Lec. in Math., Kyoto Univ. No. 14 Lectures on Harmonic Analysis on Lie Groups and Related Topics pp. 139–147

AN INTEGRAL REPRESENTATION OF THE HARISH-CHANDRA SERIES ON SO((n,1)

Ву

<u>Masaichi Mamiuda</u>

Waseda University

90. <u>Introduction</u>

Let G be a connected noncompact real form of a connected complex semisimple Lie group G_c and assume that G is of split rank one. Let K be a maximal compact subgroup of G and G=KAN be an Iwasawa decomposition. Then dimA = 1. Choose an element H_0 of the Lie algebra $\mathfrak A$ of A so that eigenvalues of $\operatorname{ad}(H_0)$ are $\{0,\pm 1\}$ or $\{0,\pm 1,\pm 2\}$ and put $a_t=\exp(tH_0)$. Then the Iwasawa decomposition of an element $x \in G$ is

$$x=k(x)a_{t(x)}n(x)$$
, where $k(x)\in K$ and $n(x)\in N$.

Let M be the centralizer of A in K. Then MAN is a minimal parabolic subgroup of G. Let $(\mathcal{T}_1,\mathcal{T}_2)$ be a double unitary representation of K on a finite dimensional Hilbert space V and denote by V_M the subspace of V comprised of those elements v which have the property that $\mathcal{T}_1(m)v=v\,\mathcal{T}_2(m)$ (all meM). The <u>Eisenstein integral</u> E(s,v,x) for MAN is defined by the following formula([2],[4]);

(1)
$$E(s,v,x) = \int_{K} e^{(s-\rho)t(xk)} \tau_{1}(k(xk)) v \tau_{2}(k^{-1}) dk$$

When G=SU(1,1), by the change of variable $z=(th(\frac{t}{2}))^2$, we can see that the Eisenstein integral $E(s,v,a_t)$ coincide with certain hypergeometric function F(a,b;c;z) (up to a constant factor) and the formula (1) gives a its integral representation of Euler type. Moreover the expansion (2) corresponds to the following formula;

$$F(a,b;c;z) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}F(a,b;a+b-c+1;1-z)$$

+
$$(1-z)^{c-a-b} \frac{I'(c)I'(a+b-c)}{I'(a)I'(b)}$$
 F(c-a,c-b;c-a-b+1;1-z).

Hence the Harish-Chandra series E(s,t) has an integral representation of Euler type.

In general, Does the series E(s,t) have an integral representation? When G is the general Lorentz group $SO_0(n,l)$, we can fined an integral representation of E(s,t) which is a singular integral over certain noncompact real form H of the complexification K_c of K (Theorem 8.)

Main idea is to consider the analytic continuation of the Iwasawa decomposition and to find a noncompact real form of ${\rm K}_{_{\hbox{\scriptsize C}}}$ with certain properties.

The present note is a sketch of results and we shall give proofs in [3].

§ 1. Analytic continuation of the Iwasawa decomposition

Let G be the general Lorentz group ${\rm SO}_0({\rm n,l})$ (n) Denote by ${\mathcal G}$, ${\mathcal G}_{\rm c}$ the Lie algebra of G and its complexification respectively. We denote by ${\rm G}_{\rm c}$ the complex analytic subgroup of ${\rm GL}({\rm n+l,C})$ with Lie algebra ${\mathcal G}_{\rm c}$. Let K,M,A,N be the same as in §0.

for a complex number s, $v \in V_M$ and $x \notin G$, where dk is the normalized Haar measure on K and ho is a real number obtained from the modular function δ of MAN by $\delta(\mathrm{ma_{t}}n)$ = $\mathrm{e}^{-2\,\rho\mathrm{t}}$. The Eisenstein integral $E(s,v,a_t)$ has the following series expansion

Theorem 0.(Harish-Chandra)

([1],[5]).

There is an open connected dense subset $O(\tau_1, \tau_2)$ of Φ which is stable under the action $s \rightarrow -s$ and are functions $C_e, C_w, A_k (k=0,1,...)$ with all values in $End(V_M)$ such that

- 1) The complement of O(7, 5) is a discrete set.
- 2) The functions C_{e}, C_{w} (resp. A_{k} (k=0,1,..)) are meromorphic (resp. rational) on $\mathbb C$ and holomorphic on $\mathrm{O}(\tau_1,\tau_2)$.
- 3) Fix any compact subset B of $O(\pi_1, \tau_2)$ and r > 0. Then, for each integers i20, j20, the series

$$\sum_{k=0}^{\infty} \left(\frac{\partial}{\partial s}\right)^{1} \left(\frac{\partial}{\partial t}\right)^{j} \left(A_{k}(s)e^{-kt}\right)$$

is absolutely and uniformly convergent on Bx[r,
$$\infty$$
).

