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Introduction.

Let G Dbe a noncompact connected semisimple Lie group with
finite center and K a maximal compact subgroup of G. We fix a
one dimensional unitary representation +t of K. A function £
on G 1is called t-spherical if

flkxk') = 1(k)F(x)t(k") (xeCG, k,k'€XK).
The set i%(G) of compactly supported tT-spherical ¢® functions on
G 1s a commutative algebra under convolution. When g is trivial,
R. Gangolli [3] characterized the Fourier transforms of the elements
of AQO(G). Our purpcse of this note is to characterize the
Fourier transforms of the members of a$%<G) for any simple matrix
groups and any one dimensional representations .

From now on let (G be a simple matrix group. If K 1is semi-
simple, then 1 must be trivial. We may therefore suppose that
K is not semisimple. But it 1is well known that such & group 1s one
of the followilng:

SOO(n, 2), Sp(n,R), 30¥(2n) and SU{(p, q).
We call SOO(n+2,2), Sp(r,R), SO0¥(4r), sU(r,r) (n,r > 1) the
groups of the first kind, and call SO0¥(4r+2), SU(n+r,r) (n,r > 1)

the groups of the second kind. r denotes the real rank.
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G = KAN 1is an Iwasawa decomposition of G, and 9, &:, a, w
are Lie algebras of G, K, A, N respectively. Ol extends to a
Cartan subalgebra f of (g We fix a compatible orderings on the
duals of O and OU+ i(fn&).. Let P be the set of positive roots
of (%, f,) end put P.= {BEP : T = gloL# 0}, o' = {B: gep,].
The inner product <+,+> on the dual Q¥ of & defined by the
Killing form extends to a bilinear form on aLé. We denote it also
by the same notation. For oceA+U(—A+) (resp. B € PVU(-P)) we write
0&0‘ (resp. ‘}6) for the corresponding root space in ‘g, (resp. ?’c)'

The simple roots I = {ocl, sy, '-~,0cr} or at may be so

arranged that the root diagram is

@::)o-_—o—_ - —_—

%1 @2 Op
or

0#:0___-.0_—_ C e e e ——)

%1 ) %p

according as G 1is of the first or second kind. Let

el=0(,l, 62=0L1+20L2, ces er=a1+2a2+ ‘.+20L1n
or

€1 T 05 €5 T ag F 0, crerr o, €, =0 Foa, Aorr 4oy
according as C¢ 1s of the first or second kind. Then {el, e2, e,

er} is an orthogonal basis of Ot: with same norm. ﬂé is then

identified with ¢¥ via

o 3v = ) vies > (Vs Vs v, \)P)ECP

— 178 —



and the Weyl group 1s i1dentified withe the group of all linear
mappings

1 2 s 1
(Ves Vos®es V. )F>(E.V, ,E V. ,%°,6 v, ), £, = +1 ( - )e@
1z r 17J,772 73, rdptt P \dp Jprds

Let 1= g@?‘v be the Cartan decomposition of ? and
&«= &a @&S, where &a and ﬁ,s are the abelian and semisimple parts
of @ respectively. For xé€G, K(x.) €K, H(x)€Ol, n(x)eN are
defined by x = K(x)expH(x)n(x). Let 0(,+ be the positive chamber
of (Ol and At = exp(OI+). Then G = K°Cl(A+)-K. We write w and

w for the Casimir operators of G and M respectively, where M

Y
being the centralizer of A in K.

§1. Elemenftary t-spherical functions.

For \)éOlﬁ the elementary t-spherical function is defined by

$(v: x) =j (e (xkN T e EVme) () gy

K
(1 - 1) ¢(v: x) 1s a W-invariant entire function of v, and
satisfies the differential equation

wg = (Tl - <V,v> = <p,0>)6.

