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Introduction  

Let G be a connected real semisimple Lie group with finite

center, and consider the action of  G on itself through inner 

automorphisms.  An orbit under this action is nothing but a 

conjugate class  of  G. We know  E83 that an orbit 0 has on it 

a G-invariant measure, and it can be considered as a tempered 

measure on G. We denote it by  I-to and call it an orbital 

integral on 0. A Fourier transform of frt0is by definition 

an expression of  F-0 as a superposition of irreducible charac-

ters of  G (i.e., of characters of quasi-simple irreducible 

representations of  G on Hilbert spaces).

    When 0 consists of regular elements, this Fourier trans-

form was given for real rank one groups by P. Sally, Jr. and 

G.  Warner[9], and in general by B.  Herb[3] for "almost all" 0 

by means of integro-summation, not necessarily absolutely 

convergent, of irreducible characters appearing in the  Planche-

rel formula for  G.

An orbit is called unipotent if it consists of unipotent 
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elements. We know that  G has only a finite number of unipo-

tent orbits. For this type of orbits, the case of real rank 

one is treated by D.  Barbasch [la].

    The purpose of this paper is threefold and concerned with 

the Fourier transform of  110 for a unipotent 0. Firstly we 

give in  1 a method of inducing invariant distributions from 

a certain reductive subgroup of G, and study how we can apply 

it to the Fourier transform. Secondly we investigate in Part I

the structure of unipotent orbits for SL(n, F) for a local 

field F (i.e., a locally compact, non-discrete, commutative 

field), and determine the closure relation between them, and 

then apply it to the case of  symplectic or orthogonal groups. 

Thirdly we give explicitly in Part II the Fourier transform of 

unipotent orbital integrals for SL(n,  R) (cf.  Elb7).

    Let us explain the contents of this paper in more detail. 

In  §.1, analogously as for representations, we give a method of 

inducing invariant distributions from a reductive subgroup given 

as a Levi subgroup of a parabolic subgroup of G (Theorem 1.1), 

and also a criterion for a unipotent orbit 0 to be "almost" 

equal to a  certain standard subset. This enables us to reduce 

in a certain extent the problem of obtaining the Fourier trans-

form of 1J-0to a similar problem or to the Plancherel formula 

for certain reductive subgroups (Theorems 1.3 and 1.4). In §2, 

we give an expression of a unipotent orbit in SL(n, F) with a 

local field F by means of the unipotent radical of a parabolic 

subgroup (Theorem 2.3). Using this expression and with
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elementary discussions, we determine in the closure relation 

for unipotent orbits in GL(n, F) (Theorem 3.3). Here we define 

the closure  relation as follows: let 0, 0' be unipotent 

orbits, then 0 0' if and only if  01(0) 0'. This result 

is applied in §4 for SL(n, F), and in §5 for classical groups 

over C to study further the relation between unipotent orbits 

and unipotent  radicals of parabolic  subgroups  (Theorems4.l and 

5.3). Concerning the results in Part I, the author expresses 

his thanks to Prof. N.  Iwahori for his kind  suggestions.

     In  6,  Pert II, we apply the results in §1 to  SL(n,  R), 

and reduce the problem of Fourier transform to a simple case of

special unipotent orbits  OI for  G = SL(N, R) with even N. 

In  g'7, we follow the method of  D.  Barbasch[la3 and give a 

formula  expressing(f) for  f  E  e'(G) by means of the 

 Harish-Chandra's invariant integral Ff defined on a  fundamen-

tal  Certan subgroup B (Theorem 7.1). In  $8, we prove  that, 

modulo the  Plancherel formula for SL(N/2, R), the Fourier 

transform of Ft()is obtained by studying the Fourier trans-

form of a  ea-functions on B coming  from. Ff. Then the explicit 

form of the Fourier transform of la0is given in Theorem 8.5

modulo the known Plancherel formula for SL(N/2,  R).

     Remark. The results in this paper have some  overlapping.s 

with those of  D. Barbasch in  Elb], though they were worked out 

independently. See also Acknowledgements at the end of the 

 paper.
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     Method of  inducing  invariant  distributions

    Let  G be a connected  semisimple Lie group with finite 

center, K a maximal compact subgroup of  G. Take a parabolic 

subgroup  P, then  G =  KP. Let  N2 be the unipotent radical 

of  P and  S a Levi subgroup of  P, that is, a reductive 

subgroup such that P =  NpSp is a semidirect product decompo-

sition of  P. We may assume that  Sp is so chosen that  Pr-)K 

= SP()K. We define a method of inducing an invariant distri- 

bution on  SP to such a one on  G, analogously as for repre-

sentations of S
 P.

Let  C be an invariant distribution on  Sp. We define a

distribution  7 on  G from  T as follows. Denote by  C7(Sp) 

or  e°(G) the space of all  e-functions with compact supports 

on  S or  G respectively. For s  E .Sp, put  P(s)  =

 p_et Ad1-(s)1, where AdLip(s) denotes the restriction of Ad(s)  1p 

on the Lie algebra  np of  Np. For  fEE  e;(G), put 

 (1.1)'  fP(s)  =  P-1/2(s)-1                                 f(knsk) dn dk,                IK IN 
where  dn and dk denote Haar measures on  Np and K resp-

ectively. Then  fPG  eo°(Sp) and it is invariant under  Kr)  Sp

through inner automorphisms. We put

(1.2)  71(f) =  '1-(fP).

This  R is called the distribution induced from  T and is  

.  „  G ,A,1 denoted  by Ind'417.We know  E5a, P.3453 that,  when7: is 
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the character of an irreducible unitary representation of  Sp,

 it is also the character of the induced representation of it.

   For  fE  C7(G), put 

(1.3) fN(k, s) =  13-1/2(s)  j  f(knsk-1) dn, 
 NP 

then fN  E  C7)(K X  Sp), and  fP(s  ) =  I  fR(k,  s)dk. If a change
of order of "integration" is possible in the right hand side 

of (1.2),  m is also expressed as 

(1.4)  m(f)  T-(fN(k,  -)) dk.

Theorem 1.1.  Assume that the expression (1.4) holds for

any f  e  ec7(G). Then  m is invariant under  G. 

    Proof. For  go  G  G, put f(g) = f (goggo-1). We prove                                 g
o

that m(f) = m(f).  Fix-a (Borel-)measurable section V of 
          go

K (ISP\ SPin SP'Let for  k  E K,  gok =  k  'n's  ' with  k'E  K, 

 n'G  RP' s'E V. Then k', n' and s' are uniquely determined 

by k, and the map  k' defines a measurable bijection 

from K onto itself. We know that the Haar measure on K is 

transformed as

(1.5) dk' = p-1(s') dk.

Moreover

 goknsk-lgo-1  =  k'n's'ns(k'n's')-1 k'n"s" 

with n" =  E  RP' and s" =
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 s'ss•-1  E SP.The map nn" is  bijective on Nfor every 

fixed k, and  dn" =  P(s')dn. Therefore

(f(k,  s)  =  p-1/2(s) (                         f (knski)dn 
 g0-  o')N(k, IN

Pgo 

 i 

 =  p-1/2(s)  f(k'nts'ns(k's'nt)-1  )/3-1(s,  )dn" 
 /N  P 

 i3-1(s,) fN(„,                               x stss'-1)•

Then by  (1,4), 

 7(f  ) = -C(f N(k,  .  ))dk = fn-r(fN(k',  -  ))p-1(s')dk 
     K  goK go K 

       =  -FEW (by  (1.5)).  Q.E.D.

For a subset A  of G, put

K(A)  =  kak-1; k  E K, a E

Then, since K is compact, K(A) is closed if so is  A. 

Moreover Cl(K(A)) =  K(Cl(A)), where  C1(A) denotes the closure 

of  A, Let w be an SP--orbit in SP®Then  K(N w) is 

 G-invariant because G =  KP = KNPSP'When w is unipotent, it

is a finite union of unipotent orbits in G.

    Corollary. Let w be an orbit in  Sp. Then an invariant 

measure on  K(Npw) is given by  1A1 = Ind14w 

         Ir (1.6) rtl(f) =  
,KN iw  f(knsk-1) dr.03(s)  dn dk (f  E  e"(G)),       )
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where  y 0 denotes an  Sr-invariant measure on w. In particular 
an invariant measure on  K(NP) is given by 

 (  r 
(1.7) lAb(f)) f(knk-1)  dn dk. 

    KN

 Further, as a corollary of the proof of the theorem, we get: 

Lemma 1.2. Let w be a unipotent  S  -orbit in  Sp. Assume

that there exists an  S  -invariant measurable subset 52 in  N 

such that  > 0, and 0w is  N  -invariant. Then K(Qw)

is G-invariant and an invariant measure on it is given by

   r r 
-1Do 

(1.8) .4.(f)  =f(knsk) dKo(s)  dn dk  (f  e Co()).             -K /S/fw 
In particular, if w =  CO , an invariant measure on  K(a) is

given by

(1.9)  k(f)  I  I  f(knk1)  dn dk.
 K

 For application to orbital integrals, let us characterize 

that an orbit  a. is "almost" equal to  K(nw). For  example, 

assume that there exists a measurable subset A of  N  w such 

that (1)  0-= K(A), (2) for every x  E w, the section  Ax of A 

at x (i.e., A =IAxx,  Ax NP) is equal to  SI modulo null
 x  e

sets with respect to dn. Then, by  Fubini's theorem applied to 

(1.8), we see that  1-4- in (1.8) is supported by , i.e., 

 IA(E) =  V.(E  r for any measurable subset  E. Hence  k gives 
an invariant measure on  a

For later applications, we take here a little different
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 formulation. Let  P  C: P be another parabolic subgroup, then 

NPCNP . Put G'SP 'K1G'n K, P'G'n Po, and  NI  . 
 0

 G'n NPThen,  G' is reductive and not necessarily connected, 

                      •

 0

and  P' is a parabolic subgroup of  G' with unipotent radical 

N'.

    Definition 1.1. Let  w  C  Sp and  SIC  N be as in Lemma 

 1.2. We say that a G-orbit  C9- saturates  K(.aw) if the follow-

ing condition holds: for a parabolic  subgroup  Pot: P,there

exist measurable subsets  a of N' and A of  N  a such that

 (1)  e-, K(A), (2) w =  K'(a), and an invariant measure  [2,, on

 co is given as

      (r   (cr' =) 
a imcp(k'n'kt-1) di,e(n') dk' (E  C7(Sp)),

where  IA' is a measure on  a and dk' is the normalized Haar

measure on K', (3) for any x  e  o, the section  Ax (=  Np  of A 

at x coincides with  a modulo null sets with respect to  dn.

     Theorem  1.3. Let co CSPbe an SP-orbit andSI CNPan 

SP-invariant measurable  subset  such that
_adn > 0, andAu)is 

NP-invariant (hence  P-invariant). If a G-orbit9-saturates 

 K(110, then an invariant measure  p15 on  0- is given by (1.8).

In paricular, if  fl Np , then Ft„,= Ind 
                                          ly.co

Proof. Inserting the above expression for Uwin (1.8), 

                                                      r

we get

       r r  r 

 k(f) =  f(knk'n'k'-ak-1)  dk' dtit(n") dk  dn  fsKK
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               f(kkinrit(kkt)-1)  du.'(n')  dn dk' dk 1K 
 fAf(knn'k-1) d1.0(n' )  dn dk. 

 K

This proves that is is supported by  Cr= K(A), and so gives an

invariant measure on  0. Q.E.D.

