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Abstract

The purpose of this paper is to propose a new branch-and-bound algorithm for a class of scheduling
problems to minimize total tardiness on identical parallel machines. In this algorithm, Lagrangian
relaxation technique is applied to obtain a tight lower bound. In addition, the job dominance conditions
for the single machine total tardiness problem are utilized for both restricting branches and improving
the lower bound. As will be shown by computational experiments, instances with up to 25 jobs and
with any number of machines are optimally solved by the proposed algorithm.
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1 Introduction

In this paper a class of scheduling problems to minimize total tardiness on identical parallel machines
(P ||

∑
Tj) is studied. The single machine total tardiness problem (1||

∑
Tj) has been extensively studied

so far. Emmons (1969) first showed that some precedence relations of jobs hold in an optimal schedule for
1||

∑
Tj, which are referred to as Emmons’ dominance conditions. Lawler (1977) proposed a pseudopoly-

nomial algorithm to solve 1||
∑

Tj based on his theorem called Lawler’s decomposition theorem. After the
Lawler’s research, solution algorithms have been improved by several researchers. In 1999, Szwarc et al.
reported that their algorithm can handle instances with up to 300 jobs, and in 2001, Tansel et al. proposed
another algorithm that can handle instances with 500 jobs.

As for P ||
∑

Tj , exact solution algorithms have been proposed by several researchers. Root (1965)
treated the common duedate problem P |dj = d|

∑
Tj, and Elmaghraby and Park (1974), and Barnes and

Brennan (1977) treated the problem P |pj = dj |
∑

Tj . However, these researches targeted special classes of
P ||

∑
Tj . To the authors’ knowledge, Azizoglu and Kirca (1998) first treated the general problem P ||

∑
Tj .

They proposed a method to compute a lower bound by allowing job preemption and simultaneous job
processing, and constructed a branch-and-bound algorithm. However, only instances with up to 12 jobs
and 3 machines were optimally solved by their algorithm (they claims that it can with up to 15 jobs, but
there were unsolved instances). Yalaoui and Chu (2002) improved their algorithm by introducing some job
dominance checks and problem instances with up to 15 jobs and 3 machines were optimally solved. The
most recent research by Liaw et al. (2003) targeted the more general problem R||

∑
wjTj, minimization

of total weighted tardiness on unrelated parallel machines. In their algorithm a lower bound is computed
based on the assignment problem approximation and it could optimally solve instances with up to 18 jobs
and 4 machines.

In this study we propose a more efficient branch-and-bound algorithm for P ||
∑

Tj. In our algorithm,
problem decomposition by Lagrangian relaxation is applied to compute a lower bound because it gives
tight lower bounds for scheduling problems (e.g. Fisher (1981) and Luh et al. (1990)). Another point
of our algorithm is that the Emmons’ dominance conditions are utilized for both restricting branches and
improving the lower bound. Computational experiments will show that our algorithm can handle instances
with up to 25 jobs and with any number of machines.
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This paper is organized as follows. In Section 2, some properties of an optimal schedule for our problem
are presented. In Section 3, problem decomposition by Lagrangian relaxation is introduced to compute a
lower bound. Then, a branch-and-bound algorithm based on these properties and a lower bound computation
method is proposed in Section 4. The effectiveness of the algorithm is examined in Section 5 by several
computational experiments. Finally, our results are summarized in Section 6.

2 Total tardiness problem on identical parallel machines

In this section, we first give an explicit description of our problem, the total tardiness problem on identical
parallel machines. Next, we present some properties of an optimal schedule for this problem.

Consider that a set of n jobs J = {J1, . . . , Jn} are to be processed on m identical parallel machines
M1, . . . , Mm. Each job Jj is given the integer processing time pj and the integer duedate dj . All the
jobs are available at time zero, and no job preemption is allowed. The tardiness Tj of Jj is given by
Tj = max(Cj − dj , 0), where Cj is the completion time of Jj . The objective here is to search an optimal
schedule that minimizes the total tardiness

∑n
j=1 Tj . This problem is referred to as P ||

∑
Tj according to

the standard classification of scheduling problems.
Since total tardiness is a nondecreasing function of job completion times, there exists an optimal schedule

where no idle times are inserted between jobs. Moreover, an optimal schedule can be constructed by assigning
jobs on earliest available machines one by one according to an optimal job priority list. In the following,
this construction procedure is denoted by D(L) (L is a job priority list), and a set of all the schedules
constructed by D(•) is denoted by SD. It is not difficult to see that job completion times in any schedule
belonging to SD have the following property.

