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1. String equatlons and blspectral problems :

Relation between string equations and the blspectral problem has intrigued many The general
form of string equation is [L,[L, P]] = 0, while a solution to the bispectral problem is a pair
(L, ©), with © being a function of z, such that (ad L)™*1(©) = 0. Here and in what follows,
an upper-case roman letter denotes an ordinary differential operator in a scalar variable =,
unless otherwise noted. The map (L,0) — (L, P), where P = (adL)™" 1(©), from the
space of solutions of the bispectral problem to the space of solutions of the general string
equation, illustrates the relation (in the range of this map, there seems no obvious way to
see the condition that © be a function, so this is rather a general nonsense). This topic is
also related to the Krichever theory, through the rank one bispectral (i.e., rational Calogero—
Moser) solutions [10, 14], but here we propose another link to the Krichever theory.

Here we consider the equation
| (L, [L,P]] = 0.

This equation is only shghtly more general than any of the various forms of strlng equatlons
E.g., if P and Q satisfy [P,Q] = 1, then P and any polynomial L = I (Q) of Q satisfy
(L, [L, P]] = 0, and if, moreover, ordQ > 0, then so do P and any L such that [L, Q] = 0.
The latter equatlon suggests that the Krichever theory may come in here:

1. Let ¢ = 1)(z, z) be the Baker-Akhiezer function associated to the Krichever data (C, p, z, F),
ie, C is a complete curve of genus g, p € C a smooth point, z a local coordinate at
p (z(p) = 0), F a torsion-free rank-1 sheaf (or a line bundle) of degree g — 1 such that

Homo(F,F) ~ O, and ¢ a (unique (up to a constant)) section, depending on the scalar

parameter z, of F on C'\ {p} which, with respect to a trivialization of F near p, looks like
(1/z +O(1))exp(z/z). Let V be a rational vector field on C' with no poles away from p, and
let V be a rational lifting of V on F with no poles away from p, ie., V maps any rational
section ¢ of F with no poles away from p to another such section Vqﬁ, such that if f is a
rational function on € with no poles away from p, then : :

V(fé) = (V)¢ + fVe. (1)

The set of such V’s, for any fixed V, is an affine space, isomorphic to the space of (rational)
functions on C with no poles away from p. The Krichever construction tells us that for any
rational function f on C with no poles away from p, there is an ordinary differential operator
Py in z such that fi) = Pptp. Similarly, there is an ordinary dlfferentlal operator @ such that
Vi = Q. Substituting 9 for ¢ in (1), and noting :

V(f¢) = V(Pr) = PV () = P;Qy,
(Vi) = Popy

and

YV = fQp = Qf = QPsy,
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one obtains - :
' Py =[P Q-
Since V f is another (ratlonal) function on C, Py commutes with Pr. Hence letting L = P

and P = @, we obtain a solution of [L,[L, P]] = 0. This construction is more general than
the previous ones, in the sense that there may not be any @Q such that [P, Q] = 1.

2. However, if one considers the equation [L,[L, P]] = 0 together with the condition that
P is a function (i.e., multiplication operator, having in mind the usual assumption in the
bispectral problem), then the situation is different. Here and in what follows, polynomial
means a constant-coefficient polynomial. :

Claim If [L,[L,P]] = 0 and P is a function, then L = f(Q) for some palynomial f, and
[Q, P] = c is a constant (and hence [L P] = cf'(Q) is a polynomial of Q).

To avoid the trivial case, we assume [L P] # 0. (Thls implies [Q, ] ;é 0, so we may take
c=1in the above claim.)

First note that (i) [L, P] is not necessarily a polynomial of L, but (ii) if it is a polynomial
of L, then it is a constant.

(11) is obvious: since P is a function, the order of the operator [L, P] is less than that of
L, so if [L, P] = f(L), then the degree of the polynomial f is 0. ;

To see (i), let us start with any pair (L, P) such that [L, [L, P]] =0, [L, P] # 0 and Pis a
function. If [L, P] is not a polynomial of L, there is nothing to prove. If [L, P] is a polynomial
of L, then by (ii) above, it is a constant, say ¢ # 0. Now let f(z) be any polynomial of
degree > 1, and consider the pair (f(L), P) in place of (L, P). Clearly, it also satisfies the
conditions, i.e., [f(L), [f(L), P]] = 0 and P is a function. But [f(L) ] - f/(L)[L, P] = cf'(L)
is not a polynomial of f(L), proving (i). ‘ L

Note that if P is a function, the order of L, P] is less than that of L.

Let R be the ring of differential operators which commute with L, and let Q € R be an
element of the lowest positive order, i.e., ¢ :=ord @ > 0 and for any S € R, s:=ord S > ¢ if
s> 0. Then ~

Lemma If [L,[L,P]] = 0 and if the order of [L,P] # 0 is less than that of L, then R
coincides with the ring of polynomials of Q. In particular, L and [L, P] are polynomials of Q.

Proof: Since Q commutes with L, it becomes a constant-coefficient Laurent series of L~

Q= Z akLk/ l

k==00

where [ is the order of L, and a, 7£ 0. Using this expansion, and the fact that [L, P] commutes
with L, we have :
Gy e :
[Q7 Pl = Z (k/l)akLk/l_l[L’P]a
R : o k==00 i :

which still commutes with L, and has order less than ¢ since the order of [L, P] is less than
that of L. Hence, by the minimality of ¢, [@, P] is a constant. Multiplying @) by a constant
if necessary, we assume [@, P] = 1. : ‘ :




Since R also is the ring of differential operators which commute with Q, every element S
of R can be expanded as a Laurent series in Qfl/ 4. Thus :

(T
S= > aQf
k=—00

and hence
S

[S,Pl= > (k/q akQ’“/q :
k=—o00

which belongs to R (since it commutes w1th @ and is a d1fferent1al operator as a commutator
of two differential operators), and ord[S, P] = ord S — ¢ unless S is a constant. This implies
that s = ord S is a multiple of g. Indeed, if there exists an S € R such that ord S is not a
multiple of ¢, then there is an element, say SO, of minimal order among all such S’s. Then
[So, P] belongs to R, and ord[So,P] is less than ord So and is not a multiple of ¢. Thisis a
contradiction. : L

Using this; it follows by mductlon on the order of operators that R is the rmg of polyno-
mials of Q.

