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Abstract

Intrinsic localized mode (ILM) is spatially localized and temporally periodic oscil-

lation in nonlinear coupled oscillators. We numerically investigate the dynamical

stability of ILMs in a microcantilever array, in which ILMs were experimentally

observed by M. Sato et al. It is found that the stability change of ILMs is due to

the ratio in nonlinear potentials. This phenomenon also occurs in the array without

harmonic potentials. Consequently, the stability of ILMs substantially depends on

the ratio in nonlinear on-site and inter-site potentials.
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1 Introduction

In 1988, Sievers and Takeno theoretically found a localized mode in an an-

harmonic lattice [1]. The mode is spatially localized and temporally periodic

solution, which is called intrinsic localized mode (ILM) or discrete breather
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(DB). Tremendous number of analytical and numerical studies have been re-

ported. Most of the studies are the rigorous proof of existence, the investigation

on dynamical stability and movability, and the development of computational

method to obtain ILMs [2,3].

In this decade, experimental investigations have been also reported. ILM is

generated and observed in various systems, for instance, Josephson-junction

array [4–6], optic wave guides [7,8], and micro-mechanical oscillators [9]. They

provide us the generality of localizing phenomena and the possibility of appli-

cations as a localized exciter. In fact, the studies toward future applications

are increasing both in fundamental science and in practical engineering [10].

Intrinsic localized mode in a micro-mechanical cantilever array has been ob-

served by Sato et al. [9,11]. They fabricated a di-elements cantilever array via

micro-electro mechanical system (MEMS) technology. The array consisted of

short and long cantilevers which were alternatively arranged in one dimension.

A piezo vibrator was attached to the substrate of the array. The frequency of

the vibrator was chirped to excite ILMs so that ILMs were excited through

the modulational instability. As a result, traveling ILMs and pinned ILMs

appeared [11,12,9].

Moreover, Sato et al. achieved a shift of the position of ILM using a local

impurity [13,12]. Thus ILM was possibly shifted from a site to another without

any decay. It suggests the possibility of applications of pinned and traveling

ILMs into MEMS devices. Then the analysis of dynamical properties of ILM

is essential to develop applications.

This Letter focuses on the stability of ILM in the cantilever arrays numerically.

In particular, the dependency of the stability of ILMs is investigated.
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2 Micro-Cantilever Array

A finite cantilever array is mainly considered in this Letter. The schematic

configuration is shown in Fig.1. For simplicity, we assume the mono-element

cantilever array. The array has eight homogeneous cantilevers placed with

equal interval. Adjacent cantilevers are coupled together by the overhang part

between them. In our setting condition, both ends of the array are fixed by

the support.

The vibration of the tip of cantilevers is approximately described by the cou-

pled non-dimensional ordinary differential equations as follows:

üi =−ui − u3
i − α (2ui − ui−1 − ui+1)

−β (ui − ui−1)
3 − β (ui − ui+1)

3 , (1)

i ∈ {1, 2, . . . , 8},

where ui denotes the displacement of tip of the ith cantilever from equilibrium

position. α depicts the ratio in quadratic potentials. The ratio of quartic po-

tential is given as β. Here we introduce the boundary conditions as fixed-ends;

u0 = u9 = 0, u̇0 = u̇9 = 0. The experiments by Sato et al. were performed in

high vacuum condition [9]. Then we assume that the energy dissipation is neg-

ligible. In this Letter, the external exciter is also neglected because the array

has no energy dissipation. Hence the total energy of the discretized model
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(2)

will be kept during the temporal development. The first term is the kinetic

energy of a site in the discretized model. The other terms represent the po-

tential energy. On-site potentials are represented by the second and the third
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terms. The forth and the last term are inter-site potentials. They are repre-

sented with coefficients α and β. In this Letter, the linear coupling coefficient

α is fixed at 0.1 or set to zero. The quartic interaction coefficient is varied in

this Letter.

In this Letter, an ILM is treated as a fixed point on a hyperplane Σ4.The

hyperplane is given by

Σi =
{
(u1, . . . , u8, u̇1, . . . , u̇8) ∈ R16 | ui > 0, u̇i = 0

}
. (3)

3 Coexistence and Stability

In this section, we discuss the coexistence and the stability of ILMs. The

Newton-Raphson method started with an appropriate initial condition is ap-

plied to obtain each ILM. Eq.(1) is integrated by 6th-order symplectic integra-

tor. The total energy H is set at 2.5 so that ILM is sufficiently localized. The

accuracy of the numerical simulation is confirmed through the preservation of

the total energy H with keeping numerical errors under ϵH. In this Letter,

ϵ = 10−12.

