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1. String equations and bispectral problerns 

Relation between string equations and the bispectral problem has intrigued many. The general 

form of string equation is [L， [ムP]]之江 。う while a solution to the bispectral problem is a pair 
(L，8)， with 8 being a function of x， such that (adL)r1川 (8)口 o.Here and in what follows， 
an upper悶caseroman letter denotes an ordinary 副首位entialoperator in a scalar variable xう
unless otherwise noted. The map (ム8)→(LぅP)，where P = (adL)叶 -1(8)，from the 
space of solutions of the bispectral problem to the space of solutions of the general string 

equation， illustrates the relation (in the range of this map， there seems no obvious way to 
see the condition that 8 be a function， so this is rather a general nonsense). This topic is 
also related to the Krichever theory， through the rank one bispectral (i.e.うrationalCalogero-
Moser) solutions [10ぅ14]，but here we propose another link to the Kricl附 ertheory. 

Here we consider the equation 

[Lヲ[L，P]] = O. 

This equation is only slightly more general than any of the various forms of string equations. 

E.g・， if P and Q satisfy [P， Q] 1， then P and any polynomial L = f(Q) of Q satisfy 
[Lぅ[L，P]]口 Oヲandif， moreover， ord Q > 0， then so do P and any L such that [L， Q] = O. 
The latter equation suggests that the Krichever theory may come in here: 

1. Let ψ=ψ(x， z) be the Baker四Akhiezerfunction associated to the Krichever data (C， pヲムF)，
i.e.ヲ Cis a complete curve of genus g， p E C a smooth point， z a local coordinate at 
p (z(p) = 0)う F a torsion-free rank-1 sheaf (or a line bundle) of degree 9 -1 such that 
従omo(FヲF)~ 0ヲ andψa (unique (up to a constant)) sectionぅdependingon the scalar 
parameter x， of F on C ¥{p} which， with respect to a trivialization of F near p， looks like 
(1/z十o(1) ) exp (x / z). Let ¥7 be a rational vector field on C with no poles away f仕romp，an 
let ¥7 be a rational lifting 0ぱfマonF with no poles away from p， i.e.ヲ¥7maps any rational 
sectionゆofF with no poles away from p to another such sectionマゅう suchthat if f is a 
rational function on C with no poles away from p， then 

マ(fゆ)コ(マf)ゆ十j'vゆ. 、EE/
噌

i
J
'
E
E

‘、、

The set of suchマ'sぅforany fixed ¥7， is an a伍nespace， isomorphic to the space of (rational) 
functions on C with no poles away from p. The Krichever construction tells us that for any 
rational function f on C with no poles away from 払 thereis an ordinary differential operator 
~f in x such that fψ Pfψ. Similarlyぅthereis an ordinary di狂erentialoperator Q such that 
マψ口 Qψ.Substituting ψforゆin(1)ヲandnoting 

マ(fψ)=マ(Pfψ)= Pf¥7(ψ) PfQψう

(マf)ψ=P('vf)ψ 
and 

f¥7ψ=fQψ口 Qfψ=QPfψう
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one obtains 

p(¥7f) = [PfぅQ]

Sinceマfis another (rational) function on Cぅp(¥7f) commutes with Pf' Hence letting L = Pf 
and P = Q， we obtain a solution of [L， [L， P]]口 O.This construction is more general than 
the previous ones， in the sense that there may not be any Q such that [P， Q] = 1. 

2. Howeverぅifone considers the equation [Lぅ[ムP]]=コotogether with the condition that 
P is a function (i.e.う multiplicationoperatorう havingin mind the usual assumption in the 

bispectral problem)， then the situation is di首位e瓜 Here and in what follows， polynomial 
means a constant明coe血cientpolynomial. 

Claim 1f [L， [L， P]] = 0αnd P isαfunctio叫 thenL = f(Q) fo1' some polynomial f，αnd 
[Q，P] = c is αconstαηt (αnd hence [LうP]=cf'(Q) isαpolynomial of Q). 

To avoid the trivial case， we assume [LヲP]チO.(This implies [Q， P]チ0うsowe may take 
c = 1 in the above claim.) 

First note that (i) [LうP]is not necessatily a polynomial of Lヲbut(ii) if it is a polynomial 
of Lヲthenit is a constant. 

(ii) is obvious: since P is a function， the order of the operator [L， P] is less than that of 
Lヲsoif [LうP]= f(L)， then the degree of the polynomial f is O. 
To see (i)， let us start with a町 pair(L， P) such that [Lヲ[L，P]]= 0う[L，P] -1-0， and P is a 
function. If [L， P] is not a polynomial of Lぅthereis nothing to prove. If [L， P] is a polynomial 
of ムthenby (ii) ab ove ， it is a constantぅ sayc -1-O. Now let f(x) be any polynomial of 
degree > 1， p，nd consider the pair (f(L)， P) in place of (L， P). Clearly， it also satisfies the 
conditionsヲi.e.ぺf(L)，[j(L)， P]]口 oand P is a function. But [j(L)， P] = f'(L)[LぅP]= cf'(L) 
is not a polynomial of f (L )， proving (i). 
N ote that if P is a function， the order of [LぅP]is less than that of L. 
Let R be the ring of di旺erentialoperators which commute with L， and let Q εR be an 
element of the lowest positive order， i.e・ぅ q:= ordQ > 0 and for any S ε R， s:= ordS どq if 
s > O. Then 

Lemma 1f [L， [L， P]] = 0αndザtheo1'de1' of [L， P] -1-0 is less than that of L， then R 
coincides切ththe 1'ing of polynomials of Q. 1n pa1'ticulα1'， L αnd[LぅP]α1'epolynomials of Q. 

Proof: Since Q commutes with Lぅitbecomes a constantωcoe伍cientLaurent series of L -l/lう

Q=乞 ωk/lヲ

w here l is the order of L， and αq f. O. U sing this expansion， and 
with L， we have 

[Q，P] = 乞 (kjl)αJ/l-l[Lr!?
た∞

which still comml山 swith Lうandhas order less than q since the order of [LうP]is less than 

that of L. Hence， by the minimality of qぅ [QぅP]is a constant. Multiplying Q by a constant 
if necessaryぅweassume [QぅP]= 1. 
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Since R also is the ring of differential operators which commute with Qうeveryelement 8 
of R can be expanded as a Laurent series in Q-l/q. Thus 

8=乞 ωk/q?

and hence 

[8，P] = 乞 (k/q)ωた/q-l
たコー∞

which belongs to R (since it commutes with Q and is a differential operator as a commutator 
of two di鉦erentialoperators)ぅandord[8うP]= ord 8 -q unless 8 is a constant. This implies 
that s = ord 8 is a multiple of q. Indeed， if there exists an 8 εR such that ord 8 is not a 
multiple of ιthen there is an element， say 80， of minimal order among all such 8冶.Then 
[80ぅP]belongs to R， and ord[ 80ぅP]is less than ord 80 and is not a multiple of q. This is a 
contradiction. 