Corollary 1 In any schedule belonging to SD, the completion time Cj of Jj (1 ≤ j ≤ n) satisfies

Cj ≤ 1
m

n∑
i=1

pi +
m − 1

m
pj . (1)

Proof of Corollary 1. Consider a schedule belonging to SD and assume without loss of generality that
Jj is assigned on M1. Since D(•) assigns jobs to earliest available machines, the starting time of Jj should
be not less than total processing times on the other machines. Therefore,

Cj ≤ Pk + pj (2 ≤ k ≤ m), (2)

should be satisfied where Pk denotes the total processing time of jobs assigned on Mk. By summing up (2)
for all k (2 ≤ k ≤ m), we obtain

(m − 1)Cj ≤
m∑

k=2

Pk + (m − 1)pj . (3)

If we note that Cj ≤ P1 and
∑m

k=1 Pk =
∑n

i=1 pi, (3) becomes

mCj ≤
n∑

i=1

pi + (m − 1)pj. (4)

By dividing (4) by m, we obtain (1).

It should be noted that similar results have been given by Azizoglu and Kirca (1998) and Liaw et al.
(2003), but there is a slight difference between them and Corollary 1. The previous results concentrate
on the sum of the processing time on each machine, and Corollary 1 on the completion time of each job.
Corollary 1 is more appropriate for our purpose, which will be stated in 4.1 and Appendix B.

The following corollary states job dominance properties in an optimal schedule. It is a direct result
of the Emmons’ dominance conditions, but plays an important role to restrict the search space in our
branch-and-bound algorithm.

Corollary 2 There exists an optimal schedule (belonging to SD) for P ||
∑

Tj such that for any pair of jobs
Jj and Jk (Cj < Ck) assigned on a same machine,
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(d1) dk > max(Cj , dj) if pj > pk,

(d2) dj ≤ max(Ck − pj , dk) if pj < pk,

(d3) dj ≤ dk if pj = pk.

Although P ||
∑

Tj itself is NP-hard, there are some instances of P ||
∑

Tj that are known to be polyno-
mially solvable. The following corollary gives the optimality of the schedule constructed by D(LSPT(J )),
where LSPT(J ) denotes a job priority list sorted in SPT (Shortest Processing Time) order.

Corollary 3(Koulamas (1997)) If all the jobs are tardy (including just-in-time) in the schedule constructed
by D(LSPT(J )), it is optimal.

This corollary can be extended to the case when not all the machines are available from time zero. It is
used for a fathoming test in our branch-and-bound algorithm. The details will be stated in Subsection 4.3.

Lemma 1 Assume that Mj (1 ≤ j ≤ m) is available from Rj ≥ 0. If all the jobs are tardy in the schedule
constructed by D(LSPT(J )), this schedule minimizes the total tardiness.

The proof is given in Appendix A.

3 Lagrangian relaxation of P ||∑
Tj

In this section, Lagrangian relaxation is applied to P ||
∑

Tj according to Luh et al. (1990). This technique
enables us to decompose the original problem into relatively easy subproblems by relaxing “coupling”
constraints via Lagrangian multipliers. It is known that the Lagrangian relaxation technique yields a tight
lower bound for parallel machine scheduling problems (Luh et al. (1990)). Moreover, it enables us to
construct good feasible schedules (upper bounds) from the solutions of the Lagrangian dual obtained in the
course of subgradient optimization. These lower and upper bounds are utilized in the proposed branch-and-
bound algorithm.

The problem P ||
∑

Tj stated in Section 2 can be formulated by the following binary integer programming
problem.

(P) : F = min
x

n∑
j=1

Ej∑
t=0

Wjtxjt, (5)

subject to
xjt ∈ {0, 1} (1 ≤ j ≤ n, 0 ≤ t ≤ Ej), (6)
Ej∑
t=0

xjt = 1 (1 ≤ j ≤ n), (7)

n∑
j=1

min(t,Ej)∑
s=max(t−pj+1,0)

xjs ≤ Qt (0 ≤ t ≤ Tmax). (8)

Here, xjt are decision variables such that

xjt =
{

1 if Jj is started at t,
0 otherwise, (9)

and the constants Ej , Tmax, Wjt and Qt are given by
Ej : The latest possible starting time of Jj (Ej := (

∑n
i=1 pi − pj)/m),

Tmax: Tmax = max1≤j≤n(Ej + pj − 1),
Wjt: The tardiness of Jj when it is started from t (Wjt = max(t + pj − dj , 0)),
Qt: The number of machines available in the interval [t, t + 1) (Qt = m).

