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Introduction

Let G be a connected real sgemisimple Lie group with finite
center, and congider the action of G on itself through inner
automorphisms. An orbit under this actlon is nothing but a
conjugate class of G, We know [81 that an orbit O has on it
a G-invariant measure, and it can be considered as a tempered
measure on G. We denote it by W, and call it an orbital
integral on 0. A PFourier transform of HO is by definition
an expression of HO as a superposition of irreducible charac-
ters of G (i.e., of characters of guasi-simple irreducible
representations of G on Hilbert spaoes).

When O consists of regular elements, this PFourier trans—
form was given for real rank one groups by P. Sally, Jr. and
G. Warner[9], and in general by B. Herb[3] for "almost all'" O
by means of integro-—summation, not necessarily absolutely
convergent, of irreducible characters appearing in the Planche-
rel formula for G,

An orbit is called unipotent if it consists of unipotent



elements. We know that G has only a finite number of unipo-
tent orﬁits. For this type of orbits, the case of real rank
one is treated by D. Barbasch [la].

The purpose of this paper ié threefold and concerned with
the Fourier transform of Mo for a unipotent 0., Pirstly we
give in §1 a method of inducing invariant distributions from
a certain reductive subgroup of G, and study how we can apply
it to the Fourier transform. Secondly we investigate in Part I
the structure of unipotent orbits for SL(n, F) for a local
field F (i.e., a locally compact, non-discrete, commutative
field), and determine the closure relation between them, and
then apply it tc the case of symplectic or orthogonal groups.
Thirdly we give explicitly in Part II the Fourier transform of
unipotent orbital integrals for SL(n, R) (cf. [1bl).

Let us explain the contents of this paper in more detail,
In é1, analogously as for fepresentations, we give a method of
inducing invariant distributions from a reductive subgroup given
as a Levi subgroup of a parabolic subgroup of G (Theorem 1.1),
and also a criterion for a unipotent orbit O +to be "almost"
equal to a certaln standard subset. This enables us to reduce
in a certaln extent the problem of obtaining the Fourier trans-
form of HO to a similar problem or to the Plancherel formula
for certain reductive subgroups (Theorems 1.3 and 1.4). In 82,
we give an expression of a unipotent orbit in SL(n, F) with a
local field F by means of the unipotent radical of a parabolic

subgroup (Theorem 2.3). Using this expression and with



elementary discussions, we determine in §3‘the closure relation
for unipotent orbits in GL(n, F) (Theorem 3.3). Here we define
the closure relstion as follows: 1let O, O' be unipotent
orbits, then O »» O' if and only if C1(0) D O'. This result
is applied in §4 for SL(n, F), and in §5 for classical groups
over € to study further the relstion between unipotent orbits
and unipotent radicals of parsbolic subgroups (Theorems4.l and
5.3). Concerning the results in Part I, the author expresses
his thanks to Prof. N. Iwshori for his kind suggestions.

In §6, Psrt II, we apply the results in §1 to SL(n, R),
and reduce the problem of Fourier transform to & simple case of
special unipotent orbits 0, for G = SL(N, R) with even N.
In §7, we follow the method of D. Barbaschlls] and give a
formila expressing Pb+(f) for €& C?(G) by means of the
Harish-Chandra's invariant integral Ff defined on a fundamen-
tal Csrten subgroup B (Theorem 7.1). In é8, we prove that,
modulo the Plesncherel formuls for SL(N/2, R), the Fourier
transform of MO is obtained by studying the Fourier trans-
form of a Cw—fungtions on B coming from . Ff. Then the explicit
form of the Fourier transform of HO is given in Theorem 8.5

+

modulo the known Plancherel formula for SL(N/2, R).

Remark. The results in this paper have some overlappings
with those of D. Barbasch in [1b]l, though they were worked out

independently. See also Acknowledgements at the end of the

paper.
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§1. Method of inducing invariant distributions

Let G Dbe a connected semisimple Lie group with finite
center, K a maximal compact subgroup of G. Take a parabolic

subgroup P, then G = KP. Let N, be the unipotent radical

P
of P and SP a Levi subgroup of P, that is, a reductive
subgroup such that P = NPSP is a semidirect product decompo-
sition of P. We may assume that SP is so chosen that PMNK
= SPfW'K. We define a method of inducing an invariant distri-

bution on S to such a one on G, analogously as for repre-

P
sentations of SP”

Let T TDbe an invariant distribution on SP“ We define a
distribution m on G from T as follows. Denote by C§<Sp)
or C?(G) the space of all ¢®~functions with compact supports
on Sp or G respectively. For s & Spy put B(s) =

}det Adn (S)J, where Ad denotes the restriction of Ad(s)
=P

£=P(S)

on the Lie algebra np, of N For fe& Ci(G), put

p*

(1.1)  £8(s) = p~/2(s) [ Jn £(knsk™ 1) dn ak,
- K /T, |

where dn and dk denote Haar measures on NP and X resp-
ectively. Then fPEQ C:(SP) and it is invariant under Kt”\SP

through inner automorphisms. We put
P
(1.2) n(f) = «(£f).

This 7w is called the distribution induced from 7T and is

G

denoted by Inds

T. We know [5a, p.345) that, when T 1is
P



the character of an irreducible unitary representation of SP’
1 is also the character of the induced representation of it.

For f & c‘;"((}), put

(1.3) Nk, s) = g7 2(s) J £(knsk™ 1) an,
N
P

then £ e CT(K X Sp), and P(s) = foN@z, s)dk. TIf a change

of order of "integration" is possible in the right hand side

of (1.2), m 1is also expressed as
(1.4) n(f) = SK z(sM(x, -)) ax.

Theorem 1.1, Assume that the expression (1.4) holds for

any f &€ C?(G). Then = is invariant under G.

Proof. TFor g, & G, put fg (g) = f(goggohl), We prove
o

that n(fg ) = n(f). PFix a (Borel-)measurable section V of
o .

KNS\Sp in 8 Let for k&€ K, gk = k'n's' with k'€K,

p*
n'ec NP’ s'eV. Then k', n' and s' are uniquely determined
by k, and the map k -— k' defines a measurable bijection

from K onto itself. We know that the Haar measure on X 1is

transformed as

(1.5) dk' = g7(s") dk.
Moreover
goknsk—lgo—l = k'n's'ns(k'n’s')_l = k'n"é"
with n" = n'(s'ns'—l)(s'ss"ln'”ls's_ls'"l) € Np, and s" =



S'SS'—lGE S The map n — n" 1is bijective on NP for every

P
fixed %k, and dn" = B(s')dn. Therefore

£ Wik, s) = g712(s) ( £ (knsk~¥)dn
€o NP 8o

it

B_l/z(s) J( f(k'n's'ns(k's'n')—1)6_1(s')dn"
N
P

B_l(s') fN(k', s'ss'_l)

Then by (1.4),

Il

n(fg )
S0

( o(f Y, » )ar = J‘T(fN(k@, - )" (s )ax
K & K

0]

() (by (2.5)). Q.E.D.

1l

FPor a subset A of G,

1

K(A):{kak“;kEK,aeA},

Then, since K is compact, K(A) dis closed if so is A,
Moreover CL(K(A)) = K(CL(A)), where Cl(A) denotes the closure
of A, Let w be an Sp-orbit in Sp. Then K(NPw) is
G-invariant because G = KP = KNpSpe When w 1s unipotent, 1t

is a finite union of unipotent orbits in G.

Corollary. Let w be an orbit in SP' Then an invariant

. G .
measure on K(Npw) is given by K, = IndSP}4w :

(1.6) M () = fK &P L £ (knsk™) dp,(s) dn ax (£ € ¢(&)),



where Vm denotes an SP—invariant measure on w. In particular

an invariant measure on K(NP) is given by

(1.7) Mo (£) = | f £ (knk™1) dn ak.
o}
X NP
Purther, as a corollary of the proof of the theorem, we get:

Temma 1.2. Let w be a unipotent SP—orbit in SP. Assume
that there exists an SP—invariant measurable subset 32 in NP
such that ‘ff)dm,> 0, and (w is NP-iﬁvariant. Then X(w)

S

is G-invariant and an invariant measure on it is given by

(1.8) yL(f) :fK Ll (w f(knsk'l) df&w(s) dn dk (f CD(:(G)).

In particular, if w = éﬁe} , an invariant measure on K1) is
given by
(1.9) w(f) = ( ;[ £(knk~ 1) dn dk.

' /K1Y -

For/applioation to orbital integrals, let us characterize
that an orbit & is "almost" equal to K({lw). For example,
assume that there exists a measurable subset A of NPw such
that (1) &= X(A), (2) for every x &€ w, bthe section A, of A
at x (i.e., A= \_JAx, A_C¥p) is equal to SL modulo mull
sets with respectxéiw dn. Then, by Fubini's theorem applied %o
(1.8), we see that [ in (1.8) dis supported by & , i.e.,
PKE) = H(E N{$) for any measurable subset E. Hence o gives

an invariant measure on (3.

For later applications, we take here a little different



formulation. Let Po(: P be another parabolic subgroup, then

NPCNPO, Put G' = Sp ,

G'(\ﬁNP . Then, G' is reductive and not necessarily connected,
0

K'" =G'MK, P' = G'" P, and N' =

and P' is a parabolic subgroup of G' with unipotent radical

N*,

Definition 1.1. Let u>C;SP and jl_C:NP be as in Lemma
1.2, We say that a G-orbit & saturates K w) if the follow-
ing condition holds: for a parabolic subgroup PO(: P, there
exist measurable subsets o of N' and A of NPG such that
(1) & =x(a), (2) w=ZK'(c), and an invariant measure M, on

w 1is glven as
K, (o) = fc {Kc @(k'n'k'”l) d}A'(Il') ik* (9 e C:(SP)),

where Fﬂ is a measure on o and dk?' is the normalized Haar
measure on K', (3) for any x & o, the section AXCZ NP of A

at x coincides with () modulo null sets with respect to dn.

Theorem 1.3. TLet w S, be an Sp-orbit and NN, en
SP—invariant measurable subset such that j;lgn >0, and flw is
NP—invariant (hence P-invariant). If a G-orbit & saturates
K(lw), then an invariant measure Ho on & is given by (1.8).

. . G
In paricular, if (1 = Ny , then fﬂ?z IndSPVm .

Proof., Inserting the above expression for Hw in (1.8),

we get

f,L(f) - y f { ( £ (knk 'n k) axe apt(a’) dk dn
K/QLJ)K')o



it

/ f ﬂ f(kk'nn'(kk')‘l) df*'(n') dn dk' dk
K /K'/{Ilxo »

fKﬂ; £(kon ') dp'(n') dn dk.

It

This proves that 8 is supported by O = XK(A), and so gives an

invariant measure on @. Q.E.D.

. This theorem may be used t0o deduce the Fourier transform of
VO’ to that of K, by studying the structure of @ as in ‘
Definition 1.1. This works very well for SL(n, F), F a local
field (cf. §2), and especially for F = R, we shall work out
for‘ pm and then for M, in Part II.

