this to our example A  = B  a  Bo , all irreducible  repre-

sentations of A with normalized B-invariant vector v  are  given as,

(1)DEwxw =v=vo .      o o oA ' 

(2)  V  Ewvw

 

,  V  =  V a

                        -= 

(3) aX-uXV  wX  v  =  vx  .

The operation of the subgroup K on these B-invariant vector v are,

(1)  u(e
,a)vo= vo  ' 

(2)                 u(e ,a)v- 
 = -v

_ 

(3)  U(e ,a)vX  1  v1  °

Now consider the restricted direct product G =  HIA, with respect

 to{K.}. For any given N G can be considered as   J  a direct product 

              G =  Al x A2  x A3  x  xAN x  (iN'Ai)

Because all  A.  are type  Z , all irreducible representations

  =  R, of G are of the form of an outer tensor product

  = V _  0  D.,  0 .-.  0D_0D_'
 1 -2 °N

ofirreduciblerepresentationspofA.andN' of 1 .>aN'A.  .  j 

We assume that  V has a normalized H-(=  IPB.-)invariant vector v

By the continuity, we can choose an M such that

 liUkv  -  vil  <  1  for  any  k  6 xj%K.                              4 j

 WeshallshowthatD.=1A
. for any j >  M 

In fact, since v is invariant with respect to the subgroups 

BEffellx{e}x-...x{e}xLx-ie1 x •••  } , B.       2j-1 3j-1

and  from the uniqueness of normalized B.-invariant vector v. for 
                                                          3

 D  ,  v is  written as 

 v  =  v1  0  v2  0  0  vN  0  vNe

here vN' is a normalized H. :B.-invariant vector. 
                                 .1>N 3
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If there exists an N >  M such that  DN  1,  ,

for the element

 k o =  (e1,  e2,  ...'  eN-1'  a'  eN-1'  ) 

 6 j4m{ej}  xgmKj,

 1117,  v -  v11 =  11v111  x  11v211 x  IlvN_111  x

 Ilu(e,a)vN -  vN11 x  1111
 111J(e,a)vN -  vNII  �  /2 > 1  .

That is a contradiction.

Thus we conclude that there exists an M such that  D is con-

sidered as a representation of the factor group

 Aix A2 x  Am (G  /j~MA.)  ,

and is shown as 

                            ^                   M

     -- 

DDand v =v  . 
  j=1j  j=1 j

Next we select g. E A. and  f/ K.  , put x. = Tr(g.)  E B. \ A. 
   J J J J

for each j . Consider the map u  ,

HH(D> 3 v=v1ov2e...EovMIluvoUv...0UvEH(D) 
                       g11og22  gMM

From the form of v , it is easy to see the family  {u((D, v))} 

defines a s-birepresentation over  T . But by the definition of 

restricted direct product, there exists no element in H\G  =  11(B,\A,)

corresponding to this s-birepresentation. That is, (I-S) duality fails 

for this pair  (G,H)  .

plays
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we investigate conditions under which  (P-1) axiom is satisfied and 

we get some structural conditions for the subgroup H  .

Definition 10. We call the closed subgroup

                             - 

 (6-1) H-=  n  Hw (w runs in Q),

the P-closure of H for the pair (G,H) 

   Lemma 40.  (i)  H D H  .

(ii)  H  $ G (G,H) is (P-0)  . 

(iii)  H = H  4=0, (G,H) is  (P-1)  .

(iv)  H- = n  Hw (w runs in G , i.e., the set of all

equivalence classes of irreducible unitary representations of G  )

(v) HH(w) =  HH-(w) for any W  E Q. 

(vi)___         (H)= H 

(vii) If (G,H) is (P-0) , that is, if  H-  0 G  ,

 (G,H-) is  (P-1)  . 

    (viii) For an other  dosed subgroup H1(  D H),  HI  D  H-

    (ix) If (G,H) is  (P-0) ,  H- is the smallest closed

subgroup of G containing H for which (G,H) is  (P-1)  . 

    Proof. The assertions (i) (ii) and (iii) are immediate

from definitions. And from  Gel'fand-Raikov's theorem, (iv) is 

shown directly.

    From (i), HH(w)  D  Hir(w) . But any v in HH(w) is 

 H--invariant by the definition, so is contained in  HH-(w)

This is (v) . (iii) and (v) give (vi) and  (vii) soon.

If H1  D H , we get HH(w)  c HH(w) , and (viii) also. 
 1

Moreover if (G,H1) is  (P-1) ,  H1  =  HI  D  H- . This shows  H-

is the smallest one, i.e., (ix) . q.e.d.
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     This Lemma 40 shows that to a (P-0) pair (G,H) we can 

construct a  (P-1) pair  (G,H-) uniquely. Furthermore we have 

a way to construct a (P-3) pair as follows.

     Proposition 41. For a  (P-1) pair (G,H) , there exists an 

open subgroup Hoof H such that (G,H0) is (P-3) ,

Proof. Take a compact neighborhood U of e in H  ,

and put H1 the open subgroup of H generated by U . Let  H
o be

the P-closure of H1for the pair (G,H1) . Then obviously HoH  1H1 

and H is an open subgroup of H  .

     By Lemma  9, for  a==y  1„-finite neighborhood V of  e in X 

(=  Ho\G), there exists an open U-invariant neighborhood W of  e such 

that W  c V . Since W is U-invariant , it is  H1-invariant too. 