This theorem may be used to deduce the Fourier transform of

 1.6, to that of  p.co by studying the structure of  0- as in 
Definition 1.1. This works very well for SL(n, F), F a local 

field (cf.  §2), and especially for F =  R, we shall work out 

for p.w and then for v.(9. in Part  II.
Let us explain how it works. Assume that the Fourier trans-

form of an  S  -orbital integral V
wis given in such a form                                 i 

that for  a signed  measure V on the unitary dual  6i, of  Sp, 

 (1.10) =xe dv(6). 
                 /S 

Here the unitary dual of  Sp is by definition the set of all 

equivalent classes of irreducible unitary representations of 

 Sp, and  2C. denotes the  character of representations of class

 6 E 8P.Insert this into the right hand side of (1.6). Then, 

if a change of order of "integration" is possible, the invari-

ant measure  !-4.1 = Ind,is expressed as 
 oP 

                           w (1.11)  F(1 =  In4  X0  dV(6). 
 SP  P 

Note that  IndS  X is the character of the induced represen-
              P

tation of an element of class  6. This representation is
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irreducible for almost all  6  G  Sp with respect to the Planche-

rel  measure  '0 for SP,and the equivalence between them

corresponds to the coincidence of  their characters.

     Moreover assume that there exist unipotent orbits  Oi  (1( 

i q) in  G such that every  Oi saturates  Miw) for an 

 S  is 

 N  -invariant and  N -  in is of measure zero. Then, by

Theorem 1.3,  P.1 is expressed as

      P1 =01 ± Po2 ±0 

                                 q and therefore the  formula (1.11) gives almost the Fourier trans-

form of this sum of orbital  integrals. In particular, when we

consider  V in  (1.7), we get the following  theorem.

     Theorem  1.4. Assume that there exist  unipotent orbits  Oi 

(1-cOsuchtliatovery0isaturatesK(SL)for a P- 

invariant  (Zi  C  NP  with  positive  measure,  and  NP  =  ~i  is

of measure  zero. Then the Fourier transform of the sum

V0U+ .. +His given by 
110102o

       Vt01-I- F't02-1-°''+Ho=j" IndGdl)(6)'                      SP6o 

where  110 denotes the  Plancherel measure for  Sp.

Note. Let F be a non-archimedean local field and  G

SL(n, F), K SL(n, 0), where 0 denotes the maximal compact

subring of F. Then the results in this section can be trans-

lated for this case appropriately.
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Part I. Unipotent orbits, their structure and closure 

         relation

    In Part I, we put  G = SL(n,  F),  G = GL(n, F), with F a 

local field except for Lemmas  3.1, 3.2 and  5. For g  e 

denote by  i(g) the  automorphism of G given by i(g)h = 

 ghg1 (h E  G).  Put  i(5) = f i(g); g E  i(G)  =  Ci(g); 

g  e  G} . Then  [i(G):  i(G)1 =  f(FV(Fix)n), where  (Fx)n  = 

f  an; a E  Fn . Moreover put for a  E  Fx  , a diagonal matrix

 ga  €  G as

 (  a 0 
                 ga !l0 1

n-1 ' 

where  1 denotes the unit matrix of degree p. Then every

class of  i(6)/i(G) is represented by a certain  i(ga).  Put 

d =  i(G)], then, d = 1 for F =  C, d = 1 or 2 accord-

ing as n is odd or even for F =  R, and d 1 for F non-

archimedean and n 1.  Put K = SU(n),  SO(n) or SL(n, 0)

according as F =  C,  R or non-archimedean.

 2. Structure of unipotent orbits 

Every unipotent element in  G is expressed as  In + X

with a nilpotent matrix X. Therefore it is  sufficient for us 

to study the conjugate class of X. We denote again by i(g) 

the transformation on X given by  i(g)(1n +  X)  =  I n + i(g)X, 

and similarly for  i(G) and  i(G). We know that any nilpotent

matrix  X is conjugate undera to one of the following Jordan

matrices: for a partition a =  (pi, p2,  p s) of n such
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 that

(2.1)  p1  P2  •  •  •  ps 1.

Put

(2.2)  J(a) =  J(101)  e  J(p2)  e  ...  ©J(ps),

where J(p) is a matrix of degree p given by 

 10  1  0
 0 1

 J(P)  = 

 V .1- 

 . 

               0 1                        and  A  ®B  =  0 (
Let  m be the  multiplicity of  J(p) in  J(a). 

and  m 0  for  p  r, and put 

(2.3) n. = mj+ mj+1 ++ mr for  1  j 

(2.4)  p = (n1, n2,  .,.,  nr)®

Then  p is a partition of n such that

 (2,5)  n1 n2  _>,„  >  nr  1® 

Let x(p) be an n x n matrix given as follows 

expression (with respect to the partition  p of

0n1 In1n2 C)
0I„ n

2-2-3

(2,6) x(p)
              • 

 0 

    nr -1  Inr-1nr

                     On 
 r 
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0 B  ,

Assume  mr>

  r,  and 

by a blockwise 

n):

 0 
with I = 

 Pq  1



where  0 denotes the zero matrix of degree p, and for p  ?  q, 

 Pqis a p x q matrix of the above form.

    Lemma 2.1. The matrix  J(a) is conjugate to  x((3) under 

 G.

Proof. By a permutation matrix, J(a) is conjugate to

 x(p). Q.E.D. 

    We call  a  Jordan type and  p parabolic type of the conju-

gate class of J(a) and  x(p) under  G or of its element. 

Here we get the following.

Lemma 2.2. Any unipotent element  In + X in G is conju-

gate under  6. to  1n +  x(p) for some  p with the condition 

(2.5). Further it is conjugate under G to  In +  i(ga)X(p) 

for some a  e  Fx.

   For g or X, we denote by 0(g) or  0(X) the  G-orbit of 

g or  X respectively. Let us determine  0(i(ga)X(p)). Let 

 S((3) and N(p) be subgroups of  G consisting of all matrices 

in  G expressed blockwisely as follows:

(2.7)  S(p):  diag(ci, c2, cr) with  c  e  GL(nj' F), 

where  diag(ci,  c2,  ...,  cr) denotes a blockwise diagonal 

matrix with diagonal elements  cl, c2, cr, and

 O
n
 r
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Then  p((3)  =  s(p)N((3) is a parabolic subgroup of  G, and  N((3)

its unipotent radical, and  s(p) a Levi subgroup of it. Let 

 n(3) be the set of all nilpotent matrices X appearing in 

(2.8) as 1n +  X. Then it is a nilpotent Lie algebra under the 

natural bracket operation, and is stable under  i(P(p)). For a

subset A of  n(p), put 

 (2.9) K(A) = i(K)A =  4 i(k)X;  X  E A, k  e  K 

Then, since  X(13)  E  n((3  )  and G  KP((3), we have for a  E  F"  , 

 0(i(g a)X(p)) =  K(i(ga)fe((3)) with  02(p) =  i(p(p))x(p)c  n(P), 
and  0(l n +  i(ga)X(p)) =  K(i(ga)!2(p)) with  D..(p) =  in  ±  a'(P) 
C  N(P). Thus we wish to determine  i(ga)2((3)C:  n(13) and

establish a close relation between the orbit and the unipotent 

radical  N(13). The result is given as  follows.

Theorem  2.3. Let  p = (n1, n2,  ..., n r) be a partition  of

n satisfying  (2.5). Let t 1 be the maximal of divisors of 

r such that for  q = r/t,

 njt+l =  njt+2 =  *°' =  njt+t -1 =  n(j+l)t (0  j  q-1). 

Then the G-orbit of  i(g a)X(p), a E  F'`, is given by 

 0(i(ga)X((3))  =  K(i(ga)S-V((3)), where  i(ga)SZ'(p) is an open 

subset of n(p) consisting of elements expressed blockwisely 

(with respect to the partition p) as follows: let X = (x.j) 
                                                 i' 

 xii isof type nixnj'  then

            rank(xi
,i+1) = max =  ni+1 (1 i r), and 

(2.10)  Il  II det(xjt+i ,jt+i+1)iE aF(x)t.  0,j<  qt
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    Note that  xjt+i
,jt+i+1 are square matrices for 1 i < t. 

For F  R,  ((e)t  =  Rx or  Rx_f_  =  k a  E  R; a >  0). , according as

t is odd or even. Hence, when t is odd, (2.10) is trivially 

satisfied.  When t is even or equivalently  n2j _1 =  n2j for 

any j, (2.10) is rewritten as follows according as a > 0 or 

 a  <  0,

(2.10')  11  det(x2i_1 ,2i) > 0 or < 0.            1 j r/2

Proof. Since  0(i(ga)X(p)) =  i(ga)0(X(p)), it is sufficient

for us to prove the assertion for  x(3), i.e., for a = 1. For 

1 m < r, let  hm be a  subspace  of  n(13) consisting of X = 

(.xiii) such that xj= 0 for j -i/m,andput h(m)  = 

hm+ hm+1 ++ h—r-1°Then  h(1) = n(p) and  Ch(m), h(m')] 

—

h(m +  m'). First we assert

(2.11)  i(N(p))X((3)  x(p) + h(2). 

In fact, by an explicit calculation, we have  Ehm,  x(p)3 =  hm+, 

for m  7 1, because of (2.5), (2.6) and (2.8). Fix m 2 and 

an element XoE  h(2). Then for g =  In + X E N(13) with X E 

hm, we have

 i(g)(X((3) +  X0)  E.  x((3) +  xo  +  LX,  x(p)] modulo h(m+2), 

and  [x,  x(p)]  G  hm+1. Since  Chm,  x(p)j  hm+1, this gives us 

 i(N((3))x((3)  x(p) +  h2 +  h3 + +  hm+1 modulo  hm+2 by

induction on m, whence (2.11).

   By (2.11), it rests for us to prove that  i(s(p))x((3) is 

the subset of h1ijconsistingof X = (x) for which the 

conditions in the theorem hold for a =  1. Let g  E  s(p) be
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as in (2.7), then X =  (xij) =  i(eK(13)E  ha is given as 

(2.12) x = ciIn
ini+lci+1-1. 

 Thereforerank(xio _ti).= max,  and the product of determinants 
in (2.10) is equal to 

 (2.13)  TJ  det(c  )  det(cjt)-t. 
 r  1  j  q 

Thus  (2.10) holds for X  i(s(p))x(p).

 Conversely  assume  that  we  are  given  X  =  (x)  )  E  hsatis

 fying  the  conditions  in  the  theorem.  Then  there  exists  a  set

 ofmatricescEGL(n.,F) satisfying (2.12),  i.e..,  i(g)X(p) 

= X for g  diag(cl, c2,  cr). By (2.13), the condition 

 (2.10) means that det(g)  e  (Fx)t. We can replace g by gh 

with h =  diag(dl,  d2,  ..., dr) such that  i(h)X(P)  x(p). 

Since det(gh) =  det(g)det(h), it is sufficient to see that 

det(h) can take any value in  (1)t.  Put  mp =  np -  np+i,)  O. 

If  m
p > 0, put e(ma )=diag(ap9 lml) -1) E GL(mF)a G     P9Pp9 

 Fx. Since  np =  m
p +  mp+1 + + mr, we get an n x n                           P P 

matrix  d by

 d =  e(m
p,  ap)  e(m13+1'  ap+1) ...  (1) e(mr,,ar), 

omitting  e(mi,  ai) for  mi = 0. Then  i(h)x(p) =  x(p),

because dpIn
pnp+1dp+1-1 =n n.On the other hand, det(h)                             pp+1 

is a product of  (a  )P over all p such that  in  /  O. Note 

that the set of  aPbP' (a, b E  Fx) is equal to  (Fx)m for m 

the greatest common divisor (GCD) of p and p'. Then we see
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that det(h) runs over  (Fx)t with t =  GCDC p; mp/ 01 = 

 GCD  fr, p;  np  >  npla) . Q.E.D.

