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Abstract

In this paper, we consider the problem to compute the distance to uncontrolla-
bility (DTUC) of a given controllable pair A ∈ Cn×n and B ∈ Cn×m. It is known
that this problem is equivalent to computing the minimum of the smallest singular
value of [ A − zI B ] over z ∈ C. With this fact, Gu et al. proposed an algo-
rithm that correctly estimates the DTUC at a computation cost O(n4). From the
viewpoints of linear control system theory, on the other hand, this problem can be
regarded as a special case of the structured singular value computation problems
and thus it is expected that we can establish an alternative LMI-based algorithm.
In fact, this paper first shows that we can compute a lower bound of the DTUC by
simply applying the existing techniques to solve robust LMIs. Moreover, we show
via convex duality theory that this lower bound can be characterized by a very
concise dual SDP. In particular, this dual SDP enables us to derive a condition
on the dual variable under which the computed lower bound surely coincides with
the exact DTUC. On the other hand, in the second part of the paper, we consider
the problem to compute the similarity transformation matrix T that maximizes the
lower bound of the DTUC of (T−1AT, T−1B). We clarify that this problem can be
reduced to a generalized eigenvalue problem and thus solved efficiently. In view of
the correlation between the DTUC and the numerical difficulties of the associated
pole placement problem, this computation of the transformation matrix would lead
to an effective and efficient conditioning of the pole placement problem for the pair
(A,B).

1 Introduction

Let us consider the linear system described by

ẋ(t) = Ax(t) + Bu(t), A ∈ Rn×n, B ∈ Rn×m. (1)

Here, x ∈ Rn is the state vector and u ∈ Rm is the control input vector. As is well-
known, this system is said to be controllable if, for given any initial and final states x(0)
and x(T ), there exists u(t) (0 ≤ t ≤ T ) that drives the state from x(0) to x(T ). The
controllability of the system (1), or say, the controllability of the matrix pair (A, B), can
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be tested algebraically via the Popov-Belevitch-Hautus (PBH) test [26]. We can also
check the controllability via the positivity of the associated controllability gramian [26].

For the controllable pair (A, B), its distance to uncontrollability (DTUC) was firstly
introduced in [19] and can be characterized as follows [8]:

ε� = min
z∈C

σmin([ A − zI B ]). (2)

Here, σmin(·) denotes the smallest singular value. The form (2) conforms to the PBH test,
which claims that the pair (A, B) is controllable iff rank([ A − zI B ]) = n (∀z ∈ C).

The computation of the DTUC is motivated by the following facts:

• The classical controllability tests do not provide any means to detect whether the
control system is nearly uncontrollable, which is equally troublesome in practice [9].

• The DTUC can be used as a measure to estimate whether the pole placement
problem for the pair (A, B) is well- or ill-conditioned. More precisely, the pole
placement problem is likely to be ill-conditioned if the DTUC is small [13, 16].

In view of these facts, intensive research efforts have been made for the computation of
the DTUC. As clearly shown in (2), the DTUC can be computed by solving a global
optimization problem in two real variables. In general, this is a non-convex optimization
problem and thus not tractable [9]. Recently, however, linear algebra algorithms that
correctly estimate the distance at a cost of polynomial in n have been developed [9, 4, 10].

From the viewpoints of linear control system theory, on the other hand, it can be seen
from (2) that the DTUC computation can be regarded as a special case of the structured
singular value (SSV) computation [18]. Since linear matrix inequality (LMI) is surely
powerful for the SSV computation, it is expected that we can construct alternative LMI-
based algorithms to correctly compute the DTUC. However, as clearly stated in [4], it does
not seem to be known whether the Gu’s algorithm could be replaced by an LMI-based
one and this fact motivates us to compute the DTUC via LMIs in this paper.

It should be noted that our primary concern is not to pursue computationally de-
manding LMI-based algorithms but to shed more insight to the problem from convex
duality theory. To this end, we first reveal that a lower bound of the DTUC can readily
be computed by applying existing techniques to deal with robust LMIs [2, 12, 15, 17].
Next we show via convex duality theory [1] that this lower bound can be characterized
by a very concise dual SDP. This dual SDP enables us to derive a rank condition on
the dual variable under which the computed lower bound surely coincides with the exact
DTUC. We also show that, if the suggested rank condition is satisfied, one of the global
optimizers z� ∈ C for (2) can be obtained by simply computing the eigenvalues of a
matrix constructed from the optimal dual variable. This rank condition works fine in
practice, and we will show thorough numerical examples that we can obtain exactness
certificate even for those problems where the common rank-one exactness principle fails.

On the other hand, in the second part of the paper, we consider the problem to
compute the similarity transformation matrix T that maximizes the lower bound of the
DTUC of (T−1AT, T−1B). In particular, we will show that this problem can be reduced
to generalized eigenvalue problem and thus solved efficiently. In view of the correlation
between the DTUC and the numerical difficulties of the associated pole placement prob-
lem [13, 16], this computation of the similarity transformation matrix would lead to an
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effective and efficient conditioning of the pole placement problem for the pair (A, B).
This illustrates in part the usefulness of the proposed LMI-based methodology over the
existing linear algebra algorithms [9, 4, 10].

We use the following notations in this paper. The symbols Hn, Pn and Sn denote
respectively the set of n×n Hermitian matrices, positive-semidefinite, and skew-Hermitian
matrices. For V ∈ Hn, we denote its smallest eigenvalue by λmin(V ).