This suggests the additional simpliciﬁy is offerred when P is a function. Tt may be inter-
esting to look at equations like (ad L)m+1P = 0 under the assumption that P be a function
(relevant set-up for the bispectral problem). :

2. Calogero-Moser type KP solutions

KP solutions of rational Calogero-Moser type provide concrete examples of the bispectral
problem as well as the Krichever theory. All the information on a solution is contamed ina
pair of square matrices (X,Y) such that [X,Y] + 1 is of rank one. It is obvious that such a
Y exists if the eigenvalues of X are all distinct. More generally, if pairs (X1,Y1) and (X2,Y3)
possess this property, and if no eigenvalue of X; is the same as any eigenvalue of Xy, then a

pair of block matrices ‘ :
(X1 0 _ (N *
() r-(5)

possess the same property, after choosing suitable off-diagonal blocks of Y. Subtlety comes
in when X has some eigenvalue with multiplicity. :

In general, a necessary and sufficient condition for an X to have some Y with th1s cond1t10n :
satisfied is that for any eigenvalue A of X, the sizes of Jordan blocks belongging to A are at
least two apart from each other (so in the simplest example of X with two Jordan blocks
belonging to the same eigenvalue A, A has multiplicity 4, and the two Jordan blocks have
sizes 1 and 3, respectively). Needless to say, this fact is related to the cell decomposition of
Grassmannian (or the theory of Schur functions), but Wilson’s original proof of it, although
it may seem a little subtle, is already quite concrete and elementary (cf. [14, lemma 6.9])!
This illustrates the degree of concreteness seen in this topic.

Here we look at a different side of this subject, and give a proof, which does not assume
bispectrality etc., of the fact that the spectral curve of any rank one ordinary differential
operator with rational coefficients is unicursal. As pointed out by E. Horozov [3], after
suitable reformulation using the language of Weyl algebra etc., it is also straightforward to
work out difference operator analogue of this result.




Let A be a commutative ring of ordinary differential operators of rank 1, i.e., for any

n > 0 there exists P € A of order n. We assume C C A, and that every P € A is of the form

rdNn d \n-1 ; ; o : :
P:,co(%yb_—kcl(a—g)ﬁ ’+(termsoforder§n—2), ; (@

where cg, ¢1 € C, ¢y # 0.

The Krichever data for A is a quadruple (C p, 2, F), where C is a complete, reduced

irreducible curve over C, p € C a smooth point, z a local coordinate at p, i.e., 2z € my,— ml%, and

F a torsion-free rank 1 sheaf on C of degree g—1, such that C\{p} = Spec(A) and the unique
analytic section 1 of F on C'\ {p} with smgularlty at p of the form (1/z) exp(z/2)(1+O(2)),
for generic z € C, glves the Baker—Akhlezer functlon a common eigenfunction for A.

Lemma 1 (Diximier [2]) If the coeﬁ‘iczents of P € .A\(C are mtzonal functzons in z, then
the coefficients have no poles at T = 00.

The following proof works whenever the coeflicients of P have Laurent series expansmn
with at most poles at infinity. ‘

Proof. Suppose the contrary. Let p :=ord P > 0 and write

Pea(B) +es () () e () ¢ ot
and let i ; , L
s :=max{(dega;(z))/i |i=2,3,...,p} >0, . (2)

where dega;(z) is the order of pole of a;(z) at z = oo. Expand each ai(x) in a Laurent series
around z = oo, and define the weight of the monomial z*(d/dz)’ to be i+ sj. If the maximum

in (2) is achieved at 7 =iy, @9, ..., ix, where 2 < iy < ig < -+ < i < p, we have
pP= cof(y)< d ) + (terms of Welght < p) (3)
where y := z°(d/dz) ™}, and f(y) :== 1+ dly“ + doy®? + - -+ + dyy® for some dy, ..., dp € C.

Note that s is'not necessarily an integer, but siy, ..., si; are. Note also that monomials of
z and d/dz commute modulo terms of lower weight. ~

Next, let Q € A be such that p = ord P and ¢ := ord Q are relatwely prime. Such a Q
exists since A has rank 1 and p > 0. Since P and Q commute, @ is of the form

g1 |
Q=cP?+ 3 uPP, b eC, c#£0. (4)
k i=—00 :
Hence, by (3) we have
Q = cPYP 1 (terms of weight < q)

= c’(f(y))‘”?’(%)q + (terms of weight < q).

Here (f(y))?/? is computed as a power series in y, but since Q is a dlfferen’clal operator, the
series must terminate: :

(f)Y? = gly) == 1+ diy* +dhy? + - + djy”
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or . o .
fy )q =gyt v e (d)
for some dj,...,d; € Cand 2 < ji<jp<- << q. The last inequalities hkoyld‘ s‘inc‘eris'
of order q a,nd has the form similar to (1) (1 e., the top two terms have constant coefﬁcient‘s)

Let ai,...,a; € C be the roots of polynomlal f(y), and B, .. ., Bj, € C the roots of
polynomial g(y) Since (f(y))? has roots ay, ... , a;,, each with multiplicity g, since (g(y))?
has roots f, ..., Bj, each with multiplicity p, and since p and ¢ are relatively prime, (5)
means the actual multiplicity of each root is a multiple of pg. Since ¢ < p and j; < g,

this is possible only when i; = p, j; = ¢ and all the o’s.and §’s are equal (=: ), so that

fly) =0 +y/v)P, g(y) = (1 +y/v)? But this is impossible because i; and j; are at least 2,
so f and g have no term of degree liny. Q.E.D.

