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            On the spherical functions with one dimensional

K-types and the Paley-Wiener type theorem on some 

               simple Lie groups 

 Ynichi MUTA

Introduction. 

Let  G be a noncompact connected semisimple Lie group with

finite center and K a maximal compact subgroup of  G. We fix a 

one dimensional unitary representation T of K. A function f 

on  G is called T-spherical if

 f(kxk') =  T(k)f(x)T(k')  (xEG,  k,k1E  K).

The set  (G) of compactly supported T-spherical  C functions on 

 G is a commutative algebra under  convolution. When  To is trivial,

R. Gangolli  [3] characterized the Fourier transforms of the elements

 of  (G). Our purpose of this note is to characterize the

Fourier transforms of the members of  Jp(G) for any simple matrix

groups and any one dimensional representations T.

    From now on let  G be a simple matrix group. If K is semi-

simple, then  T must be trivial. We may therefore suppose that 

K is not semisimple. But it is well known that such a group is one 

of the following:

           S00(n,(n2),Sp(n,R), SO*(2n) and SU(p, q). 

We call  S00(n+2,2), Sp(r,R),  SO*(4r), SU(r,r) (n,r  > 1) the 

groups of the first kind, and call  SO*(4r+2), SU(n+r,r) (n,r  > 1) 

the groups of the second kind. r denotes the real rank.
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 G  = KAN  is an Iwasawa decomposition of G, and  1,  OC  41,

are Lie algebras of G, K, A, N respectively.  CC extends to a

Cartan subalgebra of  . We fix a compatible orderings on the 

dualsofOt and  Ot  + i( ink) . Let P be the set of positive roots 
of (ic) and put  13+=  {13  EP  :  Q  E  WYLX  0},  A+ =  E  P+}.
The inner product  <•,•> on the dual  01* of  Ot defined by the 

Killing form extends to a bilinear form on  074. We denote it also 

by the same notation. For a € A++) (resp.  Q  EPU(-P)) we write 

 la (resp.  1Q)                  for the corresponding root space in  e. (resp.  7).
The simple roots II =  {al,  a2''ar1 of  A+ may be so

arranged that the root diagram is 

 a1  a2  ar

or 

 ---o 

 a1  a2  ar

according as  G is of the first or second kind. Let 

 e1 =  al, e2  =  a1 +  2a2'  -0- er =  al +  2a2 + +  2ar

or

 e1 =  al, e2 =  a1 +2''er= al+ a2++ ar

according as  G is of the first or second kind. Then  le  e2, 

 er} is an orthogonal basis of  Ot* with same norm.  OL*  is then

identified with  Cr via 

 r

 at*  3v = v.e H (vl,v2,' v )  E  Cr 
 j=1l'2'
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and the Weyl group is identified withe the group of all linear 

mappings

                                          fl 2  l,2 
31,e2v.2r), Ej =1j2..jr 

   Letcl=4-:',e'a<- be the Cartan decomposition of and

 ik=  Oks, where  ka and  ks are the abelian and semisimple parts 

of  (P. respectively. For  x€G,  k(x)  EK,  H(x)E  01,  n(x)6  N are 

defined by x = K(x)expH(x)n(x). Let  e be the positive chamber 

of  OT and  Al- =  exp(e). Then  G =  K.C1(A+)•K. We write w and 

 w for the Casimir operators of G and  M respectively, where M  ,Wv

being the centralizer of A in  K.

 §1. Elementary  T-spherical functions.

 For  vEgt*
e the elementary T-spherical function is defined by 

          ..S'----  (v: x) =TWxk))T(k) e(iv-p)(H(xk))dk. 
                  K

(1  - 1)  Cv: x) is a W-invariant entire function of v, and 

satisfies the differential equation 

 wd?  =  (T(wv)  <v,v>  <p,p>)(1).

Since G = K•C1(e)•K,  qo is determined by its restriction to

 A. Let A be the function on  A+ defined by

A(h) =  TT  (e,(1-1) -  e-((H)) (h =  expHE  A+)
 BEP

and T(w) the radial component of w. Then we have
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(1 - 2) There exist meromorphic functions  T(v: h) and  CT(v) such

that

 A(0gb(v: h)  =  CT(sv)F(sv: h) (vE0(* ,  h  E-A÷) 
                            sEW 

Moreover  F satisfies the differential equation 

 1/2  (A  0T(w)0A  )T = -  <v ,v> -  <p,p>)T.