Since G = K°Cl(A+)-K, ¢ 1is determined by its restriction to

A . Let A be the function on A+ defined by

A(h) = —ﬂ_ (eB(H) - e_B(H)) (h = epoeA+)
B€P+

and $(w) the radial component of . Then we have
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(1 - 2) There exist meromorphic functions Y¥(v: h)
that
/2
A(h/¢<v:1n = 7 ¢ (sv)¥(sv: n) (vear
seW ¢

Moreover ¥ satisfies the differential equation

(F3R(w)o £7%)¥ = (1(u,) - <v,v> = <p,p>)¥.

Let Hl’ H LN Hr be the basis of O dual

e,. For @geP  choose Xiﬁejr(ﬂ such that <Xg,

and CT(v)

, hea®).
to 1> ©
X_> = 1.

- a )
Xig = Voo * Zig ¥y g€ Re > 256 Ry B,

such

then
szci(m)oA—Vl= T(wp) + ﬁeli;_z z H§
J
(1 - 3) + %’ )) <§,§>(Sh8)—2 - % ) <E,7>(cothﬁ)(cothf)
&

BEP, B,Y€F,

-4 7 (l—chB)(shB)_2T(YB)T(Y_)

BEP, 8

‘Let L denote the semilattice of elements ijaj (mjéEZ+).

For

A= ijujé L, we let m(x) = ij. Using (1-2) and (1-3) we see that

¥ has a series expansion

(1L - ) ¥(v: h) =) aA(V) e(iv—%)(H) (n = epoﬁéA+).

A€L

Here ak(v) (ME€L) are rational functions determined by the

recurrence relation a0<v> =1,

(<A,A>=21<v,A>)% (V) = 2]
B8

n>1

!
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+ 27 ¥ <oBr @y, oox(v)+ ] 1 <E.v>Q % oo (V)
8 n>1 A=-2nf B,y m,n>0 A=2mB-2n¥
- m+n>1

- % ﬁgl@n—l)T(YB)T(Y—B) Ay_(on-1)(V) (A # 0).

We let o = {vedt* : 0 2 vy g vy, £ *=0 2V}, "a@¥ = {ve ¥

1
<A,A> + 2<v,A> # 0 YA €L-{0} }.
(1 - 5) For ne "M*¥ we can find constants C(n), d(n) > 0 such
that '

la, v ] < cmM (vear , rer-f0}).

There exist constants €, d > 0 such that

@, (v+in)] g com(M)®  (ve oF, ne at , A€L-{0}).

§2, Harish-Chandra's generalized C-function C (v)

The function CT(v) in (1-2) is meromorphic on ali and is

given by
T (——‘ -(ivt+p) (H(R))
(2 - 1) Cc(v) = )_T(K(n)) e ’
N

Here we normalize the Haar measure dii of N so that the integral
of exp{-2p(H(11))} equals one. We shall find an explicit form of
CT(v) for our groups. Since the center of K 1is one dimensional,
T 1s parametrized by an integer 2. We denote this T by Ty -

Example, If G = SOO(n+2,2), K = SO0(n+2) S0(2), then

k! .
_ 126
Tz( cose sing ) = e (k' € S0(n+2)).
-sin6 cosb
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To compute the integral (2-1) we use the reduction theory of G.

Schiffmann [7]. Let s s ***, s, be the Weyl reflections

1> T2’
defined by Ays gyttt O respectively, and denote the length of

s€W by 2(s). For s€W 1let N(s) be the analytic subgroup with

Lie algebra #(s) = 7§ %—a and let
a>0
sa<0
Cl(v: s) = TZ(K(ﬁ)) e“<iv+ps)(H(ﬁ)) an
N(s)

(2 = 2)(G.Schiffmann [7]) If s = s's" with 2(s) = 2(s') + &(s"),
then
Eiv: sy = cXsm: styct(v: sy,

On the other hand, the element -1 of W has the following

property.
(2 - 3) 2(-1) = r° and
-1 = Sl”sl”—l.'.slsr’s‘{‘=1-..sl oo Srsf—l...sl
~ g \____/ \_/
h—-’—“"”w——————”—’/

is a reduced expression of -1.

