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1.Introduction 

The visual system has the most complex neural circuitry of all the sensory system 

(Kandel, Schwartz, & Jessell, 2000). There is no doubt that vision is one of the most 

important sources of the sensory system. When considering the visual system, one must 

acknowledge that visual information is provided through both central and peripheral retinal 

areas, each specialized for processing specific types of information (Sivak & MacKenzie, 

1992). Resolution of an object is low in peripheral vision. This fact does not mean that 

peripheral vision is inferior. Peripheral vision is used for organizing the spatial scene, 

whereas central vision is optimized for fine details. 

A number of investigators have provided evidence that visual information is 

divided into two different cortical streams (ventral and dorsal). The division of visual 

information is traditionally separated into object and spatial vision (Mishkin, Ungerleider, 

& Macko, 1983) or color/form and motion vision (Van Essen & Maunsell, 1983) or 

perceptual identification of objects and sensorimotor transformation for visually guided 

actions (Goodale & Milner, 1992). The division can be traced back to the retina, where 

light is transduced into neural signals. The Ietinal ganglion cells can be subdivided into 

two different types: one of these two subdivisions terminates selectively in the 

parvocellular layer, while the other terminates in the magnocellular layer of the lateral 

geniculate nucleus (DeYoe & Van Essen, 1988; Livingstone & Rubel, 1988). Finally, 

'ventral stream' of projection eventually reaches the inferotemporal cortex, while 'dorsal 
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stream' terminates in the posterior parietal region (e.g. Goodale & Milner, 1992). It 

should be noted, however, that these two streams will often be simultaneously activated, 

thereby providing visual experience during skilled action (e.g. Goodale & Milnet, 1992). 

Ability to detect or recognize a visual stimulus can be analyzed by measuring 

reaction time (RT). RT is one of the many variables involved in psychomotor skill, and it 

is a prime determinant to evaluate psychomotor performance. Compared to literatures 

about RT for the central visual field, the number of studies which have shed light on RT for 

the peripheral visual field is few. RT for the peripheral visual field is longer than for 

central visual field and increases with increasing eccentricity (Rains, 1963; Berlucchi, 

Heron, Hyman, Rizzolatti, & Umilta, 1971; Osaka, 1976; Arkin & Yehuda, 1985). Cones 

are concentrated in the central portion of the retina and sharply decrease toward the 

periphery (0sterberg, 1935; Curcio, Sloan, Packer, Hendrickson, & Kalina, 1987; Curcio, 

Sloan, Kalina, & Hendrickson, 1990). The increase in RT with increasing eccentricity 

would be regarded as an expression of the gradual decrease in the relative cone density of 

the retina (Rains, 1963; Osaka, 1976). 

Performance in ball sports would b~ closely associated with both physical and 

psychomotor skills. Although psychomotor skill is just one aspect of performance, the 

key difference between good performance and poor performance may be psychomotor skill 

as well as physical skill. During sports activity, we use peripheral vision as well as 

central vision to see what is happening. The ability to respond quickly based upon 
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peripheral visual information would be a contributing factor to good performance in most 

sports. It is, therefore, important to psychophysiologically evaluate the RT for the 

peripheral visual field. 

In ball sports such as soccer, players must pay attention not only to a moving ball 

but also to other players in their visual fields. Soccer players are required to make a 

quick decision and start to move as fast as possible on a basis of peripheral as well as 

central visual information. Therefore, soccer players would be required to have good 

peripheral visual perception. The visual demand on soccer players makes it tempting to 

suggest that soccer players may have superior peripheral perceptual abilities to nonathletes. 

Firstly, we have investigated whether soccer players have desirably high peripheral 

perception using RT measures. 

People can acquire new motor skills and improve them with practice. Many 

researchers have reported that simple and choice RT decreases with practice within the 

area of the central visual field (e.g. Proctor, Reeve, Weeks, Dornier, & Van Zandt, 1991). 

These studies suggest that people can improve the speed of response to the stimulus 

presented in the central visual field. This would lead us to consider that RT for the 

peripheral visual field also decreases with practice even in a simple RT task. However, 

there is no study investigating the practice effects on RT for peripheral visual field. 

Moreover, we are curious whether or not the practice effects on the RT for the peripheral 

visual field extend to the RT for the central visual field, and vice versa. In the second 
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study, we examined the practice effects on the RT for the peripheral and central visual 

fields and potential transfer effects. In addition, we investigated whether the practice 

effects established on the RT for the peripheral visual field are retained after ~retention 

interval once RT for the peripheral visual field decreases with practice. 

We usually pay attention to the stimulus to which we are looking in the visual 

field. Posner (1980) proposed that orienting of attention as a central mechanism allows 

people to orient to a cued location in the absence of eye movement. Attention is 

controlled by partially segregated networks of brain areas (e.g. Corbetta & Shulman, 2002), 

and can be narrowly or widely focused depending on the task demands (e.g. Posner, 1980; 

Eriksen & St. James, 1986). Since objects in peripheral vision appear in low resolution, 

spatial attention would play an important role and it is meaningful to evaluate how 

attention can be distributed in the peripheral visual field. Thirdly, we have investigated 

using RT measures whether attention can be evenly distributed within the large area of the 

visual field, including both central and peripheral visual fields~ 

In competitive sports, participants are required to perform perceptual and 

decision-making tasks during strenuous exercise. Ability to maintain psychomotor skill 

during strenuous exercise is important for sports activities requiring a quick response to 

various external challenges. Since the psychomotor performance in the peripheral visual 

field during exhaustive exercise may be critical for performance in ball sports, it is 

necessary to accumulate the psychophysiological findings concerning the RT for the 
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peripheral visual field during exhaustive exercise. The purpose of the fourth study was to 

examine the effect of incremental exercise on RT for the peripheral visual field. 
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2 .Central and peripheral visual reaction time of soccer players and 

nonathletes 

We have a tendency to rely upon vision as a source of sensory information (Magill, 

1999). It is probable that vision is related to performance in ball sports. In ball sports 

such as soccer, for example, in defensive situations players must pay attention not only to a 

moving ball but also to other players in their visual fields during a game or daily training. 

A visual field is composed of central and peripheral components. Soccer players are 

required to make a quick decision and start to J.?1ove as fast as possible on a basis of 

peripheral as well as central visual information. Therefore, soccer players are required to 

have good peripheral visual perception. 

The ability to detect or recognize a visual stimulus can be analyzed by measuring 

reaction time (RT). It is known that peripheral visual RT may increase, in comparison to 

central RT, when the visual angle is increased (0sterberg, 1935; Rains, 1963; Berlucchi, 

Heron, Hyman, Rizzolatti, & Umilta, 1971; Borkenhagen, 1974; Osaka, 1976; Arkin & 

Yehuda, 1985). However, there are few studies investigating the peripheral visual RT for 

athletes involved in ball sports and in nonathletes. The visual demands on soccer players 

makes it tempting to suggest that soccer players may have inherited or developed superior 

peripheral perceptual abilities to nonathletes. 

The aim of the present study was to investigate whether soccer players have 

desirably high peripheral perception using RT measures. Soccer players must track 
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moving balls and other players in their visual fields at different distances, indicating that 

soccer players must respond to objects of ,diverse size. For that reason, we used three 

different sizes of stimuli to clarify to what extent the RT differed between soccer players 

and nonathletes measured in response to different sizes of stimuli. The three stimulus 

sizes used in the present experiment are considered to correspond to perceived ball sizes on 

a playing field. 

Posner, Snyder, and Davidson (1980) have reported that RT to extrafoveal 

peripheral stimulus was shorter at expected positions and longer at unexpected positions. 

In a game or daily training of ball sports, players are required to respond to the unexpected 

direction. Therefore, we measured peripheral RT randomly presented In near or far 

peripheral positions to clarify whether soccer players show quicker response than 

nonathletes to the stimulus presented in the unexpected peripheral positions. 

RT may be fractionated into premotor and motor components based upon the 

difference between the start of electromyogram (EMG) and onset of movement (Weiss, 

1965). To the authors' knowledge, no report has been published which measured EMG 

onset, i.e., Premotor Time, during peripheral visual RT tasks. In the present study, central 

and peripheral RT measures were fractionated into Premotor Time and Motor Time, 

corresponding to the nervous system's processing time and muscle contraction time, 

respectively. 

METHOD 
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Subjects 

Six male university soccer players and six university students (2 women and 4 

men) volunteered to take part in this study. University soccer players (M age:=::l21.5 yr., 

SD= 1.4) had an average of 9.3 yr. (SD= 0.8) of experience in playing soccer. All of 

them are intermediate soccer players (not experts). University students (M age=22.8 yr., 

SD = 0.8) had no experience of soccer or other ball sports training. All subj ects reported 

normal visual acuity either unaided or while wearing their own corrective lenses. The 

subjects were considered right handed as all wrote with the right hand. 

Apparatus 

A computer (NEC PC9821) was used to control visual stimulus presentation and 

record RT on each trial. A visual stimulus was presented on a computer screen. All 

visual conditions were conducted using binocular vision. The subject's head rested on a 

head chin rest 30 cm away from 'the computer screen (3 cd/ rrf) so the eyes were directly in 

front of and level with the position of the fixation point. The exposure duration of visual 

stimuli was programmed at 50 msec. Four intertrial intervals (2, 3, 4, and 5 sec.) were 

randomly used. They were also served as the fore-periods. The subjects responded to 

the onset of each stimulus by depressing the space key of the computer as fast as possible. 

The response key was manipulated using the index finger of the right hand. 

