Lec. in Math., Kyoto Univ. No. 14

Lectures on Harmonic Analysis on Lie Groups and Related Topics pp. 177-188

> On the spherical functions with one dimensional K-types and the Paley-Wiener type theorem on some simple Lie groups

```
YÔichi MUTA
```


Introduction.

Let G be a noncompact connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We fix a one dimensional unitary representation τ of K. A function f on G is called τ-spherical if

$$
f\left(k x k^{\prime}\right)=\tau(k) f(x) \tau\left(k^{\prime}\right) \quad\left(x \in G, k, k^{\prime} \in K\right) .
$$

The set $\mathscr{D}_{\tau}(G)$ of compactly supported τ-spherical C^{∞} functions on G is a commutative algebra under convolution. When τ_{0} is trivial, R. Gangolli [3] characterized the Fourier transforms of the elements of $\mathcal{A}(G)$. Our purpose of this note is to characterize the Fourier transforms of the members of $D_{\tau}(G)$ for any simple matrix groups and any one dimensional representations τ.

From now on let G be a simple matrix group. If K is semisimple, then τ must be trivial. We may therefore suppose that K is not semisimple. But it is well known that such a group is one of the following:

$$
S O_{0}(n, 2), \quad S p(n, R), \quad S O^{*}(2 n) \text { and } S U(p, q) .
$$

We call $\mathrm{SO}_{0}(\mathrm{n}+2,2), \operatorname{Sp}(r, R), S O *(4 r), \operatorname{SU}(r, r)(n, r \geqq l)$ the groups of the first kind, and call $S O *(4 r+2), \operatorname{SU}(n+r, r)(n, r \geqq 1)$ the groups of the second kind. r denotes the real rank.
$G=K A N$ is an Iwasawa decomposition of G, and $\mathcal{F}, \mathcal{k}, \boldsymbol{G}, \boldsymbol{w}$ are Lie algebras of G, K, A, N respectively. or extends to a Cartan subalgebra f of g. We fix a compatible orderings on the duals of σ and $\pi+i(f \cap \xi)$. Let P be the set of positive roots of $\left(g_{\mathbb{C}}, f_{\mathbb{c}}\right)$ and put $P_{+}=\{\beta \in P: \widetilde{\beta} \equiv \beta \mid \alpha \neq 0\}, \Delta^{+}=\left\{\widetilde{\beta}: \beta \in P_{+}\right\}$. The inner product $\langle\cdot, \cdot\rangle$ on the dual a^{*} of a defined by the Killing form extends to a bilinear form on $\sigma_{\mathbb{C}}^{*}$. We denote it also by the same notation. For $\alpha \in \Delta^{+} U\left(-\Delta^{+}\right)$(resp. $\beta \in P U(-P)$) we write g^{α} (resp. g_{β}) for the corresponding root space in g (resp. g_{c}).

The simple roots $\Pi=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}$ of Δ^{+}may be so arranged that the root diagram is

or

according as G is of the first or second kind. Let

$$
e_{1}=\alpha_{1}, \quad e_{2}=\alpha_{1}+2 \alpha_{2}, \quad \cdots, \quad e_{r}=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{r}
$$

or

$$
e_{1}=\alpha_{1}, \quad e_{2}=\alpha_{1}+\alpha_{2}, \quad \cdots, e_{r}=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{r}
$$

according as G is of the first or second kind. Then $\left\{e_{1}, e_{2}, \cdots\right.$, $\left.e_{r}\right\}$ is an orthogonal basis of $\pi_{\mathbb{C}}^{*}$ with same norm. $\Omega_{\mathbb{C}}^{*}$ is then identified with \mathbf{c}^{r} via

$$
\sigma_{\mathbb{C}}^{*} \ni v=\sum_{j=1}^{r} v_{j} e_{j} \longleftrightarrow\left(v_{1}, v_{2}, \cdots, v_{r}\right) \in \mathbb{C}^{r}
$$

