<table>
<thead>
<tr>
<th>Title</th>
<th>Lectures on harmonic analysis on Lie groups and related topics (An integral representation of the Harish-Chandra series on $SO_0(n,1)$). / M. Mamiuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hirai, T.; Schiffmann, Gerard</td>
</tr>
<tr>
<td>Citation</td>
<td>Lectures in Mathematics (1982), 14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84919</td>
</tr>
<tr>
<td>Rights</td>
<td>The following article has been remained unpublicized by request of the owner of copyright. [H. Midorikawa: "Clebsch-Gordan coefficiects for a tensor product representation $Ad \otimes \pi$ of a maximal compact subgroup of a real semi-simple Lie group." pp. 149-175]</td>
</tr>
<tr>
<td>Type</td>
<td>Book</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
AN INTEGRAL REPRESENTATION OF THE HARISH-CHANDRA SERIES ON $SO(n,1)$

By

Masaichi Mamiuda

Waseda University

§0. Introduction

Let G be a connected noncompact real form of a connected complex semisimple Lie group G_c and assume that G is of split rank one. Let K be a maximal compact subgroup of G and $G=KAN$ be an Iwasawa decomposition. Then $\dim A = 1$. Choose an element H_0 of the Lie algebra \mathfrak{a} of A so that eigenvalues of $\text{ad}(H_0)$ are $\{0, \pm 1\}$ or $\{0, \pm 1, \pm 2\}$ and put $a_t=\exp(tH_0)$. Then the Iwasawa decomposition of an element $x\in G$ is

$$x=k(x)a_t(x)n(x), \text{ where } k(x)\in K \text{ and } n(x)\in N.$$

Let M be the centralizer of A in K. Then MAN is a minimal parabolic subgroup of G. Let (τ_1, τ_2) be a double unitary representation of K on a finite dimensional Hilbert space V and denote by V_M the subspace of V comprised of those elements v which have the property that $\tau_1(m)v=v\tau_2(m)$ (all $m\in M$). The Eisenstein integral $E(s,v,x)$ for MAN is defined by the following formula([2],[4]);

$$E(s,v,x) = \int_M e(s-p)t(xk)\tau_1(k(xk))v\tau_2(k^{-1})dk,$$
When \(G = SU(1,1) \), by the change of variable \(z = (\text{th}(\frac{t}{2}))^2 \), we can see that the Eisenstein integral \(E(s,v,a_t) \) coincide with certain hypergeometric function \(F(a,b;c;z) \) (up to a constant factor) and the formula (1) gives its integral representation of Euler type. Moreover the expansion (2) corresponds to the following formula:

\[
F(a,b;c;z) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(a)\Gamma(c-b)} F(a,b;c-a-b+1;1-z) + (1-z)^{c-a-b} \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)} F(c-a,c-b;c-a-b+1;1-z).
\]

Hence the Harish-Chandra series \(E(s,t) \) has an integral representation of Euler type.

In general, Does the series \(E(s,t) \) have an integral representation?

When \(G \) is the general Lorentz group \(SO_0(n,1) \), we can find an integral representation of \(E(s,t) \) which is a singular integral over certain noncompact real form \(H \) of the complexification \(K_c \) of \(K \) (Theorem 8.)

Main idea is to consider the analytic continuation of the Iwasawa decomposition and to find a noncompact real form of \(K_c \) with certain properties.

The present note is a sketch of results and we shall give proofs in [3].

\section{1. Analytic continuation of the Iwasawa decomposition}

Let \(G \) be the general Lorentz group \(SO_0(n,1) \) \((n \geq 2)\). Denote by \(g, g_c \) the Lie algebra of \(G \) and its complexification respectively. We denote by \(G_c \) the complex analytic subgroup of \(GL(n+1,\mathbb{C}) \) with Lie algebra \(g_c \). Let \(K, M, A, N \) be the same as in \(\S 0 \).
for a complex number \(s \), \(v \in V_\mathbb{M} \) and \(x \in G \),
where \(d_k \) is the normalized Haar measure on \(K \) and \(\rho \) is a real number
obtained from the modular function \(\delta \) of \(\text{MAN} \) by \(\delta(ma_\mathbb{C}n) = e^{-2\rho t} \).
The Eisenstein integral \(E(s, v, a_t) \) has the following series expansion ([1],[5]).