    Let H1, H2,  H
r be the basis of  0!..  dual to  el, e2, 

er. For 13 EP+ choose X±13Eltii such that  <XA, = 1. If
            EEks®7` c®7`cX± =y+ Z± c  ,Z±0c

then

 A(/2*?-(  LI)  )°  A-12  T(u4s)  1-1?

(1 - 3) +.17-2                       L <0,0>(shR)  L  <13,y>(coth(3)(cothr) 
 REP+  Yelp+

-  4  y (1-chR)(shR)-2T(YR)T(Y -R)

 

-E•P
+

Let L denote the semilattice of elements Im.a.
J(m.Je). For

A = /m.Ja.JE L, we let  m(A) =  /m.. Using (1-2) and (1-3) we see that
 F has a series expansion

(1 -  4)  T(v: h)=ya,(v)(iv-A)(H)(h = expH EA+). 

                                  A

 XeL

Here  aX(v)  (X  L) are rational functions determined by the 

recurrence relation  a  (V) 1,

 (<A,X>-2i<v,X>)tx(v) =  21  /  (8T(YOT(Y_Is)-<R,T>  )"A-2a(v) 
 R n>1
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 2  /  <r):6>  aX-2n(v)  '2^-21a-2n7(v) 
 n>1  13,1,  m,n>0

 m+n>l

      - 8  1  (2n-1)z(Y
is)z(YH3)a,_  (2n-1)(v)  (A  C))*  n>1 

We let 01!,_c- =  {vE(R*  :  0  <  vl  <  v2  <  <  vr}, =  {ye  01*

<X,A> +  2<v,A> 0  VXEL-{0}  }. 

(1 - 5) For  nc.  'at* we can find constants 0(n), d(n) > 0 such 

that

 ax(v+in)1  <  C(n)m(A)d(n)  (v6  01! ,  X  EL—{0}).

There exist constants C, d > 0 such that

 ax(v-Fin)  c.m.(x)d  c  xEL—{0})c

 §2.  Harish-Chandra's generalized  C-function  CT_LILL

The function  CT(v) in (1-2) is meromorphic on  oq and is

given by

(2 - 1) CT(y) =T(K(E)) d7 
                          R  e-(iNgi-P)(H(E))                      J 

Here we normalize the Haar measure  do of  N so that the integral 

of  exp{-2p(H(E))1 equals one. We shall find an explicit form of 

 C  (v) for our groups. Since the center of K is one dimensional, 

 T is parametrized by an integer  2. We denote this T by T2.

Example. If G =  S00(n+2,2), K =  S0(n+2)  SO(2), then 

         (1,c' 
                                  ike  (kTE  SO( n+2)).         T2 cose  sine)   T= e' 

                   -sine  cose ,
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    To compute the integral (2-1) we use the reduction theory of G. 

Schiffmann [7]. Let  sl,  s2'  sr be the Weyl reflections 

defined by  al,  a2,  ar respectively, and denote the length of

 s  EW by  2,(s). For  s  EW let N(s) be the analytic  subgroup with

Lie algebra  471.,(s)  =  y  cla and let
 a>0 

 sa<0

               T (K(R)) e-(iv+Ps)(H(E))  C(y:  s) =

(2  - 2)(G.Schiffmann  [71) If s =  s's" with  2(s) =  i(s') +  2,(s"), 

then

 Ck(y: s)  =(s"v:  s')C(v:  s").

    On the other hand, the element  -1 of W has the following 

property.

(2 - 3)  2,(-1) = r2 and

            "S"s -1 = s
rsr-1'1srssr-11rsr-1-1

 r

is a reduced expression of -1.

Since  N =  1.(-1), the question of computing  C2'(v) is therefore

reduced to finding  C(y:  s.) (1 < j < r). Fix a simple root a.

Let 41,and/R.be the subalgebrasr4_ cs.2a                                              andcr+g-2a 
 aa 

respectively, and  C(a) the semisimple subalgebra generated by 

 44. + ,Tettt .We write Na,Naand  G(a) for the analytic subgroups 

                           corresponding to the subalgebras not,4-4,aand  1(a). Then
G(a) is a real rank one semisimple Lie group with finite center and

has Iwasawa decomposition  G(a) =  KAN, where  K =  K()G(a) and
 a  a  a-  a

 Aa  =  exp  (EHa). Let  X  E  crctj and  YET2aj  . Finding  Kot  -component
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 K(fl)

 C(v:

(2 -

 and

and A 

 S  .  )  .