4) Put E(s,t)= $e^{(s-\rho)t}\sum_{k=0}^{\infty} A_k(s)e^{-kt}$. Then

(2)
$$E(s,v,a_t)=E(s,t)C_e(s)v+E(-s,t)C_w(s)v$$
,
for $seO(\tau_1,\tau_2)$, veV_m and $t>0$.

In this note, we call E(s,t) the Harish- Chandra series of the Eisenstein integral $E(s,v,a_t)$.

For any closed subgroup of G we use the similar notations; for example, \mathcal{R} , \mathcal{M} , \mathcal{M} , \mathcal{M} are the Lie algebras of K,M,A,N respectively. Choose aelement $H_0 \in \mathcal{M}$ with the same property as in §0 and put

'A_c = {
$$a_z = \exp(zH_0)$$
; z is a complex number with $|Im(z)| < \pi$ },
$$'G_c = K_c 'A_c N_c .$$

Then we obtain from the explicit formula of the Iwasawa decomposition the following results.

Lemma 1.

 $^{'}{}^{G}_{c}$ is an open connected dense submanifold of $^{G}{}_{c}$ and there are holomorphic mappings

$$k : 'G_{c} \longrightarrow K_{c}, \quad t : 'G_{c} \longrightarrow C, \quad n : 'G_{c} \longrightarrow N_{c}$$

such that for each x €'G the decomposition

(3)
$$x=k(x)a_{t(x)}n(x)$$

exists and is unique. Moreover if $x \in G$ then this decomposition coincide with the Iwasawa decomposition.

Let θ be the Cartan involution with respect to the pair (\P, \mathcal{R}) and put

$$\mathcal{F} = \{ X + \theta X ; X \in \mathcal{H} \}.$$

Then R=M+7, [7,7] M, [M,7] M and [M, M] M. Therefore the real subspace R=M+1 of is a noncompact real form R_c . Let H be the analytic subgroup of K_c with Lie algebra M. Then H is isomorphic to $SO_0(n-1,1)$ and M is a maximal compact subgroup of H.

Lemma 2.

For any t20 and h&H ath belongs to 'Gc.

Since any finite dimensional representation of K can be extended to a holomorphic representation of $\rm K_c$, we may regard a double unitary representation of K as a holomorphic double representation of $\rm K_c$. Hence the function

$$e^{(s-p)t(a_th)} \gamma_{(k(a_th))v} \gamma_{(h^{-1})}$$

is well-defined.

Now we cosider the following integral;

(4)
$$F(s,t)v = \int_{H} e^{(s-\rho)t(a_{t}h)} \gamma_{1}(k(a_{t}h))v \gamma_{2}(h^{-1})dh,$$

for a complex number s, $v \in V_M$ and t > 0, where dh is a Haar measure on H.

Lemma 3.

There is a real number c depending only on $({\mathcal T}_1,{\mathcal T}_2)$ such that if Re(s)<c then the integral (4) converges for each t>0 and $v \in V_M$, and gives a linear endomorphism $F(s,t) \colon v \longrightarrow F(s,t)v$ of V_M .

Moreover there exist meromorphic functions $F_k(k=0,1,2,\ldots)$ with values in $\operatorname{End}(V_M)$ such that

- 1) $F_k(k=0,1,2,...)$ are all holomorphic on the half space $\{s; Re(s) \le c \}$.
- 2) For any compact subset B of $\{s; Re(s) \le c\}$ and r>0, the series $\sum_{k=0}^{\infty} F_k(s) e^{-kt}$

is absolutely and uniformly convergent on $Bx[r,\infty)$ and

$$F(s,t) = e^{(s-\beta)t} \sum_{k=0}^{\infty} F_k(s)e^{-kt},$$

for t>0 and Re(s) <c.

Corollary 4.

Fix t>0. Then the function $s \longrightarrow F(s,t)$ can be extended meromorphically onto the whole plane. Moreover if Re(s)(c then the limit $\lim_{t\to\infty} e^{(\rho-s)t}F(s,t)=F_0(s)$ exists.

Most complicated part in proofs of these results is to show that the function $e^{(\rho-s)t}F(s,t)$ is a linear combination of integrals in the followins form;

$$I_{p,q}(s,t) = \int_0^1 r^{2-1} (1-r^2)^{-(s+p)} (1-x^2r^2)^{s-p} (\frac{1+xr}{1-xr})^p (\frac{1-r}{1+r})^q dr,$$
 where $x=e^{-t}$ and p,q are integers.

§2. <u>Differential equations satisfied by E(s,t)</u>, F(s,t).