and the Weyl group is identified withe the group of all linear mappings

$$
\left(\nu_{1}, \quad \nu_{2}, \cdots, \nu_{r}\right) \mapsto\left(\varepsilon_{I} \nu_{j_{1}}, \varepsilon_{2} \nu_{j_{2}}, \cdots, \varepsilon_{r} \nu_{j_{r}}\right), \varepsilon_{j}= \pm 1,\left(\begin{array}{lll}
1 & 2 & \cdots \\
j_{I} & j_{2} & \cdots j_{r}
\end{array}\right) \in \mathcal{C}_{r}
$$

Let $y=k \oplus \gamma$ be the Cartan decomposition of $o f$ and $\mathbb{k}=\mathbb{k}^{2} \oplus \mathbb{k}^{s}$, where \mathbb{R}^{a} and \mathbb{k}^{s} are the abelian and semisimple parts of \mathcal{K} respectively. For $x \in G, k(x) \in K, H(x) \in \Omega, n(x) \in N$ are defined by $x=K(x) \operatorname{expH}(x) n(x)$. Let σ^{+}be the positive chamber of a and $A^{+}=\exp \left(\sigma^{+}\right)$. Then $G=K \cdot C l\left(A^{+}\right) \cdot K$. We write ω and $\omega_{\text {M }}$ for the Casimir operators of G and M respectively, where M being the centralizer of A in K.

31. Elementary r-spherical functions.

For $v \in \mathbb{G}_{e}^{*}$ the elementary $\tau-s p h e r i c a l$ function is defined by

$$
\phi(v: x)=\int_{K} \tau(k(x k)) \overline{\tau(k)} e^{(i v-\rho)(H(x k))} d k
$$

(1 - 1) $\phi(\nu: x)$ is a W-invariant entire function of ν, and satisfies the differential equation

$$
\omega \phi=\left(\tau\left(\omega_{M}\right)-\langle v, v\rangle-\langle\rho, \rho\rangle\right) \phi .
$$

Since $G=K \cdot C l\left(A^{+}\right) \cdot K, \quad \phi$ is determined by its restriction to A^{+}. Let Δ be the function on A^{+}defined by

$$
\Delta(h)=\prod_{\beta \in P_{+}}\left(e^{\beta(H)}-e^{-\beta(H)}\right) \quad\left(h=\operatorname{expH} \in A^{+}\right)
$$

and $I(\omega)$ the radial component of ω. Then we have
(1 - 2) There exist meromorphic functions $\Psi(\nu: h)$ and $C^{\top}(\nu)$ such that

$$
\Delta(h)^{1 / 2} \phi(v: h)=\sum_{s \in W} C^{T}(s v) \Psi(s v: h) \quad\left(v \in a_{\mathbf{c}}^{*}, h \in A^{+}\right) .
$$

Moreover Ψ satisfies the differential equation

$$
\left(\Delta^{1 / 2} \circ I(\omega) \cdot \Delta^{-1 / 2}\right) \Psi=\left(\tau\left(\omega_{w \nu}\right)-\langle\nu, \nu\rangle-\langle\rho, \rho\rangle\right) \Psi .
$$

Let $H_{1}, H_{2}, \cdots, H_{r}$ be the basis of on dual to e_{1}, e_{2}, \cdots, e_{r}. For $\beta \in P_{+}$choose $X_{ \pm \beta} \in g_{ \pm \beta}$ such that $\left\langle X_{\beta}, X_{-\beta}\right\rangle=1$. If

$$
X_{ \pm \beta}=Y_{ \pm \beta}+Z_{ \pm \beta} \quad Y_{ \pm \beta} \in k_{\mathbb{C}}^{a}, Z_{ \pm \beta} \in k_{\mathbb{C}}^{S} \oplus \gamma_{c}^{c}
$$

then

$$
\Delta^{1 / 2} \circ \mathcal{L}(\omega) \cdot \Delta^{-1 / 2}=\tau\left(\omega_{m}\right)+\left\|e_{1}\right\|_{j}^{-2} H_{j}^{2}
$$