The characteristic function  x  gives an H1-invariant vector in 

the representation space L2                               (Ho\G) of IndGillo : invariant 
                                          o o 

measure over  H
o\G) . Lemma 40 (v) shows,  x is invariant to 

the P-closure  Ho of H1  . Therefore for any h E  Ho  , 

 o(Wh  A W) = 0 . This means Wh c W , so Wh c W , thus Wh  = W  . 

Therefore we obtain an  Ho-invariant neighborhood W of  e in an

arbitrary given V . This  concludes that  (G,H 0) is (P-3)  .

Lemma 42. For a (P-3) pair (G,H), let T be the  subrepre-

2
sentation of H which is the restriction of alto subspaceL(X o).         JHo 

Then T is a discrete direct sum of finite dimensional representations

of H  .

Proof. By the proof of  Proposition  25, we can divide  X
0

to a disjoint sum  F
a, of H-invariant  11-finite  1.1-positive symmetric

 a 
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sets Faj            for instancenF(E C,) etc. According to this division, 

 ' 

we can write the direct sum decomposition,

L21,1(Xo) = /Ha( Ha= L211(F)) 

          a

             2 in which each L (F ) is H-invariant.                      1-1 a

By Proposition 22, for any E  Si and a TE
,01 E T,IH a

is an operator of  Hilbert-Schmidt type commuting with  Th's 

(h H) Using the trace class operator  (TE ,a)*TE,a  , we obtain
                           -1 .1 a decomposition of T on.(T.E

,a(0))to a direct sum of finite 

dimensional  subrepresentations. Repeating the same steps to T -(0)  E
,u 

we reach the result as a maximal  decompositon, by  Lemma  23,

    Lemma 43. The kernel N  of representation  T in  P in  Lemma 

is given by

                                  -1 (
6-2) N = n gHg  (g runs  in  G

o)

Particularly N  is a normal  subgroup of  G
o  contained.  in H

 Proof. The kernel of  T  is  characterized as

 N=  {h  E  HI Thv = v , any v E L(X 0)} 
 =  fh  E  H  I  xh  =  x  , any x E X01 

 =  E H  I Hgh = Hg , any g  € G
o/ 

                     -1

gEG_ 
 = {h E H I ghg EH, any pEC1=gHg-1 

 o

 0

Proposition 44. The connected component of in N\H is

isomorphic to  R x K for some n and some compact group K  .

Proof. Let T =  / Ta be the decomposition given in Lemma 42

 i.e., the spaces  H of each components  Ta  are all finite  dimensional.

Thus the group N\H has a  faithfull  representation in a compact
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group  11 U(H ) . Here  U(H ) show the groups of all unitary matrices
 et  a

on H . Apply the following A. Weil's lemma and the result is
 a 

obtained.

    Weil's lemma [6]. A connected locally compact group which 

is represented faithfully in a compact group, is isomorphic to  Sn x K

for some n and some compact group K  .

     Summarizing the above arguments, we obtain the following results 

about the structure of groups in a  (P-0) pair.

Proposition 45. Let (G,H) be a  (P-0) pair, and H1be

the connected component of e in H . Then there exists a normal

subgroup N1 in Hi and m such that

(6-3)  N1\H1=m x (compact group)  . 

Proof. The connected group H1 is contained in the

connected component in  P-closUre  H- of H  . Therefore H1 is 

also contained in the component of the open subgroup  H
o of  H- in 

Proposition 41, for which (G,H
0) is (P-3) . Thus by Proposition 44,

there exists a normal subgroup N , the kernel of T , and 

 N\H
o is faithfully represented in a compact group.

     Put N1  E N n H1  , then the imbedding N1\H1  N\H
o is continuous 

and an algebraic isomorphism. That is, N1\H1 is also faithfully 

represented in a compact group. Again we can apply the  Weil's lemma 

and get the required result.

    Corollary 1. If H in a  (P-0) pair  (G, H) is connected, 

there exists a normal subgroup N in H and m such that

(6-4) N\H  =  Rmx (compact group)  .
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Proof. The case H = H1 in Proposition 45.

Corollary 2. In Corollary 1 , if G is connected, N is

a normal subgroup of G itself. 

    Proof. The case that  G is just equal to the core sub-

group  Go of (G,H)  .

Corollary 3. In Corollary 2, moreover if one of G and

H has no non-trivial normal subgroup, 

              H  =  Rmx (compact group) for some  m.

    Proof. From the assumption, N must be the trivial sub-

group, i.e.,  {e} . q.e.d

     Conversely we consider the case when N\H has the structure 

as (6-4).

     In the case N\H is compact, as is shown in Example 5, the 

pair (G,H) is  (P-0) ,  even (P-3).

However Example 6 gives an example that  "N\H  am" does not

result  (P-0) property in general.

    Example 12. We have a non-abelian example for which  H R 

and the pair (G,H) is (P-3) , in so-called  "Mautner's group".

it

 G  =  {

 =

0 

0

it 
 e 

0 

0

0 

 e 

0 

0 

 e 

0

 lett

 iat

 z1 

z2

1 

 0 

 0 

1

    <  t<  +00  ,  zl,  z2 E  C 

   < t <  +00  I 

 (a: irrational in  R).
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