 4) Let

 z c(
v: s

1

C(v

a.-component

n.  =  dimir 

  C(v:  s

) is given

 J

 s1) =

 /77  (
or

 r(n  +1) (<1v,a,>\                            <a,a>j 
Q11  C(v:s1) 

(nn+1)(<iv,a,> n,\(         r  +r              2\<al'a1>2 )

according as G is of the first or

From (2-2), (2-3) and (2-4) we 

 THEOREM 1.  C  (v) is expressed

C2.(v)  = F(2mT+1)rr(m)r(r-1)

 expH(E) of  5 = exp(X+Y) 

 (1 < j < r). Then

        (<iv,a.>)  F(n.) "'T 
   n.(<iv,a.>n.) FP)rJJ 

   2<a.,a.> 2 
            J

by

  <1\6661>\

r<iv'al>1 
  <al'al/<al'a1> 2

, we can calculate

(2  <  J < r),

<iv,a,> 
 + 

 <(11
.'al> 

<iv,al>

1 

2

 2,)Tiv'al> 
  2<al'a1>

 <iv,  a> n,)r/ 
2<01,a1>4

 -  1)
 2  2) 

 <iv,  a>  n1 1
) 2<a1,a1>++2
e

 TT
 j<k

 .)

 m')

 <iv,  a1>n11

 2<et1'a1>4  2

 second kind. 

can derive the

by

         )1"(iv   j k

2,\fly'  a1> 
2j2<al'al>

following

kj  -iv)

+4  4.1  2 29-)

 result.

 F(m'-14)r(ri) 

x

 j=i

 r-1)

 r(2iv 

 F(2iv.+

 r(iv .+ivk2+)F(ivk-iv J 

         m'  r(ivj+2)r(ivj

j+2)

 +mi+1,  2

 1”(iv
  m'+1 

 j+  2
+.1

J)r(iv.+ 2
 m'+1 

 2

 2,  -2)
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where m and  m' are given as follows.

SO*(4r+2) SU(n+r,r) 

4 2 

  2

§3. Fourier transform on  02)2,(G).  
We define the Fourier transform  f of  fE  4Q(G)  =S T (G) by

 f(v) =  f(xWv:  x-i)dx. 

 G

For R >  0,(R) and  A4  (R) are defined as follows.  (R) is 

the space of those elements in  Xl(G) that are supported in BR  = 

 fx  E  G :  o(x) <  R}, where  o is the K-biinvariant continuous 

function on G defined by  o(expH) =  pHp  (HEM.).  (R) is the 

space of W-invariant entire functions F on  04 that satisfy

                                  Cm(1 + uvu-M             0Cm> 0 :  IF(V)I 

We write  ,C(01) for the union of all  )gW(R)  (R 0). 

(3 - 1) If  fE 0&(R), then fE:1AT(R).

Now we let

2z-1 
u(v)  = (C(v)C(-v))

This is a meromorphic function on  07_. In fact, Theorem 1 implies

that

         (v)Y(v)  (21m) 

 P  (v) = 
 X  (v)Z(v)  (am),

where

 0  SOO (n+2 ,2) Sp(r,R)  so*(4

 m

 m'

 n

0

 1

 0

 4
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4m1r(mv+1''2rp(m\2r(r-1)    '2'
 Xk(v) 

 r(2m1+1)2rr(m)2r(r-1) 

 X  TT {v.thTr(v. +2 )(+                            i(k+m)4g2dkl-m'-1)2)1 
 J=1 p=12

          m/2 
 Y(v) =ITTi «v. vk)2 + - P)2)((vj vk)2 +  -  P) 

 j<k  p=1

 and

                                             - v
k)        xj        j<k 

           r13-3
            X 11 ((v i +  v  )2 + (12-P)2)((vjvk)2 + (11-1-                                                                                          2.                   p=1 

As a function of v
r1.1(v) has infinite simple poles on

imaginary  axis. Let  ll,  =  Fl be the set of those poles that 

between 0 and  i(19.-m'  )/2. For a-Er,we let 

            .4,,  (a) _o. 
                    11a0)  ) = -27i-ResLid-v)  vr =  a],

 (a)      denoting  (v
i,  v2,  ..•,  vi-1). As a function ofwhere  v

 ke 
1.1a,v(a)) has  simple poles on the imaginary  axis. Let  11a be 

set of those poles that are between 0 and a, and put P2= 

 a  Er1  b  E  Hal. For = (a,  b)Er2 we let

        k(i)k(a)                   1_4(v) = -27i-Res[pa(v )  vr -1 =  b], 

where  v(1) denoting  (v1,  v2'  --•  vr -2). In this manner we 
                          k  Pl, 02, Pr,and1_1(v). For  simplisity we let  PO 

 k po(v(0)) = 11(v) and  I' = U(rp : 0 < p < r). For = (a1,
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2)

 ,) P2,  ))?,

 the 

are

the

{(a,b): 

 define 

=  fcM

 a2,  "°,



a
p) E Pp  we  let  y'  =

denote the subgroup of 

(r-p < j < r) fixed. 

