<table>
<thead>
<tr>
<th>Title</th>
<th>Lectures on harmonic analysis on Lie groups and related topics: An integral representation of the Harish-Chandra series on $\text{SO}_0(n,1)$. / M. Mamiya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hirai, T.; Schiffmann, Gerard</td>
</tr>
<tr>
<td>Citation</td>
<td>Lectures in Mathematics (1982), 14</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1982</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84919</td>
</tr>
<tr>
<td>Rights</td>
<td>The following article has been remained unpublicized by request of the owner of copyright. [H. Midorikawa: "Clebsch-Gordan coefficients for a tensor product representation $\pi_1 \otimes \pi_2$ of a maximal compact subgroup of a real semi-simple Lie group." pp.149-175]</td>
</tr>
<tr>
<td>Type</td>
<td>Book</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
AN INTEGRAL REPRESENTATION OF THE HARISH-CHANDRA SERIES ON $SO_0(n,1)$

By

Masaichi Mamiuda
Waseda University

§0. Introduction

Let G be a connected noncompact real form of a connected complex semisimple Lie group G_c and assume that G is of split rank one. Let K be a maximal compact subgroup of G and $G=KAN$ be an Iwasawa decomposition. Then $\dim A = 1$. Choose an element H_0 of the Lie algebra \mathfrak{a} of A so that eigenvalues of $\text{ad}(H_0)$ are $\{0,1\}$ or $\{0,1,2\}$ and put $a_t=\exp(tH_0)$. Then the Iwasawa decomposition of an element $x \in G$ is

$$x=k(x)a_t(x)n(x), \text{ where } k(x) \in K \text{ and } n(x) \in N.$$

Let M be the centralizer of A in K. Then MAN is a minimal parabolic subgroup of G. Let (τ_1, τ_2) be a double unitary representation of K on a finite dimensional Hilbert space V and denote by V_M the subspace of V comprised of those elements v which have the property that $\tau_1(m)v=v\tau_2(m)$ (all $m \in M$). The Eisenstein integral $E(s,v,x)$ for MAN is defined by the following formula([2],[4]);

$$(1) \quad E(s,v,x) = \int_K e(s-p)t(xk)\tau_1(k(xk))v\tau_2(k^{-1})dk,$$
When $G = SU(1,1)$, by the change of variable $z = (\text{th}^{2}(\frac{t}{2}))^{2}$, we can see that the Eisenstein integral $E(s,v,a_{t})$ coincide with certain hypergeometric function $F(a,b;c;z)$ (up to a constant factor) and the formula (1) gives its integral representation of Euler type. Moreover the expansion (2) corresponds to the following formula:

$$F(a,b;c;z) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} F(a,b; a+b-c+1; 1-z)$$

$$+ (1-z)^{c-a-b} \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)} F(c-a,c-b;c-a-b+1; 1-z).$$

Hence the Harish-Chandra series $E(s,t)$ has an integral representation of Euler type.

In general, Does the series $E(s,t)$ have an integral representation? When G is the general Lorentz group $SO_{0}(n,1)$, we can find an integral representation of $E(s,t)$ which is a singular integral over certain noncompact real form H of the complexification K_{c} of K (Theorem 8.)

Main idea is to consider the analytic continuation of the Iwasawa decomposition and to find a noncompact real form of K_{c} with certain properties.

The present note is a sketch of results and we shall give proofs in [3].

§ 1. Analytic continuation of the Iwasawa decomposition

Let G be the general Lorentz group $SO_{0}(n,1)$ $(n \geq 2)$. Denote by \mathfrak{g}, \mathfrak{g}_{c} the Lie algebra of G and its complexification respectively. We denote by G_{c} the complex analytic subgroup of $GL(n+1, \mathbb{C})$ with Lie algebra \mathfrak{g}_{c}. Let K,M,A,N be the same as in §0.
for a complex number s, $v \in V_M$ and $x \in \mathbb{C}$,
where d_k is the normalized Haar measure on K and ρ is a real number
obtained from the modular function δ of MAN by $\delta(ma_n) = e^{-2\rho t}$.
The Eisenstein integral $E(s,v,a_t)$ has the following series expansion ([1],[5]).