Using this， it follows by induction on the order of operators that R is the ring of polyno-
mials of Q. 

This suggests the additional simplicity is offerred when P is a function. It may be inter-
esti時 tolook at equations like (ad L) m十1P = 0 under the assumption that P be a function 
(relevant set-up for the bispectral problem). 

2. Calogero四 Mosertype KP solutions 

KP solutions of rational Calogero-Moser type provide concrete examples of the bispectral 

problem as well as the Krichever theory. All the information on a solution is contained in a 

pair of square matrices (X， Y) such that [X， Y] + 1 is of rank one. It is obvious that such a 
Y exists if the eigenvalues of X are all distinct. More generallyぅifpairs (Xl，日)and (X2， Y2) 
possess this propertぁandif no eigenvalue of Xl is the same as any eigenvalue of X2ぅthena 
pair of block matrices 

Xt(il;2)?Yコ (EL)
possess the same property， after choosing suitable off-diagonal blocks of Y. Subtlety comes 
in when X has some eigenvalue with multiplicity. 

In general， a necessary and su缶cientcondition for an X to have some Y with this condition 
satisfied is that for any eigenvalue入ofXヲthesizes of J ordan blocks belongging to入areat 

least two apart from each other (so in the simplest example of X with two Jordan blocks 

belonging to the same eigenvalue入ヲ入 hasmultiplicity 4， and the two Jordan blocks have 
sizes 1 and 3ぅrespectively).N eedless to sayぅthisfact is related to the cell decomposition of 

Grassmannian (or the theory of Schur functions)うbutWilso凶 originalproof of it，although 
it may seem a little subtle， is already quite concrete and elementary (cf. [14うlemma6.9])! 
This illustrates the degree of concreteness seen in this topic. 

Here we look at a different side of this subject， and give a proofうwhich does not assume 
bispectrality etc.う ofthe fact that the spectral curve of any rank one ordinary differential 

operator with rational coe自cientsis unicursal. As pointed out by E. Horozov [3]， after 
suitable reformulation using the language of Weyl algebra etc.うitis also straightforward to 

work out difference operator analogue of this result. 
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Let A be a commutative ring of ordinary differential operators of rank 1， i.e.， for any 
n >> 0 there exists P εA of order n. We assume C c Aうandthat every P εA is of the form 

I d ¥n I d ¥n-1 
P = co(一)十cd一+(terms of order三n-2)う
¥dx} ¥dx} 

where co， C1εC， Co i= O. 

(1) 

The K richever dαtαfor A is a quadruple (Cぅp，zぅ:F)， where C is a complete， reduced 
irreducibleωve over C， p E C a smooth poi瓜 za local coo凶削eat pぅ i.e. う zE 刊-m~ ， and 
:F a torsion-free rank 1 sheaf on C of degree 9… 1うsuchthat C¥{p} Spec(A)ぅandthe unique 
analytic section ψof:F on C¥{p} with singularity at p of the form (1/ z) exp(x/ z)(l十O(z))ぅ
for generic x 巴Cう givesthe Baker-Akhiezer function， a common eigenfunction for A. 

Lemma 1 (Diximier [2]) 1f the coefficients of PεA  ¥C αre rationα1 functions in x， then 
the coefficients hαve no poles at x =∞. 

The following proof works whenever the coe伍cientsof P have Laurent series expansion 
with at most poles at infinity. 

Proof. Suppose the contrary. Let p := ord P > 0 and write 

P = co(が+c1(が-1何 2(X)(が-2切 (x)(が-3+ 切 (x)，
and let 

s := max{(deg向(x))/iI i = 2うえ・・・ ，p}> 0う (2) 

where degαi (x) is the order of pole ofαi(X) at x =∞. Expand each 向(x)in a Laurent series 
around x =∞ヲ anddefine the weight ofthe monomial x'l，(d/dx)J to be i+sj. Ifthe maximum 
in (2) is achieved at i =九 'l2，・・・ ，'lkヲwhere2 ::; i1 <匂く・・・く九三Pぅwehave 

P=匂f(ω(が+(terms of weig批く的 (3) 

where y := xS(d/dx)-lうandf(ν) := 1十 d1yi1+ d2yi2十・・・+dkyik for some d1，・・・ヲ dkεC.
Note that s is not necessarily an integer， but sil? .・・ ， Sik are. Note also that monomials of 
x and d/dx commute modulo terms of lower weight. 

Next， let Q εA be such that p = ord P and q := ord Q are relatively prime. Such a Q 
exists since A has rank 1 and p > O. Since P and Q commute， Q is of the form 

Q = cPq/p十乞 biPゅう 仇 εCぅ件。 (4) 

Hence， by (3) we have 

Q cPq/p十 (termsof weightく q)
_1__ f d¥q 

c' (f(y))叫が+(terms れ eightく q)

Here (f (y) )q/p is computed as a power series in yぅbutsince Q is a differe凶 aloperator， the 
series must terminate: 

(f(ν))q/p口 g(υ):= 1 + d~yÍl + d~yj2 +・・・十 dfyj[
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f(y)q口 g(y)へ (5) 
or 

for some d~ ， ・・・ぅ d;εC and 2ざj1く J2く・・・く Jl三q.The last inequalities hold since Q is 
of order q and has the form similar to (1) (i.e.パhetop two terms have constant coefficients). 
Let αh・・・ぅαikε C be the roots of polynomial f (ν)， and s1ぅ・・・，sjlε C the roots of 
polynomial g (υ). Since (f(ν) ) q has roots α1， . . .ぅ αikヲeachwith multiplicity q， since (g(y))P 
has roots s1ぅ・・・う sjlヲeachwith mu1tiplicity p， and since p and q are relatively prime， (5) 
means the actual multiplicity of each root is a mu1tiple of pq. Since ik ~ p and jl < qう
this is possible only when ik = pぅjl= q and all the α's .and s's are equal (=:γ)， so that 
f(y) = (1 +ν/γ)Pぅg(y)= (1 +y/γ)q. But this is impossible because i1 and j1 are at least 2う
so f and g have no term of degree 1 in y. Q.E.D. 

Lemma 2 lf some P εA¥Chαs rationαl coefficients， then the sαme is true for every Q εA， 
αnd the spectral curve of A is rationαl. 

Proof. By lemma 1 the coe伍cientsof PεA have no poles at xコ∞ぅ and(if P tf-C) 
by (4) the same is true for every Q εA. Thus A c 1之:=C[[x-1 ]][d/dx]. Note that 
I:口 X-1C[[X-1]][d/dx] is a twかsidedideal of 1ζand the quotient ring冗/1is commutative 
and is canonically isomorphic to the ring 冗o: = C[ d / dx] of constant coefficient differential 
operators. Let π: 1之→冗/1':::::.冗obe the canonical projection. One can think ofπas 'taking 
the limit as x →∞'.π(P) = limy→∞P(x + y， d/dx). Since every element of A is of the form 
(d/dx)η 十 (lowerorder terms)ヲ7fIAis injective， A与7f(A)c 1-之0・SinceSpec冗ois an a血ne
line (JID1(C)¥{∞})ぅ SpecA is rational. Q.E.D. 