Procedure 

The experiment. was carried out in the following four conditions: ( I ) central RT, 
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(IT) peripheral simple RT in near position, (ill) peripheral simple R~ in far position, and 

(N) peripheral RT randomly presented in near or far position. The stimulus in all 

conditions was in the shape of a ring (14 cd/ni). The size of the stimulus was varied as 

follows: large size 8 mm in diameter (1.52° in central vision), medium size 4 mm (0.76°), 

or small size 2 mm (0.38°). 

In the Central condition, the stimulus was presented at the fixation point. The 

stimulus in the Near Peripheral position was presented at an angle of 10° to the right from 

the midpoint of a subject's eyes. The stimulus in the Far Peripheral position was 

presented at an angle of 30° to the right from the midpoint of the subjects' eyes. In the 

Random Peripheral condition, the stimulus was randomly presented at either Near or Far 

peripheral position. In all the peripheral conditions, the fixation point remained 

illuminated throughout the experiments. The subj ects were instructed to fixate their eyes 

on the fixation point all the time. 

Experimental conditions of ( I ), (IT), and (ill) comprised 20 trials for each size. 

The Random Peripheral condition (N) comprised 40 trials' for each size; 20 trials were 

randomly performed at each position. Each session consisted of a combination of four 

experimental conditions and three sizes (12 sessions) intermixed in a randomized order. 

In each session, the stimulus size and condition were constant all the time. Before the 

experiments, the subject was visually familiarized with the stimuli and given 10 practice 

trials in each of 12 sessions. 

17 



The electromyogram (EMG) was recorded from the flexor digitorum superficialis 

muscle of the responding forearm. RT was fractionated into Premotor Time and Motor 

Time. Premo tor Time was the time from stimulus onset to the appearance of the muscle 

action potential. Motor Time was the duration from muscle EMG to the key-press 

response (Weiss, 1965). 

In additional experiments horizontal components of eye movement were measured 

by an infrared reflection system (T.K.K. 2930a Takei Scientific Instruments Co., Ltd., 

Japan) from four subjects (two soccer players and two nonathletes), showing that they 

could hold their eyes on the fixation point during each experimental condition. 

Statistical Analyses 

Separate three-way mixed-design analysis of variance was used on the RT, 

Premotor Time, and Motor Time with group and size as the between-group factors, and 

condition as the within-group factor. Differences with a probability level of <.05 were 

designated as significant. 

RESULTS 

Reaction Time 

Table 1 shows the means and standard deviations of the RT. A three-way 

analysis of variance on RT yielded significant main effects of size of the stimulus and 

condition (F2,30=4.43, p<.05 and F4,120=85.53, p<.001, respectively). There were no 

significant main effects of group and no significant interactions. As no difference was 
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shown in RT between both groups, we combined the RTs of both groups. 

Table 1 Reaction Times (msec.) of Soccer Players and Nonathletes by Condition and Size of 

Stimulus 

Stimulus Group Condition 
Size Central Simple Simple Random Random 

Visual Near Far Near Far 

Large Soccer Players 
M 243 242 255 260 268 
SD 7.31 6.77 7.81 7.39 3.83 

Nonathletes 
M 246 250 260 265 274 
SD 15.63 10041 10.3 14.3 14.37 

Medium Soccer Players 
M 252 251 258 262 270 
SD 14.78 12.39 5.75 11.9 5.95 

Nonathletes 
M 252 255 270 269 272 
SD 13.81 8.57 13.05 13.27 12.73 

Small Soccer Players 
M 249 256 268 268 279 
SD 7.03 4.54 8.89 11.58 7.28 

Nonathletes 
M 260 266 273 274 286 
SD 14.25 18.88 14.01 11046 12.11 

One-way analysis of variance with conditions as between-factor showed 

significant main effects of the condition for the large size (F4,59=14.15, p<.OOl), for the 

medium size (F4,59=6.32,p<.OOl), and for the small size (F4,59=9.85,p<.OOl). 

Premolar Time 

Table 2 shows the means and standard deviations of the Premotor Time. A 

three-way analyais of variance on Premotor Time gave significant main effects for group, 
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size of the stimulus, and condition (F1,30=13.45, p<.Ol; F2,30=6.89, p<.Ol; and 

F4,120=273.43, p<.OOl, respectively). There were no significant interactions. The 

Premotor Times for the soccer players were shorter than those for the nonathletes. 

Further analyses for the soccer players and for the nonathletes were performed separately. 

Table 2 Premotor Times (msec.) of Soccer Players and Nonathletes by Condition and Size of 

Stimulus 

Stimulus Group Condition 
Size Central Simple Simple Random Random 

Visual Near Far Near Far 

Large Soccer Players 
M 167 168 182 185 192 
SD 6.98 5.37 8.57 5.34 5.96 

Nonathletes 
M 175 177 190 191 198 
SD 10.91 10.03 8.02 9.42 7.36 

Medium Soccer Players 
M 173 178 183 187 196 
SD 1l.02 14.9 6.56 1l.02 5.04 

Nonathletes 
M 180 184 196 197 202 
SD 8.33 4.22 8.04 8.88 6.95 

Small Soccer Players 
M 173 182 190 191 206 
SD 4.75 5.01 6.44 8.45 5.73 

Nonathletes 
M 183 190 198 200 209 
SD 6 77 13.52 7.57 8.72 7.97 

A two-way analysis of variance was used on the Premotor Time of each group 

with size as the between factor and condition as the within factor. There was a significant 

main effect of the size of the stimulus for the soccer players (F2,lS=4.84, p<.05), while 
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there was no significant main effect of the size of the stimulus for the nonathletes. 

Table 3 Motor Times (msec.) of Soccer Players and Nonathletes by Condition and Size of 

Stimulus 

Stimulus Group Condition 
Size Central Simple Simple Random Random 

Visual Near Far Near Far 

Large Soccer Players 
M 77 74 73 75 77 
SD 4.03 4.41 4.86 3.72 6.97 

Nonathletes 
M 71 73 70 74 76 
SD 10.07 9.39 6.85 6.97 8.7 

Medium Soccer Players 
M 79 72 76 74 74 
SD 6.41 5.05 2.07 5.28 2.83 

Nonathletes 
M 72 71 74 73 70 
SD 7.92 6.23 5.72 6.85 8.91 

Small Soccer Players 
M 76 75 78 77 73 
SD 4.94 1.76 3.62 10.8 3.14 

Nonathletes 
M 77 76 75 74 77 

SD 9.33 8.57 8.26 4.86 9.87 

A one-way analysis of variance was used for each group and for each size of the 

stimulus with condition as the between factor. For the Premotor Time of the soccer 

players, there were significant main effects of the condition for the large size (F4,29=16.53, 

p<.OOl), for the medium size (F4,29=4.33,' p<.Ol), and for the small size (F4,29=23.51, 

p<.OOl). For the Premotor Time of the nonathletes, there were significant main effects of 

the condition for the large size (F4,29=6.52, p<.Ol), for the medium size (F4,29=9.19, 
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p<.OOl), and for the small size (F4,29=7.01,p<.Ol). 

Motor Time 

Table 3 shows the means and standard deviations of the Motor Time. A 

three-way analysis of variance on Motor Time yielded no significant main effects for group, 

size of the stimulus, and condition. There were no significant interactions. 

DISCUSSION 

Many investigators have examined factors related to visual perception in 

peripheral vision such as visual resolution (Kerr, 1971), visual angle and apparent size of 

objects (Newsome, 1972), area-intensity interaction (Dwyer & White, 1974), target size 

and luminance in apparent brightness (Osaka, 1975) and information-processing speed 

(Williams, 1984). RT has been measured in central and peripheral visual fields, and the 

differences in RT to the stimulus presented to the fovea and periphery can be explained in 

terms of relative decrease of cone density function (0sterberg, 1935). Since that seminal 

work, many researchers have shown that RT to centrally located stimulus is faster than to 

peripherally located stimulus (Rains, 1963; Berlucchi, et al., 1971; Borkenhagen, 1974; 

Osaka, 1976; Arkin & Yehuda, 1985). 

The present study showed that the longer peripheral visual RT compared to the 

central one was preceded by an increased Premotor Time. Premotor Time is time needed 

to organize centrally, translate, and channel the appropriate commands to the musculature 

responsible for initiating the desired response (Fischman, 1984). That the RTs found in 
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the Peripheral conditions were longer than those in the Central condition is considered to 

reflect a longer premotor process. 

In the present study, no differences were shown in RTs in central and peripheral 

visual fields between groups. However, Premotor Times of soccer players were 

significantly shorter than those of nonathletes. It has been widely assumed that Premotor 

Time is a more valid indicator of programming time than RT (Weiss, 1965; Botwinick & 

Thompson, 1966; Fischman, 1984). This suggests that soccer players have higher 

perceptual abilities to respond quickly in peripheral as well as central visual fields. It can 

be speculated that soccer players might have inherited the peripheral perceptual abilities to 

respond quickly or developed higher abilities than nonathletes. 