Let us explain how it works. Assume that the Fourier trans-
form of an SP—orbital integral Hw is given in such a form

that for a signed measure V on the unitary dual §% of SP’

(1.10) M, = '(,\ Xs av(s).
Sp

Here the unitary dual of Sp is by definition the set of all
equivalent classes of irreducible unitary representations of

Spy and Zxé denotes the character of representations of class
5 e é\P. Insert this into the right hand side of (1.6). Then,
if a change of order of "integration™ is possible, the invari-

ant measure Hl = Indg Vw 1s expressed as
P

G
(1.11) My = 5/\ Indg Xg dv(s).
SP P
Note that Indg ?{é is the character of the induced represen-—

P
tation of an element of class &. This representation is



irreducible for almost all & & g} with respect to the Planche-
rel measure vV, for SP , and the equivalence between them
corresponds to the coincidence of their characters.

Moreover assume that there exist unipotent orbits Oi (1<
i € q) in G such that every 0, saturates K w) for an
SP~invariant Ili(: NP wifh positive measure, where J)iw is

Np-invariant and Np - k/gli is of measure zero. Then, by
i

Theorem 1.3, ‘*1 is expressed as

= + + bes + 5
Ky }’{ol Ho,, Hoq
and therefore the formuls (1.11) gives almost the Fourier trans-

form of this sum of orbital integrals. In particular, when we

consider V  in (1.7), we get the following theorem.

Theorem Ll.4. Assume that there exist unipotent orbits Oi
(1 € 1 < q) such that every 0; saturates KCQi) for a P-
invariant fli(: Np with positive measure, and Np - Kfjli is

i
of measure zero. Then the Fourier transform of the sum
PO + PO + .e. vy is given by
1 2 q
G
Koo+ toeot = Indg A. AV (&),
Ol HO2 qu }(g} SP & o}

where \/O denotes the Plancherel measure for SP'

Note, Tet F Tbe a non-archimedean local field and G =
SL(n, ), K = SL(n, Q), where Q denotes the maximal compact
subring of F. Then the results in this section can be trans-—

lated for this case appropriately.



Part I. Unipotent orbits, their structure and closure

relation

Tn Part I, we put G = SL(n, F), G = GL(n, F), with a

P
local field except for Lemmas 3.1, 3.2 and &5. For g T

9

denote by i(g) the automorphism of G given by i(g)h
ghe™ (ne ¢). Put i(G) = {ilg); ge G}, i(e) = {i(g);
g€ G). Then L[i(G): 1(¢)] = #(F*/(F)™), where (F)™ =

{'an; ae Fx} . Moreover put for a & FX, a diagonal matrix

( a 0
Sq = 0 1 ’

n-1

8 e G as

where 1p denotes the unit matrix of degree p. Then every

~t
class of i(G)/i(G) 1is represented by a certain i(ga). Put
a4 = [i(8): i(¢)), then, d =1 for F=0C,d =1 or 2 accord-
ing as n is odd or even for F =R, and d >1 for F non-
archimedean and n > 1. Put K = SU(n), 50(n) or SL(n, O)

according as F = €, R or non-archimedean.

2. Structure of unipotent orbits

Every unipotent element in G is expressed as 1n + X
with a nilpotent matrix X. Therefore it is sufficient for us
to study the conjugate class of X. We denote again by i(g)
the transformation on X given by i(g)(ln + X) = 1, i(g)X,
and similarly for i(a) and 1(G). We know that any nilpotent
matrix X 1is conjugate under G to one of the following Jordan

matrices: for a partition a = (pl, Doy eees ps) of n such



(2.1) P12 P> .0 2 0 > 1.
Put
(2.2) J(a) = I(py) ® I(p,) @ ... ® J(pg),s

where J(p) is a matrix of degree p given by

o 1 C)

o 1 A 0

J(p) = ' s and A@B:( l
O 0 1J 0

%

Let m, be the multiplicity of J(p) in J(a). Assume m, >0

and mp =0 for p> r, and put

(2.3) n., = m. + m.

; ; 41 toee. +om, for lsjsr, and

(294‘) B = (n19 n29 e e e g nr)o
Then B8 is a partition of n such that
(205) Ill} n2> e 0 @ }Il > 1.

Let X(B) be an n x n matrix given as follows by a blockwise

expression (with respect to the partition B of n):

0 I
[ oy My O
0 T
n,  Dphy 0
2 D, = ’ ith I =
(2.6) X(B) . Wit 0q nE
0 I, 1
L\ (:) N1 r—1%r
0
nI‘



where Op denotes the zero matrix of degree p, and for p » q,

Ipq is a p X g matrix of the above form.

Lemma 2.,1. The matrix J(a) is conjugate to X(B) under

fD?

Proof. By a permutation matrix, J(a) is conjugate to
x(8). Q.E.D.

We call a Jordan type and B parabolic type of the conju-
gate class of J(a) and X(B) under G or of its element.

Here we get the following.

Lemma 2.2. Any unipotent element 1Il + X in G 1is conju-
gate under & 1o 1, + X(p) for some B with the condition
(2.5). Purther it is conjugate under G to 1 + i(ga)X(B)

for some a & Fx.

For g or X, we denote by O(g) or O0(X) the G-orbit of
g or X respectively. Let us determine O(i(ga)X(B)). Let
S(B) and ©N(B) be subgroups of G consisting of all matrices

in G expressed blockwisely as follows:
(2.7) s(B): diag(cl, Coy ey Cr) with cjéf GL(nj, F),

where diag(cl, Coy sees Cr) denotes a blockwise diagonal
matrix with diagonal elements Cis Cos eeey Co and

o

|y *
5 (upper

(2.8) WN(B): 1. +X with X =
n triangular).

o o



Then P(B) = S(B)N(B) is a parabolic subgroup of G, and N(B8)
its unipotent radical, and S(B) a Levi subgroup of it. Let '
E(B> be the set of all nilpotent matrices X appearing in

(2.8) as 1+ X. Then it is a nilpotent Lie algebra under the
natural bracket operation, and is stable under i(P(B)). For a

subset A of n(B), put.
(2.9) K(A) = i(K)A = {i(k)X; X € A, k€ K }.

Then, since X(B) €& n(p) and G = KP(B), we have for ae F',
0(ilg )X(B)) = K(i(g )0 (B)) with Q1 (B) = i(P(B))x(B) < a(B),
and  O(1 + i(g )X(B)) = K(i(g )Q(B)) with 2(B) = 1, + Q' (8)
C W(B). Thus we wish to determine i(g )Q'(B) C n(B) and

establish a close relation between the orbit and the unipotent

radical N(B). The result is given as follows.

Theorem 2.3. Let B = (nl, Nosy eoes nr) be a partition of
n satisfying (2.5). Let + » 1 be the maximal of divisors of

r such that for q = r/%,

_ _ _ _ < 5 -
Dipal = Dy T o0 T Mgpagol T A(ge1)p (O ST S a-l).

Then the G-orbit of i(ga)X(B), a € F, is given by
O(i(ga)X(B)) = K(J'L(ga)S?_"(B))y where i(ga)ﬂ'(B) is an open

subset of £<B> consisting of elements expressed blockwisely

(with respect to the partition pB) as follows: let X = (Xij),
Xij is of type n; x nj, then
rank(xi,i+l) = max = ng 4 (L i< r), and

(2.10) TT- TT' det(x )i e a(Fx)t.

0€i<q 1<i<t jt+i, jt+i+l



Note that x are square matrices for 1 £ 1< t.

Jt+i, jt+i+l
For F = R, ((R")JG = R* or m: ={aeR; a>0), according as
t dis odd or even. Hence, when + is odd, (2.10) is trivially
satisfied. When t 1s even or equivalently Noj_1 = n2j for
any Jj, (2.10) is rewritten as follows according as a > 0O or

a < 0,

(2.10") TT det(x,: 7 55) >0 or <O.
1<j<r/2 J=tr<d

Proof. Since O(i(ga)X(B)) = i(ga)O(X(B)), it is sufficient
for us to prove the assertion for X(B), i.e., for a = 1. For
l1sm<r, let h Dbe a subspace of n(B) consisting of X =
(Xij

hm + hm+l

) such that X;4 = O for j -1 #m, and put h(m) =
+ ovo + B 9. Then k(1) = n(B) and [ h(m), a(m*')] =

h(m + m'). Pirst we assert
(2.11) L(N(B)X(B) = X(B) + n(2).

In fact, by an explicit calculation, we have [gm, X(g)l = Em+l
for m » 1, because of (2.5), (2.6) and (2.8). Fix m » 2 and
an element X_€ h(2). Then for g=1_+X € N(B) with X &

Hm’ we have
i(g)(x(B) + X ) =X(B) + X, +[X, X(p)) modulo n(m+2),

and [ X, X(B)] € A

i(N(B))X(B) = X(B) + by + By + «v. + Byy modulo hy ., Dy

Since Ehm’ X)) = h .1, this gives us

induction on m, whence (2.11).

By (2.11), it rests for us to prove that i(S(B))X(8) is
the subset of Hl
conditions in the theorem hold for a = 1. Let g & S(B) be

consisting of X = (Xij) for which the



as in (2.7), then X = (Xij) = i(g)X(p) € h, 1is given as

o -1
nini+1 i+l

(2.12) =c;I

i, i+l
Therefore rank(xi i+1) = max, and the product of determinants
14

in (2.10) is equal %o

(2.13) T aestey) T aet(eyy) .

lsigr 1<Jig<qa

Thus (2.10) holds for X & i(S(B))X(B).

Conversely assume that we are given X = (Xij) € hy satis-
fying the conditions in the theorem. Then there exists a set
of matrices c¢; € GL(ni, F) satisfying (2.12), i.e., i(g)X(B)
=X for g = diag(cl, Cos sees Cr)° By (2.13), the condition
(2,10) means that det(g) € (Fx)t° We can replace g by gh
with h = diag(dy, dps «eey d.) such that 1(h)X(B) = X(B).

Since det(gh) = det(g)det(h), it is sufficient to see that

det(h) can take any value in (Fx)tg Put my, =7, - np+l;> 0.
If m, > 0, put e(:mpg ap) = diag(apg 1mp—l) e GL(mpp ®), a, €
F*, Since ny o= f Mot oee. 4L, We get an n, X ng
matrix d by
P

dp = e(mp, ap) @ e(mp+1, ap+1) B oo & e(mr, a.)y
omitting e(mi, ai) for m, = O. Then i(h)x(8) = x(B),
because d_T Lo . On the other hand, det(h)

d
P npnp+l p+1

is a product of (ap)p over all p such that m, £ 0. Note

npnp +1

1
that the set of aPp® (a, b € F*) 1is equal to (F*)® for m

the greatest common divisor (GCD) of p and p'. Then we see



that det(h) runs over (F*)¥ with + = acD{ p; m £ 0} =

GCD {r, p; n, > np+l} . Q.E.D.

Corollary 1. Two elements i(ga)X(B) and i(gb)X(B) are

conjugate under G if and only if a1y ¢ (F*)t, where + is

given in Theorem 2.1.