Proposition 3 Suppose A satisfies the sαme conditionsαs in lemmα2，αnd suppose A is 
αlso mαximal commutαtive. Then the spectral curve of A is unicursαl. 

Proof. Let (C，pヲムF)be the Krichever data for A. Since C is rational， one can take normal-
izationπ: JID1→C and use the global coordinate z on JID1¥{方-1(p)} ':::::. C to represent the 
Baker-Akhiezer function as a function in z of the form ψ(x， z) = f(x， z)eXZ (here we ignore the 
higher KP times)， where f(xぅz)is a polynomial in z of degree g (the arighmetic genus of C) 
with coe缶cie凶sdepending on x. In order for ψto be a section of F (via a fixed trivializatio吋
onC¥{p}，ψhas to satisfy a system of g linearly independent linear constraints involving its 
values and z-derivatives at various points: 

(Pll (d/ dz) IZ=Zl十・・・十P1N(d/dz)lz=ZN)(f(x， z)eXZ) 

(eXZ1 Fll (xぅd/dz)lz=Zl+・・・十eXZNF1N(X， d/dz)lzご ZN)f(x，z)

ハ
υ

(pg1 (d/ dz) Iに Zl+・・・十PgN(d/dz)lzニZN)(f(x， z)eXZ) 

= (eXZ1 Fg1(X， d/dz)lz=Zl +・・・ +eXZN FgN(x， d/dz)lz=ZN )f(x， z) 

口 Oう
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where Pij(d/dz) are constant coe伍cie凶 lineardiffere凶ialoperators in z， and Pij(X， d/dz) 
are linear di荘ere凶 aloperators in z with coe缶cientsin C[ x]. N ow C is unicursal if and 
only if for each i ε{1，・・・ ，g}there is only one j E {1ぅ・・・ぅN}such that the linear differential 
operator Pij (d / dz) is non-zero (in particularぅN 三g).Therefore， only in the unicursal case the 
exponential functions eXZj can be factored out from the whole system. If C is not unicursalう
then at least one of those constraints involves values of ψ= fexz at two different ZjうSぅsayZl 
and Z2ぅandthe exponentials cannot be factored out. Solving such a system， one sees that 
some coe伍cientsof f must depend on a nontrivial linear combination of eXZ1 and eXZ2， and 
so the coefficie凶sof any P E A ¥{C}， of which f is an eigenfunction， cannot be rational. 
Q.E.D. 

3. Young tableaux and vicious random walks on a line 

The following is a small observation which naturally came up in the joint work with Adler 

and van Moerbeke on matrix integrals and combinatorics. (This was not quite useful at the 

time， due to the need to code the walk as a Young tableaux before performing permutations 
of L and R moves.) 

The number of 2n step walks by kどnwalkers (one walker moves at a time)うina fully-
packed co凶 g町 ationat the beginning and the end of walkうis(2n -1)11 if a wall is put at one 

end of the chunk of walkers (walkers on a half削1ine).The idea was to put two such chunks 

back to back to make a bigger chunk of walkers on the full-line to apply Forrester's trick， and 
then to count the walks on the left and right halves of the chunk separately by factoring the 

generating function. 

Consider a little more general walks on a half-line: the ones with the end of chunk not 

facing the wall to be not fully packed at the beginning and the end of walkう butotherwise 

obey the same rules as before (they are vicious， only one walker walks at a time， to left or 
rightヲ etc.). 1 want to use the same idea as above to count the number of such walks， by 
allowing the chunk of full-line walkers at the beginning and the end of walk to get loose at 

both ends of the chunk， but keeping enough many (compared to the number of steps) walkers 
still packed . in the middle of the chunk to separate the activities on the left and the right 

halves of the chunk. The result can be seen as the number of walks from one Young diagram 

αto another one s in p steps， in the space of You時 diagrams.Denote this number by αg(p). 
Thus a~(N) = (2n…削 if N = 2n， and is 0 otherwise. In generalぅit is easy to see 

Claim 0 In order to hαveαg(p)ヂ0，悦 musthαvepどIs¥α1+1α¥剤αηdp IsI-Iα1 mod2. 

if the wall is on the right of the walkers (1叫f-linewaU悶 s，or when we look at the left edge 
of the chunk of full-line walkers)うusestandard SYT with shape入¥μ(入コ μ)as Forre抗erdid， 
to code the steps of left-walkers or rightωwalkers (walkers who can move only to the left or 

right， respectively). For the left-waUぽ Sμand入givethe initial and the final c∞O雌g町 a批tion
respectively， and for the right'-walkers itうsthe other way around. Pack of walkers with the 
wall on the left (or when we look at the right edge of the chunk of fu叶lill自1-拍

b悦e自血lp卯pe“d(供l恥lefぱf武t付 righ批凶訪刈t)before c∞od心ln略g.
Con五gurationof full附linewalkers with two loose ends (we always assume that enough 

many walkers are packed in the middle)うis
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λ fN¥ 
A(N) := A~i:~; (N) :口デ( jd(p)必(N p) 

p=u¥p/ 
、EEE
J
'

A
ひ
J'et
‘、

edges of the ChUl 

Claim 1 In order to hαMA;::た(N)チ0，there must exist an integer p， 0三p三N，such 
thαtp三|入1¥μ11+ 1μ1¥入11，p == IA11μ11 mod 2， N pどi入2¥μ21+ 1μ2¥入21，αnd
N-p==1入21一|μ21mod 2. 

This follows from Claim O. On the other hand， counting separately the numbers of left-
and rightωmoves， but not distinguishing the activities at the left edge and ones at the right 
edge， we see 

Claim 2 In order to hαueA;i:た(N)f. 0， there must exist nonnegative integers l and r such 
that l 十 1'=Nαnd l-l'口 d:=(IA11-1ん1)-(1μ11-1μ21) . 

Remark 1 The existence of lαηd1'αs in Claim 2 implies N 三 dmod 2，αs is also seen from 
the mod 2-pαrt of Claim 1. 

