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An Algebraic Approach to Guarantee Harmonic Balance Method

Using Grobner Base
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SUMMARY  Harmonic balance (HB) method is well known principle
for analyzing periodic oscillations on nonlinear networks and systems. Be-
cause the HB method has a truncation error, approximated solutions have
been guaranteed by error bounds. However, its numerical computation is
very time-consuming compared with solving the HB equation. This pa-
per proposes an algebraic representation of the error bound using Grobner
base. The algebraic representation enables to decrease the computational
cost of the error bound considerably. Moreover, using singular points of the
algebraic representation, we can obtain accurate break points of the error
bound by collisions.

key words: harmonic balance method, error bound, Grébner base, alge-
braic representation, quadratic approximation, singular point

1. Introduction

Harmonic balance (HB) method is well known principle for
analyzing periodic oscillations of nonlinear networks and
systems [1], [2]. Using this method, we express circuit equa-
tions as simultaneous algebraic equations called HB equa-
tion due to an approximation by truncated Fourier series of
variables. Although the HB method ignores high frequency
components, the HB method enables to clarify essential re-
lations among the system parameters. Recently, some tech-
niques by the HB method for bifurcation analysis have been
proposed [3]-[6].

Because the HB method has a truncation error, approx-
imated solutions of the HB equation have been guaranteed
by bounded regions, called error bounds, within which the
solution must reside [7]-[9]. In particular, Swern presented
a method to obtain the error bound for a feedback system
with a polynomial-type nonlinear element [9]. However,
the numerical computation of the error bound is very time-
consuming because we have to express the high dimensional
error bound using a set of the numerical values.

In order to overcome the difficulty, we propose an alge-
braic representation of the error bound using Grobner base
[10],[11]. Several reports have proposed methods to ap-
ply Grobner base to nonlinear circuit systems [12]-[15].
Grobner base enables to eliminate variables from polyno-
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mial simultaneous equations containing parameters [16],
[17]. By Grobner base, the algebraic representation of the
error bound is described as only one algebraic equation with
system parameters. The proposed method does not depend
on the number of specific frequency components. Further,
linear elements of the system are contained as parameters.
Thus, when we fix the nonlinear elements, the algebraic rep-
resentation can be uniquely obtained.

In order to visualize the error bound, we project the er-
ror bound to a complex plane of a target frequency compo-
nent using the algebraic representation. However, the com-
putation of its projection is time-consuming. Thus, we pro-
pose an approximated error bound using the algebraic rep-
resentation. Although the proposed error bound approxi-
mately guarantees solutions, the approximated error bound
reduces the computational cost of the projection consider-
ably [11].

When we set the system parameters close to bifurcation
parameters, there exist two error bounds in a neighborhood.
In such cases, the error bounds are broken by a collision
of each other. Hence, we cannot guarantee the solutions
near the bifurcation point. The collision point is a break
point which generates a singular point of the error bound.
Since the singular point can be calculated by the algebraic
representation, we propose a method to obtain the accurate
break point of the error bound.

2. Harmonic Balance (HB) Method and Error Bound
2.1 HB Method

We consider the nonlinear feedback system shown in Fig. 1.
The system equation is described by

u(t) = Gi(s; ) {u(1) — Ga(s; WN[u(1)]} ()
P

cz,-+1u2i+1, Coit] > O, I = 0, N /N (2)
i=0

Nlu] =

where s = d/dr, v(r) is an input function with a period 2,

v—>0—>(T) - Gi(s; 1) u0)

L Gz(S;/l) le—— N

Fig.1 Nonlinear feedback system.
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M= (ui,...,H)1s a set of system parameters, transfer func-
tions G1(s; ), Go(s;p) have a low-pass characteristics and
a polynomial-type nonlinear element N[«] is a monotone in-
creasing function of u.

We apply the HB method (cf. Appendix A) to the sys-
tem Eq. (1). Thus, the HB equation is described by

f(x;ﬂ’ e) = (ﬁ)r’flra flsa ce aﬁlr’fns)T =0eR". (3)

where X = (Xor, X1 Xiss - - - » Xars Xns) . € R™ is a vector of
variables, e = (eor, €15, €1s, - - - » €nrs €ns) ' € R™ is a vector of
frequency components of the input function, (-)” denote the
transposition, n is the number of specific frequency compo-
nents, and m = 2n + 1 denotes the number of unknowns.