2 Problem Formulation and Perspectives of the

LMI-based Results

2.1 Problem Formulation

For given A ∈ Cn×n and B ∈ Cn×m, our primary concern is to compute the DTUC
given by (2). By following [4, 7], however, we proceed our discussion under slightly more
general setting. Namely, for given P, Q ∈ Cn×(n+m), we consider the problem to compute

ε� := min
z∈C

σmin(P + zQ) (3)

or equivalently,

ε� := min
(r,θ)∈R×(−π,π]

σmin(P + rejθQ). (4)

We assume that rank Q = n. The problem to compute the DTUC can be seen as a
special case of (3) where P = [ A B ] and Q = [ −In 0n,m ].

2.2 Perspectives of the LMI-based Results

Since lim|z|→∞ σmin(P + zQ) → ∞ holds under our assumption that Q is of full-row rank,
and since σmin(P + zQ) take its value σmin(P ) at z = 0, it is obvious that there exists
γl = γl(P, Q) > 0 such that

ε� = min
|z|≤γl

σmin(P + zQ). (5)

In the next section, we give a detailed analysis on how to determine the value γl > 0
reasonably. Furthermore, from the definition of the smallest singular value, we can rewrite
(5) as

ε� = max ε subject to (P + zQ)(P + zQ)∗ − ε2I ≥ 0 ∀|z| ≤ γl

or equivalently,

ε� = max ε subject to

[
In

zIn

]∗ [
PP ∗ − ε2I QP ∗

PQ∗ QQ∗

] [
In

zIn

]
≥ 0 ∀|z| ≤ γl. (6)

In relation to (6), let us consider the following two conditions to be verified:[
In

zIn

]∗
Φ

[
In

zIn

]
≥ 0 ∀|z| = γl, (7)
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[
In

zIn

]∗
Ψ

[
In

zIn

]
> 0 ∀|z| ≤ γl. (8)

Here, Φ, Ψ ∈ H2n are given matrices with Ψ ≥ 0. It is known that these conditions form
important basis for linear system analysis [12, 14, 15, 23, 6]. For example, the condition
(7) is strongly related to the celebrated KYP lemma [15, 20] while the condition (8) is
related to the basic properties of linear systems such as stability and stabilizability [6]. In
particular, it has been shown that the problems to verify these conditions can be reduced
into LMI feasibility problems in an exact fashion [12, 15, 23, 6].

As clearly seen, the optimization problem (6) does not fall into the category of (7) or
(8). To the best of the author’s knowledge, exact LMIs for (7) with ∀|z| = γl replaced by
∀|z| ≤ γl or for (8) without imposing Ψ ≥ 0 are not known in the literature. Thus, simple
application of the existing LMI-related results does not allow us to solve the problem to
compute the DTUC exactly.

3 Lower Bounds Computation

3.1 Reduction to a Single Variable Optimization Problem over
a Compact Set

Let us consider the definition of ε� given by (4). In this optimization problem, it is almost
apparent that we can bound the radius r as we have stated around (5). Indeed, we can
readily obtain the next result.

Proposition 1 The quantity ε� in (4) can also be characterized as

ε� = min
(r,θ)∈[−γl,γl]×(−π,π]

σmin(P + rejθQ) (9)

where

γl :=

√
σmin(P )2 + 1

λmin(Q(I + P ∗P )−1Q∗)
. (10)

Proof: We first note that, since the matrix Q is of full row-rank from our underlying
assumption, Q(I + P ∗P )−1Q∗ > 0 and thus γl > 0 is well-defined.

To prove the assertion, it suffices to show that the optimizer r in (4) cannot lie on
|r| > γl. To this end, we note from (10) that the following inequality holds:

r2 >
σmin(P )2 + 1

λmin(QQ∗ − QP ∗(PP ∗ + I)−1PQ∗)
∀|r| > γl.

Here, we applied the matrix inversion formula [26] to the term (I + P ∗P )−1 in (10). It
follows that

r2(QQ∗ − QP ∗(PP ∗ + I)−1PQ∗) − (σmin(P )2 + 1)I > 0 ∀|r| > γl.

From the Schur Complements arguments, we obtain[
r2QQ∗ − σmin(P )2I − I rQP ∗

rPQ∗ PP ∗ + I

]
> 0 ∀|r| > γl.
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By pre-multiplying [ I e−jθI ] and post-multiplying [ I e−jθI ]∗ to the this inequality,
we have

(P + rejθQ)(P + rejθQ)∗ > σmin(P )2I, ∀|r| > γl, ∀θ ∈ (−π, π]. (11)

This implies ε�
γl

> σmin(P ) where

ε�
γl

:= min
|r|>γl, θ∈(−π,π]

σmin(P + rejθQ).

On the other hand, it is also obvious that ε� ≤ σmin(P ) since the quantity σmin(P )
corresponds to the one we evaluate σmin(P + rejθQ) at r = 0. By noting these facts as
well as 0 ∈ [−γl, γl], the proof is completed.

In Proposition 1, we have derived an explicit bound on the radius r. We note that,
even if the bound γl might not be tight, the fact that we can bound the radius r plays
an important role to derive the main result of this paper in Section 4 (see the discussion
around (19) in the proof of Theorem 1).

We next remove the dependence on θ of (9). To this end, we first note that (9) can
be rewritten, equivalently, as

ε� = max ε subject to[
I
ejθ

]∗ [
r2QQ∗ − ε2I rQP ∗

rPQ∗ PP ∗

] [
I
ejθ

]
≥ 0 ∀(r, θ) ∈ [−γl, γl] × (−π, π].