Remark 2 Since the conditions in Clαim 2 determine l αnd l' uniquely，αnyωαlk from 
(μ1ぅμ2)to (入1，入2)must hαve l left movesαnd l' right moves・

Denote the number of all walks from (α1ぅα2)to (s1， s2) in s steps， in which walker can 
move only to the left (resp. right) by Lgi'~(s) (resp. Rgi'，~;(s)). 
Applying Forresterうstrick to bring all the left白movesbefore the right-moves， one gets the 
formula 

A(N)=(?)52m附 J3;(T)ぅ (1) 

where the sum runs over all pairs (ν1， V2) of Young diagrams such that 

V1コμ1ぅ V2C μ2ヲ IV1¥μ11+ 1μ2¥ν'21 =ム (2) 

and 

ν1 :::)入1ぅ ν2C入2ぅ IV1¥入11十|入2¥ν'21=γ (3) 

hold. Note that the last equalities in (2) and (3) are equivalent to each other since l -l' = d. 

Conditions (2) and (3) are needed to have L壮'，':12(l) f. 0 and R~t必 (γ) f. 0 ぅ respectively. 
The right hand side of (1) can be written in terms of f川μ1うfμ2¥1/2ぅf門¥入1and fA2 ¥1/2: 

using l1 口 IV1¥μ11and l2 :口 |μ2¥ν21= l -h as auxiliary indices， and noti時 that1'1 := 
h+1μ11-IA11 = 1ν1¥入11and 1'2 := l2 -11121 + 1入21= 1入2¥ν21add up to 1'， we have 

A(N) 
( ~) 1=~12 Vl~入12入2(;)(ぃ iJi ) f1/1¥μ1fμ2¥内 f1/1¥入1f入2¥ν2

|入11)

(4) 

It is clear from (0) that the generati時 functionAおおい):= 2:~=üAおお (N)xNjN! 
factors: 

A;::主(x)口付i(x)aた(x)， (5) 
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where 

めい):=Z44
After rewriting 

(~) UJ (;J = lt!r~~!r2!' 
( 4) gives another factorization 

A;::た(x)= g~~ (x)hた(x)ぅ (6) 

where 
一『ゲ2l+1μ1-1入“

必(x):=ヤル ヤ fl/¥μf川
三 a川 -1f.L1}l!(l + 1μ1-1入I)!位

~-ゲ2l-1μ1+1入!←『、、
ば(x):ヱヤ中 ヤ f内 f入¥ν.
， 三m脱会:iLl-i入I}l! (l 1μ|十|入|)!iS21

Note that h~(x) is a poly削 nialぅandin particular 砕い)= 1. Both in (5) and (6)ぅthefirst 
factor depends only on μ1 and入1，and the second factor on μ2 and入2.Since â~(x) 口 ez/2?
setting μ2=入2= o gives 

付(x) e-x/2必 (x)h~(x) 口 e-X/2g~(X) ヲ

and setting μ1出入1= o gives yet another formula 

&付~(いx) = e一x/ρ2g~(いx)h吟~(いx) = e一Z吋/山

where we used g~(x) =〆whichfollows倒均 fromthe definition and 2:11/
1

=l(fl/)2 = l! (by 
RSK). 

Comparing the above two formulas also yields g~(x) = ex2 h~(x) ・

4. Sasha Orlov's BKP solutions of hypergeometric type 

This class of solutions， studied extensively by Sasha Orlov， may be useful in the study of 
combinatorics. In [13]うC.Tracy and H. Widom studied the asymptotic behavior of 

L Q入(x)乃(ν)
入ε1フヲ入15:h

(↑) 

as h →∞， where D is the space of all the strict partitionsぅ入口(入1>・・・>入t三0)うandQ入
and PA are the Schur Q-functions (P，入(x)口 2-l(入)Q入(x)).While the limit as h →∞ぅi.e・?

乞Q入(x)P，入(Y) TT
1+XiYj 

AI一明
is a well四knownBKP solution via Miwa change of variables， the nature of (↑) is not imme開 1
diately obvious. Sasha [8] pointed out that for any fixed h， (↑) is indeed a special (rational) 
case of the BKP solutions of hypergeometric typeう thussuggesting a possibility to study it 

by soliton theory (see [7] for more details): 
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Using neutral fermions: [ゆmゆm]+= (-)mdm，_n， let 

HB(t) = (1/2) 玄乞(一)叶切刊十lぅ

where t = (t1， t3， t5ぃ・・).BKP T-function is given by 

TB(t)口 (OleHB(t) glO) 、、B
，，r
-E・占，
，，E
E

‘、‘

for some 9 εG+(WB)， where the group G+(WB) is defined as in DJKM: If B is the Cli百ord
algebra on W B :口 EDnEZCゆn，and ifB十 isthe even part of B (+ 1-eigenspace of the involution 
仇同一仇)ヲ then

G十(WB)= {gεB+ 1 :3g-1う gWBg-1= WB}. 

Here is Sashゲsconstruction: For a町 functionr : Z →C which satisfies the relation r(1-n) 
巾1)ヲlet

Bk = (1/2)玄(-)nCTnCTk_nr(n)巾…1) 巾 -k+ 1)ぅ k=は 5，...， 
n=-oo 

which commute with each otherぅandfor S = (SlぅS3，S5ぃ・・)let 

B(s) = L SkBk， 9 = e-B(s) 

As the exponential of a quadratic elementヲ9clear ly belongs to the gro叩G十(WB).Substi-
tuting this 9 into (1)， Sasha observes 

TB(t) TB(tヲS)口 1+ L 2-l(入)γ入Q入(t/2)Q入(s/2) (2) 
入 strictpartition 

where r入口I17=1(γ(1)r(2)・・・ベん))ぅ andQ入(t/2)is the notation of Y.You， a student of 
V.Kacぅandequals to Q入(x)in the standard notation via Miwa change of variables: mtm = 
Li=l x"?: -(-Xi)m. 
Taking r to be a suitable step function， one gets 'fracy-Widor及、 restrictedsums. More-
over， due to the symmetry between t and s， one sees that γ"B (t， s) satisfies BKP in both sets 
of variables. 

To prove (2)ぅthefollowing identity (3) of Y.You [15]， and Sasha's variation on it (formula 
(4) below) are the keys: 

For a strict partition入=(入1>入2>・・・>入kど0)with k even， 

(OleHB (t)仇1・・・仇k10) = 2-kj2Q入(t/2)ぅ (3) 

w here again we use Yo凶 notationQ入(t/2)which is related to the standard Q入viaMiwa 
change of variables (see my old message). Sasha makes slight variation of this to obtain 

(01ゆ-A.k • • .ゆ-A.1e-B(吋10)= 2-kj2r入Q入(t/2). (4) 
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5. Elementary approach to the Schottky problem 

80 far， we have seen various ways of studying rank one (quasi)rational KP solutions: the 
Calogero-Moser systemう Orlovヲshypergeometric solutionsうaswell as the more standard ap-

proach utilizing the theory of Grassmannian or 8chur functionsうallbeing quite concrete. Let 

us proceed one step further and discuss a way to make the main part of my work on 8.P. 