2.2 Error Bound for HB Method

Because the HB method has a truncation error, we calculate
guaranteed solutions evaluated by an error bound. The error
bound is m — 1 dimensional surface in m dimensional space.
In order to obtain the error bound, we extend the method re-
ported in [9] to the periodically forced system (cf. Appendix
B). The error bound is calculated by removing the variable
A from Egs. (A- 16) and (A- 24).

However, the numerical computation of the error
bound is very time-consuming compared with solving the
HB equation because we need to express the high dimen-
sional error bound using a set of numerical values.

3. Algebraic Representation of Error Bound
3.1 Error Bound by Grobner Base

To overcome the difficulty of the numerical method, we try
to represent the error bound algebraically using Grobner
base. In order to apply Grobner techniques [16],[17], we
transform Egs. (A-16) and (A-24) into polynomial equa-
tions. Multiplying the both sides of Eq.(A-16) by (1 —
AH)??, we rewrite Eq. (A- 16) to the following equation;

fes1 (4, x; p,€) = A1 — AH)?

P n 2i
= > Qi+ Degpr (1 = AHP P (Z \ /x§r+x§s) =0. &)
i=0 k=0

Moreover, multiplying the both sides of Eq. (A-24) by 1 —
AH and squaring it, we obtain

Sfes2(A, x; 1, €)

n

- 14112; (2+22)-a —/lH)sz(; (fe+r2)=0.
(5)

Equations (4) and (5) are polynomial equations with respect
to A.

Because Grobner base of lexicographic order A4 > X,
(or 1 > xi) enables to eliminate A from Egs. (4) and (5).
we can obtain the following algebraic representation of the
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error bound [10];

ges(x;p,e) = 0. (6)

However, the computational cost of Grobner base is
highly dependent on the complexity of Egs. (4) and (5). In
particular, the computational cost increases exponentially
according to the expansion of the number n. Thus, the al-
gebraic representation (6) can not be calculated by the naive
method in [10] if we consider more than 2 frequency com-
ponents.

3.2 Efficient Method to Obtain Algebraic Representation

In order to resolve the problem of Grobner base, we propose
an efficient method to obtain the algebraic representation of
the error bound using transformations of variables [11]. Be-
cause the number n of the specific frequency components
complicates only the norms in Egs. (4) and (5), we trans-
form the norms into new variables;

(@) = @l = ). 22+, ()
k=0

Be) = lus (@l = . (5 + x2,). 8)
k=0
y(x; . €) = [FH(up )|l
= (REmo+fixme). ©)
k=0

Thus, using the transformation of the variable x into @, 3,7,
we rewrite Egs. (4) and (5) by

fes1(A, @y H) = A(1-AH)*

)4
—Z(2i+ Deainr (1= AH)XPD g2i=0), (10)
i=0

fep2(A,B,y; H) = A*H*B — (1-AH)*y = 0. (11)

Because the representations (10) and (11) have only 4
variables A, a,f,y instead of m + 1 variables A, xor, Xip,
Xlss - - -, Xns 10 Egs. (4) and (5), the computational cost of
Grobner base can be reduced.

Then, ggg(a,B,y; H) is obtained by the elimination
of A using Grobner base from Egs. (10) and (11). Since
the expressions of Egs.(10) and (11) are far simpler than
those of Eqgs. (4) and (5), the computational cost of obtaining
ges(a, B, v; H) is remarkably less than the cost of Eq. (6) by
the naive method. After we calculate ggg(a, 3, y; H), the al-
gebraic representation (6) is obtained by the substitutions of
a,B,v, H into ggs(a, B, v; H). Thus, the algorithm is given
by

S1. We give the polynomial equations fgpi(4,a;H) = 0
and fgp2(4,B,y; H) = 0.

S2. We obtain ggg(a, S, v; H) by the elimination of A using
Grobner base of order A > («, 8, y) from fgg; and fgg>.
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S3. We obtain the algebraic representation (6) of the
error bound by the substitution of «,f8,y,H into
ges(@, B,y H).