(12)

Then, for each fixed r ∈ [−γl, γl], we see from the KYP lemma [15, 20] that[
I
ejθ

]∗ [
r2QQ∗ − ε2I rQP ∗

rPQ∗ PP ∗

] [
I
ejθ

]
≥ 0 ∀θ ∈ (−π, π]

holds if and only if there exists X(r) ∈ Hn such that Γ(P, Q, r, X(r), ε) ≥ 0, where

Γ(P, Q, r, X(r), ε) :=

[
r2QQ∗ − ε2I − X(r) rQP ∗

rPQ∗ PP ∗ + X(r)

]
.

This observation leads us to the next result, which forms an important basis of our study.

Proposition 2 The quantity ε� in (4) can also be characterized as

ε� = max
X(r)∈Hn

ε subject to Γ(P, Q, r, X(r), ε) ≥ 0 ∀r ∈ [−γl, γl]. (13)

Here we have introduced X(r) : R → Hn so that we can eliminate the dependence
on the parameter θ of (12). This type of matrix is often called a parameter-dependent
multiplier (PDM) [5]. In particular, the idea to reduce the number of parameters by
introducing PDMs via the KYP lemma was first introduced in [2, 17]. Originally, the
KYP lemma has been used to convert frequency domain inequalities of linear systems into
LMIs [3]. Recently, however, this lemma receives renewed interest to deal with robust
LMI problems; see, e.g., [2, 15, 17, 24].
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3.2 Lower Bounds Computation via Finite Power Series
Approximation of X(r)

In Proposition 2, we have reduced the DTUC computation problem into an optimiza-
tion problem of single variable over a compact set. However, the resulting problem is
still intractable since we have to seek for the desired X(r) over an infinite-dimensional
function space. To get around this difficulty, in this subsection, we consider finite degree
polynomial approximation of X(r) and provide a numerically tractable way to compute
the lower bounds of the DTUC.

For given N , let us define XN(r) :=
∑N

i=0 riXi where Xi ∈ Hn (i = 0, · · · , N) are
decision variables to be determined through optimization. We further define

ε�
N := max

XN (r)∈Hn

ε subject to Γ(P, Q, r, XN(r), ε) ≥ 0 ∀r ∈ [−γl, γl]. (14)

Then, it is apparent that ε� ≥ ε�
j ≥ ε�

k (j ≥ k). Once we have restricted our attention on
XN(r), we can reduce the problem to compute the corresponding lower bound ε�

N defined
in (14) into an SDP in an exact fashion (see, e.g., [12, 15]). For example, in the case
where N = 2, we can readily obtain the next result.

Proposition 3 The quantity ε�
2 can be computed via SDP:

ε�
2 = max

X0,X1,X2,D,G
ε subject to

−ε2I − X0 0 −1

2
X1 QP ∗

0 PP ∗ + X0 0
1

2
X1

−1

2
X1 0 QQ∗ − X2 0

PQ∗ 1

2
X1 0 X2


+

[ −γ2
l D G

G∗ D

]
≥ 0,

X0, X1, X2 ∈ Hn, D ∈ P2n, G ∈ S2n.

(15)

By solving the SDP (15), we can obtain the lower bound ε�
2 for ε� as well as X0, X1

and X2. Using these matrices X0, X1 and X2, in [7], an efficient method to compute an
upper bound of ε� is also suggested.

4 Exactness Verification of Lower Bounds

It was shown in [7] that the aforementioned lower bound ε�
2 is very close to the exact

DTUC in all tested numerical examples. However, since the computation of ε�
2 is based

on the second-order approximation of X(r) in (13), we cannot say anything theoretically
on the exactness of ε�

2 at this stage.
On the other hand, in order to verify the exactness of the LMI relaxation approaches in

other context of linear system analysis and synthesis, it is surely effective to consider the
dual problem and examine the structure of the dual variable [11, 14, 15, 21, 22, 23, 6]. This
often leads to rigorous theoretical proofs for the exactness of LMIs at hand [11, 14, 15, 6],
and even for those hard problems that do not allow us to conclude the exactness, we can
obtain viable condition for the exactness verification [21, 22, 23].

Following these ideas, we first consider the characterization of ε�
2 in (15) via dual SDP.
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Lemma 1 The quantity ε�
2 can also be characterized by the dual SDP:

ε�2
2 = min

H
trace

([
PP ∗ PQ∗

QP ∗ QQ∗

]
H

)
subject to (16a)

H :=

[
H11 H12

H∗
12 H22

]
≥ 0, (16b)

Ĥ :=

[
H11 H∗

12

H12 H22

]
≥ 0, (16c)

γ2
l H11 ≥ H22, (16d)

trace(H11) = 1. (16e)

Proof: See the appendix section.

Lemma 1 shows that we can compute the lower bound ε�
2 by solving the dual SDP

with 2n2 + n scalar variables, whereas the primal SDP (15) involves (11n2 + 3n)/2 scalar
variables. The total size of LMIs are 5n and 6n, respectively. From [25], the computa-
tional complexity to solve an SDP is represented by O(K2R2.5 + R3.5), where K denotes
the number of scalar veriables involved and R the size of the underlying LMI. In view
of these facts, it is clear that we have achieved considerable reduction of the associated
computational burden by Lemma 1.

In addition, the simplification into (16) enables us to obtain the next result, which
works effectively in practice for the exactness verification of the lower bound ε�

2.

Theorem 1 Let us denote the full-rank factorization of the optimal H and Ĥ in Lemma 1
by

H =

[
H1

H2

] [
H1

H2

]∗

, Ĥ =

[
Ĥ1

Ĥ2

][
Ĥ1

Ĥ2

]∗

. (17)

If both H1 and Ĥ1 in (17) are full column-rank, we have ε�
2 = ε�.