Now, the machine resource constraint (8) in (P) is relaxed by introducing nonnegative Lagrangian
multipliers μt (0 ≤ t ≤ Tmax). Then, the relaxed problem becomes:

(LR) : F ∗(μ) = min
x

F (μ), (10)

subject to (6) and (7), (11)
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where

F (μ) =
n∑

j=1

Ej∑
t=0

Wjtxjt −
Tmax∑
t=0

μt

⎛
⎝Qt −

n∑
j=1

min(t,Ej)∑
s=max(t−pj+1,0)

xjs

⎞
⎠

= −
Tmax∑
t=0

μtQt +
n∑

j=1

Fj(μ),

Fj(μ) =
Ej∑
t=0

Wjtxjt +
Tmax∑
t=0

μt

min(t,Ej)∑
s=max(t−pj+1,0)

xjs

=
Ej∑
t=0

(Wjt +
t+pj−1∑

s=t

μs)xjt. (12)

The minimization in (10) can be performed separately with regard to j. Moreover, the following trivial
subproblems corresponding to Jj (1 ≤ j ≤ n) are obtained by noting the constraints (6) and (7).

(LRj) : F ∗
j (μ) = min

xj

Fj(μ) = min
0≤tj≤Ej

Wjtj +
tj+pj−1∑

s=tj

μs). (13)

Therefore, F ∗(μ) for a fixed set of Lagrangian multipliers can be easily computed in O(nT ) time.
The Lagrangian dual (D) of (LR) is given by

(D) : F = max
µ

F ∗(μ) = max
µ

⎛
⎝−

Tmax∑
t=0

μtQt +
n∑

j=1

F ∗
j (μ)

⎞
⎠ , (14)

subject to (6) and (7). (15)

To solve (D), subgradient optimization is applied as many other researches. More specifically, a set of the
multipliers at (n + 1)-th iteration, μn+1, is determined by μn as follows:

μn+1 = μn + αng(μn), (16)

where g(μn) is a subgradient of F ∗(μn) with respect to μn and αn is the n-th step size. The step size is
chosen as

αn = λ
F − F ∗(μn)
g(μn)Tg(μn)

. (17)

Here, F is an upper bound of F and λ is the step size parameter.

4 A branch-and-bound algorithm

In this section, we state our branch-and-bound algorithm in details. As already mentioned in Section 2, we
only need to consider the schedules belonging to SD. Therefore, our algorithm searches an optimal priority
list in the depth-first manner as in the previous researches by Azizoglu and Kirca (1998) and Yalaoui and
Chu (2002). In the following, we first state how to obtain initial upper and lower bounds for the algorithm.
Next, branch restriction based on Corollary 2 and a fathoming test based on Lemma 1 are presented. Then,
a method to compute lower bounds for subproblems is explained.

4.1 Initial upper and lower bounds

First, how to compute initial upper and lower bounds at the root node of the branch-and-bound algorithm
is stated. As already explained in the preceding section, Lagrangian relaxation gives a tight lower bound
for P ||

∑
Tj . Indeed, there are no duality gaps for most problem instances as will be shown in Section 5.

Therefore, a good feasible schedule (a tight upper bound) and a tight lower bound are searched at the root
node so that an optimal schedule could be obtained without branching.

To search tight upper and lower bounds, the following procedure is applied.
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1◦ From Corollary 1, if

dj ≥ 1
m

n∑
i=1

pi +
m − 1

m
pj , (18)

is satisfied, Jj is always non-tardy in any schedule belonging to SD. Therefore, such non-tardy jobs
are removed in order to reduce the problem size (see Appendix B). Redefine J by the set of the
remaining jobs and n by the number of the remaining jobs.

2◦ Construct a schedule by D(LSPT(J )). If all the jobs are tardy in this schedule, the procedure is
terminated because it is optimal from Corollary 3. Otherwise, a better schedule is searched from this
schedule by a local search explained later. If all the jobs are on time, the schedule is optimal and the
procedure is also terminated. Denote the total tardiness of the obtained schedule by F

SPT
.

3◦ Construct a schedule by the KPM heuristics proposed by Koulamas (1994). Then, the local search is
applied. If all the jobs are on time in the obtained schedule, the procedure is terminated. Otherwise,
denote the total tardiness of the schedule by F

KPM
.