   Corollary 1. Two elements  i(ga)X((3)  and  i(gt)X((3) are 

conjugate under G if and only if  alb  E  (F)()t, where t  is

given in Theorem 2.1.

   Corollary 2. The closure of  0(i(ga)X(p)) is given by 

(2.14)  C1(0(i(ga)X(p))) =  K(i(ga)C1(.12(R))), 

where  i(ga)C1(le(p)) consists of elements X =  (xij) such

 that

 (2.15)  I  I det (x)i E  a(Fx)t U  j01 
      sCj<qjt+i,jt+i+1

For the case F =  R and t even, (2.15) is rewritten as

 (2.152)  r det(x2j -1,2j                           )/0 
     r/2oro 0®

 Put'  r  N. as follows: in case F =  R  and t even, 

(2.16)  rj =  n2j -1'  Nj =  n2j-1 +  n2j =  2rj (1 j  c  r/2),

and in case F non-archimedean, for 0 j < q,

(2.17) rj .1.n          3=jtia,Njil= nn                            jt+1jI+-                                t2n(j+l)t= trj,/, 

and in both cases,  p, =  (Nl, N2, ..., NQ) with Q = r/2 or

 =  q respectively. Then,  p is a subpartition of  13,, and 

 PO')  P(p),  s(p,)  S(R),  N(p,)C  N(R). Every X  E  n(p) is 

 decomposed uniquely as X =  Xi +  X2 such that  In +  Xi E  s(13'),
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X2E n(p'). Then, for X =x(p), 

(2.18)  x(p)1  diag(x1, x2, ...,  xc)9

where  x = X(rr rj)'the standard upper triangular 

matrix of degree  N corresponding to the partition (r , r        j j'

 r.) of  N. Let w be the  S(P')-orbit of  In +  i(ga)X(p)/.

Then we have the following.

    Corollary 3. The orbit  0- =  0(ln +  i(g)X()) saturates 

 K(N(13')w), and an invariant measure on  cr is given  by  fr(0-  = 

  ,G Inds()  v.co                where  LA. denotes an invariant measure on

    Proof. We apply Theorem  1.3 to  0-, P =  P(P'),  Sp =  sw), 

 P =  p(p) and w. We may assume a = 1, i.e.,  0-= 

 0(l n +  x(P)). Let  a', p' be the sets of  Xi and  of  X2 for 

X E  se(p) C  n(p)  respectively. Then by Theorem  2.39  n(p')  p' 

is of measure zero and  11'() = +  p'. Put  J--L° =  in  P'9 

 IL=  in +  n(P') =  Np, =  ln +  c'. Then  w = i(K  Sp)(a)  and. 

 K(fl°a) = C  Ka). Since  D.P is of measure zero,  (9.- 

saturates  K(11w) =  K(Npw). Hence Theorem 1.3 gives the desired

 result.  Q.E.D.

    Remark  2.1. As a consequence of Corollary 3, the  Fourier

transform of  1J-0. is reduced to a much simpler case of  s(p') 

and w, by means of (1.10),  (1.11). Note that  s(p') is 

nearly a  direct product of  GL(Nj' F) for 1 j Q, and the

orbit w corresponds to the simple subpartition  p of  p'

(N1, N2, NQ)  (cf. (2.16), (2.17)).
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Remark 2.2. In case F  R, t

0±  K(S/±). Then, since  C1(01 A) 

transform of  V,0 +  110 is given

the Plancherel formula for  s((3).

 0 

by

even, put 

 ) =  N(P),

 Theorem

 52±  (g±i  la(13

 the Fourier 

1.4 by means of

 i3. Closure relation between unipotent orbits

   Let 0 and 0' (resp.  0 and  15') be unipotent G-orbits 

(resp.  a-orbits) in G. We denote by  Ot 0' (resp.  0  3')
the relation 01(0)  j 0' (resp.  C1(6) D  0'). Similar notations 

are used for orbits of nilpotent matrices. In this case, if

 0', we denote X  y X' for any  X  E  0, X'  E  0', and further

if  0 / we denote this by  0  } and similarly for X  } X'.

Let us describe these relations by means of the parameters of 

unipotent orbits  introduced-in This is equivalent to doing 

it for nilpotent matrices. By Corollary 2 to Theorem 2.3, we

have  C1(0(i(ga)X(p)) =  K(i(ga)C1(re(P))) =  i(ga)K(C1(D2((3))), 

where  se(p) is given by  (2.15) with a = 1. Therefore it is 

 sufficient for us to see which orbits intersect with  Cl(g2(P)) 

 C  n((3). The  alorbit  6(X((3)) of  x((3) is given by  Z(x((3))

.1,C(5((3)),whereH'WisthesetofX=.                                     (xli)E  n(p)
satisfyingrank(x 1..                     ,1+1). max  (1ir)  (cf. Theorem 2.3).

Therefore  C1(6(X(P))) =  K(n((3)). Here we are mainly concerned

with G-orbits. The result for G-orbits can be obtained from it. 

    For the next two lemmas, F is an arbitrary field. Let

 3 =  (nl,  n2,  ...,  nr) be a partition of n, not necessarily
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satisfying  n1  �.  n2  nr.  We can define  P(p)  s((3)N((3) 

and  n(( ) analogously, and put P(p)  S(p)N(p) with  ((3) = 

 g  ). An element X in  n(3  ) is called proper if it 
 a  E  Fx  a

satisfies the following:

(P) in any row and in any column of X, there exists at most 

    one non-zero component which is equal to 1.

Lemma  3.1.  Puto  (n1, n2 + n3 + + nr). Then any

element in  n(R) is conjugate undet  P((3o) to a proper element 

in  n(( ).

 Proof. We prove this by induction on  r. The assertion is 

true for r  r  2. Assume that it is true for r  - 1. Put  p1 = 

(n2,  n3,  nr  )  M. n2 + n3 +  ..® nr. Take an  X  E  n((3)

and express it as

                     0
n       X1 with X1€ n((31) 

                                         L 0  X1: 

Then by assumption, there exists a  gi  E GL(m, F) such that 

 i(g1)X1is a proper element in  n(131). Moreover we see 

from Lemma  2.1 that there exist a permutation matrix g2  -of 

degree m and a partition  =  nst) of m such 

that  ni!  n2  . and  i  (g2  )Yi  =  X  ((3  ?). Put  Ti

 diag(1  ,  g.  )  E GL(n, F), then 

                     0 

      i(7271)Xx 
 x(p,)

where x is an n1  X m matrix. Let
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          _ 

  1x , ''-o  h1  = -  n1 , then Y = i(h1)i(Z.2.i.1)X =  nly i 

 , 

   0 lm.'  ,  0 x((3') 

where y  , x +  x'X((3'). Put  mi =  ni -  q,  m' = m -  mi. We see 

from (2.6) that there exists an x' for which y  = (z, 0,), 
                                                            nlm 

where z is an  n1  X m'1matrix and 0denotes the 
                                              n1m' 

 n1  x m' zero matrix. Take an h2  = diag(a, b)  E  s(po) with 

a E  GL(ni,  F), b = diag(c,  lm,) with c  E  GL(mil F). Then

 i(b)X((') =  x((3'), and so

                           y' 
       i(h2)Y =1nl-1                                                      =  (z', Q

n m,),                L o x(p,with y' = ayb), 

 z' = azc-1. We see that for some a and c,  z° has analogous 

property as  (P), whence i(h2)Y has the property  (P). Put 
 ——— 

gg2h2hig2g1, then

           oy' g22 
      i(g)X = i(72)-1i(h2)Y =nl 

                   0  Y1 

is a proper element in  n((3), because g2 is a permutation 

matrix and  Y, is proper in  n(k). Q.E.D.

    The next lemma determines which conjugate classes intersect 

with n(13). Here again F is an arbitrary field.

    Lemma 3.2. Let  p (n1, n2, ..., n r)  be a partition of 

n such that  n1 n2 n r 1, and a (p1, p2,  Ps  )

be the Jordan type of  x((3), i.e., the partition of n defined 

from  3 by (2.1), (2.3). Then the  set  of Jordan types  a° = 

 (pl,  pt) of elements in  n((3) are characterized as,

 —  96  —



follows: the set  p0 corresponding to a' is 

obtained from  f  pl, p2,  ps1 by a repetition of replacements 

  (i) an element p by  p  - a,  al with 1 a  p,
(ii) two elements  1  p,  Of p >  q, by  4 p - a,  q +  al with

 1  (_a<p-q.

 Befor proving this lemma, we give the closure relation as 

its direct consequence.

    Theorem  3.3. Let  a=  GL(n, F) with F a local field. 

For two partitions a =  (p1,  p2,  '°',  Ps),  a' =  (1°19  P'19  ...9 

 pt) of n, let J(a), J(a') be the corresponding Jordan

matrices in  (2.2). Then  C1(0(J(a))):  0(J(a')) or  J(a)- 

J(a') if and only if  hol, is obtained from 

 1pl, p2,  ps), by the process in Lemma  3.2.
    Further J(a)J(a') can be expressed also in the form 

 (3.1)  pa. +  p2 + +  pi  pi +  p2 + +  pl for i  3 1, 

where we put  pi = 0 for i s, = 0 for  I  7->t.

    Remark  3.1. After I obtained Lemma  3.2 and the first expre-

ssion for in Theorem  3.3,  Prof. N. Iwahori informed me that 

he obtained Theorem 3.3 in case F =  C. The second expression 

for is given to me by him.

    Proof of Lemma 3.2. We see easily that the replacements 

   and (ii) are possible in  n((3).

    Conversely let us prove the following. Starting from an 

arbitrary proper element  X in n((3)9we replace it by
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 X'G  n(p), where X' is conjugate to X, or X X' corres-

ponds to an inverse of (i) or (ii). Repeating these replace-

ments appropriately, we come to an element in  n(P) conjugate 

to  x(p).

    First remark that the Jordan type of X can be determined 

by drawing zigzag lines in the matrix X as follows. We start 

along a column in X downward on which no numeral 1 exists. 

When we come to numeral 0 on the diagonal, we turn to the left 

along the row. When we encounter 1 on the row, we turn  down-

ward. Continuing this process, we get a zigzag line as shown 

below. If there exist  (p-1) numerals 1 on the line, it 

represents J(p) in the Jordan normal form  of X.

 0 (The other numerals

 0  -->1 0 or 1 are not shown 

        •

(3.2) X: explicitly. The
 '0  zigzag line  repro-

   0 sents J(3) in  X.)

We call a column, a row or a position (i, j) of a matrix in

 n((3) admissible (with respect to  p) if the components of  YE 

 n((3) are not identically zero on it. Now assume that m-th 

column of X coincides with that of  x(13) for 1  C m j -  1, 

and not for m = j. We apply an induction on j. Let the 

numeral 1 on the j-th column of  x(p) be on the position 

j). Let us discuss a replacement of X in three cases.

    (I) Suppose there is no numeral 1 in X both on j-th
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column and on i-th row. Then, putting 1 on the position 

(i, j) of X, we get another proper element X' in  n(P). This 

replacement corresponds to an inverse of (i). In fact, consider 

two zigzag lines in X, the one ending on i-th row and the other 

starting on j-th column which represent respectively J(p) and 

 J(q) in the Jordan form of X. They are  connected into one at 

the position (i, j) in X', and the resulting line represents 

 J(p+q) in  X'. Thus J(p)  ®J(q)  ----> J(p+q).