Novikovヲsconjecture on the 8chottky problem [11] more concrete: 8ince we had a clean-cut 

answer utilizing only one differe凶 alequation (i.e.う theKP equation)う wedid not mention 

the existence of a less clean-cut but much more elementary answer. This partial solution 

uses no complex analysis on the abelian variety， and still characterizes the J acobians using 
only finitely many (but depending on the dimension of the abeli日i泊anvariety) d必i狂e目rer伐I凶1

tion邸lS. Thus it may be of some theoretical interest. It may also be straightforward to work 
out analogues of it for the trisecantうTodaand other incarnations of the universal grassmann 

manifoldぅgivingus some insight. 

Note also that in the BKP case， the best possible answer， whose proof goes the same 
way as in the KP caseうalreadyleads to a little less c1ean-cut answerうdueto the existence of 

counterexamples: The Riemann theta function of an irreducible principally polarized abelian 

variety X satisfies the first equation in the BKP hierarchy if and only if X， as a polarized 
variety.う containsthe Prym variety P of a curve with involution fixing one smooth point and 
another point， which is either smooth or a space-axial ordinary multiple point at which the 
involution does not interchange branches. Here X = P if and only if the two fixed points are 
both smooth (see [12] for details). 80 the conclusion may be explicit from algebro-geometric 

point of view， but still a litt1e less cleanωcut any.way.. 
80 in w hat follows 1 present this partial answer to N ovikov冶conjecture，.with some details 

added. Our starting point is of course: 

Theorem 4 (Krichever) There is αnatural bijection between sets of dαtααs follows: Dαtα 
A.α)C αcomplete curve 0 
bり)pεC αsmooth po仇tηM叫t，αndz mod z3 ε(叫 -m~)/m~ ，
c) F αtorsion-free r，αnk 1 sheaf on C such that 

hO(F) =が(F)= O. 

DatαB. Commutative subrings R C C[[x]][d/ dx]， 1 with C c R αnd forαny n >> 0 there 
is BεR of the form 

I d ¥n I d ¥n-1 
B (ァ) +c(γ + (lo悦 rorder terms)ぅ CεC. 
¥αXI ¥αXI 

Let us recall the basic definitions in the KP theoryうintendedalso to provide quick refer司

ences to the facts and notions used in this report so far. 

Let守口 C[[x]]((θ-1)) be the ri時 offormal pseudodifferential operators in a si時levariable 
民 δ=d/d叫 andlet D 口 C[[x]][θ]and守一=C[[x]][[o-1]]δ-1 be the s由ringsof守 of
differential operators and of pseudodi百erentialoperators of negative order， respectively. For 
P εwぅwedenote P = P十 +P _ corresponding to the decomposition 守口 D十守一.The KP 
hierarchy is defined as 

(8~JL = [Bn，L] [B~ ， L] ， n = 1ぅ2，...， 、、E
E
/

4
2
ム

〆
'
E
E

‘、、

lIf the above condition on hi are replaced by hO(F) h1(F)， then one should consider reg叶arizable
operators a la Sato. 
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where 

L:CC'∞=qcn→ θ+守一 (or L E a +守一[[tl，t2，... ]])， (2) 

Bn = (Ln)+，β;=一(Ln)_・

A solution L to (1) is called finite dimensional (resp. g-dimensional) if its tangent map at the 

ongln 

dLo: 九C∞一→ TL(δ+ 古一)~守一

is of finite rank (resp. of rank g). Suppose L is a g-dimensional solution to (1). Let KL be 
the kernel of dLo・Thenby the commuting flow propertyぅKL is also the kernel of the tangent 

map of L at any t εC∞う andthe map L is facto問 dby CC∞ /KL~CgasL:C∞→ C∞/KL → 

δ+宙一.Let 

Rt = {BεD I [B， L(t)] = O}. (3) 

Then Rt becomes a commutative ring which satisfies the condition of Data B of Krichever's 
theorem. K L and Bt are related with each other by 

乞ciLεKLゃ γ CnBn(t)εRt，
n δt'Yl ムJ

n>l 山 η>1

(3') 

and every B εRt is of the form Co + I:n>l cnBn(t). Using (3') and the ring str.ucture of 
Rt， we can characterize the g-dimensional solutions to (1) by looking at only finitely many 
equations in (1): 

Lemma 5庁L:ぴ→θ+宙 'tsαg-dimensionαlsolution to the first n equations in何 αnd
n ど2g+ 1， then L αutomαtically sαtisfies the whole hier，αrchy in the following sense: There 
existsαlir問 rmα，pP: cc∞→ cn such thαt L 0 P sol仰向yαndL 0 Plcn = L. Mo附附.
t的hi白S 't臼Sα unique eαxte印Tη1，S釘仰tωorη1， 0ザ1L to α solution of the ω hole hierarchy ρ ). 

We also define: 

Rt = {B ε D I [B， L(t)] ココO}. (3) 

Since every single equation in (1) actually contains infi凶 elymany differe凶 alequations on 
the coe伍cientsof Lヲthislemma is not su伍cientto characterize finite dimensional solutions 

to (1) in terms of finitely many differential equations. For this purposeヲweconsider the 
Zakharov-Shabat equations obtained from (1): 

δδ  
友ζBn一房;Bm口 [Bm，Bn]; m，n = 1うえ・ (4) 

That (1) implies (4) is just thecommuting flow property. Conversely， (4) implies (1) as (4) 
shows (θ/θtn)Lm = [Bn， Lm]+(order三口一2)so that (θ/θtn)L口 [Bn，L]+(order :::; n-m-1) 
for any m. If we consider only finitely many equations in (4)， then we have somewhat weaker 
characterization of白utedimensional solutions to (1): 

Lemma 6 Let us denote by (ZSN) the subset of equations in μ) for m，n = 1ぅ・・・ぅ N.Then 
α) For αny solution B (B1，・・・ ，BN)to (ZSN) ， the kernel K of the tαηgent mαp 
dB(t): CN→DN is independent of t， so that B is fiαctorized byαfixed lineαr spαce CN /K = 
cgαS CN → CN/K~令 Dlvy 仇th dB being injective. 
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b) If， moreover・，Nど2g+ 1， then there exists L: C∞-→θ+守-， such that L solves (1)， 
(Lm)十IcN 口 Bm for m = 1ぅ・・・ぅN，αηd kerdL = K. Such L is unique up to equivalence， 
definedαs 

L f"V L' 件 L'= (L十 γ CiL-j十1) 0 Tc 
N ¥ ム-J I 

、 j=N十1 ノ

for some勺εc，切hereTc: C∞→C∞ zsαlineαrmα，p definedαs 

(5) 

(叫=ti +芝川j仏j，
j=N+1 

ωhere 

1+乞 Cn，jXj
jニN+1
(1+主 1cjxi r 

Let L be a solution to (1). A function of the form 

ド Coo~<<ooan(X)kn)eぺ an(x)E C[[x] 

is called a wave function associated to L if it satisfies 

Lw口 kw

(δ/θtn)ω=Bnωヲ n 1うえ. 、i/ρO 
J
'
a
E

‘、、

From (6) we observe thatω = 8ekx吋 (t，k)うSε守， is a wave function associated to L if and 
only if 8 satisfies 