As is easily seen from this algorithm, we can obtain the
algebraic representation (6) of the error bound even if we
consider many frequency components. Moreover, the repre-
sentation ggg(a, B,y; H) is uniquely determined only by the
nonlinear element N[u] because the transfer functions G,
and G, are contained only in the variable y and the parame-
ter H in ggp(a, B3, y; H) symbolically.

3.3 Example

We apply the proposed method to Duffing equation;
d%u(r) du(r) 3

i + U ir +u’ = EcosT. (12)
This equation can be rewritten as Eq. (13);
w(t) = Gi(s; ) {v(7) = Gos3 N [u(7)]} 13)

v(t) = Ecost, Nlu(t)] = w,

1
N = — = 1 = .
G](S,M) S2 +,us’ G2 ’ G G]

The equations fgp; and fgp; is written by

fisi (4, a; H) = A(1 — AH)? = 3a% = 0, (14)
fep2(L B,y H) = 2*H*B — (1 - AH)*y = 0. (15)

Thus, the following algebraic representation ggg(a, 5, v; H)
of the error bound is obtained by the elimination of 1 using
Grobner base of order A > (a,,7);

gep(@,B,y; H) = 9a*H®Y® — 1350 BH*y*
—-60°BH>y? — 270a°B*Hy + 2250 B*H?y
-30a°B*Hy + By — 81a®B°H? = 0. (16)

Let us compare the proposed method using Grobner
base of order 1 > a > B > vy with the naive method us-
ing the order 4 > xj; > xj5. The computational cost of both
methods is shown in Table 1 where n = 1. From this table,
we can confirm the efficiency of the proposed method.

Further, Eq. (16) does not contain the transfer function
G(s;u) and the number of the specific frequency compo-
nents explicitly. Thus, when we fix the nonlinear element
N[u], we can obtain the algebraic representation (6) from
ges(a, B,v; H) even if we consider many frequency compo-
nents.

Table 1  Comparison of computational cost between proposed method
and naive method (n = 1).

Order of
variables

Computation ~ Required
Method time [s] memory [MB]
Naive method | A > x> x5 7425 956
Proposed method (A > a > B >y 0.007 1.09
Calculated by a PC with Xeon 3.06 GHz CPU.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

4. Fast Computation of Approximated Error Bound
4.1 Quadratic Approximation of Error Bound

In order to visualize the high dimensional error bound, we
project the error bound to a complex plane of a target fre-
quency component. However, the computation of the pro-
jection is very time-consuming.

We propose a fast computational method to obtain an
approximated projection of the error bound. The error
bound is in a neighborhood of the solution of the HB equa-
tion, and resembles an ellipsoidal body. Thus, we approxi-
mate the error bound to the quadratic form using variations
of the solution.

Let us consider a projection of the error bound to a
complex plane (x;, x;5) for [ € {1,...,n}. Then we rewrite
the vector of the variable

T
v s Xi1rs X1 1sX14+1r> XI41s - - + » Xnrs Xns)

X)) A7)

x = (Xpr, Xi5, Xors - -

= (xl s X2, .
Further, we consider that the variable x is described by
X =X+ Ax, (18)

., %7 is a vector of the solution of the
.., Ax,)T is a vector of

where, X = (%1, X, ..
HB equation and Ax = (Ax, Axs,.
its variations.

Using Ax and Taylor expansion, we obtain the
quadratic approximation gagg(Ax;pu,e) of the error bound
as follows;

geB(x; U, e) ~ gaps(Ax; p, e)

m

= i Cli,’Axiz-i-ZZ i a,-ijiij+ZZm: agiAxi+agy. (19)
i=1 i=1

i=1 j=i+1

Then, the approximated error bound is rewritten by

gaen(Ax: €)= (1, Ax1)A [ Alx] =0, 20)

where

dopo Aol - Aom

. aor aig c- - Aim (mt Dt 1)
A=AX ue)= e R™ mr,

aAom A1m " * * Amm

In order to obtain the projection of the approximated
error bound gagg(Ax; u, e), we decompose A(%, i, €) and Ax
into

AA (1] [A ! A

_|A1A42 _[A*1 _ I

A=[30 F[R5] 4w fan ] ae) £ .
X2 Axy

2y

where partial matrices of A denote A; € R>3, A, ¢
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R=2X3 and A3 € RO"2X0m=2) regpectively. Now let

0 0 T
JAEB gAEB) eR". 22)

\% = e
gaER ( 0Ax; 0Ax,,

be a gradient vector of gagg. Then, the boundary of the
projected error bound to (x;, x;) plane satisfies that Vgagg is
orthogonal to the following unit vectors which are parallel
to the xs, ..., x,, axes.