Proof: Since ε�
2 ≤ ε� holds, it suffices to prove ε�

2 ≥ ε� if both H1 and Ĥ1 in (17) are

full column-rank. To this end, we first note from the structure of H and Ĥ in (16b) and
(16c) that

H1H
∗
1 = Ĥ1Ĥ

∗
1 . (18)

Since both H1 and Ĥ1 are of full-column rank from our underlying assumption, the above
equality implies that the column-size of H1 and Ĥ1 are the same, which is denoted by
k in the sequel. Then, from (18) and [20, Lemma 3], we see that there exists a unitary

matrix Ω ∈ Ck×k such that Ĥ1 = H1Ω. Thus, the matrix Ĥ can be rewritten in the
following form:

Ĥ =

[
H1

H̄2

] [
H1

H̄2

]∗
(H̄2 := Ĥ2Ω

∗).
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On the other hand, from (16b), (16c) and (16d), we have γ2
l H1H

∗
1 ≥ H2H

∗
2 and γ2

l H1H
∗
1 ≥

H̄2H̄
∗
2 . Hence, again from [20, Lemma 3], there exist matrices V, W ∈ Ck×k with ||V || ≤ γl

and ||W || ≤ γl such that

H2 = H1V, H̄2 = H1W. (19)

It follows that we can represent H and Ĥ in the following form:

H =

[
H1H

∗
1 H1V

∗H∗
1

H1V H∗
1 H1V V ∗H∗

1

]
, Ĥ =

[
H1H

∗
1 H1W

∗H∗
1

H1WH∗
1 H1WW ∗H∗

1

]
. (20)

Since H1 is full-column rank, we see from (16b), (16c) and (20) that V = W ∗ and
V V ∗ = WW ∗ hold. This implies V V ∗ = V ∗V . Namely, the matrix V is a normal matrix.
Therefore there exists a unitary matrix U ∈ Ck×k such that

V = UΛV U∗. (21)

Here, ΛV is a diagonal matrix whose diagonal entries λV,1 · · ·λV,k satisfy

λV,i = rie
jθi , ri ∈ R, |ri| ≤ γl, θi ∈ (−π, π] (i = 1, · · · , k). (22)

We now move onto the final stage of the proof. With the unitary matrix U in (21),
let us denote H1U = [ h1 · · · , hk ]. Then, we have from (19), (21) and (22) that

H =

[
H1

H2

] [
H1

H2

]∗
=

k∑
i=1

[
hi

hirie
jθi

] [
hi

hirie
jθi

]∗
.

From this factorization, (16a) and (16e) , we see that there exists at lease one index
j (1 ≤ j ≤ k) such that

trace

([ −ε�2
2 I + PP ∗ PQ∗

QP ∗ QQ∗

] [
hj

hjrje
jθj

] [
hj

hjrje
jθj

]∗)
≤ 0

or equivalently, h∗
j(−ε�2

2 I + (P + rje
−jθjQ)(P + rje

−jθjQ)∗)hj ≤ 0. This implies ε�
2 ≥

σmin(P + rje
−jθjQ) ≥ ε� and thus we complete the proof.

Theorem 1 can be used in the following way. By solving the SDP (16), we can obtain

ε�
2 as well as the optimal H and Ĥ. At this stage, we cannot say anything on the strictness

of ε�
2. However, if the matrices H1 and Ĥ1 resulting from the full-rank factorization of H

and Ĥ as in (17) are both full-column rank, we can conclude that ε�
2 = ε� surely holds.

We note that the numerical determination of rank can be an ill-conditioned calculation,
though this issue does not arise in our all tested numerical experiments.

From the proof of Theorem 1, we see that if the assumption in Theorem 1 is satisfied,
then at least one of the eigenvalues of V ∗ = W is the global optimizer. From (19), it

can be seen that the matrix W satisfies Ĥ2 = Ĥ1Ω
∗WΩ and hence the eigenvalues of

W coincides with those of X := (Ĥ∗
1Ĥ1)

−1Ĥ∗
1Ĥ2, which can readily be constructed from

(17). This is stated formally in the next corollary.
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Corollary 1 Let us denote the full-rank factorization of the optimal H and Ĥ in Lemma 1
by (17) and suppose both H1 and Ĥ1 are full column-rank. We further define a matrix X
from (17) as follows:

X = (Ĥ∗
1 Ĥ1)

−1Ĥ∗
1 Ĥ2. (23)

Then, at least one of the eigenvalues of the matrix X coincides with the global optimizer
z� of (3).

On the other hand, if both the matrices H and Ĥ in Lemma 1 are rank-one, it is
apparent that the assumption in Theorem 1 is automatically satisfied. Hence, we see
that the next corollary holds.

Corollary 2 If the optimal H and Ĥ in Lemma 1 are both rank-one, then ε�
2 = ε�. In

particular, one of the global optimizer z� of (3) can be computed from (17) via

z� = (Ĥ∗
1Ĥ1)

−1Ĥ∗
1Ĥ2. (24)

Remark 1 In the preceding studies for the exactness verifications of LMI relaxations, so
called rank-one exactness principle is derived (see related discussions in [11, 22, 23] and

references therein). In our context, this requires both H and Ĥ in Lemma 1 are rank-
one as in Corollary 2. Namely, the rank condition in Theorem 1 is more general than
this common rank-one exactness principle, and this generalization is quite important to
extract the optimizers as shown in numerical examples given below.