Lemma 2 If some P € A\C has rational coeﬁiczents then the same is true for every Q €A,
and the spectml curve of .A is mtzonal v

Proof. By lemma 1 the coefficients of P € A have no poles at z = oo, and (if P ¢ C©)
by (4) the same is true for every @ € A. Thus A C R := C[[z !]][d/dz]. Note that
I := 27 Cl[z~]][d/dx] is a two-sided ideal of R, and the quotient ring R/I is commutative
and is canonically isomorphic to the ring Rq := C[d/dz] of constant coefficient differential
operators. Let m: R — R /I ~ Ry be the canonical projection. One can think of 7 as ‘taking
the limit as £ — oo’ 7(P) = limy_,oo P(z +y,d/ d:c) Since every element of A is of the form
(d/dz)™ + (lower order terms), 7|4 is injective, A = m(A) C Ry. Since Spec Ry is an affine
line (IP’l((C) \ {o0}), Spec.A is ratlonal Q.E.D. :

Proposition 3 Suppose A satisfies the same conditions as in lemma 2, and suppose .A 185
also maxzmal commutatwe Then the spectml curve of A is unicursal. o

Proof. Let (C,p, z, F) be the Krichever data for A. Since C' is rational, one can take normal-
ization 7: P! — C and use the global coordinate z on P>\ {r~!(p)} ~ C to represent the
Baker-Akhiezer function as a function in z of the form v (z, z) = f(z,2)e"” (here we ignore the
higher KP times), where f(z, z) is a polynomial in z of degree g (the arighmetic genus of C)
with coefficients depending on . In order for 1 to be a section of F (via a fixed trivialization)
on C'\ {p}, 9 has to satisfy a system of g hnearly independent linear constramts 1nvolv1ng its
values and z-derivatives at various points: '

(PL(/d) sy + -+ + Py (d)d2) ) (@, 2)e™)

= (¢ Pule, d/dz)iz a o+ N Piy(e,d/d2) ey ) 1 (2,7)
=0,

(Pgl (d/dz)|ymzy + -+ PgN(d/dz)izmw) (f(z,2)e*?)
= (€% Py1(x,d/d2) sy + -+ + €% Pyn (3, d/d2) 0 ) (3, 2)
=0,
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 where P;;(d/dz) are constant coefficient linear differential operators in z, and I%j(x,d/dz)
are linear differential operators in z with coeflicients in C[z]. Now C is unicursal if and
 only if for each i € {1,...,g} there is only one j € {1,..., N} such that the linear differential

~ operator P (d/ dz) is non-zero (in particular, N < g). Therefore only in the unicursal case the
exponential functions e”% can be factored out from the whole system. If C is not unicursal,
~then at least one of those constraints involves values of 1 = fe?? at two different z;’s, say 21

and z,, and the exponentials cannot be factored out. Solving such a system, one sees that
‘some coefficients of f must depend on a nontrivial linear combination of %% and €2, and
so the coefficients of any P € A\ {C}, of which f is an eigenfunction, cannot be ratlonal
Q.ED. , , :

3. Young tableaux and vicious random walks on a line

The following is a small observation which naturally came up in the joint work with Adler
and van Moerbeke on matrix integrals and combinatorics. (This was not quite useful at the
time, due to the need to code the walk as a Young tableaux before performmg permutations
of L and R moves.) - .

The number of 2n step walks by k > n walkers (one walker moves at a time), in a fully-
packed configuration at the beginning and the end of walk, is (2n — 1)” if a wall is put at one
end of the chunk of walkers (walkers on a half-line). The idea was to put two such chunks
back to back to make a bigger chunk of walkers on the full-line to apply Forrester’s trick, and
then to count the walks on the left and right halves of the chunk separately by factormg the
generating functlon

Consider a little more general vvalks on a half 11ne the ones with the end of chunk not
facing the wall to be not fully packed at the beginning and the end ‘of walk, but otherwise
obey the same rules as before (they are vicious, only one walker walks at a time, to left or
right, etc.). I want to use the same idea as above to count the number of such walks, by
allowing the chunk of full-line walkers at the beginning and the end of walk to get loose at
both ends of the chunk, but keeping enough many (compared to the number of steps) walkers
still packed in the middle of the chunk to separate the activities on the left and the right
halves of the chunk. The result can be seen as the number of walks from one Young diagram
« to another one § in p steps, in the space of Young diagrams. Denote this number by al (p)-

Thus ag(N )=2n—-1Iif N = Zn, and is 0 otherwise. In general, it is easy to see

Claim 0 In order to have al(p) # 0, we must have p > [ﬂ\a{+|a\ﬁ| and p = |B]—|a| mod 2.

if the wall is on the right of the walkers (half—hne walkers, or when we look at the left edge
of the chunk of full-line walkers), use standard SYT with shape A\ (A D ) as Forrester did,
to code the steps of left-walkers or right-walkers (walkers who can move only to the left or
right, respectively). For the left-walkers z and X give the initial and the final configurations
~ respectively, and for the right-walkers it’s the other way around. Pack of walkers with the
wall on the left (or when we look at the right edge of the chunk of full-line walkers) should
be flipped (left<right) before coding. :

Configuration of full-line walkers with two loose ends (we always assume that enough

many walkers are packed in the middle), is then coded by a pair of Young diagrams (u1, uo),
p1 coding the left edge and o the right edge. Separating the activities on the left and right




edges of the chunk, we see that the number of walks from (i1, p2) to (A1, Ag) in N steps is

N : ;
AN) = A3 (V) ::Z(N )az;(pmz;(zv-p» 0)

p=0 P

Claim 1 In order to have Aﬁ;’ﬁg( ) # 0, there must exist an integer p, 0 < p < N, such
that p 2 [\ \ pal + |\ Ml p = ] — Jus| mod 2, N —p 2> [da \ pia] + |2 \ Aal, and
N —p = || — |p2] mod 2.