4◦ Let F := min(F
SPT

, F
KPM

). Apply Lagrangian relaxation and maximize F ∗(μ) by subgradient op-
timization as explained in Section 3. The initial multipliers μ0 is chosen as μ0

i := 1.0, and the step
size parameter λ in (17) is set to be λ := 2.0 initially. At each step of the subgradient optimization,
a schedule is constructed from a solution corresponding to F ∗(μn) by resolving conflicts heuristically.
F is updated if necessary.

If F ∗(μn) is not updated for 20 successive iterations, λ is scaled by λ := 0.99λ. The subgradient
optimization is terminated if one of the following termination conditions is satisfied.

(1) F − F ∗(μn) < 1 (F is optimal because the optimal solution is integer).

(2) F ∗(μn) is not updated for 600 successive iterations.

(3) λ < 10−4.

Denote the obtained multipliers by μ∗ and let F := F ∗(μ∗).

Here, additional explanations are given on the above procedure. In 2◦ and 3◦, feasible schedules are
constructed heuristically. Although there are several types of simple heuristics proposed for P ||

∑
Tj (e.g.

Wilkerson and Irwin (1971), Ho and Chang (1991) and Koulamas (1994)), the KPM heuristics seems to
be the best among them according to Koulamas (1994). It motivates us to adopt the KPM heuristics
to generate an initial upper bound. It can be also expected that D(LSPT(J )) generates a good schedule
since the schedule is optimal if all the jobs are tardy in that schedule. The time complexities of these two
heuristics are O(n2m) and O(n log(nm)), respectively.

These two schedules themselves are not good enough to be adopted as an initial upper bound. Thus,
a simple local search is applied to improve these schedules. The neighborhood structure of this search is
given by

Insertion: A job is moved into another position, on the same machine or on another machine.
Exchange: Two jobs on the same machine or on different machines are exchanged.

The current schedule is updated by the best schedule in the neighborhood until no better schedule can be
found. Next, by using the obtained upper bound F , subgradient optimization is applied to the Lagrangian
dual (D) in 4◦. As suggested by Fisher (1981), the step size parameter λ is reduced when the solution of
(D) is not updated. The number of iterations for reducing λ and the number of iterations for terminating
the subgradient optimization are determined by preliminary computational experiments.

At each step of the subgradient optimization, F ∗(μn), a solution of (LR), is obtained. Since (LR) is
a relaxed problem of (P), it is in general not feasible for (P). However, it can be used for constructing a
feasible solution of (P) heuristically. A heuristic algorithm in this study is a modified version of the one
proposed by Luh et al. (1990). Let us denote by tnj the starting time of Jj that minimizes Fj(μn) in the
decomposed subproblem (LRj). Jobs are scheduled on the earliest available machines one by one in the
nondecreasing order of tnj if no conflict occurs (tnj is not less than the earliest machine release time). If some
conflict occurs, a job is chosen from amongst the conflicting jobs by the following rule.

(1) If there exists at least one conflicting job that is tardy when scheduled on the earliest available machine,
a tardy job with the smallest processing time is chosen.

5



(2) If every conflicting job is non-tardy when scheduled on the earliest available machine, a job that can
be completed as close as possible to its duedate is chosen.

Then, the upper bound F is updated if necessary.

4.2 Branching

Branching is performed by fixing the elements of the priority list from the first to the last. Thus, a
subproblem corresponding to a node at depth l is to determine the last (n− l) elements of the priority list,
and branching is performed at this node by fixing the (l + 1)-th job in the priority list. These branches
can be restricted by the dominance conditions in Corollary 2. Let us denote by Ll a partial priority list of
length l corresponding to a node at depth l, and by Sl the partial schedule constructed by D(Ll). The set
of the (n− l) unscheduled jobs is denoted by U l. Let us denote the set of jobs assigned on Mk (1 ≤ k ≤ m)
in the partial schedule Sl by Al

k, and the completion time of Jj ∈ Mk (1 ≤ k ≤ m) in Sl simply by Cj .
Then, the total processing time on Mk in Sl, cl

k, is defined by

cl
k =

∑
Jj∈Al

k

pj = max
Jj∈Al

k

Cj . (19)

Let us further define ml = arg mink cl
k. Since the (l + 1)-th job in the priority list is scheduled on Mml , it

should satisfy the conditions (d1), (d2) and (d3) in Corollary 2 on Mml . Therefore, if an unscheduled job
Ju ∈ U l breaks at least one of the dominance conditions on Mml , it cannot be a candidate for the (l + 1)-th
job in the priority list. It is summarized as follows.