Since N = N(-1), the question of computing Cl(v) is therefore
reduced to finding Cz(v: sj) (1 £33 £r). Fix a simple root a.

~ 20 -a =20

Let M, and 4, Dbe the subalgebras ga + % and G+ %
respectively, and %(a) the semisimple subalgebra generated by

+'_ ® Nt -
My A - We write Nu’ Na and G(a) for the analytic subgroups
corresponding to the subalgebras ”u”ﬂu and %(a)- Then
G(a) dis a real rank one semisimple Lie group with finite center and
has Iwasawa decomposition G(a) = KaAaNa’ where Ka = KNG(a) and

Ay = eXp(RHq).. Pet X € ﬂ'aj and Yeg*zaj. Finding Ko%—component
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k(1) and Aa ~component expH(fi) of @ = exp(X+Y), we can calculate
2 J
C"{v: s.).
( J) ‘
(2 - 4) Let ny = dim%ﬁJ (1 £J <r). Then
<<1v uJ>
T
I'(n.) <oy )
2 4 .
C v Sj) - nJ <iv a$> 4 n (223 21,
F(_Q—J—) F<___’_J_+_J>
<0.,0.>
aJ,uJ 2
L R .
and C7(v: sl) is given by
(ﬁlv a >) <<1v a > 1
+__
<Oy 5Oy > <o ,a > 2 )
Cz(v: s.) = 1 1
1 <iv al> 1 2 <1v dl 1 2
YRy i SEN N 4 BY it N R A
<ul,ul> 2 2 <ul,u > 2 2/
or
<iv,ul> <iv, u1> nq <iv, a1> ny,
. T(n l+l) "z S0, > Avre ) >+E_)F 2<0. 50 >+H—+2>
C"(v:is,) = T - 1> 1 - 1 1" 1 d
1 e i S AN O ST S 0N 1+2> <Iv, a> g g
T2 <opsap> 2 ] 2<a 500> TS 2<al,u sty 5%

according as

From (2-2)

G

3

is of the first or second kind.

(2-3) and (2-4) we can derive the following result.

THEOREM 1. C&(y) 1is expressed by
Cz(v) (2m'+l) r(m )§Kr—l) TW- F(lvj+1vk)r(1vk~1vj)
r ryr .

vl J<k Sy 4 m s s m
T(m +2) F( oy T(lvj 1vk+2)T(1vk 1vj+2)

. . m' . m'+1

_ +
§ r F(21vj) F(lvi+i )T(lvj 21 ;
. . m'+ m + >
= +m’ i +5 _—
Jj=1 F(21vj m') F(le 5 T (i 5 5
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where m and m' are given as follows.

G } S0,(n+2,2) Sp(r,R) SO0¥(4r) SC¥(4r+2) SU(n+r,r)
m l n 1 4 4
m' 0 0 0 2 n

§3. Fourier transform on i%(G).

We define the Fourier transform f of fé& i%(G) =J9T (@) by
2

s

f(v) = j T(x)p(v: X-l)dX.
G

For R > 0, &, (R) and )&LW(R) are defined as follows. o8 (R) 1is
the space of those elements in é%(G) that are supported in BR =
{x€G : o(x) < R}, where o 1is the K-biinvariant continuous
function on G defined by o(expH) = [[H] (HeoU. NM(R) is the

space of W-invariant entire functions F on (ﬁé that satisfy

W20 30, >0 : |FO| g (1 + v SRAITmol

We write ﬁ%ﬁmﬁ) for the union of all NW(R) (R > 0).
(3-1) 1f re & (R), then fé€ MW(R).
Now we 1let

vy = cronct-un L.