Corollary 2, The closure of O(i(ga)X(B)) is given by
(2.14) - c1(0(i(eg)x(B))) = K(i(gy )01 (B))),

where i(ga)Cl(IP(B)) consists of elements X = (Xij) such

that

i X\t
(2.15) ng(q NI SRV

For the case F =R and t even, (2.15) is rewritten as

(2.157) .TT det (%, .) 7 0 or £ 0.
1< i< /2 23~1,2] | A
Put’ r. Nj as follows: in case F =R and +t even,

J,

(2.16) Tio= N5 g9 Nj =Tpj_ g * oy = 2rj (L €3 < r/2),

and in case F mnon-archimedean, for 0 £ j < q,

(2.17) ig” Dit4l? Njﬂz Nips1l * Dypan Toeee B0 S trj+F

and in both cases, B' = (Ny, Ny, ..., NQ) with Q = r/2 or
= q respectively., Then, B 1is a subpartition of ', and
P(B") D P(B)y, S(B') D S(B)y, W(B') C N(B). Every X € n(B) is

decomposed uniquely as X = X; + X, such that 1 + X, € S(pt),



X,e n(B'). Then, for X = X(B),
(2.18) X(B)l = diag(xl, Koy eeey XQ>’

where Xj = X(rj, r ceey rj), the standard upper triangular

j’

matrix of degree Nj corresponding to the partition (rj, s

ceey rj) of I\Tj. Let w be the S(B')-orbit of 1, + i(ga)X(B)le

Then we have the following.

Corollary 3., The orbit ¢ = O(ln + i(ga)X(B)) saturates
K(N(B'")w), and an invariant measure on (¥ is given by Mo =

G . . )
Ind \ where W denotes an invariant measure on .
S(B*) M, o o notes n easu on W

Proof. We apply Theorem 1.3 to &, P = P(B7), Sp = s,
P, = P(B) and w. We may assume a = 1, i.e.,, O=

0(1, + X(B)). Let o', p' be the sets of X, and of X, for
X &€ 2(B) C n(B) respectively. Then by Theorem 2.3, n(B*) - p’
is of measure zero and ' (B) =o' + pt. Put 0 = 1, + 0%
D=1, +n(B') = Npy 0 =1 +o0c'. Then w= i(K N SP)(G) and
K(Ps) = & € KQuw). Since N - % is of measure zero, &
saturates K(Quw) = K(NPw), Hence Theorem 1.3 gives the desired

result, Q.B.D,

Remark 2.1. As a consequence of Coroliary 3, the Fourier
transform of Vo is reduced to a much simpler case of S(B')
and w, by means of (1.10), (1.11). Note that S(B*') is
nearly a direct product of GL(NJ, F) for 1¢ j<Q, and the
orbit w  corresponds to the simple subpartition  of B* =

(N, Npy enes NQ) (ef. (2.16), (2.17)).



Remark 2.2, In case F =R, t even, put Sli = i(gillQ(B),
0, = K(f,). Then, since 01(0,\JO0_) = N(B), the Fourier
transform of HO' + Pb igs given by Theorem 1.4 by means of
+ -

the Plancherel formula for S(B).

?3. Closure relation between unipotent orbits

Tet O and O' (resp. O and 0') be unipotent G-orbits
(resp. G-orbits) in G. We denote by O %_O' (resp. 0 » o)
the relation C1(0) D 0' (resp. Cl(5) 5 0')., Similar notations
are used for orbits of nilpotent matrices. In this case, if
07 0', we denote X » X' for any X € 6} Xt e 6', and further
if 0 £0', we denote this by O Y O' and similarly for X ¥ X'.
Let us describe thege relations by means of the parameters of
unipotent orbits introduced in §2. This is equivalent to doing
it for n?lpotent matrices. By Corollary 2 to Theorem 2.3, we
have  C1(0(i(g )X(B)) = K(i(g )cL(R'(g))) = i(g JK(c1 (' (B))),
where Q'(B) is given by (2.15) with a = 1. Therefore it is
sufficient for us to see which orbits intersect with CL(QU(B))
c n(B). The Gorbit 0(X(B)) of X(p) is given by Tx(B))
= K(U'(B)), where Q'(B) is the set of X = (x;5) € n(B)

satisfying rank(xi ) =max (1 ¢ i€ r) (cf. Theorem 2.3).

s 1+1

Therefore Cl(g(X(B))) = K(n(B)). Here we are mainly concerned

with é;orbits. The result for G—-orbits can be obtained from it.
For the next two lemmas, F 1is an arbitrary field. Let

B = (nl, Doy eeey nr) be a partition of n, not necessarily



satisfying n; > n,>» ... »n_. We can define P(B) = S(BIN(B)
and n(B) analogously, and put %(B) = §(B)N(B) with S(8) =

U xgaS(B). An element X in n(B) is called proper if it
a€F

satisfies the following:
(P) in any row and in any column of X, there exists at most

one non-zero component which is equal to 1.

Lemma 3.1. Put B, = (nl, N, + Ny o+l + n.). Then any
element in n(B) is conjugate undet 5(50) to a proper element

in n(g).

Proof. We prove this by induction on r. The assertion is
true for r = 2, Assume that it is true for r - 1. Put Bl =
(np, N3y eees n.), m=mn, + ny + ... + 0. Take an X€ n(p)

and express 1t as
O
n .
X = 1 with X, € Q(Bl)e

Then by assumption, there exists a g € GL(m, F) such that

Y, = i(gl)Xl is a proper element in Q(Bl). Moreover we see
from Lemma 2.1 that there exist a permutation matrix €5 of
degree m and a partition B' = (ni, Dby eeey né) of m such
that nd > nly ... »>n! and i(g,)Y; = X(B'). Put g =

diag(l,_ , g.) €& GL(n, F), then
nl 1

(_ _ ) (On X
i X = 1
TEeR 0 X(B')}

where x 1is an nl.x m matrix. Let



. [’ln X'} (0 )i(5.3.) ‘:On Ng
h, = 1 then Y = i(h,)i(g,g, )X = 1 }

- ' t v _ v —mt
where y = x + x'X(8'). Put m{ =nf -nl, m'=m-mf. We see

)s

from (2.6) that there exists an x' for which y = (=z, O, o
1

. . .

where 2z 1s an nq X my matrix and Onlm' denotes the

ny x m' zero matrix. Take an h, = diag(a, b) € S(BO) with
a € GL(nl, F), b = diag(c, 1,0) with c e GL(mi, F). Then

i()X(B') = xX(B'), and so

. ' f ln ! -1
i(h,)Y = 1 with y' = ayb — = (z', Q

Lo x(g") s

m‘

2' = azc L. We see that for some =a and ¢, z' has analogous
property as (P), whence i(h2)Y has the property (P). Put
g = B, Th,h B B, then
o o -1
i(g)X = 1(8,) 7 i(h,)Y = Q ! }

0] Y

-

is a proper element in Q(B), because g5 is a permutation

matrix and Y, is proper in Q(Bl). Q.E.D.

The next lemma determines which conjugate classes intersect

with n(B). Here again F is an arbitrary field.

Lemma 3.2. Let B = (nl, Noy seny nr) be a partition of
n such that n;? n,>» ... yn.» 1, and a = (pl, Pos eves ps)
be the Jordan type of X(B), i.e., the partition of n defined
from B by (2.1), (2.3). Then the set of Jordan types a' =

(p1y DYy «eey p) of elements in n(B) are characterized as.



follows: +the set { pi, pé, ooy p%} corresponding to a' is

obtained from { Py Doy ooy ps} by a repetition of replacements
(i) an element p by {p - a, a}l with 1 €a< p,

(ii) two elements {p, Yy, p> a, by {p - a, g +a} with

1 ¢a<c<p-~-qg.

Befor proving this lemma, we give the closure relation as

its direct consequence.

Theorem 3.3. Let G = GL(n, F) with F a local field.
For two partitions a = (pl, Doy eeosy ps), a?t = (pi, DLy eees
p%) of n, let J(a), J(a®) Dbe the corresponding Jordan
matrices in (2.2). Then C1(0(J(a))) > 0(3(a’)) or JI(a)
J(a®) if and only if {pl', P3s oees DL} is obtained from
{pl, Dos eessy ps} by the process in Lemma 3.2,

Further J(a) > J(a') can be expressed also in the form

(3.1) Py + Dot ees + D ;p'+p2'+ow+pji for i > 1,

1

where we put p;, = 0 for 1> s, ps =0 for j>r+%t.

Remark 3.1, After I obtained Lemma 3.2 and the first expre-
gssion for » in Theorem 3.3, Prof. N, Iwzhori informed me that

he obtained Theorem 3.3 in case F = €. The second expression

for 7 1is given to me by him.

Proof of Lemma 3.2, We see easily that the replacements

(i) and (ii) are possible in n(g).
Conversely let us prove the following, Starting from an

arbitrary proper element X 1in E(B>’ we replace it by



X'e Q(B}, where X' 1is conjugate to X, or X —> X' corres-—
ponds to an inverse of (i) or (ii). Repeating these replace-
ments appropriately, we come to an element in Q(B) conjugate
to X(B).

First remark that the Jordan type of X can be determined
by drawing zigzag lines in the matrix X as follows, We start
along a éolumn in X downward on which no nﬁmeral 1 exists.
When we come tb numeral O on the diagonal, we turn to the lefy
along the row., When we encounter 1 on the row, we turn down-
ward, Continuing this process, we get a zigrag line as shown
below. If there exist (p-1) numerals 1 on the line, it

represents J(p) in the Jordan normal form of X.

0 l (The other numerals
u'Oj¥a} O or 1 are not shown
(3.2) X: .'%7—>1 explicitly. The
n.%7~_____9 zigrag line repre-
‘0 sents J(3) in X.)

We call a column, a row or a position (i, j) of a matrix in
n(p) admiésible (with respect to p) if the components of Y g
E(B) are not identically zero on it. Now assume that m-th
columm of X coincides with that of X(B) for 1 smgj-1,
and not for m = j. We apply an induction on j. Let the
numeral 1 on the j-th column of X(B) be on the position
(i, j). Let us discuss a replacement of X in three cases.

(I) Suppose there is no numeral 1 in X both on j-~th



column and on i-th row., Then, putting 1 on the position

(i, j) of X, we get another proper element X' in n(g). This
replacement corresponds to an inverse of (i). In fact, comsider
two zigzag lines in X, thé one ending on i-th row and the other
starting on j-th column which represent respectively J(p) and
J(q) in the Jordan form.of X. They are connected into one at
the position (i, j) in X', and the resulting line represents
J(p+q) in X'. Thus J(p) @ J(q) —> J(p+q).

(II) Suppose there exists numeral 1 on j-th column, at
the position (i', j). Let i and 4i?' belong to a-th and a'-th
blocks of rows (with respect to B), then a'< a, When a' =
a, we can find a permutation matrix g, in g(B) such that
the numeral 1 at (i', j) in X is removed to the position
(i, j) in X' = i(go)X and the m-th columns of X for 1< m
< j are left unchanged by X — X', Then X' coincides with
X(B) even on the j-th column.

