Lectures on harmonic analysis on Lie groups and related topics (On the spherical functions with one-dimensional K-type and the Paley-Wiener type theorem on some simple Lie groups.)

Y. Muta

Hirai, T.; Schiffmann, Gerard

Lectures in Mathematics (1982), 14

The following article has been remained unpublicized by request of the owner of copyright.

Citation

URL

Type

Textversion

Kyoto University
On the spherical functions with one dimensional K-types and the Paley-Wiener type theorem on some simple Lie groups

Yôichi MUTA

Introduction.

Let G be a noncompact connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We fix a one dimensional unitary representation τ of K. A function f on G is called τ-spherical if

$$f(kxk') = \tau(k)f(x)\tau(k') \quad (x \in G, k, k' \in K).$$

The set $\mathcal{S}_{\tau}(G)$ of compactly supported τ-spherical C^∞ functions on G is a commutative algebra under convolution. When τ_0 is trivial, R. Gangolli [3] characterized the Fourier transforms of the elements of $\mathcal{S}_{\tau_0}(G)$. Our purpose of this note is to characterize the Fourier transforms of the members of $\mathcal{S}_{\tau}(G)$ for any simple matrix groups and any one dimensional representations τ.

From now on let G be a simple matrix group. If K is semisimple, then τ must be trivial. We may therefore suppose that K is not semisimple. But it is well known that such a group is one of the following:

$\text{SO}_0(n, 2), \text{Sp}(n, \mathbb{R}), \text{SO}^*(2n)$ and $\text{SU}(p, q)$.

We call $\text{SO}_0(n+2, 2), \text{Sp}(r, \mathbb{R}), \text{SO}^*(4r)$, $\text{SU}(r, r)$ ($n, r \geq 1$) the groups of the first kind, and call $\text{SO}^*(4r+2), \text{SU}(n+r, r)$ ($n, r \geq 1$) the groups of the second kind. r denotes the real rank.
$G = \text{KAN}$ is an Iwasawa decomposition of G, and $\mathfrak{g}, \mathfrak{k}, \mathfrak{a}, \mathfrak{n}$ are Lie algebras of G, K, A, N respectively. α extends to a Cartan subalgebra \mathfrak{g}^\ast of \mathfrak{g}. We fix a compatible orderings on the duals of \mathfrak{g} and $\mathfrak{g}^\ast + i(\mathfrak{k}^\ast)$. Let P be the set of positive roots of $(\mathfrak{g}_c, \mathfrak{f}_c)$ and put $P_+ = \{\beta \in P : \beta \equiv \beta | \alpha \neq 0\}$, $\Delta^+ = \{\beta : \beta \in P_+\}$. The inner product $\langle \cdot, \cdot \rangle$ on the dual α^\ast of α defined by the Killing form extends to a bilinear form on α^\ast_c. We denote it also by the same notation. For $\alpha \in \Delta^+ \cup (-\Delta^+)$ (resp. $\beta \in P \cup (-P)$) we write \mathfrak{g}_α (resp. \mathfrak{g}_β) for the corresponding root space in \mathfrak{g} (resp. \mathfrak{g}_c).

The simple roots $\Pi = \{\alpha_1, \alpha_2, \cdots, \alpha_r\}$ of Δ^+ may be so arranged that the root diagram is

\[
\begin{array}{cccccccc}
\alpha_1 & \alpha_2 & \cdots & & \alpha_r \\
\end{array}
\]

or

\[
\begin{array}{cccccccc}
\alpha_1 & \alpha_2 & \cdots & & \alpha_r \\
\end{array}
\]

according as G is of the first or second kind. Let

\[
e_1 = \alpha_1, \quad e_2 = \alpha_1 + 2\alpha_2, \quad \cdots, \quad e_r = \alpha_1 + 2\alpha_2 + \cdots + 2\alpha_r
\]