    (II) Suppose there exists numeral 1 on  j-th  column, at 

the position (i',  j). Let i and i' belong to a-th and a'-th 

blocks of rows (with respect to  (3), then a'  <  a.  When a'  =

a, we can find a permutation matrix  go in  
                                     ti 

  s((3) such that 

the numeral 1 at (i', j) in X is removed to the position 

(i,  j) in X' =  i(go)X and the m-th columns of X for 1 m

  j are left unchanged by  X  -4  X'. Then  X' coincides with 

 x(p) even on the j-th  column.

    We assume now that a' < a, whence  i'<  i. Let L and L' 

be the zigzag lines in  X passing (i, j) horizontally and ver-

tically  respectively. The numbers of 1 on L and  L' before 

the intersecting point (i,  j) are a - 1 and a' - 1 respec-

tively because of the assumption and (2.5),  (2.6). Let the 

similar numbers of 1 after (i, j) be b and b', then L 

and L' represent J(p) with p = a + b and  J(p°) with 

 a' +  b°  respectively.

    (A)  When b = 0, we connect at (i, j) L and the second 

part of L' by removing 1 from (i', j) to (i, j) as shown

below.
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(3.3)  x:  o     4  0 1  :x,•(i
,j)  i  (i,j)

 .
                                                                • • 0 - - - - -0

Then we get from X an X' e n(13). This yields a replacement 

of J(p)  0  J(q) in X by  J(p')  e J(q') with p'  = a + 1 + b' 

> max(p, q),  q'  =  a' - 1. This is an inverse of (ii).

    (B) When b 1, we switch L  and L' at (i, j) by remo-

ving two numerals 1 as shown below. 

             0  ----30

                  . 

. 

          4 L'i 

 ) 

         .4  ) 

       •Li 
 * sl, 

(3.4) X:  0  ----->  0  >1  4.  0  >1  0  :X' 
         . i ( i9i )•(i,j) 

                                             • 

  •1 

 sk  ..,  .  V sk

 0-- — --0-4•0   )  0  > 
 4  •

This gives a replacement of  J(p)  T  J(q) in X by J(p') 

 J(q2) with p'  = a + b',  q' = a' + b. If p' > max(p,  q), 

this is an inverse of (ii), and if p' = max(p,  q), X  and X' 

are conjugate to each other.

Thus it rests only to consider the case  b'< b. In this

case, we can find 1 on  L after (i, j), at  (i/, j1), such

that it is not removed by X X', and L does not intersect 

with L' on its strait segments starting and ending at (i1, 

j1). Choose the first such position  (il,  j1). We switch
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again in X' as shown in (3.5) or (3.5') the two lines obtained 

from L and L' by the previous switching, thus getting  X"E 

 n(3 )o

 0

                                  L/I

• 

                                                                                                     .

.  1 1
 X':  0  ------1 0  P=> 0   >0  )1  :X" 

                                           1--        •L  (il'il) i-1(11,J1) 
                            I. 

     .s., .  w
0 

 0  ---  -41
 L'  1 

 (3.5') °1 
 .v

 X': 0  >1            0   :0 >  :X" 

            L  (il'jl)(ij1) 

 .  4

 0  0— 

Let c,  c' be the numbers of 1 on L, L' between those l's 

replaced by X  -4 X' and those l's replaced by X'  -4  X", 

not containing both extremities. Then c c', and  X'  --> X" 

gives rise to a replacement of J(p')  ®  J(q') in X' by 

 J(p") J(q") in X" with

 p"  = a + c' + (b - c) = a + b + (c' -  c), 

 q" = a' + c  + (b' - c') = a' + b' - (c' -  c).

Hence, if c' - c 1, X  -4 X" gives rise to an inverse of 

(ii), and if  c' - c = 0, X and X" are conjugate.

    In any case, the new matrix and  x(p) coincide with each 

other on j-th column.
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 (III) Assume that there exists a numeral 1 

of X. We can treat this case similarly as (II),

rolls of columns and rows.

Thus the proof of Lemma 3.2 is now complete.

 Unipotent radicals and unipotent orbits

on i-th row 

changing the

Let  p  = (n1, n2, ..., nr) be a partition of n, and  P(p)

 s((3)N((3) the corresponding parabolic subgroup of G. Then 

we see in  §2 that, if n1  T n2  nr  7  1, K(N(p)) =

 C1(0(1n  x(p))). In this section, we study what happens when

the above condition on  p is not satisfied. We get the follow-

ing result.

Theorem 4.1. Let  p  (nl,  n2, nr) be a partition of

n. Then  K(N(p)) =  C1(0(1n +  x(p,))), where  p, = '(n'lnr,  1-1 

 n')  is -arearrangement of  p such that n'n'>                                     1/2/  11°  r 

1,  ni  9  q,  ••e,  nr =  n1, n2,  •••  9  nr and  0(ln +  x(p,))

denotes the Z'4-..-orbit of  In +  x(p,). Moreover any element in 

 N(13) is conjugate under K to an element in  N((3')

    Proof. It is  sufficient for us to prove that there exists 

only one maximal element in n(p) with respect to the order 

    modulo conjugacy, and it is conjugate to  x(p,). In fact,

this gives usg(X(p)) C  K(n((3))C  ci(6(x(p,))), whence 

 K(n((3)) =  Cl(g(X(p')) and so K(N(p)) =  Cl(g(l n +  x(p,))). 
Thus finally  K(N(P))  =  K(N((3')).
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    Let us first prove that there exists in  n(j3) a maximal 

element conjugate to  x((3,). We apply the characterization 

(3.1) of the order Let X be a proper element in  n((3) 

and  a"  =  (pi!,  pV,  pi! be its Jordan 

type. Consider a solution X =  X0 of the following maximum

problem on X:

firstly make  pl maximum, then, 

secondly make  p2 maximum, and then, 

thirdly make  107 maximum, and so  on.

Let a =  (pl,  p2,  pt) be the Jordan type of  Xo. Take a

zigzag line in X representing a Jordan matrix  J.(p) for X 

 (cf.  (3.2)).  It touches the diagonal at most once in any 

 (k, k)-block (with respect to  p), an  nk x  nk  matrix. Hence 

we have always  pT  r. Conversely  pl = r is attained for

instance by an X which has 1 at the last row of the last 

 column in every (k,  k+1)-block:

0x01 
  n112

X ='_                                     with  xk
,k+l  = 

                           -

• 

        .. 

        . - 

  - °  C 
                0 

     0nr-1  xr-1,r                                                             0 ... 0  7 

. 0n 
                    r '

Thus we get  p/ = r. 

    Take any proper X for which  pi! = p1 (= r), and take out

from X all columns and rows on which some segments of the

zigzag line for J(p1) pass. Then we get a matrix  Xl in 

 n((3), where  pi =  (nl - 1, n2 - 1,  ...,  nr - 1), a  partirion
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of n - r. Thus the second maximum problem for X E  n(13) is 

nothing but the first one for  X1E  n(P1). Inductively we see 

that the multiplicity  mlo of J(p) in the Jordan form of  Xo 

is  n' - np+1•Thus we see that  Xo is conjugate to xx((3') 

under G. By (3.1),  X0 is maximal in  n((3).

 Let  us  now  prove  that  any  maximal  element  in  n((3)  is  6.- 

 conjugate  to  Xo.  Suppose  X  E  n((3)  be  maximal  and  proper, 

and let  (pi!,p2,...,  4) be its Jordan type. Suppose  pl! = 

 pl (= r). Then replacing X by i(g)X with an appropriate

permutation matrix g E  S(i3), we can make the zigzag line L 

in X representing  J(pl) of X coincides with the line  M 

 for  J(p1) of  Xo. Taking out all columns and rows on which 

some segments of L =  M pass, we get X1,  X0,1 in  n(p1). 
Thus by induction on n, we may assume that  'DT<  pl.

When  pT <  pl (= r), there must exist k, 1 k  < r, such

that L has numeral 1 in (m, m+1)-block of X for 1 m 

< k and not for m = k. Take a position (i, j) on L in 

(k, k+1)-block, and let L' be a zigzag line in X passing 

(i, j) vertically. Note that L passes (i, j) horizontally.

Thus we come to the analogous situation as in the proof of 

Lemma  3.2. Then, by the same argument as in  (I)—(III) there, 

we get an X' E n(p) such that X' X having numeral 1 in 

(k,  k+1)-block. By induction on k if necessary, we get an 

 X"  E  n((3) such that  X"  } X. This contradicts that X is 

maximal. Q.E.D.

 -  104  -



     Unipotent orbits in  symplectic or orthogonal groups  

We saw until now that for  SZ(n, F)  there exists a close

relation between unipotent orbits and unipotent radicals of 

parabolic subgroups. For groups of other types, even for 

classical groups over C, the relation between them is not so 

direct in general. Here we study it for symplectic or orthogo-

nal groups over  C. To do so, we apply a theorem giving the 

closure relation for unipotent orbits for these groups from that 

for general linear groups. This theorem is due to Prof. N. 

Iwahori who explained it to the author at the same time as for 

Theorem 3.3 (for F = C), to whom the author  expreSses his 

hearty thanks.

Let Lnbe an n x n matrix such that

0  1

We define

Sp(N,  c) = g  E  GL(N, C);  tgMNg =  MO with N = 2n, 
 0(N, C) =  Cg E GL(N, C);  tgLNg  =  L  N  }  •

Let G be one of these groups and put GA = GL(N, C). Let  L 

and  LA be Lie algebras of  G and  GA respectively, given

in the form of matrices.

Theorem 5.1 (Iwahori). Let x, y  E  L. Then,

(1)  Ad(GA)x  r\L = Ad(G)x,
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(2)  Cl(Ad(G)x)  Ad(G)y if and only if Cl(Ad(GA)x)  Ad(GA)Y•

    Theorem 5.2  (cf.  [113). Let x E  EA be nilpotent. Then 

Ad(GA)x  ll / 0 if and only if the Jordan type  (pi, p2, 

 ps) of x satisfies the following condition  (C1)  OT (BD1)

according as  G is symplectic or orthogonal.

 (Cl) The multiplicity of any odd integer in  pi's is even.

(BD1) The multiplicity of any even integer in  pi's is even. 

  Assume that  1N  +XEG is unipotent. Then  x= +

 X) E is nilpotent, and the correspondence X  -4 x is bijec-

tive and  G-homomorphic: i(g)X Ad(g)x (g E  G). Moreover the 

Jordan types of X and x coincide with each other.  There-

fore, for the nilpotent case, Theorems 5.1 and 5.2 can be 

stated for X  (instead of x) in the same way.

    Put KA =  U(N), and for a partition  p of N, let  PA(p) 

be the parabolic subgroup of GA corresponding to  p and 

 NA((3) its unipotent radical (see  .52). Put K =  G  11  KA, and

let P be a parabolic subgroup containing a Borel subgroup of 

all upper triangular matrices in  G. Then  G = KP, and there

exists a partition  p  (n1, n2,  ...,  nr) of N satisfying 

(5.1)  n. = nr-1+1(1 ir/2) 

such that P =  G  n  PA(p). We denote P by  P((3) and its 

unipotent radical  G  r1NA((3) by  N((3).

For simplicity, we give our result only for symlectic case. 

Theorem 5.3. Let  G = Sp(N,  C), N =  2n. The set  K(N((3)) =
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 i(K)N(13) is equal to the closure of a unipotent  G-orbit in G. 

Moreover the closure of G-orbit of a unipotent element  1N + X 

in  G can be  expressed as  K(N(p)) for some  p  if  and only if 

the Jordan type  ac  =  (pl, p2,  p s),  p2  1,

of X satisfies in addition to  (C1) the following condition.