We assume now that a® < a, whence 1'< i, Let L and L?
be the zigzag lines in X passing (i, j) horizontally and ver-—
tically respectively. The numbers of 1 on L and L' Tbefore
the intersecting point (i, j) are a - 1 and a' - 1 respec-
tively because of the assumption and (2.5), (2.6). Let the
similar numbers of 1 after (i, j) be b and b', then L
and L' represent J(p) with p=a +b and J(p') with
p! =a' + b' respectively.

(A) When b = O, we comnnect at (i, j) L and the second
part of L' Dby removing 1 from (i', j) to (i, j) as shown

below.



-———->1 . e 30---mmm - >
. Ll P(ir, ) . J (1',3)
L] I LJ
e ! .
(3.3) X: e N 0O—>1 (X
. Po(1,3) . l (i,3)
v .
0

Then we get from X an X'e E(B)- This yields a replacement
of J(p) ®J(g) in X by J(p°*) ® J(q') with »p'=a + 1 + b!'
> max(p, q), q' = a' = 1. This is an inverse of (ii).

(B) When b 2> 1, we switch L and L' at (i, j) by remo-

ving two numerals 1 as shown below,

1 0 30— 51
L l 0! l !
! ° ]
) i I o
(3.4) X: 0 0 1w 0——1 0 $X0
, : P(1,3) l J/(l,a) }
v - !
O———=—-- o--» 0 (I)
J ’ |
v

This gives a repiacement of J(p) ® J(gq) in X by J(p') @
J(q?') with p' =a +b', g' =a' + b, If p'> max(p, q),
this is an inverse of (ii), and if p' = max(p, q), X and X!
are conjugate to each other,

Thus it rests only to consider the case b'< b. In this
case, we can find 1 on L after (i, j), at (il, jl), such
that it is not removed by X — X', and L does not intersect
with L' on its strait segments starting and ending at (il,

j,). Choose the first such position (i, j;). We switch
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again in X' as shown in (3.5) or (3.5') the two lines obtained
from L and L' by the previous switching, thus getting X"e&
n(g).

~===30-——-= =1 ————>1 0
. l Lt . [ |
. . . 1
(3.5) . J , v
Xr: 0——1 0] = 0- 0 —> 1 X"
L l(11’31> | R :(11’31)1
" ¥ .
Or—— O-=-—»>
———s Qe — ——— ——
Lt !
(3.57) - , y
Xt 0——1 0 0 —> X"
s (l . ) @ A I(i )
L l 1041 ) \L10d
|
. o
0—— O ——e—=- >

et ¢, ¢' Dbe the numbers of 1 on L, L' between those 1°'s
replaced by X — X' and those 1's replaced by X' — X",
not containing both extremities. Then c¢ £ c¢'y, and X' — X"
gives rise to a replacement of J(p') ® J(q') in X' Dby

J(p") ® J(q") in X" with

p"=a +c?' 4+ (b=-c)=a+b+ (c'~-c),

q" =a' +c¢c + (b' = c') =a' + b"'" - (c' - c).
Hence, if c¢' - c¢c » 1, X — X" gives rise to an inverse of
(ii), and if c¢' —= ¢ = 0, X and X" are conjugate.

In any case, the new matrix and X(B) coincide with each

other on j-th column,
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(IIT) Assume that there exists a numeral 1 on i-th row
of X. We can treat this case similarly as (II), changing the
rolls of columns and rows.

Thus the proof of Lemma 3.2 is now complete,

$4. Unipotent radicals and unipotent orbits

Let B = (nl, Noy eeey nr) be a partition of n, and P(B)
= S(B)N(B) +the corresponding parabolic subgroup of G. Then
we see in §2 that, if ny» ny,% ... » 0. > 1, K(N(g)) =
01(8(11,l + X(8))). In this section, we study what happens when
the above condition on B ig not satisfied, We get the follow-

ing result.

Theorem 4.1. Let B = (nl, Doy eees nr) be a partition of
n. Then K(N(B)) = C1(3(1_ + X(B'))), where B' = (n, ny, ...,
n}) is-a rearrangement of B such that n{ 2 nj>» ... > nl>
1, {ni, nly eens n%‘} =1 Ny, Nyy eeey 0.}y, and 6(1Il + X(B"))
denotes the G—orbit of 1,0+ X(B"). Méreover any element in

N(B) is conjugate under K +to an element in N(B').

Proof, It is sufficient for us to prove that there.exists
only one maximal element in E(B) with respect to the order
7 s modulo conjugacy, and it is conjugate to X(B'). In fact,
this gives us 6(X(B'))<: K(n(p)) C Cl(5(X(B'))), whence
K(n(8)) = cL(G(X(8")) and so K(N(B)) = 01(T(1, + X(g"))).
Thus finally K(N(B)) = K(N(B')).
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Let us first prove that there exists in E(B) a maximal
element conjugate to X(B'). We apply the characterization
(3.1) of the order ». Let X be a proper element in n(g)
and a" = (pf, DSy eeey pg), p{» pSy -+« » DI, be its Jordan
type. Consider a solution X = XO of the following maximum
problem on X: |

firstly make p{ maximum, then,

secondly make pg maximum, and then,

thirdly make pg maximum, and SO On.

Tet o = (pl, Doy osoy pt) be the Jordan type of X_ . Take a
zigzag line in X representing a Jordan matrix J(p) for X
(cf. (3.2)). Tt touches the diagonal at most once in any

(k, k)=block (with respect to B), an n, x my, matrix, Hence
we have always pf £ r. Conversely pf = r 1is attained for
instance by an X which has 1 at the last row of the last

column in every (k, k+1)-block:

0] X
n, 12 O 0
0 X
n, 23 . 96 0
X = - with Xk,k+l :
° ° O
0 X
O Pray T 0 ... 01
L 0
nI‘

Thus we get py = r.

Teke any proper X for which p{ = pq (= r), and take out
from X all columns and rows on which some segments of the
zigzag line for J(pl) pass. Then we get a matrix X, in
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of n - r. Thus the second maximum problem for X & B(B) is
nothing but the first one for Xléé E(Bl). Inductively we see
that the multiplicity m, of J(p) in the Jordan form of X,
is né - n§+1.
under G. By (3.1), X, is meximal in n(p).

Thus we see that X  1is conjugate to X(g")

Let us now prove that any maximal element in n(B) is G-
conjugate to Xo. Suppose X € n(B) be maximal and proper,
and let (p{,ypg, ey pg) be its Jordan type. Suppose pf =
Py (= r). Then replacing X by i(g)X with an appropriate
permutation matrix g & g(B), we can make the zigzag line L
in X vrepresenting J(p{ of X coincides with the line I
for J(pl) of Xo' Taking out all columms and rows on which
some segments of L =M pass, we get Xy, X091 in n(B,).
Thus by induction on n, we may assume that pf<: Py

When pf < by (= ), there must exist k, 1 € k < r, such
that I has numeral 1 in (m, m+l)-block of X for 1 < m
< k and not for m = k., Take a position (i, j) on L in
(k, k+1)-block, and let L' be a zigzag line in X passing
(i, j) vertically. Note that L passes (i, j) horizontally.
Thus we come to the analogous situation as in the proof of
Lemma 3.2. Then, by the same argument as in (I)~ (III) there,
we get an X' e n(p) such that X'%Z X having numeral 1 in
(k, k+1)-block. By induction on k if necessary, we get an
X" e n(p) such that X" » X. This contradicts that X is

maximal., Q.E.D.
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§5. Unipotent orbits in symplectic or orthogonal groups

We saw until now that for SL(n, F) there exists a close
relation between unipotent orbits and unipotent radicals of
parabolic subgroups. For groups of other types, even for
classical groups over €, the relation between them is not so
direct in general. Here we study it for symplectic or orthogo-
nal groups over €. To do so, we apply a theorem giving the
closure relation for unipotent orbits for these groups from that
for general linear groups. This theorem is due to Prof., N.
Iwahori who explained it to the author at the same time as for
Theorem 3.3 (for F = €), to whom the author expresses his
hearty thanks.

Let Ln be an n x n matrix such that

L, = 1"9' , and put M, = (_ n } .
1 (} N n n
We define
Sp(W, €) = { g e LN, ¢); Pelg = ;) with N = 2n,
o(N, €) = {ge GL(N, €); ‘elyg = Iy)}.

Let G be one of these groups and put G, = GL(N, €). Let g
and g, be Lie algebras of G and GA respectively, given

in the form of matrices.

Theorem 5.1 (Iwahori). Let x, y € g. Then,
(1) Ad(G,)x N g = ad(G)x,
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(2) Cl(Ad(G)X) > Ad(G)y if and only if Cl(Ad(GA)X) > Ad(GA)y.

Theorem 5.2 (cf., [11J). ILet x € g, De nilpotent. Then
Ad(GA)Xng A ¢ if and only if the Jordan type (pl, Doy eeey
ps) of x satisfies the following condition (Cl) or (BD1)
according as G is symplectic or orthogonal.

(C1) The multiplicity of any odd integer in pi's 1is even.

(BD1) The multiplicity of any even integer in pi's is even.

Assume that 1y + X € G is unipotent. Then x = 1og(1N + -
X) € g is nilpotent, and the correspondence X — x 1is bijec-
tive and G-homomorphic: i(g)X — Ad(g)x (g & G). Moreover the
Jordan types of X and x colncide with each other., There-
fore, for the nilpotent case, Theorems 5.1 and 5.2 can be
stated for X (instead of x) in the same way.

Put K, = U(N), and for a partition B of N, let PA(B)
be the parabolic subgroup of GA corresponding to B and
N,(B) its unipotent radical (see §2). Put K = GNK,, and
let P be a parabolic subgroup containing a Borel subgroup of

all upper triangular matrices in G. Then G = KP, and there

exists a partition B = (nl, Doy sees nr) of N satisfying

(5.1) n. =n

i r—i+1 (1 <igr/2)

such that P:Gf\PA(B). We denote P by P(B) and its
unipotent radical G~f\NA(B) by N(B).

For simplicity, we give our result only for symlectic case.

Theorem 5.3. Let G = Sp(N, €), N = 2n. The set K(N(B)) =
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i(K)N(B) is equal to the closure of a unipotent G-orbit in G.
Moreover the closure of G-orbit of a unipotent element lN + X
in G can be expressed as K(N(B)) for some B if and only if
the Jordan type ay = (pl, Doy eoey ps), P12 Po» e 2 D52 1,
of X wesatisfies in addition to (Cl) the following condition.
(c2) TLet p, be odd and P; for j >t Dbe all even.
Then, for ¥ with J§ < +t, (i) the multiplicity of any even
integer in pj’s is at most 2, and (ii) if Diy Diyqs eees
pj—l are of multiplicity 1, and 1 =1 or P;_q is of

multiplicity 22, and so is pj, then Jj - 1 1s even.

The correspondence of B with (5.1) to with (c1),

%
(c2) is not necessarily 1-1. In the way of proving the theorem
we show how A is determined explicitly from B.