L8=8θ 

(θ/θtn)8 口 B~8， n = 1ヲ2，. 
(6') 

If 8 =1=-0 satisfies (6')， then 8 = Cδn + (lower order terms)ぅ andω 8ekx+ご=ckn(1 + 
o(1))ekx+ご，0=1=-C εC. Noting that equations still hold when we multiply ωby c-1k-n and 
8 from the right by c-1δーペ werestrict ourselves to 8 口 1+ (lower order terms). (6) or 
(6') imply (1)ぅnamelyぅif8 ε1十曽-satisfies (θjpltn)8 = B~8 for B~ =一(8an8-1)ーヲ then
L 8θ8-1 is a solution of (1)ぅandω= 8ekx+とisthe associated wave function. In (6) or (6')， 
like in (1)， each equation contains in五nitelymany differential equations for the coe血cients
of 8. Howeverう choosinga finite number of equations from them， we can characterize finite 
dimensional solutions to (1) via Zakl問 ov-Shabatequations: 

Lemma 7 Let 8: CN→1+守一.Suppose 8 sαtisfies 

(θ/δtn)8 B~8 E雪(-(N+2-n))，n=1，・・・ヲN， (7) 

仙 ereB~ = -(8θη8-1)ー Then Bn = (8θη8-1)十，n = 1ぅ・・・ ，N，satisfy (ZSN). So thαtザ
the tαngent mαp of L = 8θ8-1 is of r，αnkg， Nど2g+ 1， then by Lemmα6 b)， there existsα 
g-di問問onalsolution L': C∞→θ+守一 toρ)such that L'ICN詰 Lmod守(-N).
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The first part of the lemma is shown by using the identity 

S-l[θ~-Bm， 弘… Bn]S = [θmθぺSn]-[弘一θぺSm]+ [Sm， Sn]， m，n = 1ぅ・・・ぅNう
where θη=θ/θtn and Sn = S-l(仇(S)-B~S). 

Noting that equations for n = 1 in (1)， (6) or (6') just require that Lぅ切 orS be of the 
form L(x， t) L(x十むうち，t3ぃ・・)etc.うinwhat follows we confuse xうt1and x + t1， and denote 
切口 SeC instead of S ekx+と(t，k)ぅetc.Let 切口 SeCbe a wave function for the KP hierarchy 
(1)， i.e.う asolution to (6). Then by i凶egrabilitycondition for (6)ヲthereexists a function 
T: C∞→C， called the T -function associated to Lうsuchthat 

eーとω=the full symbol of S 

ァ(t1-1/k必 -1/(2k2)パ3- 1/(3k3)ぅ・・・) (8) 

T(t1ぅt2，t3ぅ.. . ) 

See [1] for the proof of (8) and other properties of T. Given a solution L to (1)，切，S and 
T aredetermined up to multiplication by a function of k， multiplication from the right by 
a constant coe伍cientpseudodifferential operator， and multiplication by e(linear function of t)， 
respectively. Each coefficient of L is expressed by a constant coe伍cientpolynomial of second 

or higher derivatives of log T， and every second (or higher) derivative of logγis a constant 
coe伍cientdifferential polynomial of coe血cientsof L. More precisely， denoting 

L=θ+乞Ujθ一川

and denoting the weight of derivatives of Uj as 

wt(θαUj) =乞nan十 ]，
n 

we observe that命令logγisa weight-homogeneous differential polynomial of Un of weight 
i + j. In particular，伐θ'ilogT for i十j三Nare determined by L mod 曽(-N)， hence by the 
approximate wave equations (7). 

Bilinear identities For S = 1 + 2二二1SnO-nε1+守一[[t]]， and ω= Seごう welet S* = 
1+2二二1(-δ)-n0 Sn， formal adjoint of Sぅandw* = S埼'e-(If ωis a wave function for the 
KP hierarchy and satisfies (6)ヲthenω* is called the adjoint wave function and satisfies 

L*切*二二 kw* 

θη切*= -B~ωぺ n=1うえ

where L * and B~ are the formal adjoints of L and Bn， respectively， defined similarly to S*. 
If T is a T-function for the KP hierarchy， i.e.うifwe have (8) for a wave function肌 thenits 
adjoint wave function is given by 

1.e.ヲ

7(t1十 1/k，t2十1/(2k2)，t3 + 1/(3k3)ぅ・..) n-C 
T(t1， t2， t3ぅ・・・

* γ(t1 + 1/( -k)， t2 + 1/(2( -k)2)， t3 + 1/(3(-k)3)γ ・・)
the full svmbol of S* = 

ァ(iIぅt2，t3ぅ.. . ) 

See [1]. Now we have the followingぅ
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Lemma 8 ([1]) Formal oscillαti句 functionsw = P eCαηdω*口 Qe-57ωherePぅQε1十
守一[[t]]， αreαwavefunction for the KP hierarchyαnd itsαdjointωαυe function，ザαndonly 
if they sαtisfy 

Resk=∞ω(tヲk)ω*(t'うk)dk= 0 for α旬 t，t'. (9) 

A function 0チァ εC[[t]]is αT-function for the KP hierar、chyザαndonlyザitsαtisfies 

1 1 1 ， 1 
Resk=∞ア(tl-i，t2 -京子・ー)ァ(4+P4十五矛・・・ )ec(t

一付)dk= 0 forαny t， t'. (9') 

This lemma neatly characterizes the wave functions and T-functions for the KP hierar-
chyヲand(9') gives i凶 nitelymany Hirota bilinear equations for ァイunctio肌 lndeed， if we 
substitute t -Y for t and t十Yfor t' in (9') and expand it into Taylor series in 払 weget 

乞Pl(-2Y)Pl+l(D)よ三lYjDjT'T 0ぅ (9") 

where D denotes the Hirota bilinear operator， i.e.， for P(X)εC[X1，X2，...] 

P(D): C[[t]] @ C[[t]]→C[[t]] 

is given by 

P(D)f . f = P(D)f @ f口 P(ゐ)f(t十ν)f(t-y)ly=u; 
and Pn(X)εQ[X1，Xゎ.. .] are defined as 

LPn(X)kn = eL.::;:=l Xmkmラ

so that they are weight-homogeneous polynomials of weight n if we define wt (Xα) =I:nαη; 
and D (Dlぅ(1/2)D2ぅ(1/3)D3ぃ・・).For each αthe coefficient of yαin (9") gives a Hirota 
bilinear equation for T homogeneous of weight I: nαη+ 1， counting wt(Ds) = I: nsn. [9] 
carries a table of those equations for weight up to 11 (complete list up to 9)うwithinteresting 
observations on the number of Hirota equations forァofgiven weight， which are then proved 
by Date et al in [1]. Equations of the form (9)うゅう or(9") are called bilinear identities in [1]. 
Now we pick up finitely many Hirota equations for γwhich characterize finite dimensional 
solutions to the KP hierarchy. 