Rule 1 If Ju ∈ U l satisfies at least one of the following three conditions for some j (Jj ∈ Al
ml), Ju cannot

be a candidate for the (l + 1)-th job in the priority list.

1. pu < pj and du ≤ max(Cj , dj),

2. pu > pj and dj > max(cl
ml + pu − pj , du),

3. pu = pj and du < dj .

Corollary 2 can derive another type of branch restriction. The basic idea is as follows. Since all the
unscheduled jobs are to be scheduled on some machines after all, they should satisfy the conditions in
Corollary 2 on the machines where they are scheduled. It follows that if an unscheduled job is known to
break at least one of the conditions on all the machines, it cannot be scheduled to any machines. Therefore,
the candidates for the (l + 1)-th job in the priority list should be such that there is no unscheduled job that
breaks the dominance conditions on all the machines. It is summarized as follows.

Rule 2 Consider that Ju ∈ U l is chosen as a candidate for the (l + 1)-th job in the priority list. That is,
the partial schedule Sl+1 (the partial schedule obtained by adding Ju to Sl) satisfies

Al+1
k = Al

k ∪ {Ju} if k = ml,

Al+1
k = Al

k otherwise,
(20)

and Cu = cl
ml +pu. If there exists Jw ∈ U l\{Ju} such that for all k (1 ≤ k ≤ m) and for some j (Jj ∈ Al+1

k ),
at least one of the following conditions is satisfied, Ju cannot be a candidate for the (l + 1)-th job in the
priority list.

1. pw < pj and dw ≤ max(Cj , dj).

2. pw > pj and dj > max(Ew + pw − pj, dw).

3. pw = pj and dw < dj.

Here, Ew is the latest possible starting time of Jw (see Section 3).

4.3 Fathoming test by Lemma 1

From Lemma 1, we can see that if all the jobs belonging to U l are tardy in the schedule constructed by
applying D(LSPT(U l)) to the partial schedule Sl, it is optimal under the condition that Sl is fixed. Therefore,
in such a case the node is fathomed and the incumbent solution is updated if necessary.
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4.4 Lower bound computation

In the proposed algorithm, two types of lower bounds for the total tardiness of the unscheduled jobs U l are
considered. The one is based on Lemma 1. In this lower bound, only those unscheduled jobs that satisfy the
condition of Lemma 1 are considered. More specifically, a set of jobs T l ⊂ U l is chosen so that all the jobs
in T l are tardy in the schedule constructed by applying D(LSPT(T l)) to Sl. Then, the total tardiness of
the jobs in T l in this schedule is used as a lower bound of the total tardiness of the jobs in U l. A procedure
to compute this lower bound is given by the following.

0◦ cB
i := cl

i (1 ≤ i ≤ m), UB := U l and LB := 0.

1◦ Remove a job with the smallest processing time from UB. Denote this job by Jj .

2◦ k := arg mini cB
i . If cB

k + pj < dj , go to 4◦.

3◦ LB := LB + cB
k + pj − dj , cB

k := cB
k + pj .

4◦ If UB �= φ, go to 1◦. Otherwise, output LB as a lower bound and terminate.

The other lower bound is based on Lagrangian relaxation explained in Section 3. The subproblem to
minimize the total tardiness of the unscheduled jobs U l is formulated by

(SPl) : min
∑

Jj∈U l

Ej∑
t=rl

j

Wjtxjt, (21)

subject to
xjt ∈ {0, 1} (Jj ∈ U l, rl

j ≤ t ≤ Ej), (22)
Ej∑
t=0

xjt = 1 (Jj ∈ U l), (23)

∑
Jj∈U l

min(t,Ej)∑
s=max(t−pj+1,rl

j
)

xjs ≤ Ql
t (rl

min ≤ t ≤ Tmax). (24)

Here, Ql
t denotes the number of machines available in the interval [t, t + 1). rl

j denotes the earliest possible
starting time of Jj corresponding to the partial schedule Sl, and rl

min is defined by rl
min := minJj∈U l rl

j . A
lower bound of the total tardiness of the jobs in U l can be obtained by solving the Lagrangian dual corre-
sponding to (SPl). However, it takes a considerable number of iterations for the convergence of subgradient
optimization. For this reason, in the previous researches that utilize Lagrangian relaxation in branch-and-
bound algorithms (e.g. Fisher (1981) and Babu et al. (2004)) subgradient optimization is performed for
a small number of iterations where multipliers are initialized by those obtained at the parent nodes. On
the other hand, in this study subgradient optimization is performed only at the root node because in our
algorithm multipliers are searched for a sufficient number of iterations at the root node and thus they are
not expected to be improved much only by a small number of iterations. For every (SPl), a lower bound is
computed by fixing the multipliers to those obtained at the root node.