It should be noted that the recent paper [24] includes exactness results that go beyond
[22, 23]. Roughly speaking, the approach in [24] is quite general and can be applied to
whole variety of robust LMI problems. On the other hand, the approach in the present
paper is very specific; the exactness test in Theorem 1 has been derived successfully by
relying on the particular structure of the DTUC computation problem.

Example 1: Let us illustrate the effectiveness of Theorem 1 as well as Corollary 1 through
numerical examples1. To this end, we solve (16) for the matrix data found at [27].

Firstly, we solved the SDP (16) for the pair (A, B) named “Markov Chain104,” where
the size of (A, B) are A ∈ R10×10 and B ∈ R10×4. It turned out that ε�

2 = 0.0769. The
computation time was 0.41 [sec].

To examine the exactness of the lower bound ε�
2, we next check the rank of the resulting

optimal variables H and Ĥ in (16). It turns out that the largest singular value of H is
1.0638 and other singular values are of less than 10−8. Similar comments apply also to
the singular values of Ĥ (in fact, the matrix Ĥ is very close to H in this case). Thus both

H and Ĥ can be regarded to be rank-one and hence from Corollary 2, we can concluded
that ε�

2 = ε�. The global optimizer computed from (24) is z� = −0.2526. In Fig. 1, we
show the contour plots of log10(σmin([ A − zI B ])) and the location of z�.

Next we solved the SDP (16) for the pair (A, B) named “Grcar104,” where the size of
these matrices are again A ∈ R10×10 and B ∈ R10×4. The resulting value was ε�

2 = 0.4418
and the computation time 0.43 [sec].

1In this paper, every LMI-related computation is carried out with SeDuMi [25] and MATLAB R2006a,
on PC with CPU Pentium IV 3.6 GHz.
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By examining the resulting optimal variables H and Ĥ, it turns out that both H and
Ĥ are of rank-two. Hence, in contrast with the preceding example, we cannot obtain
exactness certificate via Corollary 2. However, by carrying out the full-rank factorization
of H and Ĥ as in (17), we confirmed that both H1 and Ĥ1 are of full-column rank. Thus,
from Theorem 1, we can conclude that ε�

2 surely coincides with the global optimum ε�.

Since both H1 and Ĥ1 are of full-column rank in (17), we can compute the global
optimizer z� from Corollary 1. The eigenvalues of X in (23) are computed as 1.3842 ±
0.9738j. Since these eigenvalues form a complex conjugate pair, it can be seen that both
of these eigenvalues are the global optimizers. In Fig. 2, we show the contour plots of
log10(σmin([ A − zI B ])) and the location of z� = 1.3843 ± 0.9738j.

In addition to the above two numerical examples, we carried out numerous experi-
ments for randomly generated pairs A ∈ Rn×n and B ∈ Rn×m. If we generate A and B
randomly, it can be observed that the number of the global optimizers in (2) is likely to
be one or two. More precisely, in the former case the global optimizer is a real number
and in the latter case two global optimizers form a complex conjugate pair. In our tested
numerical experiments, in every case where the number of the global optimizers is one, the
resulting variables H and Ĥ is rank-one as we see in the results for “Markov Chain104.”
Similarly, in every case where the number of the global optimizers is two, the resulting
variables H and Ĥ as well as H1 and Ĥ1 are all rank-two as we see in the results for
“Grcar104.” Namely, in our tested numerical examples, the assumption in Theorem 1 is
always satisfied.

To examine the effectiveness of Theorem 1 and Corollary 1 more carefully, we solved
the SDP (16) for the matrix pair A ∈ R4×4 and B ∈ R4×1 derived in [4]. These matrices
are constructed via optimization over the free parameters in the matrix A so that the
problem (2) has four global optimizers (see Fig. 3).

By solving (16) for this matrix pair, we obtained ε�
2 = 0.4897. The computation

time was 0.28 [sec]. Again aiming at obtaining exactness certificate of the resulting lower

bound, we first examined the rank of the resulting H and Ĥ. From the singular values of
H and Ĥ, it turned out that we can regard both matrices H and Ĥ to be of rank-four.
The matrices H1 and Ĥ1 were also confirmed to be full-column rank. Hence we can
conclude from Theorem 1 that ε�

2 = ε�. To obtain the global optimizers via Corollary 1,
we next computed the matrix X in (23), which turned out to be

X =


2.5775 3.1441 0.0029 0.0010

-3.1441 2.5775 -0.0013 0.0056
-0.0008 0.0028 1.0395 0.1646
-0.0054 0.0034 0.1762 -2.1273

 .

The eigenvalues of this matrix are 2.5775± 3.1441j,−2.1365 and 1.0487. We can confirm
that the value σmin([ zI − A B ]) on these eigenvalues are all 0.4897. Hence, all of these
eigenvalues are surely the global optimizers of (2).

We finally examined the computational burden to solve (16) via numerical experi-
ments. We randomly generated A ∈ Rn×n and B ∈ Rn×m by using MATLAB command
rand so that all of their elements lie on [−1, 1]. For each (n, m) ∈ {(5, 3) , (10, 6), (15, 9),
(20, 12), (25, 15), (30, 18)}, we thus generated ten pairs of (A, B) and examined the av-
erage CPU time to solve (16). The results are shown in Fig. 4. It should be noted that,
again, the rank condition in Theorem 1 is satisfied in all 60 examples tested here.
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Remark 2 Even though we have restricted our attention to the second-degree polynomial
approximation, it is of course possible to take higher-degree polynomial approximation in
(14) and derive SDPs corresponding to (15). Moreover, we can derive dual SDPs and as-
sociated rank conditions for the exactness verification in a conformable form to Lemma 1
and Theorem 1. In particular, we can prove that those rank conditions become more likely
to be satisfied by increasing the degree N as desired. However, since extensive numerical
experiments illustrate that the second degree polynomial approximation surely works fine
in practice, we omit the detailed discussions for higher-degree polynomial approximation.