or

\[
e_1 = \alpha_1, \quad e_2 = \alpha_1 + \alpha_2, \quad \cdots, \quad e_r = \alpha_1 + \alpha_2 + \cdots + \alpha_r
\]

according as G is of the first or second kind. Then $\{e_1, e_2, \cdots, e_r\}$ is an orthogonal basis of α^\ast_c with same norm. α^\ast_c is then identified with \mathbb{C}^r via

\[
\alpha^\ast_c \ni \mathfrak{v} = \sum_{j=1}^{r} \mathfrak{v}_j \mathfrak{e}_j \leftrightarrow (\mathfrak{v}_1, \mathfrak{v}_2, \cdots, \mathfrak{v}_r) \in \mathbb{C}^r
\]

- 178 -
and the Weyl group is identified with the group of all linear mappings

\[(v_1, v_2, \cdots, v_r) \mapsto (\epsilon_1 v_{j_1}, \epsilon_2 v_{j_2}, \cdots, \epsilon_r v_{j_r}), \quad \epsilon_j = \pm 1, \quad (j_1, j_2, \cdots, j_r) \in \mathbb{Z}^r.\]

Let \(g = k \oplus \mathfrak{t} \) be the Cartan decomposition of \(g \) and
\(k = k^a \oplus k^s \), where \(k^a \) and \(k^s \) are the abelian and semisimple parts of \(k \) respectively. For \(x \in G \), \(\kappa(x) \in K \), \(H(x) \in \mathfrak{a}_1 \), \(n(x) \in N \) are defined by \(x = \kappa(x) \exp H(x) n(x) \). Let \(\alpha^+ \) be the positive chamber of \(\alpha \) and \(A^+ = \exp(\alpha^+) \). Then \(G = K \cdot \text{Cl}(A^+) \cdot K \). We write \(\omega \) and \(\omega_m \) for the Casimir operators of \(G \) and \(M \) respectively, where \(M \) being the centralizer of \(A \) in \(K \).

§1. Elementary \(\tau \)-spherical functions.

For \(v \in \mathfrak{a}_1^* \) the elementary \(\tau \)-spherical function is defined by

\[\phi(v: x) = \int_K \tau(\kappa(xk)) \overline{\tau(k)} \ e^{i\nu(H(xk))} \ dk.\]

\((1 - 1) \phi(v: x)\) is a \(W \)-invariant entire function of \(v \), and satisfies the differential equation

\[\omega \phi = (\tau(\omega_m) - \langle v, v \rangle - \langle \rho, \rho \rangle) \phi.\]

Since \(G = K \cdot \text{Cl}(A^+) \cdot K \), \(\phi \) is determined by its restriction to \(A^+ \). Let \(\Delta \) be the function on \(A^+ \) defined by

\[\Delta(h) = \prod_{\beta \in \Delta_+} (e^\beta(H) - e^{-\beta(H)}) \quad (h = \exp H \in A^+)\]

and \(\Phi(\omega) \) the radial component of \(\omega \). Then we have
There exist meromorphic functions $\Psi(v; h)$ and $C^T(v)$ such that

$$\Delta(h)\phi(v; h) = \sum_{s \in \mathbb{F}} C^T(sv)\Psi(sv; h) \quad (v \in \mathbb{A}_c^\circ, h \in A^+).$$

Moreover, Ψ satisfies the differential equation

$$(\Delta^2 + \lambda)\Psi = (\tau(w_m) - \langle v, v \rangle - \langle p, p \rangle)\Psi.$$