To improve this lower bound, rl
u, the earliest possible starting time of Ju ∈ U l, is restricted by the

dominance conditions. From the first and third conditions in Rule 1, it is not necessary to consider schedules
such that Ju is assigned on Mk, if for some j (Jj ∈ Al

k), Ju satisfies

pu < pj , du ≤ max(Cj , dj) (25)

or
pu = pj , du < dj . (26)

If we denote by Ml
u the set of the machines such that none of these conditions are satisfied, it follows that

rl
u is given by

rl
u = min

Mk∈Ml
u

cl
k. (27)

Next, let us consider the second condition in Rule 2. Since cl
k corresponds to the stating time of Ju when

it is scheduled on Mk ∈ Ml
u, it can be interpreted as

pu > pj , dj > max
{
(The starting time of Ju) + pu − pj, du

}
. (28)
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Therefore, for Ju to be assigned on Mk, it should satisfy

(The starting time of Ju) ≥ dj + pj − pu (29)

for any job Jj ∈ Al
k with pu > pj and du < dj . Thus, the earliest possible starting time of Ju on Mk is

given by

max

⎧⎪⎨
⎪⎩ max

Jj∈Al
k

pu>pj, du<dj

(dj + pj − pu), cl
k

⎫⎪⎬
⎪⎭ . (30)

Taking the minimum of (30) on Mk ∈ Ml
u, we obtain

rl
u = min

Mk∈Ml
u

max

⎧⎪⎨
⎪⎩ max

Jj∈Al
k

pu>pj, du<dj

(dj + pj − pu), cl
k

⎫⎪⎬
⎪⎭ (31)

If none of the dominance conditions are taken into account, rl
u is given simply by

rl
u = min

1≤k≤m
cl
k. (32)

Since (31) is not less than (32), rl
u is restricted by the dominance conditions, and hence the lower bound is

expected to be improved.
The time complexity to compute rl

u for all the unscheduled jobs Ju ∈ U l is O(n log m) if the computation
results at the parent node can be utilized. It is because the value of (30) only varies on Mml−1 , the machine
on which the (l− 1)-th job in the priority list is assigned, from that at the parent node. On the other hand,
the time complexity to compute rl

u by (32) (for all Ju ∈ U l) is O(log m).
To solve the Lagrangian relaxation of (SPl) for a given set of rl

u, the decomposed subproblem

min
rl

u≤tj≤Ej

(Wjtj +
tj+pj−1∑

s=tj

μs) (33)

for every job Jj should be solved. It can be done in O(n) time if the value of (33) for every possible rl
u is

computed and stored in advance (at the root node). Therefore, the overall time complexities of lower bound
computation with (31) and (32) are given by O(n log m) and O(n + log m), respectively. It follows that the
time complexity for lower bound computation slightly increases if (31) is used. However, as will be shown in
Section 5, the effect of the improvement of the lower bound dominates the increase of the time complexity.

5 Computational experiments

The efficiency of the proposed algorithm is examined by computational experiments. Computation is per-
formed on a Pentium4 2.4GHz desktop computer.

Problem instances are generated by the standard method by Fisher (1976). First, the integer processing
times pj (1 ≤ j ≤ n) are generated by the uniform distributions in [1, 100]. Then, let P =

∑n
j=1 pj and the

integer duedates dj (1 ≤ j ≤ n) are generated by the uniform distributions in [P (1 − τ − R/2)/m, P (1 −
τ + R/2)/m]. The number of jobs n, the number of machines m, the tardiness factor τ and the range
of duedates R are changed by n = 20, 25, m = 2, 3, 4, 5, 6, 7, 8, 9, 10, τ = 0.2, 0.4, 0.6, 0.8, 1.0, and R =
0.2, 0.4, 0.6, 0.8, 1.0. For every combination of n, m, τ and R, five problem instances are generated. Thus,
for each combination of n and m, 125 problem instances are generated.