(1.-3)

$$
\begin{aligned}
& +\frac{1}{2} \sum_{\beta \in P_{+}}\langle\tilde{\beta}, \tilde{\beta}\rangle(\operatorname{sh} \beta)^{-2}-\frac{1}{4} \sum_{\beta, \gamma \in P_{+}}\langle\tilde{\beta}, \tilde{\gamma}\rangle(\operatorname{coth} \beta)(\operatorname{coth} \gamma) \\
& -4 \sum_{\beta \in P_{+}}(1-\operatorname{ch} \beta)(\operatorname{sh} \beta)^{-2} \tau\left(Y_{B}\right) \tau\left(Y_{-\beta}\right)
\end{aligned}
$$

Let L denote the semilattice of elements $\sum_{j} m_{j} \alpha_{j}\left(m_{j} \in \mathbb{Z}_{+}\right)$. For $\lambda=\sum m_{j} \alpha_{j} \in L$, we let $m(\lambda)=\sum m_{j}$. Using (1-2) and (1-3) we see that Ψ has a series expansion

$$
\begin{equation*}
\Psi(\nu: h)=\sum_{\lambda \in L} a_{\lambda}(\nu) e^{(i v-\lambda)(H)}\left(h=\operatorname{expH} \in A^{+}\right) . \tag{1-4}
\end{equation*}
$$

Here $a_{\lambda}(\nu)(\lambda \in L)$ are rational functions determined by the recurrence relation $a_{0}(v) \equiv 1$,

$$
\left(\langle\lambda, \lambda>-2 i<\nu, \lambda>) u_{\lambda}(\nu)=2 \sum_{\beta} \sum_{n \geqq 1}\left(8 \tau\left(Y_{\beta}\right) \tau\left(Y_{-\beta}\right)-\langle\widetilde{\beta}, \widetilde{\beta}\rangle\right) n a_{\left.\lambda-2 n \tilde{\beta}^{(\nu}\right)}\right.
$$

$$
\begin{aligned}
& +2 \sum_{\beta} \sum_{n \geqq 1}\langle\rho, \widetilde{\beta}\rangle a_{\lambda-2 n \widetilde{\beta}}(\nu)+\sum_{\beta, \gamma} \sum_{\substack{m, n>0 \\
m+n \geqq 1}}\langle\widetilde{\beta}, \tilde{\gamma}\rangle a_{\lambda-2 m \tilde{\beta}-2 n \widetilde{\gamma}}(\nu) \\
& -8 \sum_{\beta} \sum_{n \geqq 1}(2 n-1) \tau\left(Y_{\beta}\right) \tau\left(Y_{-\beta}\right) a_{\lambda-(2 n-1) \widetilde{\beta}}(v) \quad(\lambda \neq 0) .
\end{aligned}
$$

We let $\sigma_{+}^{*}=\left\{\nu \in \sigma^{*}: 0 \leqq \nu_{1} \leqq v_{2} \leqq \cdots \leqq \nu_{r}\right\}, \quad \sigma^{*}=\left\{\nu \in \sigma^{*}\right.$: $\langle\lambda, \lambda\rangle+2\langle\nu, \lambda\rangle \neq 0 \quad \forall \lambda \in L-\{0\}\}$.
(1-5) For $n \in \epsilon^{*}{ }^{*}$ we can find constants $c(n), d(n)>0$ such that

$$
\left|a_{\lambda}(v+i n)\right| \leqq c(n) m(\lambda)^{d(n)} \quad\left(v \in a^{*}, \lambda \in L-\{0\}\right) .
$$