Let H_1, H_2, \ldots, H_r be the basis of \mathfrak{a} dual to e_1, e_2, \ldots, e_r. For $\beta \in P_+$ choose $X_{\pm \beta} \in \mathfrak{g}$ such that $\langle X_{\beta}, X_{-\beta} \rangle = 1$. If

$$X_{\pm \beta} = Y_{\pm \beta} + Z_{\pm \beta}, \quad Y_{\pm \beta} \in \mathfrak{h}, \quad Z_{\pm \beta} \in \mathfrak{K}_c \oplus \mathfrak{V}_c,$$

then

$$\Delta^2 \Phi(w) \Delta^{-1/2} = \tau(w_m) + \sum_{j=1}^{r} H_j^2$$

and

$$(1 - 3) \quad + \frac{1}{\xi} \sum_{\beta \in P_+} \langle \beta, \beta \rangle (sh)^{-2} - \frac{1}{\xi} \sum_{\beta, \gamma \in P_+} \langle \beta, \gamma \rangle (coth \beta)(coth \gamma)$$

$$- 4 \sum_{\beta \in P_+} (1 - ch \beta)(sh \beta)^{-2} \tau(\beta) \tau(-\beta)$$

Let L denote the semilattice of elements $\sum_j a_j$ ($m_j \in \mathbb{Z}_+$). For $\lambda = \sum_j a_j \in L$, we let $m(\lambda) = \sum_j m_j$. Using (1-2) and (1-3) we see that Ψ has a series expansion

$$(1 - 4) \quad \Psi(v; h) = \sum_{\lambda \in L} A_\lambda(v) e^{(iv - \lambda)(H)} \quad (h = \exp H \in A^+).$$

Here $A_\lambda(v)$ ($\lambda \in L$) are rational functions determined by the recurrence relation $A_{\lambda}(v) \equiv 1$,

$$\langle \lambda, \lambda \rangle - 21 v, \lambda \rangle \Psi(v) = 2 \sum_{\beta} \sum_{n \geq 1} (8 \tau(\beta) \tau(-\beta) - \langle \beta, \beta \rangle) e^{(iv - \lambda)(H)}$$

Here $A_\lambda(v)$ ($\lambda \in L$) are rational functions determined by the recurrence relation $A_{\lambda}(v) \equiv 1$,

$$\langle \lambda, \lambda \rangle - 21 v, \lambda \rangle \Psi(v) = 2 \sum_{\beta} \sum_{n \geq 1} (8 \tau(\beta) \tau(-\beta) - \langle \beta, \beta \rangle) e^{(iv - \lambda)(H)}$$
We let $\mathcal{A}^* = \{ \nu \in \mathcal{A}^* : 0 \leq \nu_1 \leq \nu_2 \leq \cdots \leq \nu_r \}$, $\mathcal{A} = \{ \nu \in \mathcal{A}^* : <\lambda, \nu> + 2<\nu, \lambda> \neq 0 \ \forall \lambda \in L \setminus \{0\} \}$.

(1 - 5) For $\eta \in \mathcal{A}^*$ we can find constants $C(\eta), d(\eta) > 0$ such that

$$\| \mathcal{A}_\nu (\nu + \eta) \| \leq C(\eta) m(\lambda)^d(\eta) \ (\nu \in \mathcal{A}^*, \lambda \in L \setminus \{0\}).$$

There exist constants $C, d > 0$ such that

$$\| \mathcal{A}_\nu (\nu + \eta) \| \leq C \cdot m(\lambda)^d \ (\nu \in \mathcal{A}^*, \eta \in \mathcal{A}^*, \lambda \in L \setminus \{0\}).$$

§2. Harish-Chandra's generalized C-function $C^T(\nu)$.

The function $C^T(\nu)$ in (1-2) is meromorphic on \mathcal{A}_c^* and is given by

$$C^T(\nu) = \int_{\mathcal{N}} \tau(\kappa(\mathcal{N})) \ e^{-(1+\rho)(H(\mathcal{N}))} \ d\mathcal{N}.$$

Here we normalize the Haar measure $d\mathcal{N}$ of \mathcal{N} so that the integral of $\exp(-2\rho(H(\mathcal{N})))$ equals one. We shall find an explicit form of $C^T(\nu)$ for our groups. Since the center of K is one dimensional, τ is parametrized by an integer k. We denote this τ by τ_k.