For the proof, we prepvare three lemmas.

Lemma 5.4. Let 1N + X Dbe a unipotent element in GA. In
order that it is maximal in NA(B) with respect to the order
7 for some B = (B, N5y «.ey nr) with (5.1), it is necessary
and sufficient that the Jordan type o = (g3, Gy eeey A )y
Ay 7 Ao» s+ 2 g of X wsatisfies the following condition:

(OE) if q; 1s odd and a is even, then 1 < j.

Proof. Tet B' = (ni, NSy eeey n}) be a rearrangement of
B such that nt » ny>» ... »n!, {nf, ni, ..., n%}' = { nq,
N,y +++s 0.). Then, by Theorem 4,1, 1y + X(B') is maximal in
NA(B). For the Jordan type a = (ql, Upy eees qs) of X(B'),

the multiplicity of p in it is nﬁ - né+l. Then (5.1) gives
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the condition (OE). Q.E.D.

For two partitions a, a' of N representing Jordan types,
we define a » a' by J(a) y J(a') (see Theorem 3.3). For an

a, we define a set of Jordan types
AC(a) = { a'; a'< a, and a' satisfies (Cl)} .

Lemma 5.5. Assume that a = (ql, Aoy eees qs) satisfies
(OE). Then there exists in Ao(a) a unique maximal element
Ao and it is obtained from a as follows:

(c3) if dps_1s Gpy 1in o are different odd integers,

then replace (q2i—1’ qu) by (qzi—l_l’ q2i+1)7 for 1g<ig s/2.

Proof. Iet a_ = (pl’ Doy eees ps) be a partition of N
obtained from a by (C3). Then

(5.2) Py * Do + ese + Dy =07 + 05+ con + g
except for Jj = 21 ~ 1 such that Apq_7 > Upy are odd, and
in that case,
(5.27) Py # Dy F e FPpi g =G F Ay e Fdpy g - L
First, applying (Cl) and the characterization (3.1) of 7 ,
we see from (5.2), (5.2') that a, is maximal in Ac(a). Next
we prove the uniqueness. Suppose a' = (pi, Dly eeey p%) be
maximal in Ac(a) and different from a_. Then, by (5.2),
(5.2'), there exists j = 2i - 1 such that Upj_q 7 dpy are

odd and

P{ ¥ D3+ eee # P35 7 = t Ayt oeee Fdp; -
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Pub p{ + D3+ eee ¥ P35 0 =0 YAyt eee Fldp; o -m my 0,
then pjl; 1 = dpy_7 + m. Note that qq + g, + «ou +qp;_o 18

even, then we have
= 4 =
p{ + Py + «eo + D 5 =Em pi 4 =Em4+ 1 (mod. 2).
Since any odd integer has even multiplicity in o, we see that

m is even and pjl; ; is odd. Hence by (61), p3; = Pl =

doj_7 *+ My and so

P{ + Py + e +Dhy = Q) F Ayt oeee +apy g F 4y o +m)

>0y F Ayt oeee Fdpy g T Apye

This contradicts that a'< «. Q.E.D.
Lemma 5.6. Assume that B = (Hl, Nyy «sey n.) satisfies

(5.1). Let a be the Jordan type corresponding to B as in
Temms 5.4, and Ao the unique maximal element in AC(a),
Then there exists an element lN + X, unique modulo conjugacy
under G, in N(B) = G«F\NA(B) such that the Jordan type of

X is Oy

Note 5.1. PFor symplectic or orthogonal groups, the analogy

of Lemma 3.1 does not hold in general,

Proof. For the uniqueness of X, we refer Theorem 5.1(1).

To prove the existence, we recall that o is obtained
from a by (C3). According to the process in (C3), we first
study the case where o = (ql, q2). The corresponding B is

given by
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(5-3) B = (17 1, sy 1’ 2a 2’ sosey 2’ 1, 1’ seey l)
: - L,__~wﬂ_,J
(ql”q2)/2 as (ql"q2)/2

or a rearrangement of it. We discuss for B in (5.3), and the
other cases are quite similar. Put x = log(lN + X), then

T . .
XMN + MNX = ON‘ Therefore x has the follow1ng form:

y 7 t %
—_ L I, —
(5.4) X = (‘O ') »  ¥v'=-L yL, zl, =12,
n ¥
where y, z are n X n matrices. We denote here by EA(B)

the set of matrices n(B) in §82-4. DPut

1
(o1 I,, = (0, 1),
01 0 12
."". O
01 .
0 I12 A'(p,q) = Alpya) g ’
00 .. 00
0 0, 1, 0 %n-2
) B = 0 1 9
\ 02 10 O
o L“v"”"
r—-q g-times
. . 0 05
of type (p+q)x(p+q) "L, o ’

(I) Tet a = (2py 29), p 2 q. Then ay = a. Put in (5.4)
vy = A(p, ), 2 = B, Then, by drawing zigzag lines in x as in
(3.2), we see that =x is conjugate under G, to J(ac) =
J(2p) ® J(29), and s0 is X = exp x - lg. Since xe g f\QA(B),
we have 1N + X e N(B).

(II) Let o = (2p+l, 2p+l). Then ag = 6. Pub in (5.4),
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y = A'(py, )y 2 = C. Then x is conjugate to J(ac), and X €
g(\gA(B), whence exp x = 1y + X € N(B).

(ITI) Let a = (2p+l, 29-1), p » 9. Then Oy = (2p, 2q).
Let B, correspond to ay as in (5.3)s Put y = A'(p, gq-1),
z = B, then x is conjugate to J(aC) and X € g(“\QA(BC),
but not x € EA(B>' To get an x' = Ad(g)x in g F\QA(B), we

choogse as g & G a blockwise diagonal matrix with respect to

BC as
g = dlag(lp_q’ Uy Uy oceog Uy U.', u', I'EEKE] U_', lp_q)
a a
: 1/1 1 . . t -1
where u = J%’(l —i> with i = -1, and u' = Lo u "Ly

Now let us reduce the general case to the above special
case. Teke an a = (ql, Gos sees qS) satisfying (OE). Put
a’ = (qls q2), N' = gy + dy. Apply (I)=-(ITII) to a' and
Sp(lN*, €©), we get the element x or =x' above. We imbed this
Sp(N', €) into G appropriately. Imitating some discussions
in the proof of Theorem 4.1, we see that there exists a subset
st of {1, 2, ..., N} consisting of N'-elements such that
(L) if j & 8', then N - j + 1 € 8', and (2) when we imbed
Sp(N', €) into G = Sp(N, €) by using j-th rows and columns
with j € S', the above element x or x' is imbedded in
g Nn,(B). DNow taking out these rows and columns, we come t0
the similar situation for a" = (q3, Ags eoes qs) and N" =

N - N'., By induction on s, the assertion of the lemma is

proved, Q.E.D.

Proof of Theorem 5.3. Note first that
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(5.5) GNK, (N, (B))DKMN(B)).

Let a = (ql, Upy eoes qs) correspond to B as in Lemma 5.4.
Put O(a) = O(1y + J(a)), then by Theorem 3.3, K,(W,(8)) =
c1(0(a)) is a union of g(a') over a' £ a. By Theorems
5.1(1) and 5.2, 6 N 0(a') is a G-orbit for a'eE Ay(x), and
empty otherwise. Purther, using Theorem 5.1(2) and Lemma 5.5,

we get

(5.6) G MK, (N, (8)) = L G N O(ar) = c1(e NO(ay)).

ot éiAC(cx)

On the other hand, we have from Lemma 5.6
(5.7) 6 M O(ay) C K(N(B)).
The assertion of Theorem 5.3 follows from (5.5)-(5.7). Q.E.D.

Corollary. Assume that B satisfies (5.1). Then

¢ N KN, (B8)) = K(N(B)),

where K = G MK, N(g) = G(‘\NA(B)Q

Remark 5.2. Suppose a satisfies (Cl), and o # (1, 1,
ceey 1)y (2, 1, 1, ¢vsy, 1). Then the G-orbit G mo(1N,+ J(a))
contains a non-trivial set of the form K(N(B)) for some B8

with {5.1).
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Part II. Pourier transform of unipotent orbital

integrals for SL(n, R)

§6. Reduction to groups of lower ranks

——

6.1. Put G = SL(n, R). Tet B = (ny, Ny, eesy n.)y 04>
Do 7 eee 20,2 1, be a partition of n, and let the notations
be as in §2.

Assume that n,i q = Doy £ 0 for some i (we put N, =
0). Then we see in §2 that for the G-orbit & = O(ln + X(B)),
c1(o) = K(N(B)), and then, by Theorem 1.4, the Fourier transform
f Mo 1s obtained directly from the Plancherel fofmula for

(B).

Assvme now that no.

o}

(7]

1 T Doy = 0 for any i. Then

=

necessarily n is even. The two orbits O, = 0(1 +i(g,;)X(B))
ere given as O, = K(C&) with Q= i(gil)ﬁKB), and invariant

measures on them are given respectively as

(6.1) P, (£) = [K[ﬂ" £(k(1, +X)k™T) ak 4ax,
+

where dk and dX denote the normalized Haar measure on K

and the usual Lebesgue measure on n{(B) respectively, and Il;

= i(gil)m(m. Since C1(0, U/ G6_) = K(N(B)), the Fourier trans-
form of HO+ + Pb is given by Theorem 1.4 form the Plancherel
formula for S(B)T Therefore it rest for us to obtain the
Fourier transform of M= Vb+ - P@_' For» g, € GL(n, R) and

f e c3(6), put
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(6.2) (i(g)f) () = £(i(g)  e) = £(g,"eg,) (g€ G).

Then, since f1_ = i(g_l)jl%, we get from (6.1) that [, (f) =
T’LO (i(g_l)f) and
+

(6.3)  p(£) = Py (&) with & = £ - i(g_y)E.

+

6.2, We have also another way of reduction. Put

r., = 1123-_1, NJ = n2j—'l + Il2J = 2I'J (1 $jg Q= I‘/Z),

(6.4)

B' = (Nl, N29 LRI ] NQ).

Then P(B') D P(B), S(B') D 8(B) and N(B') C W(B). Put G' =
S(B'), XK' = G'M K, P' = G'N P(B)y, and N' = G'MN N(B). Then
P' is a parabolic subgroup of G', and the latter 1s given as

follows with respect to the partition B':

(6.5) G! = { diag(é'ly oy seey gQ>; gj e GL(Nj: lR)y

1T aet(ey) =17,

1<j<€Q

and N' consists of elements in GY of the form

(6.6) 85 = J , X € g;<rj, R) (1< 3¢ Q).
0 1
r. r.
J J

Let 'Gi be the subsets of N' consisting respectiveiy of

elements such that in (6.6)

(6.7) TT  det(x.) >0 or <O,
1<¢3<Q J
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and put wi = K'(Gi), then w, are G'-orbits. By Corollary 3

to Theorem 2.3, O, saturate K(N(B')mi) = K(N(B')Gi), and then

+
inducing W, =~ by means of P(B*) = S(B*)N(B') and S(B') =G',
*

we get

G
(6.8) I"’Oi = IndS(B_') Hwi.