There exist constants $C, d>0$ such that

$$
\left|a_{\lambda}(\nu+i n)\right| \leqq c \cdot m(\lambda)^{d} \quad\left(\nu \in \sigma^{*}, n \in a_{+}^{*}, \lambda \in L-\{0\}\right) .
$$

§2. Harish-Chandra's generalized C-function $C^{\tau}(v)$.
The function $C^{\tau}(v)$ in (1-2) is meromorphic on $\boldsymbol{a}_{\mathrm{c}}^{*}$ and is given by

$$
(2-1) \quad C^{\tau}(v)=\int_{\bar{N}} \overline{\tau(k(\bar{n}))} e^{-(i v+p)(H(\bar{n}))} d \bar{n} .
$$

Here we normalize the Haar measure $\overline{\mathrm{n}}$ of $\overline{\mathbb{N}}$ so that the integral of $\exp \{-2 p(H(\bar{n}))\}$ equals one. We shall find an explicit form of $C^{\tau}(\nu)$ for our groups. Since the center of K is one dimensional, τ is parametrized by an integer ℓ. We denote this τ by ${ }^{\tau}{ }_{\ell}$.

Example. If $G=S O_{0}(n+2,2), K=S O(n+2) \quad S O(2)$, then

$$
\tau_{\ell}\left(\left[\begin{array}{cc}
k^{\prime} & \\
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\right)=e^{i \ell \theta} \quad\left(k^{\prime} \in \operatorname{SO}(n+2)\right) .
$$

To compute the integral $(2-1)$ we use the reduction theory of G. Schiffmann [7]. Let $s_{1}, s_{2}, \cdots, s_{r}$ be the Weyl reflections defined by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ respectively, and denote the length of $s \in W$ by $\ell(s)$. For $s \in W$ let $\bar{N}(s)$ be the analytic subgroup with Lie algebra $\bar{\mu}(s)=\sum_{\substack{\alpha>0 \\ s \alpha<0}} g^{-\alpha}$ and let

$$
C^{\ell}(\nu: s)=\int_{\bar{N}(s)} \frac{}{\tau_{\ell}(\kappa(\bar{n}))} e^{-\left(i v+\rho_{s}\right)(H(\bar{n}))} d \bar{n}
$$

$(2-2)(G . S c h i f f m a n n[7])$ If $s=s^{\prime} s^{\prime \prime}$ with $\ell(s)=\ell\left(s^{\prime}\right)+\ell\left(s^{\prime \prime}\right)$, then

$$
C^{\ell}(v: s)=C^{\ell}\left(s^{\prime \prime} v: s^{\prime}\right) C^{\ell}\left(v: s^{\prime \prime}\right)
$$

On the other hand, the element -1 of W has the following property.
$(2-3) \quad \ell(-1)=r^{2}$ and

$$
-1=\underbrace{s_{r^{r}} s_{r-1} \cdots s_{1} s_{r_{r}} s_{r-1} \cdots s_{1}}_{r} \underbrace{s_{r} s_{r-1} \cdots s_{1}}_{r}
$$

is a reduced expression of -1 .
Since $\vec{N}=\bar{N}(-1)$, the question of computing $C^{\ell}(\nu)$ is therefore reduced to finding $C^{\ell}\left(\nu: s_{j}\right)(1 \leqq j \leqq r)$. Fix a simple root α. Let N_{α} and \bar{N}_{α} be the subalgebras $g^{\alpha}+g^{2 \alpha}$ and $g^{-\alpha}+g^{-2 \alpha}$ respectively, and $g(\alpha)$ the semisimple subalgebra generated by $n_{\alpha}+\bar{n}_{\alpha}$. We write $N_{\alpha}, \bar{N}_{\alpha}$ and $G(\alpha)$ for the analytic subgroups corresponding to the subalgebras $n_{\alpha}, \bar{n}_{\alpha}$ and $g(\alpha)$. Then $G(\alpha)$ is a real rank one semisimple Lie group with finite center and has Iwasawa decomposition $G(\alpha)=K_{\alpha} A_{\alpha} N_{\alpha}$, where $K_{\alpha}=K \cap G(\alpha)$ and $A_{\alpha}=\exp \left(\mathbb{R H}_{\alpha}\right)$. Let $X \in g^{-\alpha} j$ and $Y \in g^{-2 \alpha} j$. Finding $K_{\alpha_{j}}$-component
$k(\bar{n})$ and $A_{\alpha_{j}}$-component $\operatorname{expH}(\bar{n})$ of $\bar{n}=\exp (X+Y)$, we can calculate $c^{\ell}\left(v: s_{j}\right)$.
(2-4) Let $n_{j}=\operatorname{dim} g^{\alpha} j(1 \leqq j \leqq r)$. Then