Helsen and Starkes (1999) reported that no differences were shown in central and 

peripheral RTs between expert and intermediate soccer players. This seems to be 

inconsistent with our result. However, there are two differences between the work of 

Helsen and Starkes and the present study: (1) peripheral visual angle used was different 

from our experiment, (2) the study by Helsen and Starkes was aimed to compare the 

differences between experts and intermediate soccer players, while our study was aimed to 

compare the difference between intermediate university soccer players (not experts) and 

nonathletes who have no experience in ball sports. It is, therefore, considered that the 

result by Helsen and Starkes cannot be directly compared with the result of the present 

study. 
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Starkes (1987) reported that the expert sports performer's visual advantage is not 

related to the physical structure of their visual system but rather to how they pick-up, 

process, and utilize the visual information specific to their domain of expertise~ to guide 

their actions. Basic visual functioning is not the limiting factor to sports performance 

(Abernethy & Neal, 1999). Moreover, accounts of successful athletes with inferior vision 

have been reported (Starkes, 1984; ReIsen & Starkes, 1999; Williams, Davids, & Williams, 

1999). The shorter premotor time for the soccer players in the present study may not 

directly predict skilled sports performance. 

Reaction Time decreases as a function of increasing target size (Edwards & 

Goolkasian, 1974; Osaka, 1976). In the present study, the RTs and Premotor Times for 

both groups decreased with increasing stimulus size. This is consistent with the above 

previous studies. The analyses for the Premotor Times gave a significant main effect of 

the size of the stimulus for the soccer players, while there was no significant main effect of 

the size of the stimulus for the nonathletes. In the present study, the small ~ample might 

provide low power to detect a significant main effect of the size of the stimulus for the 

nonathletes. 

The experienced soccer players have demonstrated superior anticipatory 

performance to that of inexperienced players (Williams, Davids, Burwitz, & Williams, 

1994). Soccer players acquire an extensive soccer-specific knowledge base that enables 

them to recognize meaningful associations between the positions and movements of 
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players in game situations (Williams, Davids, Burwitz, & Williams, 1993). Elite 

volleyball and basketball athletes were more efficient in predicting offensive games 

(Kioumourtzoglou, Kourtessis, Michalopoulou, & Derri, 1998). In the ~ Random 

Peripheral conditions of the present study, anticipation and soccer-specific knowledge base 

were not required. Therefore, there were no evident differences for the effect of 

condition between soccer players and nonathletes. 

In conclusion, Peripheral visual RT was longer than central visual RT given an 

increment in premotor time. Soccer players showed shorter Premotor Times than 

nonathletes, suggesting that soccer players have quicker perceptual response in peripheral 

and central visual fields. 
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3 .Practice effects on reaction time for peripheral and central visual 

fields 

Vision is important for processing information about spatial location of an object. 

Ability to detect or recognize a visual stimulus can be analyzed by measuring reaction time 

(RT). A visual field is composed of central and peripheral components. It is known that 

RT for peripheral visual field increases, in comparison with RT for the central visual field, 

when the visual angle of a stimulus is increased (Rains, 1963; Berlucchi, Heron, Hyman, 

Rizzolatti, & Umilta, 1971; Osaka, 1976; Arkin & Yehuda, 1985; Ando, Kida, & Oda, 

2001). 

People can acquire new motor skills and improve them with practice. Many 

researchers have investigated whether RT decreases with practice. Mowbray and 

Rhoades (1959), Aiken and Lichtenstein (1964), Norrie (1967), Morris (1977), Clarkson 

and Kroll (1978), Proctor and Reeve (1988), and Proctor, Reeve, Weeks, Dornier, and Van 

Zandt (1991) reported that simple and choice RTs decrease with practice. More recently, 

Taniguchi (1999) demonstrated that simple RT for thumb flexion decreases with practice. 

According to these studies, it is likely that RT decreases with practice within the area of 

the central visual field. However, there is no study of practice effects on RT for 

peripheral visual field. The first aim of the present study was to investigate whether RT 

for peripheral visual field decreases with practice. 

Does the RT for central visual field decrease with the decrease in the RT for 
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peripheral visual field? Does the RT for peripheral visual field decrease with the 

decrease in the RT for central visual field? To answer these questions, the second aim of 

the present study was to investigate whether the practice effects on the RT for peripheral 

visual field extend to the RT for central visual field, and vice versa. 

METHOD 

Subjects 

Sixteen male university students (M age=22.3 yr., SD=1.4) volunteered to 

participate. They were divided into two groups (ns=8); one practiced using peripheral 

vision and the other practiced using central vision. All subjects reported normal visual 

acuity either unaided or while wearing their own corrective lenses. The subjects all wrote 

with their right hand. The right eye of 12 subjects was dominant for sighting and the left 

for the remaining four. 

Apparatus 

A computer (NEC PC9821) was used to control visual stimulus presentation on a 

computer screen and record the RT of each trial (Ando, et at., 2001). All visual 

conditions were conducted using binocular vision. The subject's head rested on a head 

and chin rest that was placed 30 cm from the computer screen (3 cd/rrf) so the eyes were 

directly in front of and at the same level as the position of the fixation point. The 

exposure duration of the visual stimulus was 50 msec. Four trial intervals (2, 3, 4 and 5 

sec.) were randomly used. They also served as the foreperiods. Subjects responded to 
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the onset of each stimulus by pressing the space key of the computer as fast as possible. 

The response key was manipulated using the index finger of the right hand. 

Procedure 

Electromyogram (EMG) was measured from the flexor digitorum superficialis 

muscle of responding forearm. EMG-RT is the time from stimulus onset to the 

appearance of the electromyogram (EMG). EMG-RT is a valid indicator of prograInming 

time (Weiss, 1965; Botwinick & Thompson, 1966; Fischman, 1984). Morris (1977) 

reported that decrease in the RT with practice reflected changes in the premotor component. 

Therefore, the term ofRT used in the present study means EMG-RT. 

Before and after the date of practice, RT was measured under the following three 

conditions: ( I ) Central condition, (IT) Near Peripheral condition, and (ill) Far Peripheral 

condition. The stimulus 8-mm diameter (1.52° in central vision) in all conditions was in 

the shape of a ring (14 cd/rrf). In the Central condition, the stimulus was presented at the 

fixation point and in the Near Peripheral condition at an angle of 10° to the right from the 

midpoint of the subject's eyes. The stimulus in the Far Peripheral condition was 

presented at an angle of 30° to the right from the midpoint of the subjects' eyes. In the 

Peripheral conditions, the fixation point remained illuminated throughout the experiments. 

The subj ects were instructed to keep their eyes on the fixation point. Horizontal 

components of eye movement were also measured by an infrared reflection system (T.K.K. 

2930a Takei Scientific Instruments Co., Ltd., Japan) and showed that they could hold their 
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eyes on a fixation point throughout each response. 

One experimental block consisted of a senes of 25 trials. Experimental 

conditions of ( I ), (II), and (III) were tested in a random order. The condi1ion was 

constant during each block. Ten trials were given before the experiment in each block. 

During the practice period, the group practicing using peripheral vision practiced RT tasks 

in the Far Peripheral condition. The group practicing using central vision practiced RT 

tasks in the Central condition. Each group practiced three blocks five days a week for 

three weeks. 

RESULTS 

Two-way analysis of variance was performed on the RT before practice with 

group as the between factor and condition as the within factor (Table 1). There was no 

significant main effect of group, indicating no difference in the RT between groups before 

practice. 

Table 1 Analysis of Variance of Reaction Time before Practice 

Source df MS F P 

Subjects 14 370.20 

Group 1 760.02 2.05 

Condition 2 1624.52 54.15 <.001 

Condition X Group 2 70.77 2.36 

Subjects X Condition 28 30.00 

Total 47 
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Table 2 RT (msec.) for Each Group by Condition and Measurement Time 

Group Before Practice After P.ractice 

Group Practicing Using Peripheral Vision (n=8) 

Central Condition 

Near Peripheral Condition 

Far Peripheral Condition * 

Group Practicing Using Central Vis ion (n=8) 

Central Condition * 

Near Peripheral Condition 

Far Peripheral Condition 

M 

172 

172 

192 

178 

185 

197 

SD 

13 

9 

15 

9 

12 

12 

M 

163 

166 

174 

167 

169 

179 

* Asterisk indicates that the subjects practiced RT task in this condition. 

SD 

9' 

13 

11 

14 

17 

19 

Table 2 shows the means and standard deviations of the RT for each group by 

condition and measurement time. Three-way mixed design analysis of variance was used 

on the RTs, with group as the between factor and measurement time and condition as the 

within factors (Table 3). There was a significant main effect of measurement time, 

indicating that the RT for central and peripheral visual fields decreased with practice for 

each group. A main effect of condition was significant, showing that the RT for 

peripheral visual field was longer than the RT for central visual field before and after 

practice. The present results suggest that the practice effects on the RT in the Peripheral 
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condition extended to the RT in the Central and the Near Peripheral conditions and that the 

practice effects on the RT in the' Central condition extended to the RT in the Near 

Peripheral and the Far Peripheral conditions. 

Table 3 Three-way Analysis of Variance of Reaction Time 

Source df MS F P 

Subjects 14 789.86 

Group 1 888.17 1.12 

Measurement time 1 4030.04 36.61 <.001 

Measurementtime X Group 1 84.38 0.77 

Subjects X Measurement time 14 110.09 

Condition 1.42 3017.67 63.70 <.001 

Condition X Group 1.42 33.09 0.70 

Subjects X Condition 19.89 47.37 

Measurement time X Condition 2 115.07 3.07 

Measurement time X Condition X Group 2 50.91 1.36 

Subjects X Measurement time xCondition 28 37.55 

Total 85.73 

DISCUSSION 

Many researchers have measured RT for central and peripheral visual fields. RT 

for responding to stimuli in the peripheral visual field is longer than the RT for those in the 

central visual field (Rains, 1963; Berlucchi, et at., 1971; Osaka, 1976; Arkin & Yehuda, 

1985; Ando et al., 2001). That RT for peripheral visual field is longer than RT for central 
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visual field can be explained by the relative decrease of cone density (0sterberg, 1935; 

Curcio, Sloan, Kalina, & Hendrickson, 1990). 