5 Computation of the Similarity Transformation Ma-

trix to Maximize the DTUC

For given controllable pair A ∈ Cn×n and B ∈ Cn×m, it is known that its DTUC correlates
to the numerical difficulties of the associated pole placement problem. More precisely,
it is shown in [16] that the problem to compute the state-feedback gain that assigns
the closed-loop poles to P = {λ1, · · · , λn} becomes numerically ill-conditioned when the
factor d is large, where

d(A, B) :=
1

mini σmin([ A − λiI B ])
. (25)

From this form, it is obvious that the pole placement problem for (A, B) is likely to be
ill-conditioned if its DTUC is small [13, 16].

As an attempt to achieve conditioning of the pole placement problem for the pair
(A, B), let us consider the problem to compute the similarity transformation matrix T

that maximizes the lower bound of the DTUC of the pair (Â, B̂) = (T−1AT, T−1B). As
clarified later on, the optimal T in this context can be determined by solving a generalized
eigenvalue problem (GEP).

To see this, let us slightly modify the SDP (15) and define ε̂�
2 as follows:

ε̂�
2 := max

X0,X1,X2,G
ε subject to (15) with D = 0. (26)

Roughly speaking, letting D = 0 implies that we seek for the optimum of (3) over
the whole complex plane. In our preceding work [7], it is illustrated through extensive
numerical experiments that the SDP (26) still performs well and ε̂�

2 is very close to the
exact value ε�.

With this in mind, let us consider the problem to compute the similarity transforma-
tion matrix T that maximizes the corresponding quantity ε̂�

2 of (Â, B̂) = (T−1AT, T−1B).
This problem can be stated as follows:

ε̂�
2 = max

X0,X1,X2,G,T
ε subject to

−ε2I − X0 0 −1

2
X1 −T ∗A∗T ∗−1

0 T−1(ATT ∗A∗ + BB∗)T ∗−1 + X0 0
1

2
X1

−1

2
X1 0 I − X2 0

−T−1AT
1

2
X1 0 X2


+

[
0 G

G∗ 0

]
≥ 0,

X0, X1, X2 ∈ Hn, G ∈ S2n.

(27)
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By applying congruence transformation with diag(T, T, T, T ) to (27), we have

ε̂�
2 = max

bX0, bX1, bX2, bG,V
ε subject to

−ε2V − X̂0 0 −1

2
X̂1 −V A∗

0 AV A∗ + BB∗ + X̂0 0
1

2
X̂1

−1

2
X̂1 0 V − X̂2 0

−AV
1

2
X̂1 0 X̂2


+

[
0 Ĝ

Ĝ∗ 0

]
≥ 0,

X̂0, X̂1, X̂2 ∈ Hn, Ĝ ∈ S2n, V > 0.

(28)

When deriving (28) from (27), we define V := TT ∗ > 0, X̂i = TXiT
∗ (i = 0, 1, 2) and

Ĝ = diag(T, T )Gdiag(T, T )∗. It can be seen that the matrix inequality (28) is an LMI
with respect to the matrix variables. It follows that the matrix T that maximizes ε̂�

2 for

the pair (Â, B̂) = (T−1AT, T−1B) can be determined by solving the GEP (28). Once we
have solved (28), the optimal T can be determined from V > 0 via TT ∗ = V .

Even though the maximization is performed with respect to the lower bound of the
DTUC, we can obtain a desired similarity transformation matrix T efficiently by solving
the GEP (28). Similar results would not follow if we pursue the direction of the linear
algebra algorithms [4, 9, 10]. This illustrates in part the usefulness of the proposed
LMI-based approach over the existing approaches [4, 9, 10].

Remark 3 From the structure of the LMI (28), we see that if (28) holds with X̂i =

X̃i (i = 0, 1, 2), Ĝ = G̃, V = Ṽ and ε = ε̃, then this LMI holds for the same value

ε = ε̃ by letting X̂i = α2X̃i, (i = 0, 1, 2), Ĝ = α2G̃, V = α2Ṽ with 0 < α ≤ 1. This
feature stems from the definition of the DTUC (2), which implies that the DTUC of

(Z−1AZ, Z−1B) is not less than that of (Â, B̂) = (T−1AT, T−1B) if we simply let Z =
αT (0 < α ≤ 1). This clearly indicates that, when we consider the problem to compute the
similarity transformation matrix, it is necessary to bound the norm of T ∗−1T−1(= V −1)
for the problem to be well-posed. In view of these facts, we impose an additional constraint
V ≥ βI (0 < β ≤ 1) when we solve the GEP (28). This works effectively also to avoid
numerical instability of the GEP (28).

Example 2 To illustrate the usefulness of the suggested computation method of the
similarity transformation matrix, let us consider the following matrices A and B:

A =


1.3504 1.4918 0 0 0
0.6703 −0.8066 1.4918 0 0

0 0.6703 0.3205 1.4918 0
0 0 0.6703 −0.0421 1.4918
0 0 0 0.6703 1.1739

 , B =


−1.4986 −0.3308
−0.0503 0.7952

0.5530 −0.7848
0.0835 −1.2631
1.5775 0.6667

 . (29)

This matrix data can be found at [27] with the name “Hatano52”. For this matrix pair,
we first compute the lower bound ε�

2 of the DTUC by solving the SDP (16), which turns

out to be ε�
2 = 0.3958. In this case the resulting optimal variables H and Ĥ are both

rank-one, and hence from Corollary 2 we can conclude that the exact DTUC is 0.3958.
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The optimizer z� of (2) can also be computed as z� = 2.0934. In Figs 5 and 6, we show
contour plots of log10(σmin([ A − zI B ])).