$$
C^{\ell}\left(\nu: s_{j}\right)=\frac{\Gamma\left(n_{j}\right)}{\Gamma\left(\frac{n_{j}}{2}\right)} \frac{\Gamma\left(\frac{\left\langle i v, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}\right)}{\Gamma\left(\frac{\left\langle i v, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}+\frac{n_{j}}{2}\right)} \quad(2 \leqq j \leqq r),
$$

and $c^{l}\left(v: s_{1}\right)$ is given by

$$
c^{\ell}\left(\nu: s_{1}\right)=\frac{\Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}\right) \Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{2}+\frac{\ell}{2}\right) \Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{2}-\frac{\ell}{2}\right)}
$$

or
$c^{\ell}\left(v: s_{1}\right)=\frac{\Gamma\left(n_{1}+1\right)}{\Gamma\left(\frac{n_{1}+1}{2}\right)} \frac{\Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}\right)}{\Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{2}\right)} \frac{\Gamma\left(\frac{\left.<i v, \alpha_{1}\right\rangle}{2\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{4}\right) \Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{2\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{\left\langle i v, \alpha_{1}\right\rangle}{2\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{4}+\frac{1}{2}+\frac{l}{2}\right) \Gamma\left(\frac{\left.i v, \alpha_{1}\right\rangle n_{1}}{2\left\langle\alpha_{1}, \alpha_{1}\right\rangle}+\frac{1}{4}+\frac{l}{2}-\frac{1}{2}\right)}$
according as G is of the first or second kind.
From (2-2), (2-3) and (2-4) we can derive the following result.
THEOREM 1. $C^{\ell}(\nu)$ is expressed by

$$
\begin{aligned}
c^{\ell}(v)= & \frac{\Gamma\left(2 m^{\prime}+1\right)^{r} \Gamma(m)^{r(r-I)}}{\Gamma\left(m^{\prime}+\frac{I}{2}\right)^{r}} \prod_{j\left(\frac{m}{2}\right)}^{r(r-1)} \prod_{j<k} \frac{\Gamma\left(i v_{j}+i v_{k}\right) \Gamma\left(i v_{k}-i v_{j}\right)}{\Gamma\left(i v_{j}+i v_{k}+\frac{m}{2}\right) \Gamma\left(i v_{k}-i v_{j}+\frac{m}{2}\right)} \\
& \times \prod_{j=I}^{r} \frac{\Gamma\left(2 i v_{j}\right)}{\Gamma\left(2 i v_{j}+m^{\prime}\right)} \frac{\Gamma\left(i v_{j}+\frac{m^{\prime}}{2}\right) \Gamma\left(i v_{j}+\frac{m^{\prime}+1}{2}\right)}{\Gamma\left(i v_{j}+\frac{m^{\prime}+1}{2}+\frac{l}{2}\right) \Gamma\left(i v_{j}+\frac{m^{\prime}+1}{2}-\frac{l}{2}\right)},
\end{aligned}
$$

where m and m^{\prime} are given as follows.