In the present study, RT for peripheral visual field decreased with practice. 

Moreover, what is an interesting result was that the practice effects on the RT for 

peripheral visual field extended to the RT for central visual field, and vice versa. 

Schmidt and Lee (1999) proposed that transfer of motor learning depends on the similarity 

between tasks. It is quite likely that there is a similarity in RT tasks between the Central 

and the Peripheral conditions because the manual responses by using the index finger were 

the same in these conditions. Therefore, transfer suggests the decrease in the RT may 

have resulted from a decrease in the central nervous system's processing time in common 

between the Central and the Peripheral conditions. 

In conclusion, RT for peripheral visual field as well as for central visual field 

decreased with practice. Practice effects on the RT for peripheral visual field extended to 

the RT for central visual field, and vice versa. 
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4.Retention of practice effects on simple reaction time for peripheral and 

central visual fields 

People can improve the ability to respond quickly with practice. Recently, we 

have reported that reaction time (RT) for both peripheral visual field and central visual 

field decreases with practice (Ando, Kida, & Oda, 2002). The practice effects established 

on the RT for peripheral visual field transferred to the RT for central visual field, and vice 

versa. The transfer effects suggest that the decrease in the RT resulted from a decrease in 

the central nervous system's processing time that exists in common between two RT tasks. 

Proctor, Reeve, Weeks, Dornier, and Van Zandt (1991) investigated whether or not 

practice effects on choice RT using spatial precuing and symbolic cuing tasks were 

retained after a I-week retention interval. They have indicated that the response selection 

procedures acquired with practice are retained fairly well for at least a I-week period. 

Compared to literatures about the practice effects on simple and choice RT (see references 

in Ando, et al., 2002), few studies have addressed how permanent the practice effects on 

RT are, i.e. how well the effects are retained. There is no study investigating the 

retention of practice effects on simple RT for peripheral visual field. The present study 
;Fk-

investigated the retention of practice effects on simple RT for peripheral and central visual 

fields. It is important to behaviorally evaluate the retention of the practice effects since 

the retention suggests that changes in neural correlates with practice are lasting after 

retention interval. 
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METHOD 

Subjects 

Sixteen male university students (M age=22.3 yr., SD=l.4) volunteered to 

participate. They were randomly divided into two groups of the same age (ns=8); one 

practiced using peripheral vision and the other practiced using central vision. All 

subjects reported normal visual acuity either unaided or while wearing their own corrective 

lenses. The subjects all wrote with their right hand. 

Apparatus 

A computer (NEC PC9821) was used to control visual stimulus presentation and 

record the RT for a key press throughout the experiments. All visual conditions were 

conducted using binocular vision. The subject's head rested on a head and chin rest 

placed 30 cm from the computer screen (3 cd/rtf) so the eyes were directly in front of and 

at the same level as the position of the fixation point. The exposure duration of the visual 

stimulus was 50 msec. Four inter-trial intervals (2, 3, 4, and 5 sec.) were randomly used. 

They also served as the fore-periods. The stimulus 8-mm diameter (1.52° in central 

vision) in all conditions was in the shape of a ring (14 cd/rtf). The contrast ratio was 0.65, .. 
and the sign of the contrast was bright (white on black background). Subjects responded 

to the onset of each stimulus by pressing the space key of the computer as fast as possible. 

The response key was manipulated using the index finger of the right hand. 

Electromyograms (EMG) were measured from the flexor digitorum superficialis 
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muscle of responding forearm. EMG-RT is the time from stimulus onset to the 

appearance of the electromyogram (EMG). Morris (1977) and Ando, et al. (2002) have 

reported that decrease in the RT with practice reflected changes in the premo tor 

components. Therefore, EMG-RTwas used as the index to assess the practice effects. 

Testing Procedure 

Before practice, after the date of practice, and three weeks after practice, RT· for 

the key press and EMG-RT was measured in the following three retinal positions: ( I ) 

Central condition, (II) Near Peripheral condition, and (ill) Far Peripheral condition. In 

the Central condition, the stimulus was presented at the fixation point and in the Near 

Peripheral condition was presented at an angle of 10° to the right from the midpoint of the 

subject's eyes. The stimulus in the Far Peripheral condition was presented at an angle of 

30° to the right from the midpoint of the subjects' eyes. In the Peripheral conditions, the 

fixation point remained illuminated throughout the experiments. The subjects were 

instructed to keep their eyes on the fixation point. One experimental block consisted of a 

series of 25 trials. Before each block, the subjects were visually familiarized with the 

stimuli and given ten practice trials. Experimental conditions of ( I ), (II), and (ill) were 

tested in a randomized order. The condition was constant during each block. 

Horizontal components of eye movement were measured by an infrared reflection system 

(T.K.K. 2930a Takei Scientific Instruments Co., Ltd., Japan) and showed that subjects 

could hold their eyes on a fixation point throughout each response. 
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Practice Procedure 

During the practice period, the group practicing using peripheral vision practiced 

RT tasks in the Far Peripheral condition. The group practicing using central vision 

practiced RT tasks in the Central condition. Each group practiced three blocks five days 

a week for three weeks for a total of 1125 trials. During the practice period, RT for the 

key press was recorded for each group. The RT for the key press before practice, during 

the practice period, and after practice was analyzed to confirm that subjects' performance 

had peaked with practice. The RT for the key press during the practice period was 

averaged by week for each group. 

RESULTS & DISCUSSION 

Table 1 shows the means and standard deviations of the RT for the key press 

before practice, during the practice period, and after practice for each group. Friedman's 

nonparametric one-way analysis of variance was performed on the RT between times of 

measurement for each group, indicating that mean RT significantly differ between times of 

measurement for the group using peripheral vision [xl, (N=8)=18.66, p<.05] and for the 

group practicing using central vision [xl, (N=8)=21.70,p<.05] . .... 

A Wilcoxon Paired Signed Rank Test showed that the RT before practice was 

significantly larger than the other times of measurement for each group (p<.05, 

respectively). The RT at the first week during the pnictice period was significantly larger 

than that at the second week during the practice period in the group practicing using 
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peripheral vision (p<.05). The RT at the first week during the practice period was 

significantly larger than that at the second and third weeks during the practice period in the 

group practicing using central vision (p<.05, respectively). There were no significant 

differences in the RT between after practice and at each week during the practice period. 

Table 1 RT (msec.) for a key press before practice, during the practice period, and after 

practice for each group 

Measure Time of Measurement 
Before Practice Week 1 Week 2 Week 3 

The Group Practicing Using Peripheral Vis ion (n=8) 

Far Peripheral Condition 

M 265 249* 239* t 243 * 

SD 14 13 11 17 

The Group Practicing Using Central Vision (n=8) 

Central Condition 

M 245 238 * 227* t 229 * t 
SD 14 14 12 13 

Note. Mean RT during the practice period was averaged by week. 

* Significant difference with the RT before practice for each condition. (p<.05) 

t Significant difference with the RT at the first week during the practice period 
for each condition. (p<.05) 

After Practice 

243 * 

16 

232 * 

16 

It was suggested that the maj ority of practice effects for both groups occurred 

during the first block, which was defined before practice in the present study, and the first 

week of the practice period. Afterward, the RT leveled off and almost unchanged. 

Therefore, we can assume that subjects' performance had peaked after the practice period 
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had elapsed. 

Three-way analysis of variance was performed on the EMG-RT with condition 

and time of measurement as the within factors and group as the between factor. ~ A main 

effect of group was not significant (Fl,14=0.99), indicating that there were no differences in 

the RT between groups. The interaction of time of· measurement by condition was 

significant (F4,56=3.39, p<.05). One-way analysis of variance was performed for each 

condition. There were significant main effects of time of measurement for the Central, 

the Near Peripheral, and the Far Peripheral conditions (F2,30=24.39, p<.OO 1; F2)o=1 0.17, 

p<.OOI; F2,30=26.83, p<.OOI, respectively). 

EMG-RT for both groups was summarized for further analysis as there were no 

differences between groups and no interactions related to group (Table 2). The multiple 

comparisons by the Tukey HSD showed that the EMG-RT after practice was shorter than 

the EMG-RT before practice for the Central, the Near Peripheral, and the Far Peripheral 

conditions (p<.OOI,p<.OI, andp<.OOI, respectively). 

The multiple comparisons also indicated that the EMG-RT three weeks after 

practice was shorter than the EMG-RT before practice for the Central, the Near Peripheral, 

and the Far Peripheral conditions (p<.001, p<.OI, and p<.OOI, respectively). No 

differences were observed between the EMG-RT after practice and the EMG-RT three 

weeks after practice for each condition. These results indicated that the practice effects 

and the transfer effects were maintained over the retention interval, suggesting that once 
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Table 2 EMG-RT (msec.) for all subjects by condition and time of measurement 

Measure Time of Measurement 
Before Practice After Practice 

: 
3 Weeks After Practice 

Central Condition 
M 175 165 *** 161 *** 
SD 11 15 13 

Near Peripheral Condition 
M 179 167** 167** 
SD 12 15 14 

Far Peripheral Condition 
M 194 177 *** 182 *** 
SD 13 15 18 

* Significant difference with the EMG-RT before practice for each condition. 