This follows from Claim 0. On the other hand, counting separately the numbers of left-
and right-moves, but not distinguishing the activities at the left edge and ones at the rlght
edge, we see ~

Claim 2 In order to have Aﬁi:ﬁf( N) #0, there must exist nonnegative integers [ and r such
that l+r =N andl —r =d = (|X\1] — [Xe]) — (ll‘ll;— |pal)-

Remark 1 The ezistence of I and r as in Claim 2 implies N = d mod 2, as is also seen from
the mod 2-part of Claim 1. ‘

Remark 2 Since the conditions in Claim 2 determine | and r um'quely, any walk from
(11, ) to (A1, X2) must have 1 left moves and T right mowves.

Denote the number of all walks from (a1, as) to (81, 82) in s steps, in which walker can
move only to the left (resp. right) by LBP2 (5) (resp. REV2 (s)).
Applying Forrester’s trick to bring all the left-moves before the right-moves, one gets the

formula o
am = (V) 3 mmomgze) o
f AN %)

“where the sum runs over all pairs (v1,v2) of Young diagrams such that
viDp1, v2 Cpg, [\l +lpe \ e =1, (2)
and | | ; g
Sl 1D A, 1 C A, [Vl\/\1|+|/\2\V2l—T ‘ R C)
hold. Note that the last equalities in (2) and (3) are equivalent to each other since [ —r =d.

Conditions (2) and (3) are needed to have LiA%2 (I) # 0 and Rpl32(r) # 0, respectively.

The right hand side of (1) can be written in terms of f¥1\i1  fha\vz, f”l\)‘l and f)‘z\’”:
using Iy := vy \ p1| and Iy := |pg \ 9| = | — Iy as auxiliary indices, and noting that r; :=
I+ p1] = Al = v \ Ar] and o = lp — [pa| 4 [A2] = A2\ 1/2| add up to r, we have

_ «l ‘ r vi\pr pp2\ve pri\Ar pAo\v2
AW) = ( ) s (h) (11+[M1[—l/\1|)f M fu fad

I=l1+H12 v1Dm1:21 - vaCugiAg
(4)
AA].;A{) AAlaAQ

lvi\pyl=iy lao\val=ly
It is clear from (0) that the generating function m,uz(m) Z N0 m,uz( )zl¥ /N!

factors: ‘ ‘
Aja (@) = a3 (2)ay (o), | (5)



where

p=0 p' .
After rewriting : ‘
(N [ AT
{ ll T1 = l1!’f‘1!l2!7‘2!7
(4) gives another factorization k ‘ :
Ara@=gi@hte, ()
where S
A i : : x Lt : e\ ' \A
sl@= 2w 2
o zmax{0,A|—|ul} it
, 22|l
h;)(:z:) = Z TEETESE Z J LA
o maxfou-py ver

Note that h,’)(a:) is a polynomial, and in particular hg (z) = 1. Both in (5) and (6), the first

factor depends only on py and Ay, and the second factor on gy and Xg. Since &g( ) = /2,

setting s = Ay = ) gives .
@) (z) = e gp(@)hh(x) = e gp(@),
and setting pu; = A\ = Q) gives yet another formula

i) = e 2g) (2)hA(z) = =/ B (),

where we used gg (z) = e** Which follows easily from the definition and 37, _;(f "2 =11 (by
RSK). ‘ g

Comparing the above two formulas also yieldskgl’) (z) = em2h/); (z).

4. Sasha Orlov’s BKP solutions of hypergeometric type

This class of’s‘olu‘tic‘»ns, studied exﬁensiVely by Sasha Orlov ‘may be useful in ‘t‘he"study‘of :
combinatorics. In [13], C. Tracy and H. Widom studied the asymptotic behavior of

Y GBE e e M

AeD, A1 <h

~as h — 0o, where D is the space of all the strict partitions, A= (A1 > -+ >N >0), and Qy
and P, are the Schur Q-functions (Py(z) = 2N Qx(x)). While the limit as k — oo, i.e.,

S oae)Py) = [ 24

1 —xzy;
AeD ij>1 Wi

is a well-known BKP solution via Miwa change of variables, the nature of (}) is not imme-
diately obvious. Sasha [8] pointed out that for any fixed h, () is indeed a special (rational)
case of the BKP solutions of hypergeometric type, thus suggestmg a possfb1hty to study it
by soliton theory (see [7] for more details):




- Using neutral fermions: [qbn, Omlt = (=) 0m ny let

(1/2 Z Z( n+1tl¢n¢—n [5)

= 1,3,5,... n€Z

where ¢ = (t1,ts,t5,- . ) BKP r-function is given by
) = 00gl0) @

for some ge G+(WB), where the group G+ (Wp) is defined as in DJKM: If B is the Clifford
algebra on Wp := @,,cz Cén, and if Br+ is the even part of B (—l—l—eigenspace of the involution
¢n = "¢n)a then : - G

Gr(Wp)={geBy| 39 L gWge ! =Wpg}.

Here is Sasha’s constructmn For any functlon r: Z — C which satisfies the relatlon 7"( 1 n) =

oo

Bi=(1/2) Y (L) bnbpnr(mir(n—1)--

n=—00 "

(n—k+ 1) o135,

) let

which commute with each other, and for s = (sq, 53, 85,

B(s) = Z S]ch, g= G"B(s).
E k=1,3,5,... : :

As the exponential of a quadra,tlc element, g clearly belongs to the group G+(WB) Substi-
tutmg this g into (1) Sasha observes .

() = et =1+ Y

Avstrict partition

2V, Qu(/2)Qx(5/2) @)

where r) = Hle(r(l)r(Z)...r()\i)), and @x(t/2) is the notation of Y.You, a student of
V.Kac, and equals to Q»(z) in the standard notation via Miwa change of variables: mt,, =
2z 2] — (—z)™ :

Ta,kmg r to be a suitable step functlon one gets Tracy—Wldom S restrlcted sums. More-
over, due to the symmetry between t and s, one sees that 75(t, s) satisfies BKP in both sets
of variables.