3.1 Coexisting ILMs

The coupled cantilever array has many coexisting ILMs. The symmetry of ILM

generally classifies ILMs into two kinds, “Sievers-Takeno mode (ST-mode)”

and “Page mode (P-mode)” [2]. The amplitude distribution of the ST-mode

illustrated in Fig.2(a) is symmetric in space and centered on a site. This mode

is found analytically by Sievers and Takeno [1]. On the other hand, the P-
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mode, which is analytically derived in 1990 [14], is anti-symmetric and cen-

tered between sites as shown in Fig.2(b). Here we distinguish coexisting ILMs

by index number of cantilever at which the center of each ILM stands. For

example, ST4 implies the ST-mode centered on the 4th cantilever and P2-3

implies the P-mode centered between the 2nd and the 3rd cantilevers.

If an ILM is sufficiently localized, it will be able to stand at any site even

near the edges. However, the number of coexisting ILMs depends on β. For

β = 0.1, eight ST-modes and seven P-modes are obtained. ST1, ST2, P1-2,

and P2-3 are disappeared, when β increases up to 0.5. P2-3 is obtained again

at β = 0.6.

3.2 Stability Change

The stability of each coexisting ILMs is also changed between β = 0.5 and

0.6. All ST-modes are stable and all P-modes are unstable when β is set at

0.5. In contrast, the stability of all coexisting ILMs is flipped at β = 0.6.

Fig.3(a) shows locus of coexisting ILMs and their stability with respect to β.

The locus of ILM is obtained by XΣ4 =
∑8

i=1 i|ui|/
∑8

i=1 |ui|, where ui denotes

the displacement of ith cantilever on the hyper plane Σ4. The linear potential

ratio α is fixed at 0.1. As in Fig.3(a), the stability of P4-5, ST4, and P3-4 is

flipped between β = 0.5452 and β = 0.5456.

The locus of stable ST3 is shifted from 3.0 toward 3.5 with β. Ultimately stable

ST3 and unstable P3-4 are disappeared. Unstable ST3 appears with stable P2-

3. The locus of stable P2-3 asymptotically reaches 2.5 as β increases. Thus

ST3 has a parameter gap between stable and unstable modes.
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Because of the reflectional symmetry about the center of array, only P4-5

changes its stability without any discontinuity. Unstable and stable P4-5 con-

tinuously join at BP. Two stable ST-modes join with P4-5 and disappeared at

the same condition. P4-5 changes only its stability at BP.

The absolute value and argument of the Floquet multipliers for P4-5 are shown

in Figs. 3(b) and (c). Two Floquet multipliers lie on real axis for β < βP. One

of them exists outside unit circle. The other stays inside unit circle. According

to the increase of β, two Floquet multipliers slide toward +1 along real axis.

At β = βP, these multipliers are conjoined at +1. After the bifurcation, their

multipliers slide on unit circle. Therefore the bifurcation of ILMs on β is

classified to “saddle-node bifurcation” [15].

3.3 Analysis on Ringed Array

Figure 3(a) shows that coexisting ILMs have a parameter gap between stable

and unstable modes in β. The parameter gap tends to be wider with the

locus of ILM approaching to the edge. The reason is that the amplitude near

the edges increases when ILM approaches to the edges. Then the influence

of the edges becomes remarkable. In a ringed array, all coexisting ST-modes

and P-modes show their continuous connection to the corresponding ILMs.

The numerical confirmation is obtained in Fig.4(a). The parameter gaps are

completely vanished. Hence it is concluded that the parameter gap between

stable ILM and unstable ILM is caused by the fixed-ends, namely, the effect

of the impurities.

The ringed array has translational symmetry. Then all of the P-modes simul-
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taneously change its stability at βP as shown in Fig.4(a). The stability of the

ST-modes also changes at β = βST. As can be seen from Fig.4(a), the critical

values βP and βST are different. This case corresponds to βP > βST. Thus

there exists a region in which all of the coexisting P- and ST-modes are un-

stable. The region is darkly hatched in Fig.4(a). In the region, asymmetric

ILMs, which are represented by dash-dotted curve, also coexist with P- and

ST-modes. The amplitude distribution is shown in Figs.4(b) and (c). These

asymmetric ILMs are stable and stand between P- and ST-modes. Then they

cannot be classified into P- or ST-mode. It should be noted that the region

is not affected by lattice number. It is numerically confirmed that the region

exist in case of N = 256.