Therefore, because of (1.10), (1.11), it will be sufficient for

us to get the Fourier transform of ﬁw on G'.
*

6.3. Purther we can reduce the problem from G' to its
connected semisgimple part G" = [G', G')] as follows. Let Gé
(resp. Zo) be the connected component of e in G'. (resp. in
the center of G'). Then Gg = G"ZO is a direct product, and

G", Z, consist of elements in (6.5) satisfying respectively

G": g.e SL(N,, R) (1 <3< Q),
(6.9) J J N.
Zos ogio=tilp, o> 0, T 4.9 = 1.
J 3 M J 1<jsqQ ¢

Q-1

Since Gg ig normal in G' s&and [G*: Gg] = 2 < oo , we

can induce an invariant distribution p on Gé to such a one

®
Indg, p on G' ag follows: take a complete system of repre-
o

sentatives Qal, oy ceesy aq} , q = ZQ_l, of G'/Gg , and put
for f e cy(aY)

(6.10) (Indg: oO)(F) = 22 p(i(aj)f}Gé).
0 1sjga

If p 1is the character of an irreducible representation T

7
of Gé, Indg, e 1s the character of the induced representation

. o}
Indg, T of T, On the other hand, let oi6 be the connected
fo) 1
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components of o, consisting of elements in (6.6) satisfying

*
respectively

(6.11) det(Xj) >0 for 1 £ J< Q, or

(6.111) det(Xy) < 0, and de‘t(Xj) >0 for 2<3< Q,

_ : _ ' ) - o I
and put W = Ké(diﬂ) with K! = G} (VK. Then they are G}

440
orbits in G!. Define P similarly as in (6.1), then,
0. wi’o

since [K': K!] = 2@=1 " we nave

~1 .Gt
(6.12) O | .
,; H“i G3 h"i,o

Consider now the reduction from Gé = G"Zo to G". DNote
that we have Eg = Eh X 25, or more exactly, an irreducible
character of Gé is of the form an X , where HY is the
character of class v e& 8“, and X € g;. We will get in the

sequel an expression of H on G" by means of mn_ (ye
) Wy Y

e}
G") of the form

(6.13) Mo, o = f(,}\ m, av(y),

where V 1is a signed measure on G". Then we get on Gé = G"ZO

(6.14) h’i,o = f@ gzmo (r, x X)) av(y) dvzo(7<>,

where VZ is a Haar measure on ZO normalized in such a way
0

that

(6.15) gg %z o(z) A(z) az av, (1) = ¢(e) (9 € C;(2)),
O
O O
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where dz is a Haar mesure on ZO fixed to give a Haar measure
on G} = G"Z_. Note that the decomposition of Ind‘g:(n\,x x)
into irreducible characters of G' is easy for vy gppearing
in (6.13) (cf. §8). Then (6.14) gives immediately the Fourier
transform of V&i by (6.12). By a similar reason, the reduc-—
tion by (6.8) from G' to G is easy.

Since G" is a direct product of SL(NJ., R), 1L <J<K Q,
we are row reduced to the following case: G = SL(N, R), N = 2n,
B = (n, n), 0, = K(ﬂi) with ﬂi =1y + 0!,

(o, X )
LO . : X € gl(n, R), det X > 0 or <0 j.

n n

s
(6.16) Q! = ﬁ

§7. A 1imit expression for HO
+

7.1, TLet Xo’ Yo’ Ho € g be

On 1, On On 1 (~tn Oy
(7.1) XO = ] ] YO = 9 HO ‘—‘_2" }o
0 0 1 0 0 1

n n n n n n

and put 2 =X - Y . Then O = i(G)(exp XO), 0 = i(g_l)0+
with g_; = diag(-1, 1 ), and { X, Y , H } is a Lie triplet
such that EXO, YO] = —2HO. Let o be a Cartan involution of
g defined by X — Sy (xe g),and g =k +p the corres-
ponding Cartan decomposition. Put 2z(0) = exp 6Z € K, We

give a o-invariant Cartan subgroup B of G containing the

one-parameter subgroup z(€) as follows: b & B is expressed
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as b =D bp, where

C b
n .
bK =exp X, X = [_X 0 ) y X = dlag(61,62,...,9n),
(7.2) £t : t.0t %
bp = diag(e l,e 2, ceese e 1e 2, ceese 1), tjE R.

Let GZ be the centralizer of the one-parameter subgroup
z(®) in G. Then there exists an invariant measure dg (g =

gGy) on G/G,. Put for f € C:(G),

7. T.(0) = {~ flaz(0)g™ L) dF.
(7.3) (0 = |, Tlenes™) az

Theorem 7.1. For f é.Ci(G),
1im enzl (8) = cq Py (£)
8->+0 £ 1ro, 7
where cq is a constant depending only on the normaligation of

the invariant measure dg on G/GZ.

Before proving this theorem, we give a result of Harish-
Chandra giving an expression of If(e) as a limit of his func-
tion Ff on B. Let us recall the derfinition of Ff in our
case. For a moment, let H be any Cartan subgroup of G, and
Ec the complexification of the Lie algebra h of H. We
define for a linear form & on Ec’ if possible, a character
%6 on H by gé(h) = eé(log h) (h € H), where 1lcg h denctes
en inverse image of h under exp: h, —> G, = SL(N, ¢). Intro-
duce in the root system of (50, QC) an order, and let Sy

denote the set of all positive real roots in it. Let p Dbe
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half the sum of all positive roots, and put

Mmy = tm TT - & m™,
(7.4) ( " “'JO &
sg(h) = sgn( TW. (1 - Ea(h)_l).
aé%{

Let H' be the set of regular elements in H. For h € H', we

put

H H H o NP
.5 Fr(h) =(ens)(n 5 f(gh ag ,
(7.5) £(n) (sR (n) o/n (ghg ~) dg

o

where d& (& = gH) denotes an invariant measure on G/H, For
H = B, we denote F? simply by Ff; Note that B 1is funda-

mental in G 1in the sense of Harish-Chandra, and S = ¢

for B.
For a vy & B, let Py be the set of positive roots a of
(gc, QC) such that §a(y) =1, and GY the centralizer of vy

in G. Denote by H,  the element of b ~ such that

Tr(ad H, ad X) = a(X) (Xe _@C), and by B(Ha) the differential
operator on B corresponding naturally to Ha' Let DY be the
product of Q(Ha) over a € PY’ and d& (& = gG. ) an invariant

y
measure on G/GY° Then Lemma 23 in [2al says that

b->v ¥

be B aepP
Y

Lim (0,5,)(6) = cp §o(v) [T (1 - fa(v)‘l)j;/g £(eve 1 )ag,
Y

where P is a positive constant depending only on the normali-
zation of invariant measures.
Now let vy = z(8), 8 Z 0 sufficiently small. Then G, =

Y
Gy Put for b = bep in (7.2), aj(b) = exp(tj+iej), aj_m(b) =
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eXp(tj—in) (i = J=1). Denote by %y the root o for which
ga(b) = aj(b)ak(b)_l. We introduce an order such that a> 0

if o = ajk for some Jj < k. Then PY = PZ’ where
(7.5) P, = { Ay 3 1 <j<k<€&n or ntl €< kg 2n} .

We summalize the obtained formule in the form of a theorem.

Theorem 7.2. Let 6 # O be sufficiently small. Put

(7.6) D, = | A(H ).

aEPZ

Then

. 2
lim D, F.(b) = 18 _ ioyn J f(gz(0)g 1)az.
im 7 f( 02(6 e G/G- (g,Z( ){5 ) g

b->z(8) 7
beB!

Combining Theorems 7.1 and 7.2, we get the following.

Theorem 7.3. For f & C:YG),

2
(7.7) - 1lim lim D.F.(b) = coc~(2i)® (£).
8340 Db->z(8) 't 172 Vb+
be B!

T.2. Proof of Theorem T.1. First we give a decomposition

of G such that G =K exp(ﬂ)GZ, where w 1is an appropriate
subspace of p, and write down an invariant measure on G/GZ

by means of K and w. Let &y, be the Lie algebra of GZ,
then g, = kg + p; with k, =k Ngy, , p, = p NN g;. Denote by
RZL the orthogonal complement of by in p with respect to
the Killing form. Then, using a result of G.D.Mostow U6, Th.33,

we have the following.
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Lemme, 7.4[1la, Prop.4.4). As an analytic manifold, G is

expressed as a direct product as G = K eXp(EZ'L)eXp(BZ).

Put K, = G, VK, then G, = KZeXp(p_Z). Therefore, to get
the desired decomposition of G, we look for a subspace w of
P-ZL such that Ad(KZ)_vz = RZL- The space EZ'L consists of

elements of the form

x ¥
(7.8) P.ZL: X = [ }9 tx = X, ty =Y, X yeg_l_(n, R).
vy  -X

We take as w the space consisting of WE QZ"L such that

T 0
n .
(7'9) VV - [O _T~) y T = dlag(t:L’ t2’ CRCEE tn)’
n

and put

{wew; T (tj2-tk2)740},

1 €j<kgn

=
i

(7.10)
wi o= {Wéy_v_; Ty > T> e >t > O}.

Lemma 7.5. Let ¢ be a mapping from KZX w o to p_ZJ“
given by o(k, W) = Ad(k)W. Then ¢ is differentiable, and
everywhere regular on KZK w'. It is surjective and
p(K,x w') 1is open and dense in BZL' Moreover ¢(K,x w') =
oKX wi), and  o(kq, W) = 9(k,, Wy) for (k;, W;) e K, X w!
if and only if Wl = W2, kl_lkz S DK’ the group of diagonal

elements in KZ.
Proof. For Qe l_c_Z, Re w, we get

dcp(k’w)(Q, R) = a%cp(keXp('bQ), W o+ tR)lt:O =
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= Ad(k)(ad(Q)W + R).

After simple calculations, this gives us the regularity of o
L]
on KZ X w',

Let us prove that ¢ is onto, Let X &€ p, then X & RZL

if and only if X% = —ZX, i.e., ZXZ T = -X. Therefore, for

X & RZL’ we can find a k&€ K and W &w such that

‘ T 0
n .
AM(K)X =W = [ ] y T =diag(ty, t, eeuy B0,

On -T

Here { %7, by eeey By =tyy =fyy wen, —t ) is the set of all

eigenvalues of X. Putting gz = ZgZ_l for g &€ G, we have

A (k%)X = W, whence for L = k’k™T, AA(L)W = W. Therefore, for

Wew', 2 is diagonal. Since X l_l, we have L =

diag(al, oy ey Ep Eqy €5y eney sn), ey = +l. We can find
me K such that 1 = (mZ)_lm and Ad(m)W € w', Thus (mk)Z

= mk, i.e., mk € K,, and Ad(mk)X = Ad(m)W & w'. This proves
that @(K;X w') 1is the set of all regular elements in RZL-

On the other hand, Image(p) is closed, because K, is compact.
Hence TImage(p) = 323 that is, ¢ is onto.