    (C2) Let  pt be odd  and  pj for j > t be all even. 

Then, for  p with j t, (i) the multiplicity of any even 

integer in  p.'s is at most 2, and (ii) if  pi,  pi+l, 

 pj...1 are of multiplicity 1, and i = 1 or  pi-1 is of 

 multiplicity?2, and so is  pj, then j - i is even.

The correspondence of  p with (5.1) to  ac with  (C1),

 (C2) is not necessarily  1-1. In the way of proving the theorem 

we show how  a is determined explicitly from  p.

For the proof, we prepare three  lemmas. 

Lemma  5.4. Let  1N + X be a unipotent element in In                                                             In

order that it is maximal in  NA(P) with respect to the order 

    for some  p (n1, n2, ..., nr) with (5.1), it is necessary

and sufficient that the Jordan type  a =  (q-1'  (1-2'  ""'  cls)' 

 qa?  :33qs, of X satisfies the following condition: 

 (CE) ifq. is odd and  qis even, then i < j.

    Proof. Let  p, =l'n2,_..., be a rearrangement of 

 p such that  ni  nI, = (  n1, 
n2, ...,  nr). Then, by Theorem 4.1,  1N +  X(p,) is maximal in 

 NA(p). For the Jordan type a =  (qi,  q2,  qs) of  X(p'), 

the multiplicity of p in it is nlic, - np+1*Then (5.1) gives
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the condition  (OE). Q.E.D.

    For two partitions a, a' of N representing Jordan types, 

we define a  y a' by J(a) J(a') (see Theorem 3.3). For an 

a, we define a set of Jordan types

 A  (a) =  {a';  a'‹ a, and a' satisfies  (01))  . 

Lemma 5.5. Assume that a = (q1, q2,  qs) satisfies

(OE). Then there exists in  A  (a) a unique maximal element 

aC'and it is obtained from a as follows:

    (C3) if  q2i-1,  q2i in a are different odd integers, 

then replace  (a  q2i) by  (q21 _1-1,  q2i+1), for s/2.

   Proof. Let  ao  =  (pl, p2,  ps) be a partition of N 

obtained from a by (C3). Then 

(5.2)  p1  p2  "'  Pj =  ql  q2  ... 

except for j =  2i  - 1 such that  q2i -1  q2i are odd, and

in that case,

 (5.2')  p1  p2  *"  P2i -1  =  ql q2  "'  q2i-1

    First, applying  (C1) and the characterization (3.1) of 

we see from (5.2), (5.2') that  ao is maximal in  Ac(a). Next 

we prove the uniqueness. Suppose  a' =  (pi,  pt) be 

maximal in  Ac(a) and different from  ao. Then, by (5.2), 

(5.2'), there exists j =  2i - 1 such that  a  q2i are

odd and

 PI  4-  P2  '"  P21-1 =  ql  q2  q2i-1'
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Put  pi +  1p2 + +  p2i _2  ql + q2 + +  q2i_2 - m, m 0, 
then  ph _l =  q2i_1 + m. Note that  qi + q2 + +  q2i_2  is
even, then we have

 pi +  10 + +  ph_2 m,  ph_l  m + 1 (mod. 2).

Since any odd integer has even multiplicity in a, we see that

m is even and  ph _, is  odd. Hence by  (C1),  ph  ph_j _ 
      +  m, and so

 PI  +  P2 +  "°  P2i =  ql q•2  q•2i-1  (q2i -1 m) 

                >  ql q•2  °"  q•2i-1  q2i"

This contradicts that a.  Q.E.D.

Lemma 5.6. Assume that  p (n1, n2,nr                                               ) satisfies 

                                          -

 (5.1). Let a be the Jordan type corresponding to  p as in 

 Lemma 5.4, and  ac the unique  maximal element in  Ac(a). 

Then there exists an element  1N + X, unique modulo conjugacy 

under G, in N(p) =  G  fllqA(p) such that the Jordan type of 

X is  a  C'

    Note  5.1. For symplectic or orthogonal groups, the analogy 

of Lemma  3.1 does not hold in general.

Proof. For the uniqueness of X, we refer Theorem  5.1(1). 

To prove the existence, we recall that  ac is obtained

from a by  (C3). According to the process in  (C3), we first 

study the case where a = (q1, q2). The corresponding  p is

given by
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(5.3)  p =  (1, 1,  ..., 1, 2, 2,  ..., 2, 1, 1,  ..., 1)

 (ql-q2)/2 q2  (ql-q2)/2

or a rearrangement of it. We discuss for  p in (5.3), and 

other cases are quite similar. Put x =  log(114 +  X), then 

 txM
N +  MNx =  0N. Therefore x has the following form: 

            y z 
(5.4) x = ,  y'  =  -LntyLn,  tzLn =  Lnz,  [ 0ny'j 
where y, z are n x n matrices. We denote here by  nA((3) 

the set of matrices  n(P) in  §2-4. Put

 0.1
 0 112A(p,q) 0                    A'(

p,q) =
 A(p,q) =02 120 

 0  0 ...  0  0

             • . 

 C)  02  12  B  =0 On-2 
 0  1  021  1  0  0

10-q q -times

of type  (p+q)X(p+q)C=0  On-2 

      ( 

 12 0

    (I) Let a = (2p,  2q), p  q. Then  ac = a. 

y = A(p, q), z =  B. Then,  by drawing zigzag lines 

(3.2), we see that x is conjugate under  GA to 

J(2p)  9 J(2q), and  so is X = exp x -  1N'  Since x 

we have  1N  +  X  G  N(P).

(II) Let a = (2p+1, 2p+1). Then  ac = a. Put
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 ,

Put in (5.4)

 In x as in

 J(ac) =

 x  E  r1nA(P), 

ut in (5.4),



y =  A'  (p,  p), z  C. Then x is conjugate to  J(a0), and  xE 

• /IA  ((3), whence  exp  x  1N  +  X  E  ).

    (III) Let a =  (2p+1, 2q-1), p q. Then  ac = (2p, 2q). 

Let  pc correspond to  ac as in (5.3). Put y = A'(p,  q-1), 

z =  B, then x is conjugate to  J(a0) and x E  L:nnA(Pc), 

 but not  X  E  nA((3). To get an x' = Ad(g)x  in  E  nnA((3), we

choose as  g  E  G  ablockwise diagonal matrix with respect to 

 RC as

g = diag(1u, u, 000, u, u', u', 000, u', 1 
  p_q,10-q

           1   where u(1 _i)  with i =  1:1, and u' =Lt-1L                                             -211 .2'

Now let us reduce the general case to the above special

 case. Take an a = (q1, q2,  qs)  satisfying (OE). Put 

a'  - (q1, q2), N' =  qi  +  q2. Apply  (I)-(III) to a' and 

 Sp(N',  C), we get the element x or x'  above. We imbed this 

Sp(N',  C) into  G  appropriately. Imitating some discussions 

in the proof of Theorem 4.1, we see that there exists a subset 

S' of  4-1, 2,  ..., N) consisting of N'-elements such that 

 (1) if j  E  S', then N j + 1  €  B', and (2) when we imbed 

 Sp(N',  C) into  G = Sp(N,  C) by using j-th rows and columns 

with j  e S', the above element x or x' is imbedded in

• rinA(P). Now taking out  these rows and columns, we come to 

the similar situation for a" = (q3,  q4,  qs) and N" =

N - N'. By induction on s, the assertion of the lemma is 

proved.  Q.E.D.

Proof of Theorem 5.3. Note first that
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 (5.5)  G  r  lcA(NA((3))  K(N(p)). 

Let a =  (qi,  q2,  qs) correspond to  p as in Lemma 5.4. 

 That  6(a) =  0(1N + 3(a)), then by Theorem 3.3,  KA(NA(P)) =

 C1(0(a)) is a union of  0(a') over a. By Theorems

 5.1(1) and  5.2,  GnO(a") is a G-orbit for a' E  Ac(a), and 

empty otherwise. Further, using Theorem 5.1(2) and Lemma 5.5, 

we  get

(5.6) Gnic(N (()) = U Gn?)(00) ci(G (16(a)).                      .P1.A          a'  eAc(a)c

On the other hand, we have from Lemma 5.6

 (5.7)  G  C1  0(a0)  K(N(p)). 

The assertion of Theorem  5.3 follows from (5.5)-(5.7).  Q.E.D.

 Corollary.  Assume that  p satisfies  (5.1). Then

 G(),KA(NA((3))  K(N(p)), 

where K = G  r\KA'  N((3) = G  ()  NA  ((3

    Remark 5.2. Suppose a satisfies  (C1), and a / (1, 1, 

     1), (2, 1, 1, ..., 1). Then the G-orbit G  no(lx J(a)) 

contains a  non-trivial set of the form  K(N((3)) for some  p 

with (5.1).
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Part II. Fourier transform of unipotent orbital 

          integrals for SL(n,  R)

 6. Reduction to groups of lower ranks  

6.1. Put G = SL(n, R). Let  p = (n1,  n2,  ...,  nr),  n2/

 n2  ?-  n r 1, be a partition of n, and let the notations 

be as in  §2.

    Assume that  n2i _1  -  n2i / 0 for some i (we put  nr+i 

 0). Then we see in  §2 that for the  G-orbit  0-=  0(1n +  x((3)), 

      =  K(N(p)), and then, by Theorem 1.4, the Fourier transform 

of  frta. is obtained directly from the Plancherel formula for 

 SO).

   Assu.menowthatn„-                       -in21=0 for any i. Then        2i 

necessarily n is  even. The two orbits  0± =  0(1n+i(g±1)X(p)) 

are given as  CC, =  K(2+) with  S/± =  i(g±l)fl(p), and invariant
measures on them are given respectively as

 (6.1)(f) =(k(1+X)k-1) dk  dX,      0
± K2'n

where dk and dX denote the  normalized. Haar measure on K

and the usual Lebesgue measure on n(p) respectively, and  111 

=  i(g ±1)fe(p). Since  01(0+L/1  0-) =  K(N((3)), the Fourier trans-
form of  1-10  +  16  is given by  Theorem  1.4 form the  Plancherel

formula for  s((3). Therefore it rest for us to obtain the 

Fourier transform of 10
+ -  1-L0  • For  go  E GL(n, R) and 

f ) , put
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(6.2)  (i(go)f)(g) =  f(i(go)-1g) =  f(go-iggo)  (g G). 

Then, since  12._ =  i(g...1)fl+, we get from (6.1) thatv(f) = 

 140  (i(g_i)f)  and

(6.3)  jt(f) =  frk,0(4,) with  (1) = f  i(g-1)f.

6.2. We have also another way of reduction. Put

       r. = n2j -1,jN= n2j-1+ n2j= 2r. (1jQ = r/2),  4. 

(6.4)
 R' (N1, N2,  ..., NQ).

Then  P((3'):)  P((3),  S(p') 22 s(p) and  N(p') C  N(P). Put  G' = 

 s((3,), K' =  G'(1 K, P' =  G'  (1  p((3),  and N' =  N((3). Then 

P' is a parabolic subgroup of G',  and the latter is given as 

follows with respect to the partition  p':

(6.5) G' =  (  diag(g1, g2, gQ);  gj  E  GL(Nj,  ),

 det(g.) =  1  , 
 l  j 

and N' consists of elements in G' of the form

         [ 1r. Xj (6.6)  gj, X. ELl(r.,(R)  (1 jQ).
  Or .1r.)