Theorem 0. (Harish-Chandra)

There is an open connected dense subset \(O(\tau_1, \tau_2) \) of \(\mathcal{O} \) which is
stable under the action \(s \rightarrow -s \) and are functions \(C_e, C_w, A_k (k=0,1,\ldots) \)
with all values in \(\text{End}(V_\mathbb{M}) \) such that
1) The complement of \(O(\tau_1, \tau_2) \) is a discrete set.
2) The functions \(C_e, C_w \) (resp. \(A_k (k=0,1,\ldots) \)) are meromorphic (resp. rational) on \(\mathcal{O} \) and holomorphic on \(O(\tau_1, \tau_2) \).
3) Fix any compact subset \(B \) of \(O(\tau_1, \tau_2) \) and \(r>0 \). Then, for each
integers \(j \geq 0 \), \(i \geq 0 \), the series
\[
\sum_{k=0}^{\infty} \left(\frac{2}{s} \right)^i \left(\frac{2}{t} \right)^j A_k(s)e^{-kt}
\]
is absolutely and uniformly convergent on \(B \times [r, \infty) \).
4) Put \(E(s,t) = e(s-\rho t) \sum_{k=0}^{\infty} A_k(s)e^{-kt} \). Then
\[
(2) \quad E(s,v,a_t) = E(s,t)C_e(s)v + E(-s,t)C_w(s)v,
\]
for \(s \in O(\tau_1, \tau_2) \), \(v \in V_\mathbb{M} \) and \(t>0 \).

In this note, we call \(E(s,t) \) the **Harish- Chandra series** of the
Eisenstein integral \(E(s,v,a_t) \).
For any closed subgroup of G we use the similar notations; for example, $\mathfrak{K}, \mathfrak{M}, \mathfrak{A}, \mathfrak{N}$ are the Lie algebras of K,M,A,N respectively. Choose an element $H_0 \in \mathfrak{H}$ with the same property as in §0 and put

$$A_c = \{ a \in \mathfrak{A} : z = \exp(zH_0) \}, \quad z \text{ is a complex number with } |\operatorname{Im}(z)| < \pi,$$

$$G_c = K_c A_c N_c.$$

Then we obtain from the explicit formula of the Iwasawa decomposition the following results.

Lemma 1.

G_c is an open connected dense submanifold of G_c and there are holomorphic mappings

$$k : G_c \rightarrow K_c, \quad t : G_c \rightarrow \mathfrak{C}, \quad n : G_c \rightarrow N_c$$

such that for each $x \in G_c$ the decomposition

(3) $x = k(x) a(x) t(x) n(x)$

exists and is unique. Moreover if $x \in G$ then this decomposition coincide with the Iwasawa decomposition.

Let Θ be the Cartan involution with respect to the pair $(\mathfrak{A}, \mathfrak{K})$ and put

$$\mathfrak{H} = \{ X + \Theta X : X \in \mathfrak{H} \}.$$ Then $\mathfrak{K} = \mathfrak{M} + \mathfrak{H}, \quad \mathfrak{A} \subset \mathfrak{M}, \quad [\mathfrak{A}, \mathfrak{A}] \subset \mathfrak{H}$ and $[\mathfrak{M}, \mathfrak{M}] \subset \mathfrak{M}$. Therefore the real subspace $\mathfrak{H} = \mathfrak{M} + [-1] \mathfrak{H}$ is a noncompact real form \mathfrak{H}_c. Let H be the analytic subgroup of K_c with Lie algebra \mathfrak{H}_c. Then H is isomorphic to $SO_0(n-1,1)$ and M is a maximal compact subgroup of H.
Lemma 2.

For any $t \geq 0$ and $h \in H$, $a_t h$ belongs to G.

Since any finite dimensional representation of K can be extended to a holomorphic representation of K_c, we may regard a double unitary representation of K as a holomorphic double representation of K_c. Hence the function

$$e^{(s-\rho)t(a_t h)} \tau_1(k(a_t h))v \tau_2(h^{-1})$$

is well-defined.

Now we consider the following integral;

\begin{equation}
F(s, t)v = \int_H e^{(s-\rho)t(a_t h)} \tau_1(k(a_t h))v \tau_2(h^{-1})dh,
\end{equation}

for a complex number s, $v \in V_M$ and $t > 0$,
where dh is a Haar measure on H.

Lemma 3.

There is a real number c depending only on (τ_1, τ_2) such that if $\Re(s) < c$ then the integral (4) converges for each $t > 0$ and $v \in V_M$, and gives a linear endomorphism $F(s, t)$ on V_M.

Moreover there exist meromorphic functions $F_k (k=0,1,2,\ldots)$ with values in $\text{End}(V_M)$ such that

1) $F_k (k=0,1,2,\ldots)$ are all holomorphic on the half space \{ s; $\Re(s) < c$ \}.

2) For any compact subset B of \{ s; $\Re(s) < c$ \} and $r > 0$, the series

$$\sum_{k=0}^{\infty} F_k(s)e^{-kt}$$

 converges uniformly for $s \in B$.

143
is absolutely and uniformly convergent on $B(x, r, \infty)$ and

$$F(s, t) = e^{(s-p)t} \sum_{k=0}^{\infty} F_k(s)e^{-kt},$$

for $t > 0$ and $\text{Re}(s) < c$.

Corollary 4.