To increase the DTUC via similarity transformation, we next solved the GEP (28)
with an additional constraint

V = TT ∗ ≥ 10−6I. (30)

The resulting lower bound is ε̂�
2 = 10.0065 and the transformation matrix is

T =


0.0724 -0.0027 -0.0217 0.0013 -0.0763

-0.0027 0.0348 -0.0251 -0.0402 0.0102
-0.0217 -0.0251 0.0483 0.0408 0.0097
0.0013 -0.0402 0.0408 0.0724 -0.0175

-0.0763 0.0102 0.0097 -0.0175 0.0878

 . (31)

In particular, by means of the SDP (16), Theorem 1 and Corollary 1, we confirmed that

the DTUC of (Â, B̂) = (T−1AT, T−1B) is surely 10.0065. The global optimizers turn out

to be 5.1740±6.3107j. In Figs 7 and 8, we show contour plots of log10(σmin([ Â−zI B̂ ])).
In stark contrast with the behavior of σmin([ A−zI B ]) around the optimizer z� = 2.0934,

we see from Figs 7 and 8 that the behavior of σmin([ Â − zI B̂ ]) becomes considerably
flat around the optimizer z� = 5.1740 ± 6.3107j.

To confirm the effectiveness of the suggested computation method more convincingly,
we next consider very simple similarity transformations. First, we take T = TD, where TD

is the matrix that transforms A to be diagonal2. The DTUC of the transformed pair is
0.2858 and smaller than the original one 0.3958. Second, we take T = αI for comparison.
As we stated in Remark 3, the DTUC of (Â, B̂) = (A, α−1B) is monotonically non-
increasing with respect to α > 0. Thus the matrix T = 10−3I is tested here in view of the
constraint (30). It turns out that the resulting DTUC of (Â, B̂) = (A, 103B) is 0.4817,
which is very small in comparison with 10.0065 achieved by T in (31).

We finally compute the factor d given in (25) for the set of closed-loop poles P :=
{−1,−2,−3,−4,−5} as a trial. It follows that d(A, B) = 2.1733, d(A, 103B) = 1.0586
and d(T−1AT, T−1B) with T given in (31) is 0.0995. Namely, the factor d has been
reduced significantly. This illustrates the usefulness of the suggested computation method
of the similarity transformation matrices by means of systematic convex optimization.

6 Conclusion

In this paper, we considered the problem to compute the distance to uncontrollability
(DTUC) of a given controllable pair (A, B) by means of LMIs. We first reduced this
problem into a robust SDP and then derived a numerically tractable SDP for a lower
bound computation. We next showed that this lower bound can be characterized by
a very concise dual SDP. Based on this dual SDP, we further derived a viable test to
verify that the computed lower bound coincides with the exact DTUC. In the latter part
of the paper, on the other hand, we showed that the similarity transformation matrix
that maximizes a lower bound of the DTUC of the transformed pair can be computed

2The matrix TD satisfies ‖TD‖‖T−1
D ‖ = 4.9010. Note that similarity transformation to maximize

DTUC is typically needed in the case where A is far from normal, and hence ‖TD‖‖T−1
D ‖ is large.
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by solving a generalized eigenvalue problem. It is expected that this computation of the
similarity transformation matrix leads to an effective and efficient conditioning of the
pole placement problem for the pair (A, B).
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Appendix

Proof of Lemma 1: The result basically follows from convex duality theory [1, 24]. To
be more precise, we first note that the SDP (15) can be rewritten equivalently as follows:

min
X0,X1,X2,D,G

ν subject to

νI − X0 0 −1

2
X1 QP ∗

0 PP ∗ + X0 0
1

2
X1

−1

2
X1 0 QQ∗ − X2 0

PQ∗ 1

2
X1 0 X2


+

[ −γ2
l D G

G∗ D

]
≥ 0,

X0, X1, X2 ∈ Hn, D ∈ P2n, G ∈ S2n.

(32)

If we denote the optimal value of this SDP by ν� (≤ 0), it is apparent that ε�
2 =

√−ν�.
In addition, if we denote the left-hand side of (32) by M(ν, X0, X1, X2, D, G), we see that
there exist X0, X1, X2 ∈ Hn, D > 0 and G ∈ S2n such that M(ν, X0, X1, X2, D, G) > 0,
i.e., the SDP (32) satisfies the Slater’s constraint qualification [24]. For example, by
letting

ν = 4γ2
l , X0 = 2γ2

l In, X1 = 0, X2 = 0, D = I2n, G =

[
0 −QP ∗

PQ∗ 0

]
,

we can confirm that the constraint qualification is surely satisfied for any P and Q.
With this in mind, let us introduce the Lagrange multipliers H ∈ P4n and J ∈ P2n

and define the Lagrangian L as follows:

L(ν, X0, X1, X2, D, G,H,J ) := ν − trace(M(ν, X0, X1, X2, D, G)H) − trace(DJ ).