Let G, \mathcal{F} be the universal enveloping algebra of \mathcal{F}_c , \mathcal{F}_c respectively. Denote by $\Delta(D)$ " the radial part" of $D \in G$ in the sense of Chap.9 of [5]. Then, in our case, we may regard $\Delta(D)$ as an ordinary differential operator on $(0, \infty)$ whose coefficients are all real analytic functions with values in End(V). Let \mathcal{F} be the center of \mathcal{F}_c and denote by $\Omega_c(Z,s)$ ($Z \in \mathcal{F}_c$, s is a complex number) an element introduced in [5](p.283). Then

$$\Delta(Z)(E(s,t))=E(s,t)T_2(\Omega(Z,s-p)),$$

for each $s \in O(\tau_1, \tau_2)$ and $z \in \mathcal{F}$,

and

(5)
$$\Delta(Z)(E(s,v,a_t))=E(s,v\mathcal{T}_2(\Omega(Z,s-\rho)),a_t)$$

for any complex number s and $Z \in \mathcal{F}$.

Since H is a real form of K_c and the function $f(x) = e^{(s-\beta)t(x)} \gamma_1(k(x)) \ (x \epsilon' G_c)$

is holomorphic on ${}^{\prime}G_{c}$ which satisfies

$$f(kxman)=e^{(s-\rho)t(a)} T_1(k)f(x)T_1(m)$$
,

for $k \in K_c$, $x \in G$, $m \in M_c$, $a \in A_c$, $n \in N_c$ with $kxman \in G_c$,

by similar arguments in the proof of (5), we have the next lemma

Lemma 5.

For each $Z \in \mathcal{Y}$, there is a real number c' such that if Re(s) <c' then

$$\triangle(z)(F(s,t))=F(s,t)\mathcal{T}_2(\Omega(z,s-\rho)).$$

Noting that the following properties characterize the function

$$f_s(t)=E(s,t)$$
 (s&O($\mathcal{T}_1,\mathcal{T}_2$) fixed) (Chap.9 of [5])

a)
$$f_s(t) = e^{(s-\rho)t} \sum_{k=0}^{\infty} A_k(s)e^{-kt}$$
,

- b) The limit $A_0(s)=\lim_{t\to\infty}e^{({\it p}-s)t}f_s(t)$ exists and coincides with the idetity operator of $V_{\rm M}$,
- c) Let ω be the Casimir operator of G. Then $\Delta(\omega) f_s(t) = f_s(t) \mathcal{T}_2(\Omega(\omega,s-\rho)),$

we have from Lemma 3. and Lemma 5. the next lemma.

Lemma 6.

For each t>0, $F(s,t)=E(s,t)F_0(s)$ as $End(V_M)-valued$ meromorphic functions.

Calulations of $\mathbf{F}_0(\mathbf{s})$ is very difficult except special case but the next Lemma is hold.

Lemmma 7.

There is a constant c_0 depending only on normalizations of a Haar measure of H such that

$$F_0(s)=c_0((\sin\pi s)/(\sin\pi(s+\rho)))C_e(s),$$
 as meromorphic functions.

Thus we have the following theorem.

Theorem 8.

There is a real number c such that if Re(s) < c then the integral

$$\texttt{F(s,t)v=} \int_{\texttt{H}} \, \mathrm{e}^{(s-\rho)t(\texttt{a}_{t}\texttt{h})} \tau_{\texttt{l}}(\texttt{k}(\texttt{a}_{t}\texttt{h})) \texttt{v} \tau_{\texttt{2}}(\texttt{h}^{-1}) \mathtt{dh}$$

is absolutely convergent for each t>0, $v \in V_M$. Moreover for fixed t>0 the function $s \longrightarrow F(s,t)$ can be extended to a $End(V_M)$ -valued meromorphic function on $\mathbb C$ and

$$F(s,t)=c_0((\sin\pi s)/(\sin\pi (s+\rho)))E(s,t)C_\rho(s).$$

Remark.

When G=SU(1,1), the formula (4) gives an integral representation of Euler type. More generally, if the Eisenstein integral $E(s,v,a_t)$ coincide with a hypergeometric function then the formula (4) gives an integral representation of Euler type.

REFERENCES.

- [1] Harish-Chadra: Differential equations and semisimple Lie groups (1960) unpublished.
- [2] Harish-Chadra: Harmonic analysis on real reductive Lie groups I J. Func. Analysis 19(1975), 104-204.
- [3] Mamiuda, M: An integral representation of the Harish-Chandra series on $SO_{\Omega}(n,1)$, to appear.
- [4] Wallach, N. R.: Harmonic analysis on homogeneous spaces, Marcel Dekker, Inc. (1973).
- [5] Warner, G.: Harmonic analysis on semisimple Lie groups II, Spriger-Verlag (1972).