Example. If $G = SO_0(n+2,2)$, $K = SO(n+2) \text{ SO}(2)$, then

$$\tau_k\left(\begin{bmatrix} k' & \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = e^{i k\theta} \ (k' \in SO(n+2)).$$
To compute the integral (2-1) we use the reduction theory of G. Schiffmann [7]. Let s_1, s_2, \ldots, s_r be the Weyl reflections defined by $\alpha_1, \alpha_2, \ldots, \alpha_r$ respectively, and denote the length of $s \in W$ by $\ell(s)$. For $s \in W$ let $\mathcal{N}(s)$ be the analytic subgroup with Lie algebra $\mathfrak{m}(s) = \sum_{\alpha > 0} q^{-\alpha}$ and let

$$C^\ell(v; s) = \int_{\mathcal{N}(s)} \frac{\tau_\ell(\kappa(\mathbb{R}))}{e^{-(iv+\rho_\mathbb{R})(H(\mathbb{R}))}} d\mathbb{R}.$$

(2 - 2)(G.Schiffmann [7]) If $s = s's''$ with $\ell(s) = \ell(s') + \ell(s'')$, then

$$C^\ell(v; s) = C^\ell(s''v; s')C^\ell(v; s').$$

On the other hand, the element -1 of W has the following property.

$$\ell(-1) = r^2$$

and

$$-1 = s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}\cdots s_1s_2^{-1}$$

is a reduced expression of -1.

Since $\mathcal{N} = \mathcal{N}(-1)$, the question of computing $C^\ell(v)$ is therefore reduced to finding $C^\ell(v; s_j)$ ($1 \leq j \leq r$). Fix a simple root α. Let \mathfrak{n}_α and $\overline{\mathfrak{n}}_\alpha$ be the subalgebras $\mathfrak{g}_\alpha + \mathfrak{g}_{2\alpha}$ and $\mathfrak{g}_{-\alpha} + \mathfrak{g}_{-2\alpha}$ respectively, and $\mathfrak{g}(\alpha)$ the semisimple subalgebra generated by $\mathfrak{n}_\alpha + \overline{\mathfrak{n}}_\alpha$. We write \mathcal{N}_α, $\mathcal{N}_\overline{\alpha}$ and $G(\alpha)$ for the analytic subgroups corresponding to the subalgebras \mathfrak{n}_α, $\overline{\mathfrak{n}}_\alpha$ and $\mathfrak{g}(\alpha)$. Then $G(\alpha)$ is a real rank one semisimple Lie group with finite center and has Iwasawa decomposition $G(\alpha) = K_\alpha A_\alpha N_\alpha$, where $K_\alpha = K \cap G(\alpha)$ and $A_\alpha = \exp(\mathfrak{R}H_\alpha)$. Let $X \in \mathfrak{g}_{-\alpha}^\perp$ and $Y \in \mathfrak{g}_{-2\alpha}^\perp$. Finding K_α-component
\(\kappa(\mathbf{m}) \) and \(A_{\alpha_j} \)-component \(\exp H(\mathbf{m}) \) of \(\mathbf{m} = \exp(X+Y) \), we can calculate \(C^\ell(\nu; s_j) \).

(2 - 4) Let \(n_j = \dim \mathcal{Q}_j^\ell \) \((1 \leq j \leq r)\). Then

\[
C^\ell(\nu; s_j) = \frac{\Gamma(n_j)}{\Gamma(\frac{n_j}{2})} \exp\left(\frac{\nu}{2} \frac{\alpha_j}{\alpha_j^2 + \frac{n_j}{2}}\right) \frac{\Gamma\left(\frac{\nu}{\alpha_j} + \frac{n_j}{2}\right)}{\Gamma\left(\frac{\nu}{\alpha_j} + \frac{n_j}{2} + \frac{1}{2}\right)} \quad \text{for} \quad 2 \leq j \leq r,
\]