*** p<O.OOl ** p<O.Ol 

simple RT for peripheral and central visual fields decreases with practice, the improved 

performances are stable and retained for at least three weeks. Visual information is 

processed in various ways until eventually it is output as observable motor activity. It 

appears that once the neural correlates of responding quickly are improved, the improved 

performances are retained for at least three weeks. Further investigation would be needed 

to ascertain whether or not the practice effects on simple RT are retained for longer periods 

than this. 
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5.Attention can be oriented to intermediate 

area of the visual field 

In the· real world, we are always moving our eyes to stimuli, 

habitually paying attention to the stimulus to which we are looking in the 

Posner (1980) proposed that orienting of attention as a central mechanism allows ~o:,i:\,ril,o: '+"", .• 

orient to a cued location in the absence of eye movement. It is assumed that attention can 

be narrowly or widely focused depending on the task demands (Posner, 1980; Posner, 

Snyder, & Davidson, 1980; Eriksen & Yeh, 1985; Eriksen & St. James, 1986), and that 

attention cannot be distributed to nonadjacent regions (e.g., McCormick, Klein, & 

Johnston, 1998). The ability to detect or recognize a stimulus in the visual field can be 

analyzed by measuring reaction time (RT). Numerous experinlents have shown that RT is 

faster when attention is focused on one point of the visual field than when attention is 

distributed among many elements across the entire visual field because the attentional 

resources are limited (e.g., Ericksen & Yeh, 1985). 

The visual field is composed of central and peripheral components, and 

information presented in the central and peripheral visual fields is provided through both 

central and peripheral retinal areas. Many researchers have investigated the orienting of 

attention in the central visual field. However, there are few studies investigating 

orienting of attention within large area including both central and peripheral visual fields. 

The purpose of the present study was to investigate whether attention can be 
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evenly distributed within the large area of the visual field. In the present study, the RT 

was measured in the two conditions, i.e., Fixed Location condition and Random Location 

condition. In the Fixed Location condition, the trials are fixed in such a way that the 

stimulus appears repeatedly at the same location. Therefore, attention can be narrowly 

focused in this condition, so that the stimulus occurring within a specific region may be 

processed more rapidly. In the Random Location condition, the stimulus was presented at 

one of four locations as determined randomly with equal probability. Assuming that 

areas of visual space where attention is distributed may be defined as those in which an 

improved efficiency in performance is measured, the differences in RT between the Fixed 

Location and the Random Location conditions may be interpreted as being largely 

attributable to the effects of attentional focus. Therefore, it is hypothesized that, if 

attention is evenly distributed within the large area of the visual field in the Random 

Location condition, mean differences in RT for the Fixed Location and the Random 

Location conditions may not be statistically significant despite the varied stimulated 

locations. On the other hand, if attention is not evenly distributed within the large area of 

the . visual field and is oriented to some specific locations in the Random Location 

condition, RT for the locations to which attention is specifically oriented in the Random 

Location condition may not differ from RT for the same location measured in Fixed 

Location condition. 

METHOD 
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Subjects 

The subjects were 22 male university students (M age= 22.3yr., SD=2.7). All 

subjects had normal visual acuity either unaided or while wearing their own~ corrective 

lenses. They were all right-handed according to the Edinburgh Handedness Inventory 

(Oldfield, 1971). The right eye was dominant for sighting in 17 subjects and the left by 

the remaining 5. The dominant eye was determined with the "hole-in-the-card" test 

(Brod & Hamilton, 1971). 

Apparatus 

A computer and RT measurement apparatus (Qtec. Co., Ltd., Japan) were used to 

control the visual stimulus presentation and record the RT of each trial. A visual stimulus 

was presented on a computer screen. Each subject sat in front of the computer screen in a 

dark room, with the head on a chin rest 30 cm from the computer screen so the eyes were 

directly in front of and level with the position of the fixation point. To dark adapt they 

remained in the dark room for 5 min. prior to responding. The horizontal components of 

eye movement were measured by an infrared reflection system (T.K.K. 2930a Takei 

Scientific Instruments Co., Ltd., Japan). Eye movements in excess of 1 ° of visual angle 
$I>-

were detected and discarded without replacement. 

Stimulus 

The background of the visual display was composed of a blue fixation cross 

(0.38° X 0.38°, 2.0 cd/nf) presented on a black background (1.0 X 10-4 cd/nf). The 
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subjects were instructed to keep their eyes on the cross that remained illuminated 

throughout the experiments. The visual stimulus was a white filled circle, 2 mm in 

diameter (0.38° in central vision, 22.0 cd/ rrf). The exposure duration of !the visual 

stimulus was 50 msec. Trial intervals were 2, 3, 4 and 5 sec. These intervals were 

randomly ranged on each trial interval, and they also served as the foreperiods. The 

stimulus was presented at one of four possible locations on the horizontal meridian of the 

visual field. The stimulated locations were the fixation point (0°), 10°, 20°, and 30° to 

the right. The subjects responded to the onset of each stimulus by pressing the response 

key as fast as possible. The response key was manipulated using the index finger of the 

right hand. All visual conditions were conducted using both eyes. 

Procedure 

The experiment was conducted using fixed locations and randomized locations as 

conditions (Fixed Location and Random Location conditions). A training period of 20 

trials was allowed prior to each condition. Each block was comprised of 20 trials in each 

condition. In the Fixed Location condition, the stimulus was presented at one fixed 

location repeatedly for one block and then shifted to a new location. The first location 
II>-

and a new location to which shifting was done were randomly ordered. In the Random 

Location condition, the stimulus was presented randomly at one of four locations with 

equal probability on every trial. The subjects performed four blocks so that the number 

. of trials totaled 20 at each location. Half of the subjects, who were randomly assigned, 
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were tested first with the Fixed Location condition, and half were tested first with the 

Random Location condition. 

Statistical Analyses 

Two-way analysis of variance with repeated measures was performed on the RT 

with Condition and Location as the within factors. Tukey's method was used as post-hoc 

multiple comparisons. Mean differences with a probability level of <.05 were designated 

as significant. 

RESULTS 

Fig.l shows the means and standard deviations of the RT for each Condition and 

Location. Two-way analysis of variance showed that the Condition X Location 

interaction was significant (F3,63=9.72, p<.OOl). Further analyses were performed for 

each condition and location. 

One-way analysis of variance was performed on mean RT for each condition. 

There were significant main effects of Location for the Fixed Location and the Random 

Location conditions (F3,63=24.30, p<.OOl; F3,63=30.98, p<.OOl, respectively). For the 

Fixed Location condition, the multiple comparison indicated that the RTs at the 100
, 200

, 
ifI-

and 300 locations were significantly longer than the RT at the 00 location (p<.05, p<.Ol, 

p<.OOl, respectively). For the Random Location condition, the RT at the 300 location 

was significantly longer than the RTs at the 00 and 100 locations (p<.01, respectively). 

One-way analysis of variance was performed on mean RT for each location. There were 
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significant main effects of Condition for the 0° and 30° locations (Fl,21=22.05, p<.OOl; 

F1,21=32.82, p<.OOl, respectively). These results indicate that the mean RT in the 

Random Location condition was significantly longer than the mean RT in the Fixed 

Location condition at the 0° and 30° locations. 
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Fig.1 Means and standard deviations of RT for each condition and location. There were 

significant differences between the Fixed Location (_), and the Random Location (0) 

conditions at the 0° and 30° locations. t p<. 001. 

Fig.2 shows the means and standard deviations of mean differences in RT between 

the Fixed Location and the Random Location conditions for each location. Friedman's 

nonparametric one-way analysis of variance was performed on the differences in the RT 

between conditions, indicating that the mean difference scores in RT significantly differ 
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between locations [xl, (N=22)=21.85, p<.OOl]. A Wilcoxon Paired Signed Rank Test 

showed that the differences at the 0° location were significantly larger than those at the 10° 

and 20° locations (p<.05, p<.Ol, respectively) and that the differences at the 30° ~location 

were significantly larger than those at the 10° and 20° locations (ps<.Ol, respectively). 

II ** 0 
35 * () 

~ 

S 30 ** I I '-" ** 
~ 25 
~ 20 q 
.~ 

rJj 15 
~ 
() 

10 5 
H 5 ~ 
~ 
.~ 0 Q 

0° 10° 20° 30° 

Location 

Fig.2 Means and standard deviations of differences in RT between the Fixed Location and the 

Random Location conditions for each location. Differences at the 0° location were 

significantly larger than those at 10° and 20° los.ations. The differences at the 30° location 

were significantly larger than those at the 10° and 20° locations. * p< .05. ** p< .01. 

DISCUSSION 

The present results show that attention was not evenly distributed within the large 

area of the visual field in the Random Location condition. It seems likely that the RT in 
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the Random Location condition was influenced by not only the simple effect of 

eccentricity but also by attentional focus. 

In the Fixed Location condition, RTs at the '10°, 20°, and 30° locations were 

significantly longer than the RT at the 0° location and increased gradually with increasing 

eccentricity. It is known that RT to a peripherally located stimulus is longer than to a 

centrally located stimulus (Rains, 1963; Berlucchi, Heron, Hyman, Rizzolatti, & Umilta, 

1971; Osaka, 1976; Arkin & Yehuda, 1985; Ando, Kida, & Oda, 2001). The increase in 

RT with increasing eccentricity of the stimulated location is regarded as an expression of 

the gradual decrease in the relative cone density of the retina (Rains, 1963; Osaka, 1976). 

Cones are found mostly in the central foveal regions. The salient feature of human cone 

topography is a steep decrease away from the foveal center, which becomes less steep with 

increasing eccentricity (0sterberg, 1935; Curcio, Sloan, Kalina, & Hendrickson, 1990). 