(0,0,0,1,0,...,0)T,
(0,0,0,0,1,...,0)T,

(23)
(0,0,0,0,0,...,DT.
Namely, the projection of gagp(Ax) satisfies
99 (Ax)
—— =0, k=3,...,m. 24
ank " ( )

Thus, applying this relation to Eq. (20), we obtain a con-
straint for the projection;

ATAX| + A3Ax; = 0. (25)

As a result, the projection of the approximated error bound
is represented by

(1,AxHA [ Alx] =(Ax], Ax;)

AjAx) + AzAXz}
0

=Ax]|AiAx; + Ax] AyAx,
=Ax| (A - A2A5'A]) Ax; = 0. (26)

Finally, the substitution of Ax; = x; — X, Ax; = xp — X
into Eq. (26) gives the approximated projection of the error
bound.

The quadratic approximation algorithm is written by

S1. We calculate the algebraic representation (6) of the er-
ror bound using Grobner base.

S2. We set the target complex plane (x, x,) and other vari-
ables x3,..., X,.

S3. We obtain algebraic representations of the elements
aij(X,p,e), (i,j=0,...,m,i < j) of the matrix A with
the solution £ of the HB equation and the system pa-
rameters p, e.

S4. We determine a;; by the substitution of the given so-
lution ¥ and parameters y, e into a;;(%,pu,e), (i,j =
0,....,m,i <)).

S5. We obtain the projection of the approximated error
bound by A — AzAglAg and the substitution of Ax; =
X1 — X1, Axp = xp — X, into Eq. (26).

Although the proposed error bound approximately
guarantees solutions of the HB equation, the projection of
the error bound can be plotted easily on a two-dimensional
space by this algorithm.
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4.2 Example

We apply the quadratic approximation of the error bound
to Duffing Eq. (12) where we assume that zero frequency
components are zero for simplicity. We consider the ap-
proximated projection to fundamental frequency compo-
nent, namely, x| = X[, X2 = X5, X3 = Xory..osXpo] =
Xnes Xm = Xus, and fi = fi, o = fiss 5 = forsee s S =
Jurs fm = Jus, where m = 2n. Let the solution of the HB
equation f(x;u, E) = 0be £ = (%1, ... , %»)T. Then the ma-
trix A of the approximated error bound is represented by the
elements

ag=—81H*a(f,, 27
aopi=-81H?&5%; + 4&)a0ifBo. (28)
a;;=—81H*a§(16a0a0;x; + 8dodifo + 284580 + &5)
m g A; ,E 2
(22560 H* =304 H 27045 H> + 1)2 (M) (29)
P ﬁx,-
a;j=—81H*a&§(8G0d0i%; + 8o, &i + 28080
+ddod;Bo) + (22565 H* —306H - 27065 H +1)
O (0fi(Rs . E) 0 fi(#; 1, E
Z( & 1 E) 0l )) 30)
6xj (9x,-

k=1
where
2

n A A a
0= AR b0 = el = -
0 — 2% k410 H0i = Wi = T T ~3°
=l @i 200 2

ek .. [0, 2 . _
A _% li-jl=1 , X+ X, i=1mod?2
o = ai T , @ = s
0 li-j=#1 JE2, + &2 i=0mod2

o 1

Bo=) %,H= ,
,; ¢ n+D)Jn+ 1212

i=1,....m, j=2,....m, i <].

In order to confirm the validity of the approximation,
the projections by the proposed method and the method in
[9] are shown in Fig.2 where u = 0.1, E = 0.35,n = 4,6, 8.
We can see that the projection of the approximated error
bound is very close to the projection in [9].

Moreover, the projection of the approximated error
bound with the parameter E varying from 0.1 to 0.4 is shown
in Fig.3 where u = 0.1 and n = 4. Because the elements
(27), (28), (29) and (30) contain the system parameters sym-
bolically, the approximated error bound can be easily ob-
tained even if we change the system parameters as shown in
Fig. 3.