This is a meromorphilic function on 01§. In fact, Theorem 1 implies
that
Xg (V)Y (V) (2]m)
2
ulv) =
X (V) Z(V) (2fm),
where
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um'r(m,+%)2rr(§)2r(r-l)

X (v) =
. T (2m'+1)27T (m) 2T (7L
r . ! [ '
x [i{v.thﬂ(v. + ii&i@l) F[(v% + ( Ai-m _1)2)} s
=1t 4d J 2 p=1 9 2
m/2
_ 2 m 2 2 m 2
Y(v) = RANNIN (s + V)7 + (5 - ) vy = v )" + (5 -p)7)
and
= 1 2 2 1
Z(v) = jék{<vj - vk)thﬂ(vj ! vk)thw(vj - vk)

(3]

)2

oy

1 L2
(G )Ny = v T G-

~
S e h

As a function of Vs uz(v) has infinite simple poles on the

imaginary axis. Let Hl = Fl be the set of those poles that are
between O and i(J4-m*)/2. For a&rl, we let
A
ug(v<a>) = =27i°Res{u”(v) : v_ = a],
a r
A
where v(a/ denoting (vlg Vos t00 vrm1>° As a function of v __ .,

)
ui(v(a’) has simple poles on the imaginary axis. Let Ha be the

set of those poles that are between 0 and a, and put T, = {(a,b):
a&l, bena}., For } = (a, b)él‘g we let

u%(v(?)) = —2ﬂi-Res[p§(v<a>) Vg = b1,

where v(}) denoting (vl, v2, eee, vr_z)o In this manner we define
Ty Tos ooy L H} and u?(v(})). For simplisity we let T, = {o},

ui(\)<0)) = u%(v) and T = U(rp $02p gr). For P=(a, a,, °*,
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. = () = gr-p
ap)e:Fp we let y' = (ap, > 855 al), R ) —YR and let I&
denote the subgroup of W composed of those elements that leave vj
(r-p < j ¢ r) fixed.

(3 -~ 2) PFor every ; e’l, u;(v(y)) is a W?—invariant meromorphic

function which is pogitive-valued on R(g).

For Féﬁé—q(aé) we let

. - 1 (B g . Lo (B)ya, (8
HFEF: x) ;EFTW;T R(})F(v > pe (v ¢ P x)u;(v yav e,
We say that G has property (S) if the following condition is
satisfied:

Ir Fé=ﬂ%(R)5 then (F: ) is supported in Bg-
(3 -3) If r =1 then G has property (3).

This 1s proved using the results obtained in the previous
sections.

Now we assume property (S) and continue our discussion. Since
1-spherical functions are completely determined by their restrictions
to A, we can regard a linear functional on (ﬁ&(G) as a W-invariant
distribution on A. Define the linear functional T on J%KG) by

T = HE: 1)
Let F, be a function in }¢W(l) such that F,(0) = 1. Then

Tr

]

1im gkf(')Fo(a-): 1) = 1lim f(X)gE(X)dX,
e¥0 ey J G

where ge(x) =‘?(Fo(s-): xdl). Property (S) implies that 8¢ is

supported in Be' Since T = limg as a distribution, T must
i e¥0
have support {1}. Moreover we have
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(3 ~4) T 1is a positive measure with support {1}.
Hence there exists a positive constant vy > 0 such that
TF = ye£(1) (redd ().

(3 - 6) For fé‘ﬁ%(G) we have

yef(x) = HL: x) (x €6),

v lelf, = F1EP b,
L°(®)

The set {f : fe l%(G)} is dense in the space CO(Q) of continuous
functions on @ which vanish at infinity. Here Q 1s the support
of the Plancherel measure.

THEQOREM 2., Assume that G has property (S). Then the map
fr»f is a linear isomorphism of o&&(G} onto ,#&(mé)c More
precisely, for every R > O é%(R) is transformed onto A&(R).

Proof. Let Féld%(R) and define f by vy-f(x) =§7(F: X).

Then property (S) implies that féé%(R). Let F' =F - £. We must
prove that F' wvanishes identically. But it follows from the
definition of £ that

FFr: x) = 0 for all x€G.

Hence

F(wreg: 1) =J F(F': x)g(x)dx = 0 for all ge,Z}L(G)°
G

{g : gé:i%(G)} is dense in CO(Q); so F' wvanishes on Q. Since

F' 1is holomorphic, F' vanishes identically.
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