Let  a be the subsets of N' consisting respectively of 

elements such that in (6.6)

(6.7)  TT  det(X  )  >  0 or  < 0, 
 lCjCQ
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and put  w± =  K'(a±), then  co± are G'-orbits. By Corollary 3 

to Theorem  2.3, 0± saturate  K(N(P')w±) =  K(N(P')aI), and then 

inducing i.A.„ by means of p(p,) = s(p,)N(p,) and s(p,) =  G',             w± 

we get 

(6.8)                 = inus( ) 
      U± j  W± 

Therefore, because of (1.10),  (1.11), it will be sufficient for 

us to get the Fourier transform of on G'. 
                                          w±

    6.3. Further we can reduce the problem from  G' to  its 

connected semisimple part  G" =  [C',  G') as follows. Let  G(') 

(resp.  Zo) be the connected component of e in  G'.(resp. in 

the center of G'). Then  G(') =  G"Zo is a direct product, and 

 G",  Zo consist of elements in  (6.5) satisfying respectively 

 G":  g  SL(N  R)  (1 
(6.9) 

    Zo: gj= tj1Ntj> 09 N. = 1.

Since  G' is  normal in  G'  and  [G':  G') =  2l<  ao  , we

can induce an invariant distribution p on  G' to such a one 

   G' Ind
G' p on  G' as follows: take a  complete system of  repre-

sentatives  a1, a2,  aql  , q =  2Q-1, of  G'/G(!_; , and put 
for f  

 (6.10) (In4p)(f) =p(i(a.)fiGj). 

                                       3

If p is the character of an irreducible representation T

 GI of  G
('),  Ind, p is the character of the induced representation

Ind-T  of T.On the other hand,let a±be the connected G'
,0
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components of  o-± consisting of elements in (6.6) satisfying

respectively

(6.11)  det(X  )  >  0 for 1 j  G Q, or 

(6.11') det(X1) < 0, and  det(XJ) > 0 for 2  Q, 

and put w±
,o=K'(cy±,c)) with K' =  G'  (1 K. Then they are GI-                 o o 

orbits in G.DefineLk similarly as in (6.1), then, 

                          

( w±
90 

since  [K':  K'D  .  2Q-19 we have 

(6.12)= 2Q -1Ind'FL                                   G'       w± 0 ±
,0

Consider now the reduction from  G' =  G"Zo to G". Note

 /".

that we have G" X  Zo, or more exactly, an irreducible 

character of  G' is of the form  n  x  X , where  n7 is the

                           /•\

character of class  'y  E  a",  and  9( E  Zo. We will get in the 

sequel an expression of ptoon  G" by means of  n (yE 
                                   ±,o

 G") of the form

               r.„)±,0n,  dV(T),  (6.13) 

                                                    7 where V is a signed measure on  G". Then we get on  n =  G"Zo 

(6.14)(1Ix?C) dV(y)Z(9), 
 ±,o G" Zoo 

where  V is a  Haar measure on  Zo normalized in such a way
that 0 

(6.15)  z  
zT(z) X(z) dz dVz(1) =T(e) (cp E  07(Z0))9
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where dz  is .a Haar mesure on  Zo fixed to give a Haar measure 

                                             G on  G' =  G"Zo' Note that the decomposition ofIndG'                                               'yX  2C)

into irreducible characters of G' is easy for  y appearing 

in (6.13)  (cf.  §8). Then (6.14) gives immediately the  Fourier 

transform of  1-1,) by (6.12). By a similar reason, the  reduc-
tion by (6.8) from G'  to G is easy.

    Since  G" is a direct product  of  SL(Ni,  IR), 1 j Q, 

we are  row reduced to the following case: G = SL(N,  IR), N = 2n, 

 R = (n, n),  01. =  K(.2±) with  1/± =  1N  +  , 

            r  10 X 
 (6.16)  s = :  X  E  yl(n, R), det X  0 or  <  0 

 `On On,

 §.7.  A 

 7.1.

(7.1) 

and put 

with  g _1

such that 

 define 

ponding 

give a  c-

limit  ex pression  for

 Let  X.Y.H GL  X0,o'o

 [0  1 

            n 

 Xo9Yo = 
    00      O

nn

 Z  =  X  -  Y  Then  0
 0-o-  -  +

 =  diag(-1,  1N-1), and 

 CXo' Yo] = -2Ho. Let

 defined  by  X  -3  -tX  (X  E

 Cartan  decomposition.

give a  invariant  Cartan  subgroup 

one-parameter subgroup  z(C) as
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 1-to

be

 O
nOn' 

 10
n, 

=  i(G)(exp 

 X0,  Yo,

a be a

 and  = 

Put  z(0) 

 OUD B of

 ollows:

 1--ln On   H =--  H
o2  0

n 1n)

 X0),  0 _  i(g_1)0+ 

Ho)1is a Lie triplet

Cartan involution of 

k +  2 , the corres-

exp  OZ  E  K. We 

G containing the 

b  E B is expressed



as b =  bKbp, where 

                °x 
 bK=exp X, X = 

             n I 
                    (-X 0_ 

                                       , x =  diag(01,02,...,011),

(7.2)  n• 

         b = diag(eti,et2, ...,etn,et1,et2,t) 9L;4-

    Let  G be the centralizer of the one-parameter subgroup 

z(e) in G. Then there exists an invariant measure  d7  GE = 

 gGz) on  G/Gz.' Put for f  E 

(7.3)  If(e)  f f(gz(e)g1) 
                   G/Gz

Theorem 7.1. For f  C7G),
2

 lim  On  If(e) = c1 10
+ (f),  8-*+0 

where c1 is a constant depending only on the normalization of 

the invariant measure  d7 on  G/Gz.

 Befol-e proving this theorem, we give a result of Harish-

Chandra giving an expression of If(e) as a limit of his func-

tion Ff on B. Let  us  recall the definition  of Ff in our

case. For a moment9 let H be any Cartan subgroup of  G, and 

hethe complexification of the Lie algebra h of H. We 

define for a linear form  8 on hc, if possible, a character 

                    = e8(logh)(h^ (c.)on H by6(h)H), where log h denotes 

an inverse image of h under exp:  he  —4  Ge = SL(N, C). Intro-

duce in the root system of  (e,  he) an  order, and let SR

denote the set of all positive real roots in it. Let p be
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half the sum of all positive roots, and put

             = P
a(h)7>0 (1  - 

(7.4) 
 EIRI(h) sgn(  TT (1 -  cc(h)-1). 

 a  SR

Let H' be the set of regular elements in H. For h  E H', we

 put

 (7.5) Ff(h) .(EHAH)(h)1) )  dg  , 
                 f G/H 

where  dg  (Z = gH) denotes an invariant measure on G/H. For 

H = B, we denote  F13, simply by Ff. Note that  B is funda-
mental in  G in the sense of Harish-Chandra, and  SR =

for B.

    For  a. y  E B, let  Py be the set of positive roots a of 

 (.ac'  ) such  thata(y) = 1, and  G the centralizer of y 

in  G. Denote by Ha the element of  be such that 

Tr(ad Ha ad  X)  =  a(X)  (X  E bc), and  by a) the differential 

operator on B corresponding naturally to  H
a. Let  D be the 

product  of  D(Ha) over a  E  P  , and  dA  (A =  gG  ) an invariant 

measure on G/GY*Then Lemma  23 in  C2a] says that

 lim  (D,Ff)(b)  = C2 p(Y)  (  1  (1a (7r1 )1 f ( gyCl )dA, 
10-4y r G/G 
 lo  E  13'  a  e  P  Y

where  02 is a positive constant depending only on the  normali-

zation  of invariant measures.

   Now let y z(e), e  / 0 sufficiently small. Then  Gy 

Gz.Putforb=bepin(7.2),.(b)exp(t+ie.),  aj+n(b) =          aj.

 -  119-



 exp(t  -i0  ) (i =  j=1). Denote by  ajk the root a for which

 cc(b) =  aj(b)ak(b)-1. We introduce an order such that  a>  0 

if a =  ajk for some j  < k. Then  P1 =  PZ, where 

 (7.5)  Pz =  ;1..j<k..._n  or  n+1  aal.

 We  sunmalize the obtained formula in  tine form of a theorem.

Theorem 7.2. Let  0  X 0 be sufficiently small. Put

(7.6) DZ = TT(1-1a). 
                   a  E  P

Then

              4 n2 -1)6-                                   f(
gz(ogg.   lim DZFf(b) = c2(eie- e) 

 b->z(0)"G/Gz 
 b  e  B

Combining Theorems 7.1 and 7.2, we get the following.

Theorem 7.3. For f  E  C7(G),
2

 (7.7) - lim  lim DZFf(b) =  cic2(2i)n !s40 (f). 
 0-+0  bz(0)•

 be  B'

7.2. Proof of Theorem  7.1. First we give a decomposition

of  G such that  G = K  exp(w)Gz, where w is an appropriate 

subspace of  2., and write down an invariant measure on  G/Gz 

by means of K and w. Let  az be the Lie algebra of  Gz, 

then  az =  kz +  Ez with  kz =  k  naz  '  2z =  2.  r‘E.,z. Denote by 

     the orthogonal complement of  2z in  2. with respect to

the Killing form. Then, using a result of  G.D.Mostow  [6,  Th.3], 

we have the following.
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Lemma 7.4[la, Prop.4.43.

expressed as a direct product 

   Put  Kz =  Gz K, then  Gz

the desired decomposition of

 z such that Ad(KZ)w =. 

                          Z

elements of the form

As 

as

 G,

an analytic manifold, G is

 G K  exp(zzl)exp(Ez).

 Kzexp(2z). Therefore, to get

we look for a  subspace w of

The space Ez_L  consists of

(7.8)= [ xyl                          ,tx x,ty=  y, x, y  EE1(n, 
 y-x) 

We take as w the space consisting of  WE  2.t such that 
            r T O

n- 
(7.9)WT = diag(ti, t2, tn), 

            0  -Ti
T = diag(ti, t2, tn),

 n

and put

 w'  W  E  w  (t,2  -  tk2)  /  0/  , 
 1  j  <  n

(7.10)           w•+=  (WEw ;  ti  >  t2>  >  t n>0I. 

 Lemma  7.5.  Let  (1)  be  a  mapping  from  Kz  X  w  to  EZ-L-

given  by  cp(k,  w)  =  Ad(k)W.  Then  y  is  differentiable,  and 

everywhere regular on  Kz)( w'. It is  surjective and 

 y(Kzx  w')  is  open  and  dense  in  2z1.  Moreover  cp(Kzx  w') 

 y(KzX  w.'1_),  and  y(ki,  W1)  =  y(k2,  W2)  for  (ki,  Wi)  E  Kz  X 

if and only if  Wi  = W2,  ki-lk2  E  DK, the group of diagonal 

elements in  Kz°

Proof. For  Q E  kz, R  E w, we get 

 dy(k,w)(Q, R)  7Ty(kexp(tQ), W +  tR)(t=0

IR).

 wt 
 -+
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               = Ad(k)(ad(Q)W + R). 

After simple calculations, this gives us the regularity of  y 

on KZX  w'. 

 -

    Let us prove that  cp is onto, Let X E  2 ., then  X e Ez1 

if and only if XZ-ZX, i.e., ZXZ-1  = -X. Therefore, for 

 X  E  piL, we can  find  a  k  E  K and  We'W such that

         (T 0 

Ad(k)X, T diag(ti, t2, t
n).          On -T1

Here  ttl, t2,  tn,  -t1,  -t2,  -tn is the set of all 

eigenvalues of X. Putting gZ =  ZgZ-1  for g  E  G, we have 

 Ad(0)X = W, whence for  £  Ok-1,  Ad(/)W = W. Therefore, for 

W E w',  / is diagonal. Since  /Z =  2-1, we have  / = 

 diag(E/,  E2,  ...,  En,  El,  62, ...,  En),  Ej = ±1. We can find 

m  E K such that  /  (mZ)-lm and Ad(m)W  E w'. Thus  (mk)Z 

 mk, i.e.,  mk  e  Kz, and Ad(mk)X = Ad(m)W  6  w'. This proves 

that  y(KzX w') is the set of all regular elements in  pz-L. 