Theorem 0. (Harish-Chandra)

There is an open connected dense subset $O(\tau_1, \tau_2)$ of Φ which is
stable under the action $s \rightarrow -s$ and are functions $C_e, C_w, A_k (k=0,1,\ldots)$
with all values in $\text{End}(V_M)$ such that

1) The complement of $O(\tau_1, \tau_2)$ is a discrete set.
2) The functions C_e, C_w (resp. $A_k (k=0,1,\ldots)$) are meromorphic (resp. rational)
on Φ and holomorphic on $O(\tau_1, \tau_2)$.
3) Fix any compact subset B of $O(\tau_1, \tau_2)$ and $r>0$. Then, for each integers $i, j \geq 0$, the series

$$
\sum_{k=0}^{\infty} \left(\frac{2}{3s} \right)^i \left(\frac{2}{3t} \right)^j A_k(s)e^{-kt}
$$

is absolutely and uniformly convergent on $B \times [r, \infty)$.
4) Put $E(s,t) = e^{(s-\rho)t} \sum_{k=0}^{\infty} A_k(s)e^{-kt}$. Then

$$(2) \quad E(s,v,a_t) = E(s,t)C_e(s)v + E(-s,t)C_w(s)v,$$

for $s \in O(\tau_1, \tau_2)$, $v \in V_M$ and $t\geq 0$.

In this note, we call $E(s,t)$ the Harish-Chandra series of the
Eisenstein integral $E(s,v,a_t)$.

- 141 -
For any closed subgroup of G we use the similar notations; for example, $\mathfrak{K}, \mathfrak{M}, \mathfrak{A}, \mathfrak{N}$ are the Lie algebras of K, M, A, N respectively. Choose an element $H_0 \in \mathfrak{A}$ with the same property as in 5.0 and put

$$A_c = \left\{ a \in \mathbb{C} \right| \exp(zH_0) \right\}; \quad z \text{ is a complex number with } |\text{Im}(z)| < \pi,$$

$$G_c = K_c \cdot A_c \cdot N_c.$$

Then we obtain from the explicit formula of the Iwasawa decomposition the following results.

Lemma 1.

G_c is an open connected dense submanifold of G_c and there are holomorphic mappings

$$k : G_c \to K_c, \quad t : G_c \to \mathbb{C}, \quad n : G_c \to N_c$$

such that for each $x \in G_c$ the decomposition

$$(3) \quad x = k(x) a_c(t(x)) n(x)$$

exists and is unique. Moreover if $x \in G$ then this decomposition coincide with the Iwasawa decomposition.

Let Θ be the Cartan involution with respect to the pair $(\mathfrak{g}, \mathfrak{k})$ and put

$$\mathfrak{g}_\Theta = \left\{ x + \Theta x \right| x \in \mathfrak{g} \right\}.$$

Then $\mathfrak{K} = \mathfrak{m} + \mathfrak{g}_\Theta, \quad [\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{m}, \quad [\mathfrak{m}, \mathfrak{g}] \subseteq \mathfrak{g}_\Theta$ and $[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{m}$. Therefore the real subspace $\mathfrak{h}^\Theta = \mathfrak{m} + i \mathfrak{g}_\Theta$ is a noncompact real form \mathfrak{h}_c^Θ. Let H be the analytic subgroup of K_c with Lie algebra \mathfrak{h}_c^Θ. Then H is isomorphic to $SO_0(n-1,1)$ and M is a maximal compact subgroup of H.

- 142 -
Lemma 2.

For any $t \geq 0$ and $h \in H$, $a_t h$ belongs to G.

Since any finite dimensional representation of K can be extended to a holomorphic representation of K_c, we may regard a double unitary representation of K as a holomorphic double representation of K_c. Hence the function

$$e^{(s-\rho)t(a_t h)} \tau_1(k(a_t h)) \tau_2(h^{-1})$$

is well-defined.

Now we consider the following integral;

$$I(s,t)v = \int_H e^{(s-\rho)t(a_t h)} \tau_1(k(a_t h)) \tau_2(h^{-1}) dh,$$

for a complex number s, $v \in V_M$ and $t \geq 0$,

where dh is a Haar measure on H.

Lemma 3.

There is a real number c depending only on (τ_1, τ_2) such that if $\Re(s) < c$ then the integral (4) converges for each $t \geq 0$ and $v \in V_M$, and gives a linear endomorphism $F(s,t): v \mapsto F(s,t)v$ of V_M.

Moreover there exist meromorphic functions $F_k(k=0,1,2,\ldots)$ with values in $\text{End}(V_M)$ such that

1) $F_k(k=0,1,2,\ldots)$ are all holomorphic on the half space \{ s; $\Re(s) < c$ \}.

2) For any compact subset B of \{ s; $\Re(s) < c$ \} and $r > 0$, the series

$$\sum_{k=0}^{\infty} F_k(s)e^{-kt}$$

is well-defined.
is absolutely and uniformly convergent on $B_{x}[r, \infty)$ and

$$F(s,t) = e^{(s-F)t} \sum_{k=0}^{\infty} F_k(s)e^{-kt},$$

for $t > 0$ and $\text{Re}(s) < c$.

Corollary 4.

Fix $t > 0$. Then the function $s \mapsto F(s,t)$ can be extended meromorphically onto the whole plane. Moreover, if $\text{Re}(s) < c$ then

the limit $\lim_{t \to \infty} e^{(p-s)t}F(s,t) = F_0(s)$ exists.