G	$S O_{0}(n+2,2)$	$S p(r, R)$	$S O *(4 r)$	$S O^{*}(4 r+2)$	$S U(n+r, r)$
m	n	1	4	4	2
m^{\prime}	0	0	0	2	n

83. Fourier transform on $\mathscr{D}_{2}(G)$.

We define the Fourier transform \hat{f} of $f \in \mathscr{D}_{\ell}(G)=\mathscr{D}_{\tau_{\ell}}(G)$ by

$$
\hat{f}(v)=\int_{G} f(x) \phi\left(v: x^{-1}\right) d x
$$

For $R>0, \mathscr{D}_{\ell}(R)$ and $\mathcal{H}_{W}(R)$ are defined as follows. $\mathcal{D}_{\ell}(R)$ is the space of those elements in $\mathscr{B}_{\ell}(G)$ that are supported in $B_{R}=$ $\{x \in G: \sigma(x) \leqq R\}$, where σ is the K-biinvariant continuous function on G defined by $\sigma(\operatorname{expH})=\|H\|(H \in O)$. $A_{W}(R)$ is the space of W-invariant entire functions F on $\sigma_{\mathbb{C}}^{*}$ that satisfy

$$
\forall \mathbb{V} \geqq 0 \exists \mathrm{C}_{\mathrm{M}}>0:|F(\nu)| \leqq C_{M}(1+\|v\|)^{-\mathbb{M}} e^{R\|\operatorname{Im} v\|}
$$

We write $\psi_{W}\left(\Omega_{c}^{*}\right)$ for the union of all $\psi_{W}(R)(R>0)$. $(3-1)$ If $f \in \mathcal{X}_{\ell}(R)$, then $f \in \psi_{W}(R)$.

Now we let

$$
\mu^{\ell}(\nu)=\left(C^{\ell}(v) C^{\ell}(-v)\right)^{-1}
$$

This is a meromorphic function on σ_{c}^{*}. In fact, Theorem $\operatorname{lmplies}$ that

$$
\mu^{\ell}(v)= \begin{cases}X_{\ell}(v) Y(v) & (2 \mid m) \\ X_{\ell}(v) Z(v) & (2 \nmid m)\end{cases}
$$

where

$$
\begin{aligned}
& X_{\ell}(\nu)=\frac{4^{m^{\prime}} \Gamma\left(m^{\prime}+\frac{1}{2}\right)^{2 r} \Gamma\left(\frac{m}{2}\right)^{2 r(r-1)}}{\Gamma\left(2 m^{\prime}+1\right)^{2 r} \Gamma(m)^{2 r(r-1)}} \\
& \quad \times \prod_{j=1}^{r}\left\{v_{j} \operatorname{th} \pi\left(v_{j}+\frac{i(\ell+m)}{2}\right) \prod_{p=1}^{m^{\prime}}\left(v_{j}^{2}+\left(\frac{\left(\ell \mid-m^{\prime}-1\right.}{2}\right)^{2}\right)\right\}, \\
& Y(v)=\prod_{j<k} \prod_{p=1}^{m / 2}\left(\left(v_{j}+v_{k}\right)^{2}+\left(\frac{m}{2}-p\right)^{2}\right)\left(\left(v_{j}-v_{k}\right)^{2}+\left(\frac{m}{2}-p\right)^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
z(v)= & \prod_{j<k}\left\{\left(v_{j}^{2}-v_{k}^{2}\right) \operatorname{th} \pi\left(\nu_{j}+\nu_{k}\right) \operatorname{th} \pi\left(\nu_{j}-\nu_{k}\right)\right. \\
& \left.\times \prod_{p=1}^{\left[\frac{m}{2}\right]}\left(\left(v_{j}+\nu_{k}\right)^{2}+\left(\frac{m}{2}-p\right)^{2}\right)\left(\left(\nu_{j}-\nu_{k}\right)^{2}+\left(\frac{m}{2}-p\right)^{2}\right)\right\}
\end{aligned}
$$