Lemma 9 a) Formal oscillαting functions ω= PeC andω* = Qe-C， with P and Q αsαbove， 
α7・eαωαvefunction for the KP hierarchyαnd itsαdjointωαve function，ザαndonly if they 
sαtisfy 

Resk=∞(θmω(tぅk))ω*(tうk)dk= 0 forαny t う 、、，，/m
 

nυ 
1
Eム
/
1
1
 

forαnym ど0，and 

Reskニ∞(δmθηω(tうk))ω*(t， k)dkコoforαny tう 、、，，，，n
 
m
 

A
U
 

噌

g
i

〆
'
a
E
1

forαny m 三0，n三2.1f we only αssume (10m) for m = 0ぅ・・・ぅN αnd (10川 1，)for mど0，
nど2，m+n三N，thenωe hαve (7) for 8 given by (8)， Bgコー(8δn8-1)ー
b) A function 0ヂァ εC[[t]]is α7四functionfor the KP hierarchyザαndonlyザitsatisfies 

ふ (-2)l
〉;1PI+1(D)D「

-17・7コ O
白 l!(m-l)! 

、、，，ノ
f

m

 

ハ
υ
1
1品
/
1
1
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forαnym 三0，αηd

ι(-2)(¥  ア I ( -2Pl+川 (D)+約十l(D)Dn)D~-l7 ・ 7=0白l!(m-l)¥ /  
、、，，/η
 

f

m

 

ハ
u
t
Eム

〆
'
Z
1
1

for αny m ど0， n ど2. If we only α88ume (10ら)for m 口 0，・・・ぅN αηd (10九η)for m ど0， 
nど2，m+n S N， thenωe hαve (7) for 8 given by (8)， B~ =一(8θη8-1)_・

Note that (7) characterizes g-dimensional solutions to the KP hierarchy if N ど2g+ 1 
(Lemma 7). Proof of Lemma 9 a) is the same as one part of Lemma 8， shown in [1]. (10~) 
and (10ら，n)arethe coe伍cie附 ofYl and Y1Yn in (9")ゥrespectively.80 that Lemma 9 b) 
follows from Lemma 9 a). 

Let us rewrite (1OL)and (1OL3J forア出 eQBぅwhereB B(t)εC[[t]] and Q = Q(t) 
2:0・二2Qi，jtitj， Qi，j口 Qj，iεCぅaquadratic form on t2ぅ仏・・・， for later use. The result is the 
following: 

m+1 

2JCA-19m:。ヲ

m十1 J ハ m十n+1 m+1 

L2二Cj-k守丘町-l，m-2 L CjFj-n-1，m + L CjFj-1，m，n = 0ぅ

、l
，
/

H

H

m

 

Aυ 
噌

i
J'sz

‘、、

、、2
2

，J'n
 

H
m
 

nυ 
噌

lム
〆，S
E
E

、、

where 

一一 n n~ ¥<>!k，n-k 
Cj口 Pj(Q)， Q= (0ぅ0，0ヲQゎQ5'.・・)， Qn = 2、、 w 

t;k(n-k)? 

ふ(-2)l
L lI f~ ~ lìIPl-k(D)D~ m一台l!(m-l) 

ふ(-2)l
〉;1Pl-k(b)DT-lDn0・B.k，m，n
台l!(m-l) 

Here we set l/l!口 ofor lく O.

Baker-Akhiezer functions Let (CぅPヲ:F)be a triple of Data A in Krichever冶theorem.
Let U be a small complex neighborhood of Pぅandlet z: U →C (holomorphic) be such that 
z mod z3εmp/t吟ischosen in b) of Data A. We construct a deformation of the sheaf :F 
to a sheaf :F* over C x C[[ t]] similar way to [5]: Let:F*口 :F00((;∞ onU x (c'∞ and on 
(C p) x Cベbutglue :F* to itself on (U -p) x (c'∞ by the transition function e

c(t，l/z). We 
observe that HO(C x C[[t]]，:F*(p)) ~ C[[t]]. Let 8 be a generator of this C[[t]]-mod叫esuch 
that on U x Coo， 8 = (1/ z)(l + O(z)) near P x C∞. Looking at 8 on (C -p) x C∞ぅ wecall 
80
1
8: (C -p) x C∞→ C (meromorphic) the Baker四Akhiezerfunction. Here 80 コ 8~ 01 and 

8~ is a nontrivial section of :F(p)ぅe.g・う 8~ = 81日.We have 

Lernrna 10 (Krichever [μ4]η) ~σr ψ t佑Sα B αake併7γ包1九'-幽幽幽m血-.1幽幽幽幽幽幽幽幽幽幽.圃Akhie伐zeγ function α η 

ψ=ψ(収tうZ斗)= (ο1+8釘1(収t)z+ 8句2(t例t)μZ2+... )eぷc(ου，1ν/z吟) 

neαr p， then 

ω=ψ(tぅl/k)= (1十円(t)k-1+ 82 (t)k-
2 + . . . )ec(t，

k)
口 8ec(t，k)
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isαwαve ]unction ]or the KP hierarchy， so that L = 8δ8-1 is αsolution to the KP hierarchy. 
M oreover， ]or this 8 ωe hαve 

Rt = 8(t)R8(t)一¥
ωhere Rt is the ring defined by (3)，αnd 

R= {f(θ-1 )εC((θ-1)) I ](z)εr(c -p， oc)} 0 

bり)I] C i白Sα smooth curve 0] genus 9 ど1， then the B αake引併r、-Ak妨hi白e白zer]unction i白s9μwe印7η1b旬ythe 
]or門省γmη1ul“α 

ψ←=吋2イ仰叶)ウい)
ωh仇erl陀eB i白st的hθ Ri化θmαηηt抗het拘α]unction0ηc，ω:c →Jac( C) the Abel mαp definedω 

切(q)= (rωr， ooo，rサmo仇tloperi仇
(ω1ぃ・・?ωg)normαlized bαsis 0]αbelian differentials 0] the βrst kind， A 口 (αi，j):CC∞→ cg 
such thαt 

ωi = (αi1十αi2Z十αi3Z2十・・・)dzぅ

ω(n) normαlizedαbelian differentiαls 0] the second kind withαunique pole at p 0] the ]orm 
d(z-n) + 0(1)，αnd c generlαl point 0] Cg 0 

Define Q ij E Cうふj=1うえ・・・， as 

rω(t)=fi-22qtjzjhmt 
Then Qij = Qjio Since the wave function for a solution to the KP hierarchy may be changed 
by multiplication by a function in k and k = 1/ z， (11) shows 

Corollary to Lemma 10 I] C isαsmooth curve 0] genus 9ど1，then the T -]unction ]or 
the solution to the KP hierarchy corresponding to C is given by 

γ(t) = eQ(t)B(At -c) 

Q(t)口玄 Qijtitjぅ
、‘B
，
/

，，， 1
i
 

噌

i
J'e
，‘‘、

ωith A αnd c αsαbove. 