To prove (2), the following 1dent1ty (3) of Y.You [15], and Sasha’s variation on 1t (formula
(4) below) are the keys:

For a strict partltlon A= (>\1 S>> )\k > 0) with & even,
‘ OIeHB“)qu al0) =2 HQu), (3)

where agam we use You’s notatlon Q,\(t/ 2) which is related to the standard Q) via Miwa
change of variables (see my old message). Sasha makes slight variation of this to obtain

Olg—r, -+ dor e ZO[0) = 27/2r, Q1 (1/2). @

-
i
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5. Elementary approach to the Schottky problem

So far, we have seen various ways of studymg rank one (quasi)rational KP solutions: the
Calogero Moser system, Orlov’s hypergeometric solutions, as well as the more standard ap-
proach utilizing the theory of Grassmannian or Schur functions, all being quite concrete. Let
us proceed one step further and discuss a way to make the main part of my work on S.P.
Novikov’s conjecture on the Schottky problem [11] more concrete: Since we had a clean-cut
answer utilizing only one differential equation (i.e., the KP equation), we did not mention
~ the existence of a less clean-cut but much more elementary answer. This partial solution
uses no complex analysis on the abelian variety, and still characterlzes the Jacob1ans usmg
only finitely many (but dependmg on the dimension of the abelian variety) d1fferentlal equa-
tions. Thus it may be of some theoretical interest. It may also be straightforward to work
out analogues of it for the tnsecant Toda and other incarnations of the universal grassmann
manlfold giving us some insight.

Note also that in the BKP case, the best possible answer, whose proof goes the same
way as in the KP case, already leads to a little less clean-cut answer, due to the existence of
counterexamples: The Riemann theta function of an irreducible principally polarized abelian
variety X satisfies the first equation in the BKP hierarchy if and only if X, as a polarized
variety, contains the Prym variety P of a curve with involution fixing one smooth point and
another point, which is either smooth or a space-axial ordinary multiple point at which the
involution does not interchange branches. Here X = P if and only if the two ﬁxed points are
both smooth (see [12] for details). So the conclusion may be explicit from algebro -geometric
point of view, but still a little less clean-cut anyway.

So in what follows I present this partial answer to Novikov’s conjecture, with some details
added. Our starting point is of course:

- Theorem 4 (Krichever) There is a natural bz’jectkionk between sets of data as follows: Data
A. a) C a complete curve over C (we always assume C is reduced and irreducible),
b) p € C a smooth point, and z mod z* € (m, —m2)/m3,
~¢) F a torsion-free rank 1 sheaf on C such that

W (F) = h?(f) = 0.

Data B. Commutative subrings R C (C[[ 1l[d/dz],t with C C R and for any n > 0 there
szeRoftheform ‘ : e

ordT : d n—1 |
B = (——) + c(m) + (lower order terms), c¢€C.
dx. dx V :
Let us recall the basic definitions in the KP theory, intended also to provide quick refer-

ences to the facts and notions used in this report so far.

Let ¥ = C[[z]]((81)) be the ring of formal pseudodlfferenmal operators in a smgle varlable
z, & = d/dz, and let D = C[[z]][8] and U~ = C[[z]][[0"!]]0"" be the subrings of ¥ of
differential operators and of pseudodifferential operators of negative order, respectively. For
P € ¥, we denote P = Py + P_ correspondmg to the decomp031t10n VU =D+ ¥ ~. The KP
hierarchy is defined as

, (%)L:[B,L,L]::{BTCL,:L], n=12..., (1)

If the above condition on k' are replaced by h°(F) = h'(F), then one should consider regularizable
operators & la Sato.
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L:C® =lmC* — 9+ ¥~ (or LEI+T[[t1,tz,...]]), Sain)

Bn= (L"), BS=-(")-.

A solution L to (1) is called finite dimensional (resp. g-dimensional) if its tangent map at the
_ origin i
o dLg: To,C*® -—-—>TL(V(9+\I}_)Z\I/_4
s of finite rank (resp. of rank g). Suppose L is a g-dimensional solution to (1). Let Ky, be
the kernel of dLy . Then by the commuting flow property, K7, is also the kernel of the tangent
map of L at any ¢t € C*°, and the map L is factored by C*° /Ky ~C9 as L: C*° — C® /K —
0+ U™, Let
Re={B € D|[B,L() =0} | @

Then R; becomes a commutative ring which satisﬁes the condition of Data B of Krichever’s
theorem. K and By are related with each other by

chatnEKL@ch t) € Ry, i ~ | (3/) :
n>1 : : n>1 ;

and every B € R; is of the form co + 37,51 ¢nBy(t). Using (3') and the ring structure of
R;, we can characterize the g-dimensional solutions to (1) by looking at only finitely many
equations in (1):

Lemma 5 IfL: C* — 0+ Y~ is a g-dimensional solution to the first n equations in (1) and
n > 29+ 1, then L automatically satisfies the whole hierarchy in the following sense: There
exists a linear map P: C° — C" such that Lo P solves (1), and L o P|C" = L. Moreover,
this is a unique extension of L to a solution of the whole hierarchy (1).

We also define:
={BeD | [B, L(t)] = 0}. , o (3)

Since every single equation in (1) actually conta,ms infinitely many dlfferentlal equatlons on
the coefﬁ(:lents of L, this lemma is not sufficient to characterize finite dimensional solutions
to (1) in terms of finitely many differential equations. For th1s purpose, we consider. the
Zakharov—Shabat equatlons obtained from (1):
—Q—B —iB = [Bm, Br); ’mn—‘12 ; S (4)
8tmn 8tn m. T my nly 2 o 7~7"’"‘ k
That (1) implies (4) is just the commuting flow property. Conversely, (4) implies (1) as (4)
shows (0/0t,)L™ = [By,, L™+ (order < n—2) so that (0/9t,)L = [By, L]+ (order < n—m—1)
for any m. If we consider only finitely many equations in (4), then we have somewhat weaker
characterization of finite dimensional solutions to (1): ‘ o

Lemma 6 Let us denote by (ZSN) the subset of equations in (4) for m,n = 1,. N Then

~a) For any solution B = (By,...,By) to (ZSN) the kernel K of the tangent map
dB(t): CN = DN 4s mdependent of t, so that B is factorzzed by a ﬁzed linear space (CN/K =