Most complicated part in proofs of these results is to show that the function $e^{(p-s)t}F(s,t)$ is a linear combination of integrals in the following form:

$$I_{p,q}(s,t) = \int_{0}^{1} r^2 \frac{1}{1-r^2} (s+p)(1-x^2) \frac{1-xr}{1-x} \frac{1-(1-x)^p}{1+(1-x)^q} dr,$$

where $x = e^{-t}$ and p, q are integers.

§2. Differential equations satisfied by $E(s,t), F(s,t)$.

Let \mathcal{G}, \mathcal{A} be the universal enveloping algebra of $\mathcal{L}_c, \mathcal{K}_c$ respectively. Denote by $\Delta(D)$ "the radial part" of $D \in \mathcal{G}$ in the sense of Chap. 9 of [5]. Then, in our case, we may regard $\Delta(D)$ as an ordinary differential operator on $(0, \infty)$ whose coefficients are all real analytic functions with values in $\text{End}(V)$. Let \mathcal{G}_c be the center of \mathcal{G} and denote by $\Omega(Z,s)$ $(Z \in \mathcal{G}_c$, s is a complex number) an element introduced in [5] (p. 283). Then

$$\Delta(Z)(E(s,t)) = E(s,t) \tilde{T}_Z(\Omega(Z,s-p)),$$
for each $s \in \mathcal{O}(\tau_1, \tau_2)$ and $Z \in \mathcal{F}$,

and

$$(5) \quad \Delta(Z)(E(s,v,a_t)) = E(s,v_2 \tau_2(\Omega(Z,s-\rho)),a_t)$$

for any complex number s and $Z \in \mathcal{F}$.

Since H is a real form of K_c and the function

$$f(x) = e(s-\rho)t(x) \tau_1(k(x)) \quad (x \in G_c)$$

is holomorphic on G_c which satisfies

$$f(kx) = e(s-\rho)t(a) \tau_1(k)f(x) \tau_1(m),$$

for $k \in K_c, \, x \in G_c, \, m \in M_c, \, a \in A_c, \, n \in N_c$ with $kx \in G_c$,

by similar arguments in the proof of (5), we have the next lemma

Lemma 5.

For each $Z \in \mathcal{F}$, there is a real number c' such that if $Re(s) < c'$ then

$$\Delta(Z)(F(s,t)) = F(s,t) \tau_2(\Omega(Z,s-\rho)).$$

Noting that the following properties characterize the function

$$f_s(t) = E(s,t) \quad (s \in \mathcal{O}(\tau_1, \tau_2) \text{ fixed}) \quad (\text{Chap. 9 of [5]})$$

a) \quad $f_s(t) = e(s-\rho)t \sum_{k=0}^{\infty} A_k(s)e^{-kt}$,

b) \quad The limit $A_0(s) = \lim_{t \to \infty} e^{(\rho-s)t}f_s(t)$ exists and coincides with the identity operator of V_M,

c) \quad Let ω be the Casimir operator of G. Then

$$\Delta(\omega)f_s(t) = f_s(t) \tau_2(\Omega(\omega,s-\rho)),$$

we have from Lemma 3. and Lemma 5. the next lemma.
Lemma 6.

For each \(t > 0 \), \(F(s,t) = E(s,t)F_0(s) \) as \(\text{End}(V_M) \)-valued meromorphic functions.

Calculations of \(F_0(s) \) is very difficult except special case but the next Lemma is hold.

Lemma 7.

There is a constant \(c_0 \) depending only on normalizations of a Haar measure of \(H \) such that

\[
F_0(s) = c_0(\frac{(\sin \pi s)}{(\sin \pi (s+\rho))}) C_e(s),
\]

as meromorphic functions.

Thus we have the following theorem.

Theorem 8.

There is a real number \(c \) such that if \(\text{Re}(s) < c \) then the integral

\[
F(s,t)v = \int_{H} e^{(s-\rho)t(a_{\lambda}h)} \gamma_1(k(a_{\lambda}h)) \gamma_2(h^{-1}) dh
\]

is absolutely convergent for each \(t > 0 \), \(v \in V_M \). Moreover for fixed \(t > 0 \) the function \(s \mapsto F(s,t) \) can be extended to a \(\text{End}(V_M) \)-valued meromorphic function on \(\mathbb{C} \) and

\[
F(s,t) = c_0(\frac{(\sin \pi s)}{(\sin \pi (s+\rho))}) E(s,t)C_e(s).
\]
Remark.

When $G=SU(1,1)$, the formula (4) gives an integral representation of Euler type. More generally, if the Eisenstein integral $E(s,v,a_t)$ coincide with a hypergeometric function then the formula (4) gives an integral representation of Euler type.

REFERENCES.