and \(C^\ell(\nu; s_1) \) is given by

\[
C^\ell(\nu; s_1) = \frac{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\nu}{\alpha_1} + \frac{1}{2} + \frac{1}{2}\right)} \frac{\frac{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2}\right)}{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2} + \frac{1}{2}\right)}}{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2} \frac{1}{2}\right)}
\]
or

\[
C^\ell(\nu; s_1) = \frac{\Gamma(n_1+1)}{\Gamma\left(\frac{n_1+1}{2}\right)} \frac{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2}\right)}{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2} + \frac{1}{2}\right)} \frac{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2} \frac{1}{2}\right)}{\Gamma\left(\frac{\nu}{\alpha_1} + \frac{n_1}{2} \frac{1}{2}\right)}
\]

according as \(G \) is of the first or second kind.

From (2-2), (2-3) and (2-4) we can derive the following result.

Theorem 1. \(C^\ell(\nu) \) is expressed by

\[
C^\ell(\nu) = \frac{\Gamma(2m'+1)\Gamma(m)\Gamma(m')}{\Gamma(m'+\frac{1}{2})\Gamma(m')^2} \prod_{j<k} \frac{\Gamma(\nu_j+\nu_k)\Gamma(\nu_k-\nu_j)}{\Gamma(\nu_j+\nu_k+m')\Gamma(\nu_k-\nu_j+m')} \exp\left(\frac{\nu_j+\nu_k}{2}\frac{\nu_j+\nu_k}{\nu_j+\nu_k+m'}\right)
\]

\[
\times \prod_{j=1}^{r} \frac{\Gamma(2\nu_j)}{\Gamma(2\nu_j+m')} \frac{\Gamma(\nu_j+m')\Gamma(\nu_j+m'+1)}{\Gamma(\nu_j+m'+\frac{1}{2})\Gamma(\nu_j+m'+\frac{1}{2}+\frac{1}{2})},
\]

- 183 -
where \(m \) and \(m' \) are given as follows.

<table>
<thead>
<tr>
<th>(G)</th>
<th>(\text{SO}_0(n+2,2))</th>
<th>(\text{Sp}(r,R))</th>
<th>(\text{SO}^*(4r))</th>
<th>(\text{SO}^*(4r+2))</th>
<th>(\text{SU}(n+r,r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(n)</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(m')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(n)</td>
</tr>
</tbody>
</table>

§3. Fourier transform on \(\mathcal{D}_\mathcal{X}(G) \).

We define the Fourier transform \(\hat{f} \) of \(f \in \mathcal{D}_\mathcal{X}(G) = \mathcal{D}_\mathcal{X}(G) \) by

\[
\hat{f}(\nu) = \int_G f(x)\phi(x^{-1})dx.
\]

For \(R > 0 \), \(\mathcal{D}_\mathcal{X}(R) \) and \(\mathcal{H}_W(R) \) are defined as follows. \(\mathcal{D}_\mathcal{X}(R) \) is the space of those elements in \(\mathcal{D}_\mathcal{X}(G) \) that are supported in \(B_R = \{ x \in G : \sigma(x) \leq R \} \), where \(\sigma \) is the K-bi-invariant continuous function on \(G \) defined by \(\sigma(\exp H) = \| H \| (H \in \mathcal{K}) \). \(\mathcal{H}_W(R) \) is the space of \(W \)-invariant entire functions \(F \) on \(\sigma^*_c \) that satisfy

\[
\forall M \geq 0 \exists C_M > 0 : |F(\nu)| \leq C_M (1 + \| \nu \|^2)^{-M} e^{-R \| \Im \nu \|}.
\]

We write \(\mathcal{H}_W(\sigma^*_c) \) for the union of all \(\mathcal{H}_W(R) \) (\(R > 0 \)).

(3 - 1) If \(f \in \mathcal{D}_\mathcal{X}(R) \), then \(f \in \mathcal{H}_W(R) \).