G asCN — CV/K N DY, with dB being injective.
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b) If, moreover, N > 2g + 1, then there exists L: C° — 9+ U~ such that L solves (1),
(L™)4|CN = B, form = 1,...,N, and kerdL = K. Such L is unique up to equivalence-
defined as ! : ‘

L~ L' & ' = (L—l— > ch—JH) o T, ()
for some c; € C, where T,.: C° — C® 145 a linear map defined as

Tt)i=ti+ Y cirjtivs
j=N+1

where

S ‘ ! oo N
1+ Z Cn ;% = (1+ Z ijj) .
j=N+1 SN Lg=N4L
Let L be a solution to (1)‘. A function of the form
w = < Z an(ac)k") e an(z) € Cllz]]

—00 <N oo
is called a wave function associated to L if it.satisfies

Lw = kw
(0/0tn)w = Bpw, n=12,.... (©)
From (6) we observe that w = Sekz+é(tk) G ¢ U, is a wave function associated to L if and
only if S satisfies

: LS =50 ;
(0/0tn)S =BES, n=12,....

If S # 0 satisfies (6'), then S = ¢cd" + (lower order terms), and w = SeF*+t¢ = ck™(1 +
o(1))ek*+€ 0 # ¢ € C. Noting that equations still hold when we multiply w by ¢ 157" and
S from the right by ¢ !0, we restrict ourselves to S = 1 + (lower order terms). (6) or
(6") imply (1), namely, if S € 1 + U~ satisfies (3/plt,)S = BLS for B = —(S9"S~1)_, then
L = 585~ is a solution of (1), and w = Se*%*¢ is the associated wave function. In (6) or (6),
like in (1), each equation contains infinitely many differential equations for the coefficients
of S. However, choosing a finite number of equations from them, we can characterize finite
dimensional solutions to (1) via Zakharov—Shabat equations:

(6

Lemma 7 Let S: CN — 1+ U~. Suppose S satisfies

(8/0tn)S — BES € W(~(N+2-n)), n=1,... N, (7)

where BS = —(S0"S~Y)_. Then B, = (So"S~Y) 4, n=1,...,N, satisfy (Z5"). So that if
the tangent map of L = SOS™! is of rank g, N > 2g + 1, then by Lemma 6 b), there exists a
g-dimensional solution L': C*° — 8 + ¥~ to (1) such that L'|CN = L mod ¥(—N).
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The first part of the lemma is shown by using the identity

S Y0m — B, On — Ba]S = [0 — 0™, Sn] — [0 — 0", Swa] + [Sm, Sul, myn=1,...,N,

where 8, = §/0t, and S, = S71(0,(S) — BSS). ‘

Noting that equations for n = 1 in (1), (6) or (6) just require that L, w or S be of the
form L(z,t) = L(x+1t1,1s,t3,...) etc., in what follows we confuse z, t; and z +t1, and denote
w = Sef instead of Sk HE(bF) otc. Let w = Seé be a wave function for the KP hierarchy
(1), i.e., a solution to (6). Then by integrability condition for (6), there exists a function
7: C® — C, called the 7-function associated to L, such that i ~

e~$w = the full symbol Qf S : : ; .
Tt — 1)kt — 1/(2K2),t3 — 1/(3k3),...) (8
. ”T(tl,tg,tg,...) :

See [1] for the proof of (8) and other properties of 7. Given a solution L to (1), w, S and
7 are determined up to multiplication by a function of k, multiplication from the right by
a constant coefficient pseudodifferential operator, and multiplication by e(linear function of £)
respectively. Each coefficient of L is expressed by a constant coefficient polynomial of second
or higher derivatives of log 7, and every second (or higher) derivative of log7 is a constant
coefficient differential polynomial of coefficients of L. More precisely, denoting

S
L= a+Z’U,j(9~j+1
j=2

and denoting the weight of derivatives of u; as
wt(9%u;) = Znan + 7,
ot

we observe that 0;0;log is a weight-homogeneous differential polynomial of u;, of weight
i+ j. In particular, 9;0;logt for ¢ + j < N are determined by L mod ¥(—N), hence by the
approximate wave equations (7). ; : ; ,
Bilinear identities For S =1+ Y22 5,07" € 1+ U [[t]], and w = Set, we let S* =
14372 (=8)"" o s, formal adjoint of S, and w* = S*e~¢. If w is a wave function for the
KP hierarchy and satisfies (6), then w* is called the adjoint wave function and satisfies

L'w* = kw*
Opw* ==Brw*, n=12,...,
where L* and Bj; are the formal adjoints of L and By, respectively, defined similarly to S*.

If 7 is a T-function for the KP hierarchy, i.e., if we have (8) for a wave function w, then its
adjoint wave function is given by

T(ty + 1)k, ta + 1/(2k2),t3 + 1/(3K3), .. .)e\_5
T(tl,tz,tg,...); ‘ 7

ie.,

7(ty + 1/(=h), o + 1/(2(=K)%), s + 1/(B(=k)),..)
T(t1,ta, t3,. .. ) '

the full symbol of $* =
See [1]. Now we have the following,
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Lemma 8 ([1]) Formal oscillating functions w = Peé and w* = Qe~¢, where P,Q € 1+
U[[t]], are a wave function for the KP hierarchy and its adjoint wave function, if and only
iof they satisfy :

Resp—oo w(t, k)w* (¢, k)dk = 0 foyr any t,t. (9)
A function 0 # 7 € C[[t] s a T-function for the KP hierarchy if and only if it satisfies
it 1 1 ]_ t—t’,k E :
Respmco T(t1 — 1otz — )T (th + k’t2 + = STl DR G =0 for any t,t. (9)

ThlS lemma, neaﬂy charactemzes the wave functions and 7-functions for the KP hlerar—
chy, and (9') gives infinitely many leota bilinear equations for 7-functions. »Indeed if we
substitute ¢ —y for ¢t and ¢ +y for ¢’ in (9') and expand it into Taylor series in y, we get