As a function of $\nu_{r}, \mu^{2}(\nu)$ has infinite simple poles on the imaginary axis. Let $\Pi_{1}=\Gamma_{1}$ be the set of those poles that are between 0 and $i\left(\left|\left|\mid-m^{i}\right) / 2\right.\right.$. For $a \in \Gamma_{I}$ we let

$$
\mu_{a}^{2}\left(v^{(a)}\right)=-2 \pi i \cdot \operatorname{Res}\left[\mu^{2}(v): v_{r}=a\right],
$$

where $v^{(a)}$ denoting $\left(v_{1}, \nu_{2}, \cdots, v_{r-1}\right)$. As a function of v_{r-1} s $\mu_{a}^{\ell}\left(\nu^{(a)}\right)$ has simple poles on the imaginary axis. Let π_{a} be the set of those poles that are between 0 and a, and put $\Gamma_{2}=\{(a, b)$: $\left.a \in I_{I}, b \in \mathbb{I}_{a}\right\}$. For $g=(a, b) \in \Gamma_{2}$ we let

$$
\mu_{f}^{\ell}\left(v^{(f)}\right)=-2 \pi i \cdot \operatorname{Res}\left[\mu_{a}^{l}\left(v^{(a)}\right): v_{r-1}=b\right],
$$

where $v^{(f)}$ denoting $\left(v_{1}, v_{2}, \cdots, v_{r-2}\right)$. In this manner we define $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{r}, \Pi_{f}$ and $\mu_{f}^{\ell}\left(\nu^{(\mathcal{Z})}\right)$. For simplisity we let $\Gamma_{0}=\{0\}$, $\mu_{0}^{\ell}(\nu(0))=\mu^{\ell}(\nu)$ and $\Gamma=U\left(\Gamma_{p}: 0 \leqq p \leqq r\right)$. For $p=\left(a_{1}, a_{2}, \cdots\right.$,
$\left.a_{p}\right) \in \Gamma_{p}$ we let $\mathcal{P}^{\prime}=\left(a_{p}, \cdots, a_{2}, a_{I}\right), \mathbb{R}^{(f)}=R^{r-p}$ and let W_{p} denote the subgroup of W composed of those elements that leave v_{j} ($\mathrm{r}-\mathrm{p}<\mathrm{j} \leqq \mathrm{r}$) fixed.
(3-2) For every $f \in \Gamma, \mu_{f}^{\ell}\left(v^{(j)}\right)$ is a W_{f}-invariant meromorphic function which is positive-valued on $R^{(g)}$.

For $F \in A_{W}\left(O_{C}^{*}\right)$ we let
$\mathscr{F}(F: x)=\sum_{f \in \Gamma} \frac{I}{W_{g} T} \int_{\mathbb{R}}(f) F\left(v^{(f)}, f^{\prime}\right) \phi\left(v^{(g)}, g^{\prime}: x\right) \mu_{g}^{\ell}\left(v^{(f)}\right) d \nu^{(f)}$. We say that G has property (S) if the following condition is satisfied:

$$
\text { If } F \in \mathbb{A}_{W}(R) \text {, then } \mathcal{F}(F: \cdot) \text { is supported in } B_{R} \text {. }
$$

(3-3) If $r=I$ then G has property (S).
This is proved using the results obtained in the previous sections.

Now we assume property (S) and continue our discussion. Since τ-spherical functions are completely determined by their restrictions to A, we can regard a linear functional on $\mathscr{D}_{\ell}(G)$ as a W-invariant distribution on A. Define the linear functional T on $D_{l}(G)$ by

$$
\mathrm{Tr}=\mathcal{F} \hat{\mathrm{f}}: 1) .
$$

Let F_{0} be a function in $\mathcal{A}_{W}(1)$ such that $F_{0}(0)=1$. Then

$$
T f=\lim _{\varepsilon \downarrow 0} \mathcal{F}\left(\hat{f}(\cdot) F_{0}(\varepsilon \cdot): I\right)=\lim _{\varepsilon \downarrow 0} \int_{G} f(x) g_{\varepsilon}(x) d x,
$$