The rest of the lemma is easy to prove. Q.E.D.

Lemma 7.6. The mapping ¢ : (k, W, g) = k exp(W)g from
KX w X GZ to G is differentiable and surjective. It is
regular on K X w' X G, and @o(Kh<ng GZ) = @O(Kh<ﬂ;)<GZ) is

open and dense in G. For (k., W., g;) € K x w! x G, (1 =1,

i’ i
2)y 9olkys Wy g1) = 9, (ky, Wy, g,) if and only if Wy = W,

ky = kyz, g = z g, for some 1z € Dy.
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Proof. rjectivity follows directly from Lemmas 7.4, 7.5.

Regularity is easy to prove. Now assume that klexp(wl)gl

-1 -1
kzexp(Wz)g2. Put k =k, ky, 8 = 8,8 , then k eXp(Wl)

eXp(WZ)g = h (put), and so

2 2
0. D 0 D

nzn™t - aa(e) |2, 1 il - [ B, 2,
D% 0 D;% 0

1 n 2 n
where Dl’ D2 are diagonal matrices of degree n such that
exp W, = diag(Di, Di—l). Since W, e w!, we see that k nmust
be diagonal and in DK. Hence Wl = W2 and k =g € DK'
Q.E.D.
By this lemma, an open dense subset of Q/GZ is naturally
diffeomorphic to K/DK x ﬂi' To get an invariant measure on it,

we use the following lemma. Put + = (tl, Toy eees tn), a(t) =

exp W for W in (7.9), and
+ o
(7.11) DY = {4 = (b3, s wees )5 B3 > to> oue S>> 0.

Lemma 7.7. A Haar measure dg on G 1is given as follows:

for f e.c?(G),

f(glig = ¢ { f fﬂ f(ka(t)g,)p, (t)at . dt,...d%  dk dg

where 3 is a pogitive constant, dgz denotes a Haar measgure
on G,, and, with sh x = (e* - e7%) /2,

) _
n 4n-1
P, (t) = 2 |1 sh(Zti-th)sh(Zti+2tj) [T sn 2%

”
1€i<j<n 1<i<n .

Proof. For g &€ G, let 6g = (dgij) be N X N matrix

whose (i, j)-component is the differential of (i,j)-component
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-1
gij of ‘g. Put 6£g = g 6g. Then every component 6£gij of
6lg is a left invariant 1-form on G. The exterior product
f\élgij over all (i, j) # (2n, 2n) 1is a non-zero left inva-
riant form on G of degree dim G, whence it determines a
Haar measure on G. Similarly the exterior product P\él(gz)ij
(resp. Aéﬁ%j)mmr (i, j) such that 1<€i<n, 1<j< 2n,
(i, §) # (n, n) (resp. 11 < j¢2n) determines a Haar measure
on Gz(resp. on K). For g = ka(t)gz, we get at k = 8y = €,
5,8 —a s x|l a+ 6,8+ 8,8
1 K - yA i 127 ’
=gy=e e e

where a = a(t). Note that

5,2 = diag(dt

. by weay A, —dt

—dtZ, o e oy '—d—tn)

1’ 1’

t .7 _ 7.
(6lk) =~ 6,k, 6,8,°% = 28,8,.

Then we can calculate the Jacobian at k = 8y, = € which is

equal to p (t). This proves the assertion of the lemma. Q.E.D.

Note 7.l. When dg, dg, are given as indicated in the
above proof, the constant cy 1is given by c3 = {DKIV2n =
2nv2n, where v, ~ 1is the volume of X = S0(2n) with respect

to the measure on X indicated above.

Corollary. An invariant measure d4g (g = gGZ) on G/GZ

is given as follows: for ¢ e C?(G/GZ),

T) aF - |
Sg/sz(g) g = D] j;: ¢ (ka(t) ), (t)dt dt,.. .t dk.
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2
Using this result, we calculate the 1limit of ol If(e).

Lemma 7.8. For f e CS?G), put fK(g) = 5 f(kgk_l)dk. Then
K

1

2 1Y

. n _ K n

e})lriloe I.(e) = pezai 5])* £ [o 5 ]) 0, (¥)ay 4y e« .dy
v n n

. el +
where Y = diag(y) with y = (yy, Tos wees y,)» and Dy is
similar to (7.11) for 7y, and further

R

2 2
.12 - Syl
(7.12) P () 1<i]<ljs n(yl yi)

Proof. In the definition (7.3) of If(e), insert the above

expression of dg. Then we get

I.(o) :Tﬁl}{T §D+ 5 (a(t)z(0)a(t)™) o (%) dtydt,...db .
N

Put 85 = exp(th), S = diag(sl, Spy eees sn), and vs = esj,

Y = diag(yl, Tos sees yn), Then

_1 cos(e)ln sin{©)s 1, Y
a(t)z(0)a(s)™ = | n — ) ,
~sin(8)57 cos(8)1, o, 1,
as 6-> +0 for any fixed y = (yl, Tos eevy yn). Moreover

dy. = 2v.dt. a
Y3 e
n2 n-1
6" o, (t) —> 27T (7)yq¥ e vy

This gives us the desired result by a simple argument. Q.E.D.

Now we rewrite M, with 0, = K(_Q+). Recall that for
+
£ e c(a),

K ln £
(113 P () = |, Fme)ar,  w = )
+

X On ln
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+ .
where DX ={X = (Xij)eag;(n, R); det X>0}, and dX = gTjdxij.
: b

Tet K'= GNP(B) with B = (n, n), then k € K' is given as k =

diag(u, v), u, ve 0(n), det(uv) = 1, and kn(X)k—l = ﬂ(uXv—l).
Lemma 7.9. Let ¢, be a mapping from K' X D; to D;

1 with Y = diag(y). Then it is

given by wl(k, y) = u¥v
everywhere regular and the image @l(K'qu;) is open and
dense in Dg.' For (k, y), (k', y') € K' X D;, @l(k, y) =

1

Ql(k', y') if and only if y =y', k¥ k'e Dy

The proof is easy and so omitted.
Lemma 7.10., The measure dX on D% is expressed as

follows: put k' = diag(u, v_l) € K', and denote by dk' +the

normalized Haar measure on XK', then for ¢ € d?(D%),

gD}E $p(X) dX = cy jK' gDJr ¢(uyv) p (y) dyqdy,...dy, dk',
v

- 2 n+l 2 . N .
where ¢, = 2[Dgfv, " =27"v, ° with v similar as v, in

Note 7.1.
Proof. TLet X = uY¥v, then we have at u = v = e
ox|, = dul, Y + 6Y + Y v .

=V=e

Noting that 6u}e = 6lule’ we. can calculate as in the proof of

Lemma 7.8 the Jacobian at u = v = e, equal to po(y). Q.E.D.

Applying the lemma to (7.13), we get the following.

Corollary. Let Y =diag(y) for y = (yy, Yoy +eey Vg
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Then for f & C:(G),

(7.14) FO;(f) =cy gD; fK(n(Y))po(y)dyldyz...dyn.
Y

Proof of Theorem 7.l. The formula in the theorem follows

from Lemma 7.8 and (7.14) with the constant cq = (042n+l)—1 =
(2%*v )72, Q.E.D.

§8; Fourier transform of FO
+

To get the Fourier transform of }AO s We apply the expres-—
+

sion (7.7) of Yoi(f) by means of D,Fe.

8.1. First of all, we study the symmetry of the function
F. on B'. Put W= Ny(B)/Z,(B) and W= Ny(B)/2g(B), where
NG(B) and ZG(B) be the normalizer and the centralizer of B
in G vrespectively, and similarly for Né(B) and Zg(B). Let
aj(b) for b& B be as in §7.1. Then for w & W, there exists
a permutation o of {1, 2, ..., 20"} such that aj(wb) =

w.

1

aa(j)(b)’ We denote w by w_. We consider subgroups W_,

and W2 of W consisting of elements W for which

(8.1) for W, oln + j) =n + o(j) (1L j< n),
(8.2) for Wy (resp. WQ): o 1is a product of even (resp. any)

number of permutations o5 = (j, n+j)y, 1 < j € n.

Put w, = Wcl with o = (1, n+l), then

(8.3) i(g_y)b =wbd (b & B).
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Temma 8.1. The group W is generated by Wb and Wl’ and

Let sgn(w) be the usual sign of w e W’ as an element in
the Weyl group of (gc, Ec)’ then sgn(w) =1 on W and

sgn(wl) = -1. The symmetry of P, 1is given in the following.

Lemma 8.2. TLet f & C(¢) and b & B'. Then
(1) F'f(wb) = sgn(w)Fp(b) = Fp(b) for we W,
(2) Fi(g_l)f(b) = = Fp(wyb),
(3) let ¢ =7 - i(g_j)f, then Fy(wb) = F (b) for we .

Proof. Recall that Sp = ¢ for B, then (1) is easy to
see. For (2), we apply (8.3). Finally (3) follows from (1)

and (2). Q.E.D.

8.2, Let H be a Cartan subgroup of G with Lie algebra
h. Here we recall some properties of F? given by Harish-

Chandra([2a, Th.2] and [2b, Lem.40]}). Denote by S, the set

I
of all positive singular imaginary roots of (gc, QC), and put

H'(I) = {h e B (] (n) £1 for any ae S;Y.

Lemma 8.3, Let £ & C™(G). Then the function Fp on H'
vanishes outside a bounded subset, and can be extended to a
function on H'(I) which is, on every connected component of
H'(I), equal to the restriction of a C°>function on its closure,
Moreover, for an a € H and a polynomial P of 3(X), X€ h_,
assume that s P = - P for any a € S; such that gd(a) = 1,

where Sy denotes the reflexion corresponding to da. Then
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pril

£ can be extended to a continuous function arround a.

Consider Ff on B'., Then the set SI for B 1s given

by {aj,mj; 1<j<nY} and Ea(b) = eXp(Ziej) for b in
o2 = o. .
(7.2) and a LT
dered as a C™ -function on B'(I) = { b ej Z 0 (mod. m) for

Hence by Lemma 8,3, F. can be consi-

1<3j<nY}. Further we have the following.

Lemma 8.4, Tet ¢ =f - i(g_;)f. Then F, = Fy can be
extended to a C™-function on B, and Ef = 0 for any Cartan

subgroup H not conjugate to B under G.

Proof. For the first assertion, we prove here that Ff
can be extended to a C“-function arround the unit element e.
Arround other non-regular lements, the proof is similar.
Remark that F¢ is even in every Gj by Lemma 8.2. Then it
follows from this that F¢ can be extended to a continuous
function arround e. Note further that Eyaej is a constant

multiple of }(Ha) for a = Then, by Lemma 8.4,

aj,n+j°
(3/393)F¢ can be extended to a continuous function for
0,83...8) £ 0, 815 65y ...y 8 sufficiently small, and again
by the above remark, so does 1% arround e. In general, let P
be a monomial of B/er, B/Qtj (1 £ j < n), then the extenda-
bility of PF, arround e follows from Lemma 8.3 and the above
remark similarly.