= : i ik :
Zpl(—Zy)le(ﬁ)ezfﬁl vibir . 7 =0, (9
1=0 ‘ ;

where D denotes the Hirota bilinear operator, i.e., for P(X) € C[X1, Xa,...]
P(D): C[[t] ® C[[t]] — C[[t]]

is given by

P(D)f-f = P(D)f ® f = P(@,)F(t + 1) f(t — y)ly=o
and pp(X) € Q[X1,Xs,...] are defined as :

o g P
an(X)k” = eXm=1 Xmk™

so that they are weight-homogeneous polynormals of weight 7 if we define wt(X%) = > nay;
and D = (D1, (1/2)Dy,(1/3)Ds,...). For each « the coefficient of ¥ in (9") gives a Hirota
bilinear equation for 7 homogeneous of weight 3" nas, + 1, counting wt(D?) = Y ng,. [9]
carries a table of those equations for weight up to 11 (complete list up to 9), with interesting
observations on the number of Hirota equations for 7 of given weight, which are then proved
by Date et al in [1]. Equations of the form (9), (9') or (9”) are called bilinear identities in [1].
Now we pick up finitely many Hirota equations for 7 which characterize finite dlmensmnal
solutions to the KP hlerarchy

Lemma 9 o) Formal oscillating functions w = Pet and w* = Qe™¢, with P and Q askabove
are a wave function for the KP hierarchy and its adjoint wave functzon zf and only if they
satisfy

Resy— o0(8 w(t k)) *(t,k)dk =0 forany t, . (10m)
for-any m >0, and - ‘
Resp—oo (9w (t, k))w* (¢, k)dk = 0 for any t, . oy

for any m > 0, n > 2. If we only assume (10,,) for m =0,...,N and (10m,n) for m > 0,
n>2, m+n <N, then we have (7) for S given by (8), BS = —(S0"S~1)_.

b) A function 0 # 7 € C[[t ]] s a T-function for the KP hzemrchy if and only zf it satisfies

m
Z e ,le(D)D;’?“r T=0 - (105)
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for any m >0, and

_9)! ; gy L
zrz(ﬁ;g_)“m (~2011011(D) + pLea(D)D, ) D' -7 = 0 (10;,,.

=0

for any m > 0, n > 2. If we only assume (10%,) for m = 0,...,N and (10;nn) form >0,
n>2, m+n<N, then we have (7) for S given by (8), B = (S’G”S Dy :

Note that (7) characterizes g-dimensional solutions to the KP hierarchy if N > 2¢ + 1
(Lemma 7). Proof of Lemma 9 a) is the same as one part of Lemma 8, shown in [1]. (10],)
and (10;,,,) are the coefficients of y7* and y["y, in (9"), respectively. So that Lemma 9 b)
follows from Lemma 9 a). :

Let us rewrite (10},) and (10}, ,,) for 7 = €96, where 6 = 6(t) € C[[t] and Q = Q(t) =
22’322 Qi tit;, Qij = Qs € C, a quadratic form on s, 13,. .., for later use. The result is the

following;:
: m+1

ZCFJ 1m =0, | (o)
m4+1-J 4Qk m4n-+1 m+1 - ;
ch—k knF'J I,m ™ 2 Z CF,] —n— 1m+ZG-F] 1mn207 L (10%'1,n)
J=0 k=2 i ; Jj=0 j=1 ; S :
where
S = = o 2 Qrnn
C]:pj(Q)7 _Q:(050)07Q49Q5"")7 anz : ’
v P k(n —k)

kan Zl' 'pl k(D)DT_anH;O- i

Here we set 1/1! = 0 for [ < 0.

Baker—Akhiezer functions Let (C,p,F) be a triple of Data A in Krichever’s theorem.
Let U be a small complex neighborhood of p, and let z: U — C (holomorphic) be such that
zmod 23 € m, /mg is chosen in b) of Data A. We construct a deformation of the sheaf F
to a sheaf F* over C' x C[[t]] similar way to [5]: Let F* = F @ Oco on U x C® and on
(C —p) x C®, but glue F* to itself on (U — p) x C® by the transition function ef(t:1/2). We
observe that H°(C x C[[t]], F*(p)) =~ C[[t]]. Let s be a generator of this C[[t]]-module such
that on U x C*, s = (1/2)(1 + O(z)) near p x C®. Looking at s on (C —p) x C, we call
s(')' Ls: (C—p) xC® = C (meromorphlc) the Baker-Akhiezer function. Here sp = sj ® 1 and
sp s a nontrivial section of 7(p), e.g., 30 = s|t=o. We have

Lemma 10 (Krichever [4]) If 1 is a Baker-Akhiezer function and
P =1(t,2) = (L+s1(8)z + 52(t)2 + - )02
near p, then

= (t, 1/k) = (1 + sy ()2 + sp(t)k2 + - - )efBR) = Geblbh)
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18 a wave function for the KP hzemrchy, so that L S’@S Lisa solution to the KP hzemrchy
Moreover; for this S we have

R, = S(t )RS( )
where Rt is the ring deﬁned by (3) and k '

R={f(071) €C((971)) | f(2) €T(C - p,0c)}.

b) If C 1is a smooth curve of genus g > 1, then the Baker-Akhiezer functwn 18 gwen by the
formula : :

¢:ex to | win) )6(w(c —‘At+c)/a(zp()+‘c),‘ o
1%22 / ())((@ a)+c), a !

where 0 is the Riemann theta ﬁmctz’on onC,w: C— JéJc(C) kthe Abel map deﬁned as

q q
w(q) = (/ wl,...,/ “’9) modulo perz’ods,

(Wi, wy) normahzed baszs of abelzan dzﬁerentzals of the first kind, A = (a;;): C° — €9
such that
= (as1 + a0z + a;32° + - )dz ,

w(n) normalized abelian diﬁerentz’als of the second kz'nd with a unique pole at p of the form
d(z~") + O(1), and c general point of CI.

Define Q;; € C, 4,5 =1,2,..., as

q
/~ w(i) = Zquzj/] + const .