where $g_{\varepsilon}(x)=\mathcal{F}\left(F_{0}(\varepsilon \cdot): x^{-1}\right)$. Property (S) implies that g_{ε} is supported in B_{ε}. Since $T=\underset{\varepsilon \neq 0}{\text { limg }}$ as a distribution, T must have support \{1\}. Moreover we have
(3-4) \mathbb{T} is a positive measure with support \{1\}.
Hence there exists a positive constant $\gamma>0$ such that

$$
T f=\gamma \cdot f(I) \quad\left(f \in D_{l}(G)\right) .
$$

(3-6) For $f \in \mathscr{D}_{l}(G)$ we have

$$
\begin{array}{r}
\gamma \cdot f(x)=\mathscr{H}(f: x) \quad(x \in G) \\
\gamma \cdot\|f\|_{L}^{2}=\left\{(G)=\left.\mathscr{f}\right|^{2}: 1\right)
\end{array}
$$

The set $\left\{\hat{f}: f \in \mathscr{D}_{\ell}(G)\right\}$ is dense in the space $C_{0}(\Omega)$ of continuous functions on Ω which vanish at infinity. Here Ω is the support of the Plancherel measure.

THEOREM 2. Assume that G has property (S). Then the map $f \mapsto \hat{I}$ is a linear isomorphism of $\mathcal{D}_{\ell}(G)$ onto $A_{W}\left(\sigma_{\mathbb{C}}^{*}\right)$. More precisely, for every $R>0 \mathscr{D}_{\ell}(R)$ is transformed onto $\mathscr{A}_{W}(R)$.

Proof. Let $F \in \mathcal{A}_{W}(R)$ and define f by $\gamma \circ f(x)=\mathscr{F}(F: x)$. Then property (S) implies that $f \in \mathcal{D}_{\ell}(R)$. Let $F^{\prime}=F-\hat{f}$. We must prove that F^{\prime} vanishes identically. But it follows from the definition of f that

$$
\mathcal{F}\left(F^{\prime}: x\right)=0 \text { for all } x \in G
$$

Hence

$$
\mathscr{F}\left(F^{\prime} \cdot \hat{g}: I\right)=\int_{G} \mathcal{F}\left(F^{\prime}: x\right) g(x) d x=0 \quad \text { for all } g \in \mathcal{D}_{X}(G)
$$

$\left\{\hat{g}: g \in \mathcal{D}_{\ell}(G)\right\}$ is dense in $C_{0}(\Omega)$; so F^{\prime} vanishes on Ω. Since F^{\prime} is holomorphic, F^{\prime} vanishes identically.

REFERENCES

[1] O. Campoli, The complex Fourier transform for rank one semisimple Lie groups, Ph.D.Thesis, Rutgers Univ. 1977.
[2] M. Flensted-Jensen, Spherical functions on a simply connected semisimple Lie group I, Amer. J. Math. 99 (1977), 341-361 ; II, The Paley-Wiener theorem for the rank one case, Math. Ann. 228 (1977), 65-92.
[3] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165.
[4] Harish-Chandra, Spherical functions on a semisimple Lie group I \& II, Amer. J. Math. 80 (1958).
[5] ——, On the theory of Eisenstein integral, Lecture Notes in Math. 266, Springer, 1972.
[6] J. Rosenberg, A quick proof of Harish-Chandra's Plancherel theorem for spherical functions on a semisimple Lie group, Proc. Amer. Math. Soc. 63 (1977), 143-149.
[7] G. Schiffmann, Integrales d'entrelacement et fonctions de Whittacker, Bull. Soc. Math. France 99 (1971), 3-72.
[8] G. Warner, Harmonic analysis on semisimple Lie groups I \& II, Springer, 1972.

```
Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga / JAPAN
```