Figure 4(a) is obtained by the high energy limit, which is achieved by elimi-

nating harmonic terms from Eq.(1). If the array has harmonic potentials, the

region is shifted with the total energy H. Critical values in Fig.3 decrease

according to the decrease of the total energy H. Ultimately, coexisting ILMs

degenerate to the stable zone boundary mode. In other words, ILMs are gen-

erated through the bifurcation from the zone boundary mode under a critical

total energy H. It is called as “the tangent bifurcation” [16].

On the other hand, “the saddle-node bifurcation”, which is shown in this

Letter, occurs even in the high energy limit. Then the harmonic potential

ratio α is not significant parameter for the saddle-node bifurcation. Therefore

the stability of ILM substantially depends on the nonlinear potential ratio β

in the cantilever array.
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4 Conclusions

We investigate the coexistence and stability of ILM in the micro-cantilever

array, which is described by the coupled ordinary differential equations. As

a result, it is shown that the quartic potentials ratio governs the stability of

coexisting ILMs. The stability of ILM generally depends on the symmetry

of amplitude distribution in space [3]. In the Fermi-Pasta-Ulam-β (FPU-β)

lattice, which has quadratic and quartic inter-site potentials, the P-mode is

stable and the other is unstable [17]. However, the ST-mode is stable in the

Klein-Gordon lattice which has quadratic and quartic on-site potentials and

linear coupling. The P-mode is unstable in this lattice. The micro-cantilever

array has nonlinearity in both on-site and inter-site potentials [12]. Then ST-

modes are unstable when the inter-site nonlinearity is sufficiently smaller than

the on-site nonlinearity. If the inter-site nonlinearity becomes dominant, the

ST-modes are stable. Thus the stability change of ILM is caused by the ratio

in inter- and on-site nonlinearity. We identify that the stability changes oc-

cur through the saddle-node bifurcation. The bifurcation is not significantly

depended on the harmonic terms. Because the bifurcation occurs even in the

high energy limit.

Asymmetric ILMs are obtained in the region where all coexisting P- and ST-

modes are unstable. Their amplitude distribution has no symmetry. These

ILMs are not classified into ST- or P-modes. In the region βST ≤ β ≤ βP, twice

number of ILMs coexist. If the coupled cantilever array is precisely fabricated,

the asymmetric ILM should be excited experimentally. However the region is

quite narrow. Analysis in the array with fixed boundaries suggests that the

region is sensitive against impurities. Thus the excitation of asymmetric ILMs
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seems to be difficult.

The influence of impurities is enhanced near the critical value of the nonlin-

earity ratio. It is confirmed by comparing the ringed array to the edge-fixed

array. In the ringed array, all coexisting ST-modes simultaneously lose their

stability at β = βST because of the translational symmetry. The fixed bound-

aries, which are equivalent to quite heavy impurities, break the symmetry of

the array. As a result, the stability change is not simultaneously caused. The

parameter gaps between stable and unstable ILMs are emerged. Even if an

ILM stands near the center of the array, the parameter gap exists. In other

words, the influence of impurity against ILM is enhanced near the stability

change of ILM.

The nonlinearity ratio is determined by the design of the array. Then the

stability of ILM depends on the design of the cantilever array. It implies that

the spatial symmetry of ILM in MEMS devices is selectable by the design of

the devices. In addition, if the ratio is adjustable in time, the stability will be

controllable. Applications using ILM would be realized by stability switching.
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Fig. 1. Schematic configuration of cantilever array. The array consists of eight can-

tilevers, the overhang part, and the support. The interacting force between adjacent

cantilevers is caused by bending of the overhang part.
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Fig. 2. Sievers-Takeno (ST) mode (a) and Page (P) mode (b). Each circle indicates

the position of oscillator. Each line between circles corresponds the schematic cou-

pling connection. Circles on the horizontal dashed line will not show the remarkable

oscillation. The large displacement implies that the oscillator shows the periodic

oscillation with large amplitude.
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