7=1

Then Q;; = Qj;. Since the wave function for a solution to the KP hierarchy may be changed
by multiplication by a function in k¥ and k£ =1/z, (11) shows

Corollary to Lemma 10 If C is a smooth curve of genus g > 1, then the 7-function for
the solutzon to the KP hierarchy correspondmg to C is gzven by

3

'r(t) = eQ(t)H(At —c)

t) = Z Qijtitj

i,j=1

(11')

“with-A and ¢ as above.

By an appropriate chang‘e‘of local coordinate z around p for which z mod 23 still gives an
element of m, /mg chosen in Data A, we may always assume

Qi1 =Q1u=0.

T’hisy only changes L to equivalent one defined in (5), in this case N = 1. Then by (107,.,),
Lemma 7, Lemma 9 etc., we have
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Theorem 11 Given a positive integer g, (101) form =1,...,2g+1 and (107, ) for m > 0,
n>2 m+n<2g+1 — we shall call the set of those equations (A) — characterize the
Jacobian varieties of genus g as follows: a genus g Riemann theta function is associated to
a Jacobian variety of a complete smooth curve if and only if there exist Q;; € C, 1,5 > 2,
i+7<29+1, Qi =Qji, anda; €C,i=1,...,9,j=1,...,2g+ 1, so that (A) is satisfied
by these Q’s, and @ substituted by 0 o A, where A is the linear map defined by matriz (as;).

Algebraic equations and elimination of parameters Applying (10;,) and (105, ,,)
to 6(A-) and Fourier expanding, we get finite number of algebraic equations on theta constants
and derivatives of theta at two division points. Starting with the definition of theta

0(z) = Z exp(2mip - z + mip - Tp), T € Hy,
peZI i ‘

and i S
0[2] (Z’T) = Z eXp(ZW’iQ' (Z+b) +7quQ)7 a"b € ng TEﬁg,
qeZ9+a - BT ~
and substituting 0(A-) for @ in the definition of Fj, ,,, we have

Fk,m = Z Flf,ma [632} (24t,2T),
- dez/am) ‘

Fk,m,n ’:;k Z k Flg,m,ne [562] (ZAt7 2T)7
6€(Z /223

where

m

—2)! A = ;

=) (m(——l))'l' > (4mig- a))™ 'pi_y g exp(2miq - Tq),
=k qeZ9+5/2

m : ¢

—2)t ) L : ,

Flfmn = Z (777(::7)7‘7' Z (4miq - ar)™ l(4mq : an‘)pl~k,q exp(2miq - T'q),
qELI+6/2

Withk

= pi(a(q)), |

1 ) X . .
Phyg = *,;!*0’; exp( E ) Nd4miq - aj/]) -
= "’

a(q) = (a(@)1,a(@)2;---),  a(g)n = 4mig - an/n.
So that (10;,) and (10, ,,) are equivalent to

m—+1

> CiF) ., =0 forallde (Z/22)°,

7=0
and
m+1J 404 m+n+1 omAl g .

L C :
§:q4r%-ﬁimfa > CFL it D CiF 1 mn=0 forallée(2/22),

7=0 k=2 =0 = |

(12mn)
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respectively. As before, (12,,) for m - 0,...,N and (12,,,) form >0, n > 2, m+n < N (we
will call the set of those equations (A') if N = 2g + 1), together imply (7), so if N = 2g + 1,
they characterize the Jacobian varieties of genus g as in Theorem 11.

m and F,g are linear combinations of derivatives of theta at two division points,
Whose Coefﬁments are weight homogeneous polynomials of a;; of welght m—kandm-+n—Ek,
respectively, where we define
. Wt(aij) =7
Therefore, if we also define "
| wt(Qij) =i+,
then the left hand sides of (12,,) and (12,, ) are linear combinations of derivatives of theta at
two division points, with coefficients being weight homogeneous polynomials of weight m + 1
and m + n + 1, respectively. Therefore, at least in principle, we can eliminate the unknown
parameters a;; and (Q;; from (A') to get algebraic equations which characterize the Jacobian
varieties of genus g, and the resulting equations should give a vector-valued modular form
[6, p. 229] since the zero set of those equatlons should be independent under the action of
Sp(2g,Z). As the first step, we eliminate Q;; from (A’).

First we assume

[/](O2T)750 e - By
- for simplicity. This is true for some § € (Z/2Z)9, since

0= S {5/2](0 )0 [5{)2](2z,2T)¢0.

6e(Z./22)9 0 ;

Then by (12,,) and Cy = 1, we have ’
Cj = (1) (F o}, - Fj{l,j_l)*]L det G}, j=1,2,...,29+2, (14)
where g o . : L
F-10 F* F61J o Iy
G = 0 F, ... 13 -2 Fi; 1
B Ff 25-2 Fjoj1

2 ~ | |
Note that Fk B LI:)— [5/ ](O 2T) # 0 by (13 Formula (14) is obtained as follows:

(12,,) for m =0,1,...,N, fixed ¢
& (Cy,...,Cny1)HE = (1,0,0,...,0)
& (Co,---,Cny1) = (1,0,0,...,0)(HY

/

1

where

S
5113
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Computing (1,0,0,...,0)(H) ™! ( = the first row of (H)™!) by using Cramer’s rule, we get
(14). We observe F_; , =0for k=0,1,...; F*,; = F%; , = 0. So the condition

Cl 02 03=O :

is automatically satisfied. Since C; should be independent of §, F, ,f,m must satisfy

5 6 : s 50 _.
Fp il Fam det G5 =0,

or equivalently

(21)

for any 8, p € (Z/22)9, m =4, ..., 2g + 1. This is a necessary and sufficient condition that
C; do not depend on . Assuming (13) again and substituting (14) for C; in (121, ), we
get systems of linear equations for Q;j. Solving them and equating the answers, or requiring
Qij = Qji, pj(Q) = Cj, we get algebraic equations for the derivatives of theta at two division
points which do not involve ();;, although they still involve a;;.
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