Further, the computational time of the proposed
method and the method in [9] for n = 4,6, 8,20 is shown
in Table 2 when we vary the parameters u from 0.1 to 1.0,
E from 0.1 to 0.4. Additionally, we also show the solving
time of the HB equation in Table 2. Although the proposed
method in Table 2 does not contain the computational cost
of gep(x; u, E), ges(x; i, E) is calculated only once and the
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0.048
0047 | 7
0.046 [
0.045 H

Xis

0.044
0.043 |
0.042 |
0.041 |

0.04

0.039 5 : 5 :
-0.398 -0.396 -0.394 -0.392 -0.39 -0.388 -0.386
Xr
---------- Method in [9]
Proposed method
4 Solutions of HB equation (overlapping)

Fig.2  Projections of error bound for HB method on the (xj, xi5) plane
(u=0.1,E=035and n =4,6,8).

0.08 T T T T
Approximated error bound ——

0.07 | Solutions of HB equation ------- B

0.06 - )

\

(N
|
N

|

0.05 -

Xis

0.04
0.03

0.02 F S E=01

0.01 I I I I A1
-0.5 -0.4 -0.3 -0.2 -0.1

Xir

Fig.3  Projection of approximated error bound with parameter E varying
from 0.1 t0 0.4 (u = 0.1 and n = 4).

Table 2  Computational time of projection of error bound [s] (u varied
from 0.1 to 1.0 and E varied from 0.1 to 0.4, using Newton method with 90
% 300 x 32 points).
Method |n:4 n=6 n=8 n=20
HB method 1.50 2.23 3.47 16.63
Method in [9] | 237.02 303.73 39045 1172.47
Proposed method 7.52 8.70  10.29 26.22
Calculated by a PC with Xeon 3.06 GHz CPU.

computational cost is very low as shown in Table 1. Thus,
we can confirm that the proposed method reduces the com-
putational cost of the error bound dramatically. Although
the conventional method is very time-consuming compared
with solving the HB equation, the proposed method approx-
imately guarantees the solutions as fast as solving the HB
equation.

5. Break Point of Error Bound
5.1 Break Point and Singular Point of Error Bound

When we set the system parameters close to the bifurcation

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

EBZ EBI
1.5 T T
1F . -
Solution D e
05t ; .
0 :
B |~ Solution A
0.5
Solution C =3,
) ‘ - ‘ ‘ — Solution B

1 . . ] .
0 005 01 015 02 025 03 035 04 045 05
E

------- Solution curve of HB method

Approximated error bound

Fig.4  Bifurcation diagram of HB method and approximated error bound
(u=0.1and n = 30).

parameters, there exist two solutions of the HB equation in
a neighborhood. In such cases, two error bounds containing
these solutions are broken by a collision of each other, and
we can not hence guarantee the solutions near the bifurca-
tion point. Let us call this collision point a break point of the
error bound. We propose a method to obtain accurate break
points using the algebraic representation of the error bound.

Because a gradient vector of singular points equals zero
in general [16], [17], the break point of the error bound sat-
isfies the following relations based on the algebraic repre-
sentation (6)

ges(x;pt,€) =0
b 31
{ Vgep(x;p,e) =0 G
where a gradient vector Vggg(x; y, €) is written by
Ogep Oge OgEp Oges  Oges !
Vs = , , yeon , eR™. (32
JeB ( Oxor  Ox1r O0xps OXyr Oy (32)

Thus, if we view one system parameter € € {, e} as the vari-
able, the simultaneous Eq. (31) gives the break point (x, &).
We obtain the break point of the error bound by numeri-
cal method using an initial point ((¥; + X2)/2, &), where &
is the parameter value close to the bifurcation parameters,
and X1, ¥, denote two close numerical solutions of the HB
equation f(x; &) = 0.

The algorithm to obtain the break point of the error
bound is described by

S1. We calculate the algebraic representation (6) of the er-
ror bound using Grobner base.

S2. We select the parameter € in the system parameters u, e.

S3. Using the initial value ((X; + X3)/2, &), we obtain the
break point of the error bound by solving Eq. (31).