It appears that the findings for RTs in the Fixed Location condition are well consistent with 

the previous reports showing gradual decrease in the relative cone density in the periphery, 

and it is assumed that eccentricity itself had similar effects in both viewing conditions in 

the present study. On the other hand, in the Random Location condition, the RT, at the ,.. 

30° location was significantly longer than the RTs at the 0° and 10° locations. According 

to our hypothesis, the results in the Random Location condition, as compared with the 

Fixed Location condition, are presumably attributable to the effects of the attentional 

focus. 
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What is intriguing result in the present study was that there were no significant 

differences in the mean RT between conditions at the 10° and 20° locations, while the RTs 

in the Random Location condition were significantly longer than those in ~ the Fixed 

Location condition at the 0° and 30° locations. Furthermore, the differences in RT 

between conditions were larger at the 0° and 30° locations than those at the 10° and 20° 

locations. Klein and McCormick (1989) and McCormick and Klein (1990) indicated that 

under conditions of uncertainty about which of two locations to attend subj ects might focus 

attention on a visual channel that is spatially intermediate, which they called a midlocation 

placement strategy. It seems likely that the results of the present study can be explained 

by the midlocation placement strategy. In other words, attention was oriented to 

. intermediate locations, i.e., 10° and 20° locations, out of four locations within large area of 

the visual field in the Random Location condition. 

One model to account for spatial attention in the visual field is that attention can 

be distributed in a graded fashion, with maximal processing at the attentional focus, which 

gradually falls off with increasing distance from this focus (Downing & Pinker, 1985; 

Shulman, Wilson, Sheehy, 1985). It appe~rs that the attentional gradient model can 

account for the present results. According to this model, the possible explanation for the 

present results can be that attention got concentrated over the 10° and 20° locations and 

diminished at the 0° and 30° locations. 

In conclusion, attention was oriented to intermediate locations when a visual 
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stimulus was presented randomly within the large area of the visual field. 
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6 . The effect of incremental exerCIse on reaction time for the peripheral 

visual field 

In competitive sports, participants are required to perform perceptual and 

decision-making tasks during strenuous exercise. Performance in sports would be closely 

associated with both physical and psychomotor skills. Although psychomotor skill is just 

one aspect of performance, the key difference between good performance and poor 

performance may be psychomotor skill as well as physical skill. 

Reaction time (RT) is one of the many variables involved in psychomotor skill, 

and it is a prime determinant to evaluate psychomotor performance. Many researchers 

have examined the effect of exercise on RT (e.g., Brisswalter, Collardeau, & Rene, 2002; 

Tomporowski, 2003 for reviews). It should be noted, however, that findings concerning 

the effect of exercise on RT have been one of the most controversial issues. The 

controversy may be mainly due to the variety of the protocols, differences in the level of 

physical fitness of subjects, and motivational factors (e.g., Tomporowski & Ellis, 1986). 

It has been hypothesized that exercise induces changes in the level of arousal of 

the central nervous system. As a result, improvement or deterioration in RT has been 

explained by changes in exercise-induced arousal. The most influential proposal may be 

the inverted-U relationship between arousal and RT as descriptive model for interpreting 

results (e.g., Anderson, 1990; Levitt & Gutin, 1971; Sjoberg, 1975). Chmura and 

colleagues (1994; 1998) suggested that increases in plasma adrenaline and noradrenaline 
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concentrations during exercise may be indicative of changes in the level of the arousal of 

the central nervous system. However, the concept of arousal and the inverted-U 

relationship between arousal and psychomotor performance has been challenged, probably 

because of the lack of direct evidence for this explanation (e.g., Neiss, 1988). 

Visual field is composed of central and peripheral components. Information 

presented in the central and peripheral visual fields is processed through central and 

peripheral retinal areas and higher processing areas. There were several studies which 

shed light on the effect of exercise on psychomotor performance in the peripheral visual 

field, such as peripheral visual sensitivity (Verriest, De Landtsheer, Uvijls, Claeys, 

Cobbaut, & Van Langenhove, 1984), peripheral threshold detection (Fleury & Bard, 1987), 

and vocal RT to visual stimuli presented in the peripheral visual field (Cote, Salmela, & 

Papathanasopoulu, 1992; Salmela & Ndoye, 1986). In the study of Salmela and Ndoye 

(1986), vocal RT for the peripheral visual field was measured at rest and during 

incremental exercise. The results indicated that vocal RT for the peripheral visual field 

decreases at heart rate (HR) 115, and increases at higher workload where heart rate 

increased over 145 (Salmela & Ndoye, 19862. They speculated that improvement in 

vocal RT began to be reversed during exercise interval from HR 115 to HR 145. The 

number of studies investigating the effect of exercise on RT for the peripheral visual field 

is few, and the workload where RT for the peripheral visual field may begin to increase is 

not well documented and remained to be clarified. 
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The ventilatory threshold (VT) may provide good index of aerobic fitness. 

Irrespective of underlying mechanism, the VT can be considered to be an important 

assessment of the availability of the cardiovascular and pulmonary system (e.g., 

Wasserman, Beaver, & Whipp, 1990). Thus, there might be a close relationship between 

increase in RT for the peripheral visual field during strenuous exercise and physiological 

changes around the VT. The main purpose of the present study was to examine the effect 

of incremental exercise on RT for the peripheral visual field and to determine whether 

physiological changes around the VT are critical for increase in RT for the peripheral 

visual field. 

The relationship between physical fitness of individuals and cognitive 

performance is controversial (e.g., Etnier, Salazar, Landers, Petruzzello, Han, & Nowell, 

1997; Brisswalter, et ai., 2002; Tomporowski, 2003). Physically fit individuals may be 

able to compensate for the negative effects of strenuous exercise when they perform 

cognitive tasks under fatiguing conditions (Tomporowski & Ellis, 1986). Therefore, the 

differences in the level of physical fitness may playa critical role for increase in RT for the 

peripheral visual field during incremental exercise. In the present study, we also 

examined the relationship between increase in RT during incremental exercise and 

maximal oxygen uptake of each individual as an index of physical fitness. 

METHOD 

Subjects 
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Nine healthy male subjects (mean ± SD, age = 24.1 ± 1.9 yr; height = 173.4 ± 7.2 

cm; mass = 67.3 ± 6.0 kg; V02max = 48.9 ± 3.8 ml . kg-I. min-I) participated in the present 

study. Informed consent was obtained from all subjects following a detailed explanation 

of experimental procedures. The subjects were instructed to refrain from engaging in 

strenuous exercise for 48 hours prior to each experiment. None of the subjects were free 

of metabolic, neuromuscular, cardiovascular disorders and recent illness. 

Experimental Procedure 

The experiment was performed on 2 nonconsecutive days. On the first day, the 

subjects performed an incremental exercise test until exhaustion to determine maximal 

V02 (V02max) on a cycle ergometer (Combi 232CXL, Tokyo, Japan). Following 

warm-up exercise at 20w for 2 min, the ramp exercise test at the cadence of 60 rpm started 

with a lOw increment every minute until the limit of the subject's tolerance was reached. 

On the day of the main study, the subjects were given a familiarization period of 

three blocks of RT tasks during unloaded cycling before taking part in the experiment. At 

the beginning of the experiment, the subjects rested for 5 min on the cycle ergometer. RT 

measurement was performed 3 min and 30 sec~later after the start of the rest period. The 

RT at rest was measured to establish baseline ofRT task. Afterwards, subjects performed 

RT tasks during cycling in the Exercise and the Control conditions. The subjects were 

instructed to cycle at a cadence of 60rpm and were instructed to maintain the cadence 

throughout all subsequent exercise tests. One of the experimenters monitored the 
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cadence throughout the experiment, and gave feedback verbally when the subj ects were 

not able to maintain the cadence. Five subjects performed the Exercise condition first 

and the rest four performed the Control condition first. Both conditions were performed 

with one visit to the laboratory. The interval between conditions was at least 1 hour. A 

new condition was started after the subject's heart rate had reached to the resting level. 

240w 

Exercise condition 

After 

Rest (Smin.) 
· .. · .. Contro'i·conci'ltion·C .. io·w) .. ·-

Fig.1 Experimental protocol 

Experimental protocol was shown in Fig.l. In the Exercise condition, RT was 

measured during the exercise and immediately after the exercise. At the beginning of the 

Exercise condition, the subjects cycled at lOw for 3min as warm-up exercise. Following 

warm-up exercise at lOw for 3 min, the subjects cycled at 40w for 3 min, increasing by 

40w every 3 min until 240w. During the ex~rcise, RT measurements were performed 1 

min and 30 sec later after the start of every increase in workload. After the exercise, the 

subjects cycled at lOw for 3 min in order to measure the RT immediately after the exercise. 

RT after the exercise was measured 15 sec later after the end of exercise at 240w. The 

subj ects continued to cycle after the RT measurement until 3 min had passed. 
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In, the Control condition, the subjects cycled at lOw for 24 mIn. RT 

measurements were temporally matched with the measurements in the Exercise condition. 

This control condition was included to determine effects of time course on RT and 

potential practice effects arising from repeated RT tasks. 

RT Measurement 

A computer and RT measurement apparatus (Qtec Co., Ltd., Japan) were used to 

control visual stimulus presentation and record RT of each trial. A white fixation cross 

was presented on a black background, which served as the fixation point. The subjects 

were instructed to keep their eyes on the fixation point binocularly throughout the RT 

measurement, and were reminded about the importance of maintaining fixation. A visual 

stimulus was a white filled circle, 5mm in diameter (22.0 cd/m2). The visual stimulus 

randomly appeared at 15° to the right or left from the midpoint of the subject's eye and was 

separated by an irregular inter-stimulus interval varying 2s to 4s. The exposure duration 

of the visual stimulus was 100 msec. One block of the RT task consisted of 20 trials. 