(3 - 2) For every  1  E

function which is  posit.

For FE W(01* ) we

 g(F: x)  =w              i1  

          ;r'<P1.

We say that G has 

satisfied:

If  Pr"..i4AT(R)
(3 - 3) If r = 1

    This is proved 

sections.

    Now we assume  pro 

T-spherical  functions 

to A, we can regard a 

distribution on A.

Let F0be a

Tf = lim 
     c+0

where  gs(x)  = yI 

supported in  B
e. 

have support {1}.

(aP'•-•' a2'  a), E(Y) =  Rr  -P                                and let Wip
W composed of those elements that leave  v.

I',4(v(;)) is a  Wvinvariant meromorphic 

 ive-valued on  E(/).

let

 F(v(),1,)0(v(Y),I,:  x)14(v4))dv(Y) 
 13(,)

property (S) if the following condition is 

   then  5(F:  •) is supported in BR.

then G has  property (S). 

 using the results obtained  in the previous

 property (S) and continue our discussion. Since 

 ons are completely determined by their restrictions

linear functional on  JD(G) as a W-invariant

Define the linear functional T on  £9,(G) by 
       Tf  =  /(.: 1).

function in  d  (1) such that F0(0) = 1. Then 

lim :-.A1(•)F0(e•): 1) = lim  f(x)g6(x)dx, 
c+0  e+0  G

5(F0(s•): x-1). Property  (S) implies that  g5 is 
    Since T = limg as a distribution, T must 

 6+0

Moreover we have
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(3 - 4) T is a positive measure with support  al.

Hence there exists a positive constant y > 0 such that

      Tf =  y•f(1)  (f€  04(G)  )  •

(3 - 6) For  feek(G) we have

 y•f(x)  =  jr(f: x)  (x  EG), 

   Y• life 2 =  112: 
       L (G)

The set  {f  :  fE0.8^(G)} is dense in the space C0(Q) of continuous 

functions on  B which vanish at infinity. Here  B is the support 

of the  Plancherel measure.

THEOREM 2. Assume that G has property (S). Then the map

 ft---)Pf is a linear isomorphism of  o&  (G) onto  gw.(0q). More 

precisely, for every R > 0  00(R) is transformed onto  jt(R). 
 W .

Proof. Let  F6  AC(R) and define f by  yof(x)  =  5(F: x).
Then property (S) implies that  f64(R). Let F' = F f. We must 

prove that F' vanishes identically. But it follows from the 

definition of f that

 9(F': x) = 0 for all  x  E  G.

Hence

 i7(F'•g:  1)  =  5(F': x)g(x)dx = 0 for all  g64(G)° 

 {a  :  gEA(G)} is dense in  CO(B); so  F' vanishes on Q. Since
F' is holomorphic, F' vanishes identically.

- 187 -



 [1] 

 [2]

 [3] 

 [4] 

 [5] 

 [6] 

 [7] 

 [8]

                          REFERENCES  

0.  Campoli, The complex Fourier transform for rank one semi-

simple Lie groups,  Ph.D.Thesis, Rutgers Univ. 1977. 

 M. Flensted-Jensen, Spherical functions on a simply connected 

semisimple Lie group I, Amer. J. Math. 99 (1977),  341-361  ; 

II, The Paley-Wiener theorem for the rank one case, Math. 

Ann. 228 (1977), 65-92. 

R. Gangolli, On the Plancherel formula and the Paley-Wiener 

theorem for spherical functions on  semisimple Lie groups, Ann.

of Math. 93 (1971), 150-165. 

Harish-Chandra, Spherical functions on a semisimple Lie group 

I & II,  Amer, J. Math. 80 (1958).

  , On the theory of Eisenstein integral, Lecture 

Notes in Math. 266, Springer, 1972. 

 J. Rosenberg, A quick proof of Harish-Chandra's Plancherel 

theorem for spherical functions on a semisimple Lie group, 

Proc. Amer. Math. Soc. 63 (1977),  143-149. 

 G. Schiffmann, Integrales d'entrelacement et fonctions de 

Whittacker, Bull. Soc. Math. France 99 (1971), 3-72. 

G. Warner, Harmonic analysis on semisimple Lie groups I & II, 

Springer, 1972.

 Department of Mathematics 

Faculty of Science and Engineering 

Saga University 

Saga / JAPAN

 —188  --