The results are shown in Table 1. Here, “root time”, “total time” and “node” respectively denote the
average and maximum of CPU times at the root node, the average and maximum of total CPU times
in seconds, and the average and maximum numbers of generated nodes. N1, N2, N3 and N4 denote the
numbers of instances such that
N1: the problem instance is solved without lower bound computation,
N2: the problem instance is solved at the root node (including N1),
N3: the gap between the initial lower bound and the optimal solution is less than 1 (including N1),
N4: the initial upper bound and the optimal solution are identical (including N1),

where N1 includes the following three cases:
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Table 1: Performance of the proposed algorithm

(a) n = 20

m
2 3 4 5

root time
ave. 0.644 0.348 0.170 0.107
max. 2.282 1.291 0.882 0.659

total time
ave. 0.656 0.413 0.206 0.110
max. 2.282 4.467 4.416 0.662

node
ave. 18447 97315 53884 3335
max. 478004 5877356 6334218 153498

N1/N2/N3/N4 17/61/61/105 15/69/71/104 14/84/86/111 12/94/101/109

m
6 7 8 9 10

root time
ave. 0.075 0.058 0.035 0.051 0.039
max. 0.540 0.495 0.389 0.423 0.476

total time
ave. 0.076 0.059 0.035 0.145 0.045
max. 0.565 0.503 0.393 10.886 0.698

node
ave. 2473 1767 705 149048 7539
max. 140119 31582 33914 16803230 732266

N1/N2/N3/N4 6/101/104/117 6/104/106/119 4/118/120/123 5/112/117/119 5/117/123/119

N1: solved without lower bound computation, N2: solved at the root node, N3: OPT-LB<1, N4: UB=OPT

(b) n = 25

m
2 3 4 5

root time
ave. 1.182 0.614 0.412 0.306
max. 3.224 1.851 1.320 1.095

total time
ave. 1.613 21.589 53.221 15.964
max. 14.954 885.132 4703.301 1719.265

node
ave. 542301 27123265 71048747 19342607
max. 17713505 1146752242 6260506105 2109984069

N1/N2/N3/N4 17/55/55/105 17/72/72/100 15/74/78/103 14/72/79/101

m
6 7 8 9 10

root time
ave. 0.170 0.155 0.136 0.103 0.070
max. 0.849 0.698 0.783 0.821 0.640

total time
ave. 0.466 0.221 0.159 0.245 0.099
max. 31.901 3.238 1.184 16.302 3.838

node
ave. 352492 74581 24122 199340 40288
max. 37155822 3045539 657458 22364993 4448242

N1/N2/N3/N4 12/95/97/118 7/90/94/114 2/100/106/115 2/108/113/118 2/116/122/119

N1: solved without lower bound computation, N2: solved at the root node, N3: OPT-LB<1, N4: UB=OPT
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Table 2: Gaps between optimal solutions and proposed lower bounds

(a) n = 20

m
2 3 4 5

number of instances 64 56 41 31

(OPT-LB)/OPT (%)
ave. 1.850 0.908 0.708 0.908
max. 29.269 5.485 3.500 7.682

(OPT-LB)
ave. 8.806 4.632 3.350 2.763
max. 32.464 16.726 10.501 8.339

m
6 7 8 9 10

number of instances 24 21 7 13 8

(OPT-LB)/OPT (%)
ave. 0.647 1.381 0.300 0.443 0.067
max. 2.386 6.279 0.598 1.423 0.356

(OPT-LB)
ave. 3.185 2.297 2.139 1.279 0.305
max. 8.662 5.610 5.009 3.361 1.170

(b) n = 25

m
2 3 4 5

number of instances 70 53 51 53

(OPT-LB)/OPT (%)
ave. 0.917 1.361 1.625 0.713
max. 8.535 8.744 40.971 3.909

(OPT-LB)
ave. 7.000 7.246 3.937 3.303
max. 38.428 42.345 12.329 12.782

m
6 7 8 9 10

number of instances 30 35 25 17 9

(OPT-LB)/OPT (%)
ave. 0.844 0.577 2.342 0.609 0.343
max. 8.333 2.923 37.811 5.070 1.468

(OPT-LB)
ave. 2.880 2.429 2.176 1.063 0.518
max. 6.170 7.973 6.139 2.535 1.292

• all the jobs are removed by the algorithm in Appendix B,

• all the jobs are tardy in the schedule constructed by D(LSPT(J )),

• all the jobs are on-time in the schedule constructed by D(LSPT(J )) or the KPM heuristics.