Total time for the one block was 1 min. The subjects were instructed to react to the 

stimulus onset as quickly as possible by llressing the response button on the right 

handlebar with the right thumb. 

During the RT measurement, the subjects faced the computer screen with the head 

on a chin rest so the eyes were directly in front of and level with the position of the 

fixation point. The chin rest was positioned at the middle of the handlebars. The 
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distance from the chin rest to the screen was 55cm. The subjects were instructed not to 

stabilize their head on the chin rest while RT was not measured. The horizontal 

components of eye movement were recorded using electrooculogram (EOG) durin:g the RT 

measurement Trials in which overt eye movements were detected were discarded 

without replacement. In addition, RT less than 140ms or greater than 500ms was 

removed as outliner prior to the analysis. 

Gas exchange parameter and Heart rate Measurements 

Measurements of gas exchange parameters were continuously obtained using the 

mixing chamber method (AE-280S, Minato, Japan). The analogue signals of fractional 

concentrations of O2 and CO2 from the gas analyzers and those from the flow transducer 

were continuously digitized using a 13 bit analogue-to-digital converter at a sampling rate 

of 50 Hz. O2 uptake (V02), CO2 output (VC02), minute volume (VE), respiratory 

exchange ratio (R), and ventilatory equivalent for O2 (VE/V02) and CO2 (VE/VC02) were 

calculated every 15s. Gas exchange parameters were used to determine ventilatory 

threshold (VT). The VT was determined according to our previously described 

procedures (Moritani, Berry, Bacharach, & Npkamura, 1987). In brief, the VT was 

determined by use of respiratory exchange parameters, i.e., nonlinear increase in VE and 

V C02, abrupt increase in the fraction of 02 in expired air and R and systematic increase in 

VE/V02 without any increase in VENC02 (Wasserman, Whipp, Koyal, & Beaver, 1973). 

For the assessment of HR, an electrocadiogram (ECG) was recorded throughout 
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the experiment. The analogue output of the ECG was connected to an ECG amplifier 

(Multi-channel Amplifier MEG-6l00, Nihon Kohden Co., Japan) and digitized using a 13 

bit analogue-to-digital converter (HTB4l0) at a sampling rate of 1kHz, using a 0.5 Hz-lOa 

Hz band pass filter at rest and a 1.5 Hz-lOa Hz filter during exercise. 

Before the experiment, we confirmed that the subject's view of the computer 

display was not cut off by the measurement apparatus of gas exchange parameter. Gas 

exchange parameters and HR during the initial 2 min at rest were discarded to observe the 

steady-state responses, and the remaining 3 min bins were used for analyses. 

Statistical Analysis 

All data are expressed as means ± SD (table) or SE (figures). Values ofV02, HR 

were averaged for last 3 min at rest, for each workload in the Exercise condition, and for 

each temporally matched period (3 min) in the Control condition. Comparison of values 

of RT, V02, and HR between the Exercise and the Control conditions was performed by 

paired t-tests. The Dunnett paired t-test was used to determine the significance of 

differences in the values between rest period (baseline) and each workload in the Exercise 

condition, and between rest period and each period in the Control condition. Additionally, .. 
repeated-measured ANOVA followed by a Tukey's post hoc analysis were used where 

appropriate. Differences with a probability level of < 0.05 level were designated as 

significant. 

RESULTS 

57 



V0 2 and HR 

V02 and HR in the Exercise and the Control conditions are shown in Tablel. 

V02 and HR in the Exercise condition increased linearly as a function of exercise intensity. 

V02 was significantly larger in the Exercise condition than in the Control condition during 

and after the exercise (p<O.OOl, respectively). Each value ofV02 in the Exercise and the 

Control conditions was significantly larger than V02 at rest (p<O.OOl, respectively). 

Table 1 V02 and HR at rest, in the Exercise condition, and in the Control condition. 

Workload in the Exercise condition, watts 

40W 80W 120W 160W 200W 240W After 

Exercise IO.4±1.0 15.5±1.2 21.3±1.7 27.8±2.3 34.4±2.9 41.0±2.9 18.4±1.2 

Control 6.9±1.1 6.8±0.8 6.9±0.8 6.7±0.9 6.7±0.8 7.1 ±0.9 6.9±0.9 

Rest 4.1 ±0.6 

Heart Rate, bpm 
Exercise 88.4 ± 13.8 103.1 ±13.9 122.1 ±11.4 145.5 ±10.0 165.4 ±6.6 176.1 ±7.7 147.3 ±9.1 

Control 80.8±10.2 81.3±9.9 82.1±10.5 82.3±10.9 82.6±10.3 82.8±10.2 82.2±9.7 

Rest 71.5 ±8.5 

Note that exercise workload in the Control condition was lOw throughout the condition. 

HR was significantly larger in the Exercise condition than in the Control condition 

during the exercise except for the 40w (at 80w, p<O.Ol; at 120w-240w, p<O.OOl). HR 

after the exercise in the Exercise condition was also larger than in the Control condition 

(p<O.OOl). Each value ofHR in the Exercise and the Control conditions was significantly 
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larger than HR at rest (p<O.OOl, respectively). 

RT for the Peripheral Visual Field 

RT errors, including eye movements, were rare (less than 1.6%) and were not 

analyzed. RTs for the peripheral visual field at rest, in the Exercise condition, and the 

Control condition were shown in Fig.2. 
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Fig.2 RT for the peripheral visual field at rest (L), in the Exercise condition (.), in the 

Control condition (D). Note that exercise workload in the Control condition was lOw 

throughout the condition. 

The RTs at 200w and at 240w in the Exercise condition were significantly larger than at 

rest. The RT at 240w in the Exercise condition was significantly larger than the RT 

measured in the same time course in the Control condition. There was no difference in 

the RT between at rest and after the exercise in the Exercise condition. In the Control 
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condition, no differences were observed in the RT between at rest and during cycling. 

We determined whether physiological changes immediately after the VT are 

critical for increase in RT for the peripheral visual field. For this analysis, in the present 

study, RT at the VT was defined as the RT measured immediately after each subject 

reached the VT. None of the subjects reached the' VT during the RT measurement. 

Seven subjects reached the VT during cycling at 160w, and the rest two reached the VT 

during cycling at 200w. Out of seven subjects who reached the VT at 160w, six subjects 

reached the VT before RT measurement at 160w. The workload for RT at VT was 160w 

for these six subj ects. The rest one subj ect reached the VT after RT measurement at 

160w and immediately before the increase in workload up to 200w, such that the workload 

for RT at the VT was 200w for this subject (Fig.3). 

3 min. RT measureme'nt 
(1 min) 

RT measurement 
(1 min) .......-----.1-

200w 

160w 

Fig.3 Time course during exercise at 160w and 200w in the Exercise condition. The arrow 

(~) indicates the time when one subject reached the VT. For this subject, RT at the VT was 

defined as the RT measured during exercise at 200w. 

Therefore, the workload for RT at the VT was 160w for six subjects and 200w for the rest 
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three. Similarly, RT below the VT was defined as the RT measured immediately before 

each subject reached the VT. RT above the VT was also defined as the RT measured at 

40w heavier workload than the workload where RT at the VT was measured. 

Fig.4 illustrates the RT at rest, below the VT, at the VT, and above the VT. The 

Tukey's multiple compassions indicated that the RT above the VT was significantly larger 

than the RT at rest and below the VT (p<O.Ol, respectively). The difference in the RT 

between at the VT and above the VT did not marginally reach significance (p=O.054). 

There was no difference in the RT between below VT and at the VT. These results 

indicated that RT did not increase immediately after the subjects reache1 the VT, but 

increased at the workload above the VT. 
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Fig.4 RT for the peripheral visual field at rest, below the VT, at the VT, and above the VT. 

Fig.5 shows the relationship between the increase in the RT in the Exercise 
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condition and V02max• All data were plotted individually. The increase in the RT was 

calculated by subtracting the RT at rest from the RT at 240w. The RT at 240w in the 

Exercise condition was larger than the RT at rest for all subjects. The increase~in the RT 

negatively correlated with the V02max for each subject (r = -0.73, p<0.05), indicating that 

the higher the physical fitness of each individual, the smaller the increase in the RT for the 

peripheral visual field during the exercise at high workload. 
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Fig.5 Relationship between increase in the RT and maximal oxygen uptake for each subject. 

DISCUS~ION 

The incremental exerCise appears to have appreciable effects on RT for the 

peripheral visual field. The present study indicated that RT for the peripheral visual field 

increased at workload above the VT, while there were practical no changes in the RT 

during exercise below and immediately after the VT. These results suggest that 
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physiological changes around the VT are not effective enough to deteriorate speed of 

response to stimulus presented in the peripheral visual field. In addition, the increase in 

the RT, which was calculated by subtracting the RT at rest from the RT at the highest 

workload, negatively correlated with the V02max for each individual. It is likely that the 

differences in the level of physical fitness of the individuals play a critical role for the 

increase in the RT for the peripheral visual field. 

In the present study, the Control condition was performed to determine the effects 

of time course and potential practice effects arising from repetition of RT measurement. 

There were no significant differences in the RT between at rest and during exercise in the 

Control condition, while V02 and HR were significantly higher during exercise than at rest. 