On the other hand,  Image(cp) is closed, because  KZ is compact. 

Hence  Image  (cp) =  l-,that is,  cp is  onto.

The rest of the lemma is easy to prove. Q.E.D. 

Lemma 7.6. The mapping  p o: (k, W, k exp(W)g from

KX1NXGZto G is differentiable  and surjective. It is 

          regular on K  X w'  X  Gz and  y o(KXw'X  Gz)  yo(Kxw:FXGz) is 
open and dense in  G. For  (ki,  Wi,  gi) E K x  x  Gz (i  = 1, 

 2),  yo(ki, W1,  gl) =  y o (k2, W2, g2) if and only if W1  =  W2, 

 kl = k2z,  gl  z-1g2 for some z  E  DK'
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    Proof. Surjectivity follows directly from Lemmas 7.4, 7.5. 

 Regularity is easy to prove. Now assume that  klexp  (Wl)gl = 

k2exp(W2)g2.  Put k =  k2-1k1, g =  g2g1-1, then k  exp(W1) = 

 exp(W2)g = h  (put), and so

                  .0nDI2=OnD22        hZh1Ad(k) 
              DT2 On D2                             2 0n 

where  D1, D2 are diagonal matrices of degree n such that 

exp  Wi =  diag(Di,  Di-1). Since  vvie  w_io we see that k must 

be diagonal and in  DK. Hence  W, =  W2 and k = g  E  DK.

 Q.E.D.

    By this lemma, an open dense subset of  G/Gz  is naturally 

diffeomorphic to  K/DK  x  w!l_. To get an invariant measure on it, 

we use the following  lemma.  That t = (t1,  t2,  tn), a(t) =

exp W for W in  (7.9), and

 (7.11)  Dt+ t = (t1, t2,  tn);  t1 >  t2>.  >tn>  0/  .

Lemma  7.7. A Haar measure  dg on G is given as follows:

for f E C6e0(G),

   Cf(g)dg = c3f f(ka(t)gz)pw(t)dtidt2...dtn dk dgz,    GG fKZ ,D--Ft' 
where c3 is a positive constant,  dgz denotes a Haar measure 

on GZ'and, with sh x =  (ex -  e-x)/2,

            2+n - 
pw(t)  = 2n4-n- 7 sh(2ti-2tj)sh(2ti+2t4) sh  2t' 

       1<i<j‘ nd  1  ,Q,  n 

 Proof. For g  E G, let  Og  -- (dg. .) be N X N matrix 
                                      ij

whose (i, j)-component is the differential of (i,j)-component 
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 gij of g.  Put  81g =  g18g. Then every component  Olgii of 

 g is a left invariant 1-form on G. The exterior product 

 POlgii over all (i, j)  / (2n, 2n) is a non-zero left inva-

riant form on G of degree dim  G, whence it determines a

Haar measure on G. Similarly the exterior product  P\81(gz)ij 

(resp.  A81kij) over (i, j) such that  1  .d.<n,  1E:j 2n, 

(i, j) (n, n) (resp.  l‘i<j  4  2n) determines a Haar measure 

on  Gz(resp. on K). For g =  ka(t)gz, we get at k =  gz = e,

 81g1 =  a-1811d a +  81a +  81gd  , 
 k=gz=e  e e 

where a  = a(t). Note that

 81a =  diag(dt1,  dt2,  dtn,  -dt1, -dt2,  -dtn) 

 t(6
1k) = -  61k,  (51gz.Z =  Z.81gz.

Then we can calculate the Jacobian at k  =  gz e, which is 

equal to  pw(t). This proves the assertion of the lemma. Q.E.D.

    Note 7.1. When dg,  dgz are given as indicated in the 

above proof, the constant  03 is given by  03 =  IDKIv2n = 

 2nv2n, where  v2n is the volume of K = SO(2n) with respect

to the measure on K indicated above.

   Corollary. An invariant measure  d7  CE  gGz)  on  G/Gz 

is given as follows: for  y  E  C°(:(G/Gz),

             IDK/T(ka(t))pw(t)dtidt2...atndk. /ZKDt
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 2

Using this result, we calculate the limit of  On  If(e). 

Lemma 7.8. For f  e  C7G), put fK(g)  =  f(kgk-i)dk. Then

 2y 1 Y 

04+                1 
lim0en If(e) =2171f(n1j) po(y)dyidy2...dyn, 

         y,D0nn

where Y = diag(y) with y = (y1, y2, ...,  yn), and  D; is 
similar to (7.11) for y, and further 

(7.12) Po(Y) =             1I<(jn)•                      Y22i -

    Proof. In the definition  (7.3) of  If(e), insert the above 

expression of  d7. Then we get

 If(0)IDfK(a(t)z(e)a(t)-1)  pw(t)  dtidt2...dtn. 
            KID+ 

 Put  sj =  exp(2y, S =  diag(s1,  s2,  sn), and  yj =  Osi, 
Y = diag(y1,  y2,  ...,  yn). Then

 1 
 '  cos(0)1n sin(e)S) ( In Y 

   a(t)z(e)a(t)=........4 

 , 

                    ---sin(e),S-1cos(8)1
n 0n 1n 

as  0•-> +0 for any fixed  y =  (Y1,  y2,  •.., Moreover• 

dyj= 2y.dtjand 
 2

 en  Pw(t)  --4  2n-1P0(Y)Y1Y2...Yn.

This gives us the desired result by a simple argument. Q.E.D.

Now we rewrite 1with  0+ = K(.521,). Recall that for
f e cc7G), 

                                                   X (7.13) 1-to (f)  = fK(n(x)) dx, n(X)  = ( n 
 DX 0

n 1n
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where  DI  .  (xu)eja,l(n,  R); det  X>  03, and dX = TTdxii. 
                                                                  i,j

Let  K'=  V1P(p) with  p = (n, n), then k e K' is given as k = 

diag(u, v), u, v  e 0(n), det(uv)  = 1, and  kn(X)k-1 =  n(uXv-1) 

   Lemma 7.9. Let  pi be a mapping  from K' x  D; to  DI 
given by  pi(k, y) =  uYv 1 with Y = diag(y). Then it is 

everywhere regular and the image  pi(K'XDy+) is open and 

dense in  D. For (k, y), (k', y')  E K'  x 'D+y1(k, y) 

                                        y 

 pi(k', y') if and only if y  y',  k-ik'E DK.

The proof is easy and so omitted.

Lemma 7.10. The measure dX on  DX is expressed as

follows: put k' = diag(u,  v-1) E K', and denote by dk' the 

normalized Haar measure on K', then for  4)  e en*,

         4)(X) dX = c4
K,4)(uYV)  Po(Y) dyidy2...dyn  dk',    rDXD y 

where 64 = 21DKIvn2 = 2n+1vn2 with vn similar as v2n in
Note 7.1.

Proof. Let X = uYv, then we have at u = v = e 

     6X1u=v=e =  6u1e Y +  6Y + Y  6v1e

Noting that  &ale =  61ule, we can calculate as in the proof of 
Lemma 7.8 the Jacobian at u = v = e, equal to  po(y). Q.E.D.

Applying the lemma to (7.13), we get the following. 

Corollary. Let Y = diag(y) for y =  (y1, y2, ...,  y n).
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Then for f  E  C7(G), 

 (7.14)  (f) =  04 f(n(Y                                  ))p0(y)dyldy2...dyn.

 y

Proof of Theorem 7.1. The formula in the theorem follows

from Lemma 7.8 and (7.14)  with the constant  Cl  (042n+1)-1 

 (211+1vn)-2.                      Q.E.D.

     Fourier transform of V.                              10

To get the Fourier transform of 1A-, we apply the expres- 
                                                       ,,±

sion (7.7) of  (f) by means of  DzFf.

 8.1. First of all, we study the symmetry of the function

 Ff on  B7.  Put W =  NG(B)/ZG(B) and  W =  N,6(B)/Z,5(B), where 

 NG(B) and ZG'(B) be the normalizer and the centralizer of B 

in  G respectively, and similarly for  -A-(B) and  Z,6(B). Let

 aj(b) for b E B be as in  §7.1. Then for w E  W, there exists 

a permutation a of  -(1, 2, ...,  2n). such that  aj(wb) = 

 ac(j)(b). We denote w by  w5. We consider subgroups  Wo, W1 

and W2 of W consisting of elements  wo, for which 

(8.1) for  Wo: a(n + j)  = n +  o(j) (1 j  G n), 

(8.2) for W1 (resp. W2): a is a product of even (resp. any)

       number of permutations aj =  (1,  n+1), 1j n. 

Put w1 = wa
lwith of= (1, n+1), then 

(8.3)  w1b  (b  E B).
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Lemma 8.1. The group W is generated by  We  and  Wl, and

 W=WL1w1W.

    Let sgn(w) be the usual sign of w  E  W as an element in 

the Weyl group of  (Le,  be), then sgn(w) = 1 on W and 

 sgn(wi) = -1. The symmetry of Ff is given in the following. 

   Lemma 8.2. Let  f  G  07(G) and b E  Bt. Then

 (1) Ff(wb) =  sgn(w)Ff(b) = Ff(b) for w  e W, 

(2)  Fi(g
_i)f(b) = - Ff(w1b),

(3) let  (I) = f  i(g -1)f, then  F,(wb) =  F4(b) for  we  W. 

 Proof. Recall that SR =  0 for B, then (1) is easy to

see. For (2), we apply (8.3). Finally (3) follows from (1) 

and (2). Q.E.D.

8.2. Let H be a Cartan subgroup of  G with Lie algebra

h. Here we recall some properties of  41 given by  Harish-
Chandra([2a,  Th.2]  and [2b,  Lem.40]). Denote by  SI the set 

of all positive  singular imaginary roots of  (a c, he),  and put 

 H' = h  E H;a(h)/ 1 for any a  E  si  .

Lemma 8.3. Let f  E  e(7(G). Then the function  Fiti,  on H'

vanishes outside a  bounded  subset, and can be  extended to a 

function on H'(I) which is, on every  connected component of 

H'(I), equal to the restriction of a  C°°-function on its  closure. 

Moreover, for an a  E:H and a  polynomial P of  D(X),  X  E  he, 

assume that  s aP  = -  P for any a  E  SI such that  (3c(a)  , 1, 

where  sa denotes the  reflexion corresponding to a. Then

— 128 —



 PI' can be extended to a continuous function arround a. 

   Consider  Ff on B'. Then the set  SI for B is given

by  C  ai ,n+j; 1  j'..�11)- and  'a(b) =  exp(2i0j) for b in 
(7.2) and a =  aj ,n+j. Hence by Lemma  8.3, Ffcan be consi- 
dered as a  C"°-function on  B'(I) = b;  0i / 0 (mod.  R) for 

1 j . Further we have the following.

 D

Lemma 8.4. Let  (1, = f -  i(g -1)f. Then  F, =  F can be

extended to a  e'-function on B, and  F = 0 for any Cartan

subgroup H not conjugate to B under G.

 Proof. For the first assertion, we prove  here. that  Ff 

can be extended to a  C°-function arround the unit element e. 

 Arround other non-regular lements, the proof is similar.