Now we let

\[
\mu^k(\nu) = (C^k(\nu)C^k(-\nu))^{-1}.
\]

This is a meromorphic function on \(\sigma^*_c \). In fact, Theorem 1 implies that

\[
\mu^k(\nu) = \begin{cases}
X_k(\nu)Y(\nu) & (2|m) \\
X_k(\nu)Z(\nu) & (2|m')
\end{cases},
\]

where
\[X_k(v) = \frac{4^m r(m+\frac{1}{2})^2 r(m)^2 r(r-1)}{\Gamma(2m+1)^2 \Gamma(m)^2 r(r-1)} \times \prod_{j=1}^{r} \left\{ v_j^2 \pi(v_j + \frac{1}{2}) \prod_{p=1}^{m} (v_j^2 + \frac{1}{2} - m) \right\}, \]

\[Y(v) = \prod_{j<k} \prod_{p=1}^{\frac{m}{2}} ((v_j + v_k)^2 + (\frac{m}{2} - p)^2)((v_j - v_k)^2 + (\frac{m}{2} - p)^2) \]

and

\[Z(v) = \prod_{j<k} \left\{ (v_j^2 - v_k^2) \pi(v_j + v_k) \pi(v_j - v_k) \right\} \times \prod_{p=1}^{\frac{m}{2}} ((v_j + v_k)^2 + (\frac{m}{2} - p)^2)((v_j - v_k)^2 + (\frac{m}{2} - p)^2) \].

As a function of \(v_r \), \(\mu^k(v) \) has infinite simple poles on the imaginary axis. Let \(\Pi_1 = \Gamma_1 \) be the set of those poles that are between 0 and \(\frac{1}{2}(m'-m)/2 \). For \(a \in \Gamma_1 \) we let

\[\mu^k_a(v(a)) = -2\pi i \text{Res}[\mu^k(v) : v_r = a], \]

where \(v(a) \) denoting \((v_1, v_2, \cdots, v_{r-1}) \). As a function of \(v_{r-1} \), \(\mu^k_a(v(a)) \) has simple poles on the imaginary axis. Let \(\Pi_a \) be the set of those poles that are between 0 and \(a \), and put \(\Gamma_2 = \{(a, b) : a \in \Pi_1, b \in \Pi_a \} \). For \(\mathfrak{p} = (a, b) \in \Gamma_2 \) we let

\[\mu^k_{\mathfrak{p}}(v(\mathfrak{p})) = -2\pi i \text{Res}[\mu^k_a(v(a)) : v_{r-1} = b], \]

where \(v(\mathfrak{p}) \) denoting \((v_1, v_2, \cdots, v_{r-2}) \). In this manner we define \(\Gamma_1, \Gamma_2, \cdots, \Gamma_p, \Pi_{\mathfrak{p}} \) and \(\mu^k_{\mathfrak{p}}(v(\mathfrak{p})) \). For simplicity we let \(\Gamma_0 = \{0\} \), \(\mu^k_0(v(0)) = \mu^k(v) \) and \(\Gamma = \bigcup(\Gamma_p : 0 \leq p \leq r) \). For \(\mathfrak{p} = (a_1, a_2, \cdots, a_p) \),
\(a_p \in \Gamma_p \) we let \(\mathcal{P} = (a_p, \ldots, a_r) \), \(R(\mathcal{P}) = \mathbb{R}^{r-p} \) and let \(\mathcal{W} \) denote the subgroup of \(\mathcal{W} \) composed of those elements that leave \(\nu_j \)
\((r-p < j \leq r)\) fixed.

(3 - 2) For every \(f \in \Gamma \), \(\mu^g_f(\nu(\mathcal{P})) \) is a \(\mathcal{W} \)-invariant meromorphic function which is positive-valued on \(R(\mathcal{P}) \).