For the second assertion, it is sufficient to remark that
for h e H, i(g_l)h is again conjugate to h under G. This

in turn can be seen for instance from the explicit form of H

given in [ 5c, Exemple 3.3]. Q.E.D.
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8.3. Here we study the Fourier transform of the C®~function
DZF¢ on B with ¢ =f - i(g_y)f. Denote by % the set of
all integers, by T +the quotient R/21%, and by Bg the hyper-
plane of R® defined by PL + Pp F e +p =0 for p= (pl,

n n
Poy weey pn) ER. Let m= (ml, Myy oeny mh) € % and p &

RJ. We put for b € B in (7.2)

(8.4) e(m, p; b) = exp(i 2:: (m.0.+p.%.)), i = J-1.

- , 1sjgn 4 J 3
Note that tl + t2 + .e. + tn =0 for be&eB, and so B is
isomorphic to p x Bg. Then %% X R? can be identified with

the dual group of B, and the action of w & WJ on B ‘induces

the dual action on %< x Rg : e(m, p; wh) = e(w_l(m, e); b).
Now put
(8.5) a(m, p) = D,F (b) e(m, p; b) db,

| B 40

where db = deldeg...dendtldtz...dtn_l.

in C?CB) by Lemmas 8.3 and 8.4, we have

Then, since F¢ is

-2n+1 2?
(8.6) DZF¢(e') = n(2n) N a d—(m9 p)dpldpg"'dpn_ly
me% R
7 o
where the right hand side converges absolutely. For n = 1,
Bg = {0} and the integration disappears. By Theorem 7.3,
this gives an expression of Hb+(¢) = Pb+(f) - }b_(f),.which

will be rewritten in the following.

Since F¢ is in C?(B), we have by integration by parts,

(8.7) d(m, p) = gB F¢(b)Dze(m, p; bldb = pz(m, p)d¢(m, P)y
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where

1l

)
e 1T ((mmm)Pe(p,m002),

1<j<kgn

and for f & C":(G),

i

(8.9) d‘f‘(m7 p) {B Ff(b)e(mv’ 03 b)db.

Note that Ff(wb) = F.(b) for we W by Lemma 8.2, then

£
we have df(w(m, p)) = df(m, o), whence

(8.10)  ag(m, o) = gy 2% d(w(m, o))
we
1

-
"WT{ Fo(b) 2. e(w(m, p); b) db.
: B we W

Hence for ¢ = f - i(g_l)f,

(8.11) d,(b(m, p) :T%VT gB F.(b) ZNe(W(m, p)s b) db.
weWw

The meaning of dp(m, p), dd)(m, p) will be seen later. Note
~

that d¢(w(m, 0)) = dd)(my p) for we W, and py(w(m, p)) =

py(m, o) for we W, then

22 a(w(m, o)) = W) p(m, p) ay(m, p) with
weW

(8.12) p(m, p) = 2. p,(w(m, p)).
W€W2

o

Note that any element we& W 1s expressed uniquely as w =
WAW with W, € W2, W, € Wo, and that wp = WP Then we get

from the above equality

| WZ;W p(wim, )a,(wim, o) =
O o}
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= Z E : d(wgwowém, wop)

woE W2 wo,wéeWO
Z Z ’ d(w,wim, w_p).
27077 o
]
W2€W2 WO,Woewo

It

{WEWO; wm :m} ’ Wz(m) = {WE Wy s
j=0%-

Let my 7 My ... pm > O and integrate the both sides above

For m e %, put Wo(m)

wm =mYy . Then Wy(m) = A(m) g d(m) = #{j; m

with respect to dp = dpldpz...dpn_l over DgC [ng defined by

Py > Po > eoe >0, Then we have
w | 1w (m)] 2 §D+ p(m?s pld,(m*, pldp

m'eWOm 0
o) 2 2 fn

L=
w2§W2 m CWOm LRO

Il

d(wzm' , p)dp

il

USCYVINUACY DY IICUNLIS

mYe Wm o)

Therefore, using Theorem 7.3, we get from (8.6)

me %

m.>0
J

(8.13) My (4) = oy 21 273w (D+ o(m, p)ay(m, ple.
+ -
P

cos 6 gin ©
8.4. let G, = SL(2, R), B, = { b(6) = ( ' ) }.
-sin 6 cos ©

Por the character 7w of an irreducible unitary representation

of Gy, put k(b(0)) = A(b(0))n(b(e)) with A(b(e)) = e*° -
e“le.' Then we know (see for exemple [5c, p.511) that for any
non-negative integer c¢, there exist two equivalence classes

+
Dc +1

| . ) .
for DY, k(b(e)) = - ™% for D7, k(b(e)) = e TP

and D;+l of such representations such that
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Now, for G = SL(N, R), N = 2n, we consider a parabolic
subgroup P(BO) corresponding to the partition B, = (2, 2,

ceey 2) of N. Then S(Bo) consists of elements of the form

(8.14) s = diag(sl, Spy eeey sn); 8 e GL(2, R),

det(81S2..osn) = l.

Let S, be the connected component of e in S(B, ), then for
.

s € SO, we have sj = e Jsj with tj e R, 5565G2' Denote
+

again by Dc+l certain elements in the classes D:+1 respec-—

tively. We consider a representation U of SO given by

ip2t2 + lpn-tnD-r

iplt
1t (si)@ e D (8'2)®-»=®e m_+1

U(s) = e D

,
m, +1 (s))s

m2+l

where m. e %, » 0, and pj e R with Py + P T e Py = 0.
Let U' = Ind§<80) U , and extend it to P(BO) by putting
Ut(g) = identigy for g € N(BO)O Then, inducing it to G, we
get a unitary representation T(m, p) of G. We define another
representation T°'(m, p) by T'(my, p;g) = T(m, p; i(g_l)g).
Then they are always irreducible and their characters can be
calculated by Theorem 2 in [ 5a, p.358]1. Note that an s in
(8.14) with 55 = etj b(ej) is conjugate under G +to b or
wib = i(g_l)b for be B in (7.2), according as [n/21 is .
even or odd. By this reason, we denote T(m, p) and T'(m, p)
by T (m, p) and T (m, p) when [n/2] is even, and by

T (m, o) and T (m, p) when (n/2] is odd respectively, Let

no(m, p) be the characters of T%(m , p) respectively and put

¥ (m, p; b) = A(b)n¥(m, p; b) for b & B'. Then,
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' k" (m, p; b) = > e(w(m, p); D),
(8.15) weW
kK (my, p; b) == 2 e(w(m, p); Db).

we W1W

We say that this series of representations is associated to B.
On the other hand, there exists a positive constant Cy

such that for f e C?(G)

(8.16) § £(a)ag = oy f f £(gbg™) |7 ()1 % av @,
i(G)B* B /G/B

where & = gB. Note that the complex conjugate of @P(b) is

equal to (—1)ncp(b). Then, by the second assertion of Lemma

8.4, we get from (8.15), (8.16) the following: put

+ + . + )

n(m, p; ) = {;f(g)n (m, p; gldg = Tr( ng(g)T (m, p; gldg ),
and ¢ = £ - i(g_;)f, then

(8.17) n'(m, p; f) - 7 (m, p; £) =

cB(_l)n SB Ff(b) E:l e(w(m, p; b) db

we

cg(=1)" W] da,(m, o) (by (8.11)).

Thus, by (8.13) and (8.17), we get the Fourier transform

of PO%- VC_ as follows.

Theorem 8.5. Let G = SL(N, R), N = 2n, and let o e
. *.
the invariant measures on the unipotent orbits Oi = K(fli)
given by (6.1). Then the Fourier transform of HD - HO is
+ -

given by
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1\*0_'*__ FO =¢ Z Z—d(m) L+(TC+(IH, p) ~ ’J'E—(m,-p))x

- meZ p
jiZ x p(m, p)dpldpz...dpn_l,

where c¢ 1s a constant depending only on the normalization of

the Haar measure on G, d(m) 3 #{j; mj = O} for m = (ml, Py

+ . . n
es o0y mn), D lS a Subdomaln Of BO ={p = (pl’ p2’ LRCICNY ] pn);

P
PL t Po * eee P = 0} defined by Py > Pp> oo > P,y and
ni(m, p) are the characters of irreducible unitary represen-—
tations T%(m, p) of G, and p(m, p) is given by (8.8),

(8.,12), 1In particular, for n = 1, the above formula should be

read as

by = a2ty _ (),
FO+ VO_ c w0 (n" (m n (m

where ﬂi(m) denote the characters of D;+l respectively,

Remark 8.1. The representations T (m, p) with my = 0
for some j (resp. Df if n = 1) do not appear in the Planch-

rel formula for G, but they appear here in the PFourier trans-
form of - .
o, Po_

. G
Remark 8.2. As is remarked before, f%++ ro_ = IndP(B) 5, »
where 6e denotes the Dirac's distribution at e on S(B), and
its Fourier transform is obtained from the Plancherel formula
for S(B) g’((gl, gz); 81r &5 e GL(n, R), det(glgz) =1%. The
contribution to it from the characters ni(m, p) of represen-
tations T%(m, p) of the series associated to B is zero if

n is odd, and is given as follows if n = 21 1is evens:
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c! El §;+ (" (m, p) + 7 (m, p))q(um, p)dplde"'dpn—l’
n

me% o}

m.>0
J>

where c¢' is a constant depending on the normalization of the

Heaar measure on G, and

(8.19) q(m, p) = > . wa (my o) e
we W
. 0]
qO(m’ p) = -TT m. X
1<j<n ?
2A 2 > 5
or I+1Kj<kgn

Acknowledgements. When I sent to Prof. N, Kawanaka a copy
of this paper as a preprint, he kindly informed me that the
closure relation in §3 has been already known and a proof can be
found in (12). Then I found that the proof here is elementary
(but lomger) in the sense that we do not use any notion from
algebraic geometry. Therefore I left the section as it was
except only a minor change. Later Prof. R. Hotta also gave me
the reference L[13) and pointed out the similarity between the
inducing invariant measures on unipotent orbits in &1 and the
inducing unipotent orbits in [13]. I learned the following.
Tet G Dbe a connected reductive algebraic group defined over
an algebraically closed field. A nilpotent element A in the
Lie algebra of G is called in [14] "of parabolic type" if
there is a parabolic subgroup P of G such that the G-orbit
of A intersects densely (with respect to the Zarisky topology)

the Lie algebra u

P of the unipotent radical UP of P.
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A special meaning of this type of nilpotent elements in Springer's
theory of representations of the Weyl group of G, can be seen
in [ 14, Proposition 1.4]. A unipotent class in G 1is called in
[13] "Richardson class" if it has the analogous property for UP
of some P. We note here that the necessary and sufficient
condition, given in &5 for type C, that a unipotent class should
be a Richardson class, can not be expressed in a simple manner
by means of its weighted Dynkin diagram (cf. [11, p.263]).

For the preprint, Prof. D. Barbasch also wrote me some
comments and gave the reference [13)]. To all of these three
mathematicians, I express my thanks.
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