By partitioning H as

H :=

 H11 H12 H13 H14

H∗
12 H22 H23 H24

H∗
13 H∗

23 H33 H34

H∗
14 H∗

24 H∗
34 H44

 , Hii ∈ Sn (i = 1, · · · , 4),
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we see that the Lagrangian can be rewritten, equivalently, as follows:

L(ν, X0, X1, X2, D, G,H,J )
= ν(1 − trace(H11)) + trace(X0(H11 −H22))

+
1

2
trace(X1(H13 + H∗

13 −H24 −H∗
24)) + trace(X2(H33 −H44))

+trace

(
D

(
γ2

l

[ H11 H12

H∗
12 H22

]
−

[ H33 H34

H∗
34 H44

]
− J

))
+trace

(
G

([ H13 H14

H23 H24

]
−

[ H∗
13 H∗

23H∗
14 H∗

24

]))
−trace

([
PP ∗ PQ∗

QP ∗ QQ∗

] [ H22 H∗
14H14 H33

])
.

Hence, for this Lagrangian to be bounded below for any ν ∈ R, X0, X1, X2 ∈ Hn,
D ∈ H2n and G ∈ S2n, the Lagrange multipliers should satisfy

trace(H11) = 1, H11 = H22, H13 + H∗
13 = H24 + H∗

24, H33 = H44,

γ2
l

[ H11 H12

H∗
12 H22

]
−

[ H33 H34

H∗
34 H44

]
− J = 0,

[ H13 H14

H23 H24

]
=

[ H∗
13 H∗

23H∗
14 H∗

24

]
.

(33)

In addition, since the Slater’s constraint qualification is satisfied in (32), we can conclude
that ν∗ can be characterized via dual SDP given as follows:

ν� = max
H≥0,J≥0

−trace

([
PP ∗ PQ∗

QP ∗ QQ∗

] [ H22 H∗
14H14 H33

])
subject to (33).

Moreover, by rearranging (33) and considering the relation ε�
2 =

√−ν�, we have

ε�2
2 = min

H
trace

([
PP ∗ PQ∗

QP ∗ QQ∗

] [ H11 H∗
14H14 H33

])
subject to

(34a)

H =

 H11 H12 H13 H14

H∗
12 H11 H∗

14 H13

H13 H14 H33 H34

H∗
14 H13 H∗

34 H33

 ≥ 0, γ2
l

[ H11 H12

H∗
12 H11

]
≥

[ H33 H34

H∗
34 H33

]
, trace(H11) = 1. (34b)

To complete the proof, it remains to show that the SDP (34) can be rewritten equiv-
alently as (16). To this end, we note that H ≥ 0 in (34b) is equivalent to

THHT T
H =

 H11 H14 H12 H13

H∗
14 H33 H13 H∗

34H∗
12 H13 H11 H∗

14H13 H34 H14 H33

 ≥ 0, TH :=

 I 0 0 0
0 0 0 I
0 I 0 0
0 0 I 0

 . (35)

Since H12, H13 and H34 are irrelevant to (34a), and since these variables enter into the
off-diagonal blocks of (35) and the second one in (34b), we see that they can be taken as
zeros without loss of generality. This observation leads us to the desired dual SDP (16),
where the variables H11, H12 and H22 correspond to H11, H∗

14 and H33, respectively.
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List of Figures

• Figure 1: Contour plots of log10(σmin([ A−zI B ])) for the pair “Markov Chain104”.
The circle is of radius γl = 1.5458. The mark ∗ denotes the location of z� = −0.2526.

• Figure 2: Contour plots of log10(σmin([ A − zI B ])) for the pair “Grcar104”. The
circle is of radius γl = 4.8412. The mark ∗ denotes the location of z� = 1.3842 ±
0.9738j.

• Figure 3: Contour plots of log10(σmin([ A − zI B ])) for the pair found at [3]. The
circle is of radius γl = 7.9019. The mark ∗ denotes the location of the global
optimizers z� = 2.5775 ± 3.1441j,−2.1365, 1.0487.

• Figure 4: Average CPU time to compute ε�
2 in logarithmic scale.

• Figure 5: Contour plots of log10(σmin([ A− zI B ])) for the pair (29). The circle is
of radius γl = 3.8390. The mark ∗ denote the location of the optimizer z� = 2.0934.

• Figure 6: Contour plots of log10(σmin([ A − zI B ])) for the pair (29) in 3D form.

• Figure 7: Contour plots of log10(σmin([ Â−zI B̂ ])). The mark ∗ denote the location
of the optimizer z� = 5.1740 ± 6.3107j.

• Figure 8: Contour plots of log10(σmin([ Â − zI B̂ ])) in 3D form.
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Figure 1: Contour plots of log10(σmin([ A − zI B ])) for the pair “Markov Chain104”.
The circle is of radius γl = 1.5458. The mark ∗ denotes the location of z� = −0.2526.
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Figure 2: Contour plots of log10(σmin([ A − zI B ])) for the pair “Grcar104”. The circle
is of radius γl = 4.8412. The mark ∗ denotes the location of z� = 1.3842 ± 0.9738j.
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Figure 3: Contour plots of log10(σmin([ A − zI B ])) for the pair found at [3]. The
circle is of radius γl = 7.9019. The mark ∗ denotes the location of the global optimizers
z� = 2.5775 ± 3.1441j,−2.1365, 1.0487.
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Figure 4: Average CPU time to compute ε�
2 in logarithmic scale.



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5: Contour plots of log10(σmin([ A − zI B ])) for the pair (31). The circle is of
radius γl = 3.8390. The mark ∗ denote the location of the optimizer z� = 2.0934.
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Figure 6: Contour plots of log10(σmin([ A − zI B ])) for the pair (31) in 3D form.



−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

Figure 7: Contour plots of log10(σmin([ Â − zI B̂ ])). The mark ∗ denote the location of
the optimizer z� = 5.1740 ± 6.3107j.
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Figure 8: Contour plots of log10(σmin([ Â − zI B̂ ])) in 3D form.