5.2 Example

We obtain the break points of the error bound for Duffing
Eq. (12), where we assume that zero frequency component
is neglected for simplicity. Let us select the parameter € = E
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0.115 T T T
Error bound
Solution A *
0.11 SolutionB <& 4
0.105 | k
= 01F 8

0.095F  Break point -/

0.09 |-

0.085

-0.7  -0.68 -0.66 -0.64 -0.62
Xir

Fig.5 Projection (xj, x1s) of error bound at parameter Eg; of break
point (Eg; = 0.445168, u = 0.1 and n = 30).

1.1} \ R
1.05 k
| Break point |
0.95 k
=
0.9 k
0.85 R
0.8
Error bound
0.75 Solution C o 7
o SolugonD__+

0.7
-0.8 -06 -04 -02 0 02 04 06 08 1
X1r

Fig.6  Projection (xj, x15) of error bound at parameter Ep, of break
point (Epy = 0.135366, 1 = 0.1 and n = 30).

and let 4 = 0.1, n = 30. Then the bifurcation diagram E-x,
is shown in Fig. 4. Additionally, we also show the approxi-
mated error bound in Fig. 4. Namely, we can guarantee the
solutions of the HB equation in a gray region. Thus, the bi-
furcation points in Fig. 4 lie close to E = 0.45 and E = 0.12.

Using the proposed method, we can calculate the pa-
rameters Eg; = 0.445168 and Eg, = 0.135366 of the break
points. We show the projection of the error bound at Eg;
and Ep; in Fig. 5 and Fig. 6, respectively. The Solution A,
B, C and D in Fig. 5 and Fig. 6 correspond to the Solution
A, B, C and D in Fig. 4. Thus, we can confirm that the pro-
posed method enables to obtain the accurate break points of
the error bound by the collisions.

6. Conclusion

We proposed an algebraic representation of an error bound
for HB method using Grobner base. Further, we proposed an
efficient method to calculate the algebraic representation us-
ing transformations of variables. The proposed method does
not depend on linear elements of the system and the number
of specific frequency components. Next, we proposed a fast
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computational method of an approximated error bound by a
quadratic approximation using the algebraic representation.
We confirmed that the quadratic approximation guarantees
approximately the solutions as fast as solving the HB equa-
tion. Moreover, we proposed a method to obtain accurate
break points of the error bound near bifurcation points. In
this way, algebraic approach is very powerful for high di-
mensional varieties such as error bounds.
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Appendix A: Derivation of HB Equation

Let us apply the HB method to the system equation (1). We
assume that Eq. (1) has a periodic solution with the period
2m. Thus, the solution u(7) is given by

u(r) = Z% |xpel] = i% | ot + i)™ ] (A1)
k=0

where x; € C, X, x4s € Rfork = 0,...,n, Cis a set of
complex numbers, R is a set of real numbers, xp; = 0 and
R[] denotes the real part. Now, assuming that a projection
operator K expresses the truncation of Fourier series, we
approximate the above solution by

u (7t) = Kpu(r) = Z r [x,*(ejkT]

= i R [(xkr + jxks)ejkT] > (A-2)

k=0

Using the operator K} and approximated solution (A-2), we
rewrite Eq. (1) to

EIE

due to s"el” = (jk)"el™, where

= Gi(ik: ) {(¢} = GaGks pyyif) 7] = 0. (A-3)

n

Ko@) = " epe, KiN[u (D] = ) yiel™.  (A-4)

k=0 k=0
By this relation, HB equation is written by
1) = (fors firs fiss - -s furs )T = 0 €R™, (A-5)
for = R[5 = G1(0: ) [y — Ga(0: g )]
fie = R[5 = GiGlsw {e; - Gaiks )]
fis = 3|3 - GG o {e; - Gaiks v}

— T m
X = (XOI’ X1rs Xlss « « «» Xnrs xns) €R s

— T m
€= (EOra €l1r, €155+ - -5 €nr,s ens) €R >

* : *
€, = € T Jeks, €y = o,

k=1,...,n,

where J[-] denotes the imaginary.