Fix $t > 0$. Then the function $s \mapsto F(s, t)$ can be extended meromorphically onto the whole plane. Moreover if $\text{Re}(s) < c$ then the limit $\lim_{t \to \infty} e^{(s-p)t}F(s, t) = F_0(s)$ exists.

Most complicated part in proofs of these results is to show that the function $e^{(s-p)t}F(s, t)$ is a linear combination of integrals in the followins form;

$$I_{p, q}(s, t) = \int_0^1 r^2 - (1-r^2) - (s+p)(1-x^2)r^2_s-x^2r^2_s-x^2r^2_s-p(1-xr)^p(1-r)^q dr,$$

where $x = e^{-t}$ and p, q are integers.

§2. Differential equations satisfied by $E(s, t)$, $F(s, t)$.

Let G, G_c be the universal enveloping algebra of \mathfrak{g}, \mathfrak{g}_c respectively. Denote by $\Delta(D)$ "the radial part" of $D \in G$ in the sense of Chap.9 of [5]. Then, in our case, we may regard $\Delta(D)$ as an ordinary differential operator on $(0, \infty)$ whose coefficients are all real analytic functions with values in $\text{End}(V)$. Let \mathfrak{g} be the center of \mathfrak{g} and denote by $\Omega(Z, s)$ ($Z \in \mathfrak{g}$, s is a complex number) an element introduced in [5](p.283). Then

$$\Delta(Z)(E(s, t)) = E(s, t) \mathcal{C}_Z(\Omega(Z, s-p)).$$

- 144 -
for each \(s \in \mathbb{O}(\tau_1', \tau_2') \) and \(z \in \mathcal{H} \),

and

\[
(5) \quad \Delta(z)(E(s,v,a_t)) = E(s,v \tau_2'((\Omega(z,s-\rho)),a_t)
\]

for any complex number \(s \) and \(z \in \mathcal{H} \).

Since \(H \) is a real form of \(K_c \) and the function

\[
f(x) = e^{(s-\rho)t(x) \tau_1'(k(x))}(x \in G_c)
\]

is holomorphic on \(G_c \) which satisfies

\[
f(kx = e^{(s-\rho)t(a) \tau_1'(k)f(x) \tau_1'(m)},
\]

for \(k \in K_c, \ x \in G_c, \ m \in M_c, \ a \in A_c, \ m \in N_c \) with \(kx \in G_c \),

by similar arguments in the proof of (5), we have the next lemma

Lemma 5.

For each \(z \in \mathcal{H} \), there is a real number \(c' \) such that if \(\text{Re}(s) < c' \), then

\[
\Delta(z)(F(s,t)) = F(s,t) \tau_2'((\Omega(z,s-\rho)).
\]

Noting that the following properties characterize the function

\[
f_s(t) = E(s,t) \ (s \in \mathbb{O}(\tau_1', \tau_2') \text{ fixed}) \ (\text{Chap. 9 of [5]})
\]

a) \(f_s(t) = e^{(s-\rho)t} \sum_{k=0}^{\infty} A_k(s)e^{-kt} \)

b) The limit \(A_0(s) = \lim_{t \to \infty} e^{(s-\rho)t}f_s(t) \) exists and coincides with the identity operator of \(V_M \).

c) Let \(\omega \) be the Casimir operator of \(G \). Then

\[
\Delta(\omega)f_s(t) = f_s(t) \tau_2'((\Omega(\omega,s-\rho)),
\]

we have from Lemma 3. and Lemma 5. the next lemma.

— 145 —
Lemma 6.

For each $t>0$, $F(s,t) = E(s,t)F_0(s)$ as $\text{End}(V_M)$-valued meromorphic functions.

Calculations of $F_0(s)$ is very difficult except special case but the next Lemma is hold.

Lemma 7.

There is a constant c_0 depending only on normalizations of a Haar measure of H such that

$$F_0(s) = c_0 \left(\frac{\sin \pi s}{\sin \pi (s+\rho)} \right) C \epsilon(s),$$

as meromorphic functions.

Thus we have the following theorem.

Theorem 8.

There is a real number c such that if $\Re(s) < c$ then the integral

$$F(s,t)v = \int_H e^{(s-\rho)t(a_t h)} \mathcal{C}_1(k(a_t h)) \mathcal{C}_2(h^{-1}) dh$$

is absolutely convergent for each $t>0$, $v \in V_M$. Moreover for fixed $t>0$ the function $s \mapsto F(s,t)$ can be extended to a $\text{End}(V_M)$-valued meromorphic function on \mathbb{C} and

$$F(s,t) = c_0 \left(\frac{\sin \pi s}{\sin \pi (s+\rho)} \right) E(s,t)C \epsilon(s).$$
Remark.

When $G = \text{SU}(1,1)$, the formula (4) gives an integral representation of Euler type. More generally, if the Eisenstein integral $E(s,v,a_u)$ coincide with a hypergeometric function then the formula (4) gives an integral representation of Euler type.

REFERENCES.