For \(F \in \mathcal{N}_W(\mathcal{P}_c) \) we let

\[
\mathcal{F}(F; x) = \sum_{\mathcal{P} \in \Gamma} \int_{R(\mathcal{P})} F(\nu(\mathcal{P}), \mathcal{P}, \mathcal{P}'; x) \mu^g_f(\nu(\mathcal{P})) d\nu(\mathcal{P}).
\]

We say that \(G \) has property (S) if the following condition is satisfied:

If \(F \in \mathcal{N}_W(\mathcal{P}_c) \), then \(\mathcal{F}(F; \cdot) \) is supported in \(B_R \).

(3 - 3) If \(r = 1 \) then \(G \) has property (S).

This is proved using the results obtained in the previous sections.

Now we assume property (S) and continue our discussion. Since \(\tau \)-spherical functions are completely determined by their restrictions to \(A \), we can regard a linear functional on \(\mathcal{D}(G) \) as a \(\mathcal{W} \)-invariant distribution on \(A \). Define the linear functional \(T \) on \(\mathcal{D}(G) \) by

\[
T_f = \mathcal{F}(\mathcal{P}; 1).
\]

Let \(F_0 \) be a function in \(\mathcal{N}_W(1) \) such that \(F_0(0) = 1 \). Then

\[
T_f = \lim_{\varepsilon \to 0} \mathcal{F}(\mathcal{P}; F_0(\varepsilon \cdot); 1) = \lim_{\varepsilon \to 0} \int_G f(x) g_\varepsilon(x) dx,
\]

where \(g_\varepsilon(x) = \mathcal{F}(F_0(\varepsilon \cdot); x^{-1}) \). Property (S) implies that \(g_\varepsilon \) is supported in \(B_\varepsilon \). Since \(T = \lim_{\varepsilon \to 0} \) as a distribution, \(T \) must have support \(\{1\} \). Moreover we have
(3 - 4) \(T \) is a positive measure with support \(\{1\} \).

Hence there exists a positive constant \(\gamma > 0 \) such that
\[
Tf = \gamma \cdot f(1) \quad (f \in L^2(G)).
\]

(3 - 6) For \(f \in L^2(G) \) we have
\[
\gamma \cdot f(x) = \mathcal{F}(f: x) \quad (x \in G),
\]
\[
\gamma \cdot \|f\|_{L^2(G)}^2 = \mathcal{F}(|\hat{f}|)^2 : 1.
\]

The set \(\{\hat{f} : f \in L^2(G)\} \) is dense in the space \(C_0(\Omega) \) of continuous functions on \(\Omega \) which vanish at infinity. Here \(\Omega \) is the support of the Plancherel measure.

Theorem 2. Assume that \(G \) has property \((S)\). Then the map \(f \mapsto \hat{f} \) is a linear isomorphism of \(L^2(G) \) onto \(\mathcal{H}_W(\pi_c) \). More precisely, for every \(R > 0 \) \(L^2(G) \) is transformed onto \(\mathcal{H}_W(R) \).

Proof. Let \(F \in \mathcal{H}_W(R) \) and define \(f \) by \(\gamma \cdot f(x) = \mathcal{F}(F: x) \). Then property \((S)\) implies that \(f \in L^2(G) \). Let \(F' = F - \hat{f} \). We must prove that \(F' \) vanishes identically. But it follows from the definition of \(f \) that
\[
\mathcal{F}(F': x) = 0 \quad \text{for all} \quad x \in G.
\]

Hence
\[
\mathcal{F}(F' : \hat{g}; 1) = \int_G \mathcal{F}(F': x)g(x)dx = 0 \quad \text{for all} \quad g \in L^2(G).
\]

\(\{\hat{g} : g \in L^2(G)\} \) is dense in \(C_0(\Omega) \); so \(F' \) vanishes on \(\Omega \). Since \(F' \) is holomorphic, \(F' \) vanishes identically.
REFERENCES

Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga / JAPAN