This result suggests that RT for the peripheral visual field in the Control condition was not 

affected by the time course and potential practice effects in the present study. It is, 

therefore, assumed that increases in the RT for the peripheral visual field in the Exercise 

condition are due entirely to the effects of exercise. 

RT for the peripheral visual field increased during exercise above the VT. This 

result may suggest that physiological changes induced by strenuous exercise above the VT 
1& 

deteriorated speed of response to the stimulus in the peripheral visual field. One possible 

explanation for the increase in the RT for the peripheral visual field may be that 

physiological changes induced by exhaustive exercise deteriorated the perceptual ability in 

the peripheral visual field. 
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Kobrick and Dusek (1970) and Kobrick (1972; 1974) indicated that RT for the 

peripheral visual field increases during exposure to hypoxic conditions. Similarly, 

cognitive RT also increases during hypoxemia (Noble, Jones, & Davis, 1993; Van der Post, 

Noordzij, De Kam, Blauw, Cohen, & Van Gerven, 2002). It is known that exercise 

induces hypoxemia and arterial oxyhemoglobin desaturation (e.g. Dempsey, Hanson, & 

Henderson, 1984; Dempsey & Wagner, 1999). Nielsen, Boushel, Madsen, and Secher 

(1999) evaluated cerebral oxygenation of competitive oarsmen during maximal ergometer 

row and maximal cycling. Cerebral oxygenation decreased during maximal ergometer 

row. On the contrary, cerebral oxygenation was not reduced during maximal cycling 

(Nielsen, et ale 1999). In the present study, exercise was not maximal cycling, and 

workload was not more than 85% of V02max even at the highest workload. However, 

subjects in the present study were not highly trained (mean V02max, 48.9 ml . kg-I. min-I), 

as compared with the study of Nielsen, et al. (1999). Therefore, oxygen supply to some 

regions in the brain, related to visual stream from peripheral retina to higher visuomotor 

processing, might decrease during exercise at workload above the VT for the subjects in 

the present study. Taken together, regional d~crease in oxygen supply to the brain might, 

at least in part, explain the deterioration in perceptual ability in the peripheral visual field 

during strenuous exercise in the present study. 

We do not have data to show regional decrease in oxygen supply in the present 

study and our explanation for the increase in the RT for the peripheral visual field would 
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be speculative. However, the present results that the increase in the RT for the peripheral 

visual field negatively correlated with the V02max for each individual (Fig.4) may be in line 

with our explanation. Physically fit individuals showed shorter simple and choice RT 

(Offenbach, Chodzko-zajko, & Ringel, 1990; Spirduso, 1980) and shorter event-related 

potentials latencies (Dustman, Emmerson, Ruhling, Shearer, Steinhaus, Johnson, Bonekat, 

& Shigeoka, 1990). Dustman, et al. (1990) speculated that performance superiority of 

the physically fit individuals was, at least in part, the results of more oxygen being 

available for cerebral metabolism. This may lead to the notion that, since physically fit 

individuals had higher oxygen-carrying capacity of blood, they might be less subject to the 

negative effect of the increase in the RT for the peripheral visual field. It can be said that 

the differences in the level of physical fitness of individuals play a critical role for the 

increase in the RT for the peripheral visual field. 

Another possible explanation for the present results may be the effect of dual task. 

On the dual task paradigm, one motor task is performed simultaneously with another motor 

task. It has been suggested that attentional resources are limited, and that, in the dual task, 

increase in allocation of attentional resources to one motor task leads to decrease in . ' 

allocation of attentional resources to the other motor task (e.g., Schmidt & Wrisberg, 2000). 

Thus, it is assumed that deterioration of performance in one motor task reflects the 

difficulty of the other motor task and eventual attentional demand on the task. 

An electroencephalogram study indicated that P300 amplitudes in an oddball task 
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decreased during cycling, suggesting that attentional resources allocated to the oddball task 

decreases during exercise (Yagi, Coburn, Estes, & Arruda, 1999). Brisswalter, et al. 

(2002) claimed that the effect of dual task was strongly related to energetic constraints of 

the exercise when cognitive task was performed during exercise. They suggested that the 

greater the energy demand, the more attention is required to control movements. In the . 

present study, the increase in the RT was observed only at high workloads above the VT. 

It is, therefore, possible that the more attentional resources were allocated to pedaling 

exercise at high workload above the VT in the present study. Taken together, second 

possible explanation for the increase in the RT for the peripheral visual field may be that 

attetional resources allocated to the RT task decreased during exercise at high workloads 

above the VT. Workloads below and immediately after the_ VT might not be effective 

enough to allocate more attentional resources to exercise. 

The RT for the peripheral visual field did not decrease during exercise at low and 

moderate workloads in the present study, inconsistent with the study of Salmela and Ndoye 

(1986). Chmura, et al. (1994; 1998) showed that choice RT decreases during. exercise 

below and above LT. Similarly, facilitating effects during exercise on cognitive 

performance were observed in complex tasks (Collardeau, Brisswalter, Vercruyssen, 

Audiffren, & Goubault, 2001; Yagi, et al. 1999). It would be important to emphasize that 

speed of performance on complex tasks is facilitated by exercise, while performance on 
- . 

simple tasks is unaffected (McMorris & Graydon, 2000). The task in the present study 
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was simple response task. Thus, it is not surprising that exercise below and immediately 

after the VT did not improve the simple RT for the peripheral visual field. The failure of 

improvement in RT performance in the present study may be attributable to ihe task 

simplicity. 

Finally, in the present study, no difference was observed in the RT between at rest 

and immediately after exercise, while V02 and HR immediately after the exercise was 

higher than at rest. It may be suggested that the subj ects recovered from deterioration in 

perceptual ability in the peripheral visual field soon after exhaustive exercise and/or the 

effect of dual task disappeared since energetic constraints were very low ( 1 Ow) after 

exercise. 

In conclusion, RT for the peripheral visual field increased at high workload above 

the VT during incremental exercise. The present results may suggest that the increase in 

the RT for the peripheral visual field are due to deterioration in perceptual ability in the 

peripheral visual field and/or decrease in attentional resources allocated to the RT task. 

The differences in the level of physical fitness of the individuals playa critical role for the 

increase in the RT for the peripheral visual fiel£l. Further research would be required to 

elucidate factors attributable to the increase in RT for the peripheral visual field during 

exhaustive exercise. 
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7 .General Discussion 

The ability to respond quickly to the sensory input is a prime determinant of human 

psychomotor skill. This ability would be a contributing factor to good performance in 

most sports. In a series of studies, we have clarified that speed of response to a 

peripheral visual stimulus is influenced by several factors, such as experience of ball sports, 

practice, attention, and physiological changes induced by incremental exercise. These 

findings have important suggestions to motor activities based upon the visual input from 

the peripheral vision as well as central vision. 

In the first study, soccer players showed shorter premo tor time during central and 

peripheral visual RT tasks compared to nonathletes. This result suggests that the soccer 

players are better able to respond quickly to stimuli presented to both central and 

peripheral locations. It might be speculated that soccer players might have inherited the 

peripheral perceptual abilities to respond quickly. Alternatively, soccer players may have 

developed higher abilities through daily training and games, suggesting that the speed of 

response to a peripheral stimulus may potentiall;r improve as a consequence of practice. 

In the second place, we examined the practice effect on RT for the peripheral 

visual field in order to verify the speculation that speed of response to a peripheral 

stimulus improves with practice, showing that the RT for the peripheral visual field 

decreases with practice. More interestingly, the practice effects on the RT for the 
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peripheral visual field extended to RT for the central visual field, vice versa. The transfer 

effects observed in this study may suggest that the decrease in the RT with practice have 

resulted from a decrease in the central nervous system's processing time in ~common 

between central and peripheral RT tasks. In addition, the practice effects and the transfer 

effects were stable and retained for three weeks. These results suggest that once the 

neural correlates of responding quickly are improved, the improved performances are 

maintained over the retention interval. 

Thirdly, it was indicated that attention was oriented to intermediate locations 

when a visual stimulus was randomly presented within the large area of the visual field 

including central and peripheral visual fields. This finding may suggest that subj ects, 

consciously or unconsciously, adopt the strategy to orient attention to intermediate location 

in order to respond as quickly as possible to all stimuli presented within the large area of 

the visual field. It should be noted, however, that the strategy adopted in this study may 

not be always the case. Attentional distribution would depend on the task demands. 

The fourth study showed that RT for the peripheral visual field increased at 

workload above the Ventilatory Threshold (VT1, while there were practical no changes in 

the RT during exercise below and immediately after the VT. One possible explanation for 

these results may be that the transient metabolic imbalance in the brain regions during 

exhaustive exercise deteriorated the speed of response to a peripheral stimulus. The 

results that the differences in the level of aerobic physical fitness of the individuals playa 

69 



critical role for the increase in the RT might suggest that oxygen supply to brain has a close 

relationship with the increase in the RT during exhaustive exercise. Another possible 

explanation for the results of this study may be that attetional resources allocated "to the RT 

task decreased during exercise at high workloads above the VT. The finding in this study 

might help to explain the difficulty in using peripheral vision during exhaustive exercise. 

In conclusion, the ability to respond quickly to a peripheral stimulus may be 

improved by experience of ball sports, practice of reaction time tasks, and highly trained 

aerobic fitness. It is assumed that these factors would be mutually interactive. 

Peripheral vision would be critical for performing a variety of motor activities. The 

performance in sports may potentially be improved as a consequence of improvement in 

speed of response to the sensory input from peripheral vision. 
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