By an appropriate change of local coordinate z around p for which z mod z3 still gives an 

element of mp /吋chosenin Data Aぅwemay always assume 

Qi1 = Qli = 00 

This only changes L to equivalent one defined in (5)うinthis case N 

Lemma 7うLemma9 etc.うwehave 

1. Then by (10~，n) 
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Theorem 1日1Gωt 

nど2，m+n三2g+ 1一切eshαII cαII the set of those equations (A) - chαracterize the 
Jαcobiαn vαrieties of genus 9 αs folloωs:αgenus 9 Riemαnn thetαfunction is αssociated to 

αJαcobiαn vαriety of αcomplete smooth curve ifαnd only if there exist QijεC， i，j ~三 2 ，

t十j:::; 2g + 1， Qij = Qji， αηdαijεC， i = 1ぅ・・.，g， J口 1ぅ・・・ぅ2g十1，so that (A) is sαtisfied 
by these Q 's，αnd e substituted by e 0 A， where A is the lineαrmαp defined by mαtrix (αij) . 

AIgebraic equations and elimination of parameters Applying (10~) and (10~，n) 
to e (A.) and Fourier expandi時ぅweget finite number of algebraic equations on theta constants 
and derivatives of theta at two division points. 8tarting with the de五nitionof theta 

。(z)=工句(21fip.什 1fip.Tp)， Tε乃gぅ
p巴zg

and 

。~I (ば)=乞叫(21fiq. (汁b)+ 1fiq . Tq)ぅ α，bε肌 T刊 gぅ
qEZg+α 

and substituting e(A.) for e in the de五出ionof Fk，m， we have 
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where 

ペm4Jj;!l! 乞同町)m-lpl_k，qexp川町)，
ごた qεZg+o/2 

Ffm=芝口)!l! ε附叩一l(附向ω仰仙)p加p灼l一h川附印q刊ρeぽ叫X
=k ' qεzg十15/2

with 

p川k川q-か討fドμM川eぽ叫吋X却刊pベ(~山q叶入二J 以山州川川α叫仰州州(ωω刷qωω)リ)
α(ωωqω) = (α(ωωqωh，α(ωωqωh，ド.. . )， α(q)η= 41fiq.αηjn. 

80 that (10~) and (10~.n) are eql市 ale凶 to

m十1

乞CjFf-l，m = 0 for all d E (Zj2Z)久 (12m) 
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respectively. As beforeぅ(12m)for m = 0ぅ・・・ぅNand (12m，n) for mどOぅnど2ぅm十n~ N (we 
will call the set of those equations (A') if N = 2g + 1)ぅtogetherimply (7)うsoif N = 2g + 1う
they characterize the Jacobian varieties of genus g as in Theorem 11. 

FJm and Ff川 arelinear combinations of derivatives of theta at two division pointsぅ

whose coe伍cientsare weight homogeneous polynomials ofαij of weight m k and m十n-kう
respectively， where we define 

wt(αij) = j. 

Therefore， if we also define 
wt(Qij) = i + jぅ

then the left hand sides of (12m) and (12m，n) are linear combinations of derivatives of tl附 aat 
two division pointsうwithcoe血cientsbeing weight homogeneous polynomials of weight m + 1 
and m + n + 1， respectively. Therefore， at least in principleぅwecan eliminate the unknown 
parameters αij and Qij from (A') to get algebraic equations which characterize the Jacobian 

varIeties of genus g， and the resu1ting equations should give a vector側valuedmodular form 
[6， p. 229] since the zero set of those equations should be independent under the action of 
Sp(2g， Z). As the first stepぅweeliminate Qij from (A'). 
First we assume 

e[Ó~2](O ， 2T) # 0 
for simplicity. This is true for some dε(Zj2Z)g，since 

<) ~ ~ 1 d /2 1， __， _1 d /2 1 
。 (z)ヨ)~ BI~~-I ゅう 2T)B1 ~~ -1 (2z， 2T) ~ O. 

6ε(Z /2Z)g L - .J L - .J 

Then by (12m) and Co = 1， we have 

(13) 

Cj = (-l)j (F8，oFf，1 ... F!-1，j-1) -1 det GJ， j = 1，2，...， 2g + 2ぅ (14)

where 

Gj= 

Fd， n Fd -1‘o .L -1.1 
Fln Fl 。，0 .L0，1 
o Fi，l 

Dd Dd 
.L -].，j-2 .L -].，j-1 
F/!" n F/!" ο1-2 れイ-1DdJ ~ DdJ 
.L 1，j-2 .L 1，j-1 

O OFlu-2Ff-2J-1 

(-2)k I1rd/21 
Note that Fk，k ，-~ -， (0， 2T) i-0 by (13). Formula (14) is obtained as follows: 

k! -1 0 I 

(12m) for m = 0， 1ぃ・・ ，N，fixed d 

件 (Coぅ・・・ぅCN+1)Hfv口 (1ぅ0，0，・・・ぅ0)

件 (Coぅ・・・ぅCN+1)= (1ぅ0，0，・・・ぅO)(Hfv)-1ヲ

where 
l F1510 F空1.1

1F4FF6 LD6 1JlJV V V 
? 

OFt。
A4FFI06 6 ，，I 1 

H~T = 。。N-

。。 。Ffv，N 
18 



Computing (1ぅOぅOぅ・・・ぅO)(HRr)-1 ( = the first row of (HRr )-1) by using Cramer's ruleぅweget 
(14). We observe Ff-1，k口 Ofork =OFi..;F111=F112=0.So the condition 

01 = O2 = 03
出。

is automatically satisfied. 8ince Oj should be independent of ムFfmmust satisfy 

or equivalently 

m+1 

2J(-1)jF1jFAIJ十1-FL，mdetGjFY-lm=Oぅ

F121m 

Fo，m 
det I Fi，m 

Ff:t，m 

F~LO F~L1 
F8，o F8，l 
o Ff，l 

。

F~Lm 
F8，m 
Ff，m 

o F:n，m 

=0， (21) 

for any ムρE(7Lj2Z)gぅm= 4， ... ， 2g + 1. This is a necessary and sufficie凶 conditionthat 
Oj do not depend on d. Assuming (13) again and substituti時 (14)for Oj in (12m，n)ぅwe
get systems of linear equations for Qij' 80lving them and equating the answers， or requiring 
Qij = Qji， Pj (Q) = Oj， we get algebraic equations for the derivatives of theta at two division 
points which do not involve Qijぅalthoughthey still involve αij. 
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