Appendix B: Error Bound of HB Method for Periodi-
cally Forced System

B.1 Definition for Error Bound

Let a projection operator Ky be

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

oo

D0 R[Gk +jme], (A6)
k=n+1
u(t) = u (t) +ug(t), KL + Ky=1,

uy(7) = Kyu(r) =

where [ is an identity operator. Then, we define norms by

- NV
Inorm : [[u(o)]|; _{Z(w/xir+xis)} fori=1,2. (A7)

k=0
L?norm : [|u(7)lleo = SUP.p0 .27 14(T)I. (A-8)
where
n A Vi
e (D) = {Z(w/x; ¥ x,%)} , (A-9)
k=0
00 i 1/i
g ()ll; = { > (Ve x,g)} fori=12 (A 10)
k=n+1

The I' norm satisfy |[u(f)|lee < |lu(®)|];.
B.2 Estimation of High Frequency Components

We estimate the high frequency components. Let A be any
positive number satisfying

PRy (A-11)
du e
Applying the operator Ky to Eq. (1), we obtain the relation;
un(t) = —KuG(s; )N[ur(7) + up(7)] (A-12)
If
AH = ﬂsup'G(ik;y)' <1, (A-13)
k>n

is satisfied where H(u) = sup,., |G(jk;u)| € R is a constant,
then there exists a unique uy [9].

Using the contraction mapping theorem and the mean
value theorem, we obtain the following relations;

luelli for i=1,2. (A-14)

llagalli <

1-AH
The inequality estimates the high frequency components by
the low frequency components for /' and /> norms.

B.3 Determination of A

The estimation of the high frequency components (A- 14)
gives the following relation;

A
Il < Wl + ol < (14 5 Yl (A15)
Thus, if we determine the variable A as
p 2i
. AH .
A= Z(zwncm(u ) i ac16)
dN[u]
>Z<2z+1)czl+1||u||12' |
dN
L)l (A-17)
du e

then A satisfies Eq. (A- 11).
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B.4 Error Bound by Homotopy Invariance

Applying the operator K, to Eq. (1), we obtain

G~ (5 wur, —{G5 ' (53 () — KL Nlup +u 1}
0. (A-18)

FT(u)

Equation (A- 18) corresponds to the low frequency compo-
nents of Eq. (1), and ur, in Eq. (A- 18) is the exact solution of
Eq. (1). Now, if we set uy = 0 in Eq. (A- 18), then we obtain

FH(u ) = G~ (s; . —{G, " (55 )o(r) — KL N[ur 1}
=0 (A-19)

which corresponds to the HB Eq.(A-5). That is, ug
in Eq.(A:-19) is an approximated solution by the HB
Eq. (A-9).

In order to obtain the error bound from Egs. (A- 18) and
(A-19), we use the following lemma of the homotopy invari-
ance theorem [18]-[20].

Lemma 1. Let Q be an open bounded set in R™ and let
[ g:ﬁ — R™ be two continuous maps where Q denotes the
closure of the set Q. Lety € R™ be a certain vector. Suppose
further that € satisfies 0 < &€ = min{||f(z) —yl, | z € 0Q}
where O is the boundary of the set Q. If

If(2) -9, <& VYzedQ, (A-20)

then deg(f,Q,y) = deg(g,Q,y) where we denote by
deg(f,Q,y) the degree of f with respect to Q at y.

If we set f(z) = FH, ¢g(z) = FT, z = x, y = O in
Eq. (A-20), then deg(FH, Q,0) = deg(FT, Q, 0) is satisfied.
Namely, if there exists a region € containing a single solu-
tion of Eq. (A- 19) on whose boundary

IFT(uL) — FH(up)ll2 < [IFH(up)ll2 (A-2D)

holds, then a solution of Eq. (A- 18) exists belonging to Q.

Using the mean value theorem and the estimation of the
high frequency components (A- 14), we obtain the following
relation from Eq. (A-21);

IFT(uL)—FH(up )|l = [[KLN[uL] = KLN[ug +unlll,

2
<A < . (A-22
< Alunle < T lucll- (A-22)
Because inequality
AH
mﬂudlz < [IFHGup)ll2 (A-23)

satisfies Eq. (A-21), we can define the error bound for the
HB method by

2

A*H
7 llucllz = [[FH(up ).

A-24
1-AH ( )
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