Remark that F(I)is even in every 0by Lemma 8.2. Then it 
follows from this that F(I)can be extended to a continuous 

function arround  e. Note further that  -;00 is a constant 

multiple of  '(Ha) for a =  aj
,n+j' Then, by Lemma 8.4, 

(D/DOj)F(i)can be extended to a continuous function for 

 0203'n 0,  01,  82,  ...,n sufficiently small, and again

by the above remark, so does it arround e. In general, let P

be a monomial of -:`01/0., D/dt. (1  4 j n), then the extenda-

bility of PFf arround e follows from Lemma 8.3 and the above

remark similarly.

For  the second assertion, it is sufficient to remark that

for h E H,  i(g _l)h is again conjugate to h under G. This

in turn can be seen for instance from the explicit form of H 

given in  [5c,  Exemple  3.3]. Q.E.D.
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    8.3. Here we study the Fourier transform of the  e°-function 

DZF4Jon B with(1)= f - i(g -1)f. Denote byZthe set of 

all integers, by  'I° the  quotient  R/2nZ, and by the hyper-

plane of defined by  p1 + p2  + +  pn = 0 for p =  (pl, 

 p2,  Pn) E  Rn. Let m =  (ml, m2,  ...,  mn)e  re and p  e 

 R101. We put for b  G  B in (7.2)

(8.4) e(m, p; b) = exp(i5:(m.8.+p.ti)), i =,j-l.
1jlaJ3d 

Note that t1+ t2.•+. +  to = 0 for b e B, and so B is 

isomorphic to  Tin x  RI01. Then  Zn  X  Rr
ol can be identified with

the dual group of B, and the action of w  E W on B induces

the dual action on  riZ,n  Ro :  e(m p;wb) =  e(w-1(m, p); b).

Now put

(8.5) d(m, p) = DZF(b) e(m, p; b) db, 

                    B where db = de1de2'..dendt1dt2'..dt
n-1' Then, since F is                                                                   (1) 

in  C7(B) by Lemmas 8.3 and 8.4, we have 

(8.6) DZF(1)(e) = n(2n)-2n+1d(m,  p)dpidp2...dpn _i, 
                                 m°Z,n/Rn

where the right hand side converges absolutely. For n = 1,

   =  {0} and the integration disappears. By Theorem 7.3, 

this gives an expression of  tAb  (4))  = (f) -  Pb (f), which

will be rewritten in the following.

    Since  F(1) is in  C°:(B), we have by integration by parts, 

(8.7) d(m,  P) =
B F (b)D e(m, p; b)db = pz(m, p)d(1)(m, p),
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where

 2 

(8.8)  pz(m, p) =  (8n)-n  +11I ((m•-mi,.)2+(Pi-Pk)2), 
                  1.,j<n- 

and for f  E  eo°(G), 

(8.9) df(m, p) Ff(b)e(m, p; b)db. 

                    B

   Note that Ff(wb) = Ff(b) for w  e W by Lemma 8.2, then 

we have df(w(m, p))  =  df(m,  p), whence 

(8.10)  df(m, p)  -1-  /7, df(w(m, p)) 
 weW

 1  Ff(b) e(w(m, p);  b) db. 
 B  WEW 

Hence for  (1) f  i(g -1)f, 

(8.11) d (m'p) =F(b)Ele(w(m, p); b)  db. 
 01" Bf 

w 

The meaning of  df(m,  p),  d ,(m, p) will be seen later. Note 

that  d(1)(w(m, p)) =  d(m, p) for w  e  (Ili, and  pz(w(m, p)) = 

 pz(m, p) for w  e  Wo, then

 d(w(m, p)) = IW0Ip'(mp)  d  (m,  P) with            -ki
?  w  eiii 

(8.12) p(m, p) = 77 ID (w(m' P)). 
                                       we  W2

Note that any element  we W is expressed uniquely as w 

 w2wo with w2  e  W2,  wo E  Wo, and that wp =  wop. Then we get

from the above equality

 1g  >  p(INJ,m,  p)c14,(w(2)m, p) =  TNT vvoi  e  wo
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=   d(w2w oo'w'mwop) 
 w2 WwW/Ei      2o'oo

                   d(wvv'mwp). 
                   2o'o  w

2E Www,W       2o'0-0

For m  E  Zn, put  W0(m) =  tw  E  Wo; wm ,  W2(m) = E  W2; 
 wm =  m . Then W2(m) =  2d(m) with d(m) =  #0; m.  . 

Let  m1  7  m2  inn? 0 and integrate the both sides above 

with respect to dp =  dpidp2...dpn _i over  D+p  C  Eno defined by 

 pi. p2 > >  pn• Then we have

1W01 11410(0  p)d  (m‘  p)dp 
            m'e Wm         o 

p 

            =  1W0(m)1  d(wom,, p)dp 
 w2EW2 m'e  W0m  IRn 

                                                            0 

 NI0(0 Ivy,/E  n d(m", p)dp. 
                                   m" Wm  Rio

 Therefore, using Theorem 7.3, we get from (8.6) 

(8.13) H0((1))c 2-d  (M)p(m, p)d (m,  p)dp. 
   + 5  m6 Zn _ D+.4)

 0

                                      (cos  0 sin 0) 8.4. Let G2 = SL(2, R),  B2 =  b(0) =                                            -sin  0 cos 0)

For the character  i of an irreducible unitary representation

 of  G2' put  k(b(0)) =  (b(0))n(b(0)) with  (b(0)) =  eie 
 -i0 
e.Then we know (see for exemple  [5c,  p.51)) that for any

 non-negative integer c, there exist two equivalence classes

 Dc+1 and  Dc+1 of such representations such that

for D++1'ck(b(0))=eice°for D-+1' k(b(0)) =  e-ice. 

c
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    Now, for G = SL(N, R), N = 2n, we consider a parabolic 

subgroup  P((3o) corresponding to the partition  po = (2, 2, 

 ..o, 2) of N. Then  S(13o) consists of elements of the form 

(8.14) s =  diag(si,  s2,  sn);  sj E GL(2,  R),

 det(s1s2''.sn) = 1. 

Let  So be the connected component of e in  s(p0), then for                                      t. 
 s  e  so, we havesj =  e3s! with t,ER,  s!  E  G2.  Denote 

again by  Dc+1 certain elements in the classes  D
c+1 respec-

tively. We consider a representation U of  So given by

 U(s) = eiP1t1D+iP2t2+ipt 

                                                    n 

                                         n+(sn ''                 m+1(s1)0 eDm
2+1(s')0-00eDmn+1' 

                1 where m. 0, and p. e R with  p1 + p2 +  o
n =  0. 

Let U' =  Inds(p)  U , and extend it to  P(p0) by putting
 0

U'(g) = identity for g  e  N(p0).  Then, inducing it to G, we 

get a unitary representation T(m, p) of  G. We define another 

representation  T°(m, p) by T'(m, p;g) = T(m, p;  i(g _i)g).

Then they are always irreducible and their characters can be 

calculated by Theorem 2 in  [5a,  p0358]. Note that an s in
 t.

 (8.14) with  s = e  b(0  ) is conjugate under  G to b or 

 wlb =  i(g _i)b for b E B in (7.2), according as  En/21 is 

even or odd. By this reason, we denote T(m, p) and T'(m, p) 

by  T+(m, p) and  T-(m, p) when  En/2] is even, and by 

 T-(m, p) and  II-1-(m, p) when Cn/2] is odd respectively.  Let 
 ~(m

,       p) be the characters of  1I(m p) respectively and put 

 k±(m, p; b) =  2(b)n±(m, p; b) for b  E  B'. Then,

 —  133  —



 k+(m,  P; b) =   e(w(m,  p); b), 

(8.15) wEW
 k(m,  p; b) = -   e(w(m,  p); b). 

                  wW                    1

We say that this series of representations is associated to B. 

    On the other hand, there exists a positive constant  cB

such that for f E  C°0`7(G) 

                    r ( 
(8.16)1B12db  dg,                             f(gbg)1p(b)1       ri(G)B'f(g)dg = cB  )13  G/B 
where g =  gB. Note that the complex conjugate of pIIB(b) is 

equal to  (-1)ne(b). Then, by the second assertion of Lemma 

8.4, we get from (8.15), (8.16) the following: put

 n±(m,  p; f) =  c  f(g)R±(m,  p; g)dg = Tr(  C  f(g)T±(m,  p; g)dg ), 
and  (4) = f -  i(g -1)f, then 

(8.17) e(m,  p; f) - Tc(m,p; f)

=  cB(-1)n Ff(b)   e(w(m, p; b) db 
 W 

=  cB(-1)n1W1(m'  p) (by  (8.11)).

    Thus, by (8.13) and (8.17), we get the Fourier transform 

of  -0 as follows.

Theorem 8.5. Let  G = SL(N,  R), N = 2n, and let tA,be 
                                                             '±

the invariant measures on the unipotent orbits 0± =  K(/1 .1) 

given by (6.1). Then the Fourier transform of -  1-40  is

 given  by
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 tcI         =cl2-d(m)  +(m4-(m, -  n(m,  0)x 
 m  etzn  JD 

 m..>  0                                    xp(m,  p)dpldp2...dp n_1,

where c is a constant depending only on the normalization of

the Haar measure on  G, d(m) 1-#.j; m. 01 for m =  (ml,  m2, 

    m ),D+is a subdomain ofRo =  ip =  (pr, p2,pn); 
   np 

 pa. +  p2 + +  pn =  01 defined by  p1  >  p2>  pn,  and 
 (m, p) are the characters of irreducible unitary represen-

tations  T±(m, p) of  G, and p(m, p) is given by  (8.8), 

 (8.12). In particular, for n 1, the above formula should be

read as

 tA0  -  ro =  c  2-d(m)w(m) -  n(m)), 
 +  -  ME  ̀ Zoi,  0 

where  a±(m) denote the characters of  Dm+1 respectively.

    Remark  8.1. The representations  T±(m, p) with  m 0 

for some  j (resp.  D1 if n 1) do not appear in the Planch-

rel formula for G, but they appear here in the Fourier trans-

form of '(10

                                                                     ,G     Remark  8 .2. As is remarked before,V  10+ r,o =imup(p)  6e  , 

 + 

 - where  5 e  denotes  the  Dirac's  distribution  at e on  s(3),  and 

its Fourier transform is obtained from the Plancherel formula

for  SO)  =  ((gl, g2);  gl,  g2  E R),  det(gig2)  =  1  1. The 
contribution to it from the characters m±(m, p) of represen-

tations T±(m, p) of the series  associated to B is zero if 

n is odd, and is given as follows if n  =  21 is even:
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c'E f 
     z,(n+(m, p) + Tc(m, p))q(m,  p)dpidp2...dpn_1, 

            + 

  m E ,n Dp
 m.  >  0

where c' is a constant depending on the normalization of 

 Haar measure on G, and

(8.19)  q(m, p) =  21:  wq0(m, p) with 
 wEW

 0

 qo(m' p) = 1  m. 
 1<j j  3

 X((m._m1N2,„,2 
    1‹j<k4,tk2.(jPi-Pk)Mmil-mk)/-(Pj-1-13k)2)'
or  i+1  j  <  k  n.

the
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the Lie algebra  up of the unipotent radical  Up of P.
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A special meaning of this type of  nilpotent elements in Springer's 

theory of representations of the Weyl group of  G, can be seen 

in  [14, Proposition  1.4]. A unipotent class in  G is called in 

 [13] "Richardson class" if it has the analogous property for  Up
of some P. We note here that the necessary and  sufficient 

 condition)given in  45 for type C, that a unipotent class should 
be a Richardson class, can not be expressed in a simple manner 

by means of its weighted Dynkin diagram (cf. [11, p.263]).
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