From Table 1, we can see that all the instances with 25 jobs are solved by the proposed algorithm. and
all the instances with 20 jobs are solved within 11 seconds. Instances with a larger number of machines
seem easier to solve because almost all the instances have no duality gaps (to be more precise, the duality
gaps are less than 1; N3 is large) and are solved at the root node (N2 is large). In addition, we can see
that the initial upper bounds are so good that they are almost optimal (N4 is large). When m is small,
more than 10% of the instances can be solved optimally by simple heuristics (N1 is large). In the case of
n = 20 and m = 2, the algorithm in Appendix B removes all the jobs (and thus all the jobs are non-tardy)
for 12 instances, and D(LSPT(J )) or the KPM heuristics find non-tardy solutions for 5 instances. On the
other hand, in the case of n = 20 and m = 10, optimal objective values are always greater than zero, and 5
instances are solved optimally because all the jobs are tardy in the schedule constructed by D(LSPT(J )).

In the previous researches, the algorithm by Azizoglu and Kirca (1998) cannot solve all the instances
with 15 jobs within 15 minutes on IBM 3090 Mainframe and the algorithm by Yalaoui and Chu (2002) can
solve only half the instances with 20 jobs and 2 machines within 30 minutes on an HP workstation. The
algorithm by Liaw et al. (2003) is for the more general problem R||

∑
wjTj , and can solve instances with

up to 18 jobs and 4 jobs on a PentiumIII 600MHz computer. Our algorithm seems faster than the previous
algorithms, although direct comparison of computational times cannot be done because of the differences
in computer speed and the targeted problem class. It can be verified by the fact that the nodes generated
in our algorithm are much less than those in the previous algorithms. Indeed, in the algorithm by Azizoglu
and Kirca more than 2.1 × 106 nodes are generated even for optimally solved instances with n = 15 and
m = 2, in the algorithm by Yalaoui and Chu (2002) more than 1.6 × 106 nodes are generated even for
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Table 3: Effect of τ and R on computational times
(a) n = 20

τ
R

0.2 0.4 0.6 0.8 1.0

0.2
ave. 0.253 0.075 0.047 0.036 0.024
max. 4.467 1.864 0.445 0.376 0.276

0.4
ave. 0.234 0.388 0.202 0.245 0.146
max. 1.629 4.416 0.921 1.927 1.171

0.6
ave. 0.208 0.249 0.187 0.499 0.264
max. 2.138 1.955 1.385 10.886 1.421

0.8
ave. 0.235 0.195 0.189 0.260 0.231
max. 1.781 1.972 1.739 2.166 1.243

1.0
ave. 0.047 0.058 0.199 0.195 0.186
max. 0.787 1.640 2.282 1.952 1.699

(b) n = 25

τ
R

0.2 0.4 0.6 0.8 1.0

0.2
ave. 188.645 0.165 0.041 0.074 0.042
max. 4703.301 5.032 0.565 1.172 0.847

0.4
ave. 5.217 36.921 20.579 0.525 0.317
max. 98.365 991.873 452.007 3.838 1.486

0.6
ave. 0.806 0.406 0.649 0.630 0.880
max. 16.227 1.890 3.238 2.552 16.302

0.8
ave. 0.338 0.410 0.538 0.578 0.564
max. 2.739 2.924 2.632 2.538 2.863

1.0
ave. 0.128 0.172 0.360 0.401 0.550
max. 2.048 2.558 3.030 2.687 2.653

optimally solved instances with n = 20 and m = 2, and in the algorithm by Liaw et al. (2003) more than
6.4 × 107 nodes are generated for instances with n = 18 and m = 2. In contrast, at most 4.8 × 105 nodes
are generated from Table 1 in our algorithm for the 125 instances with n = 20 and m = 2.

Next, to investigate the effectiveness of the initial lower bounds, the average and maximum duality gaps
for those instances that cannot be solved at the root node (125 − N2 instances for each setting) are shown
in Table 2. In Table 2, (OPT-LB)/OPT (%) and (OPT-LB) respectively denote the relative and absolute
duality gaps. Due to the nonlinearity of the Lagrangian dual, subgradient optimization fails to find good
multipliers and the gap becomes relatively large for some instances (e.g. n = 20 and m = 2). Nevertheless,
the gap is at most 2.4% on average and the effectiveness of our lower bounding scheme is confirmed.

The effects of the tardiness factor τ and the range of duedates R are shown in Table 3, where average
and maximum CPU times are shown in seconds. It is clear that the problem instances with smaller τ and
R are harder to solve. Indeed, it takes much time for the problem instances with τ = 0.2 and R = 0.2
when n = 25. This tendency is also observed in the previous researches by Azizoglu and Kirca (1998) and
Yalaoui and Chu (2002). On the other hand, problem instances with smaller τ and R seems easier to solve
in Liaw et al. (2003). It is because they treated R||

∑
wjTj , not P ||

∑
Tj and there is a difference between

the methods to generate problem instances. In their computational experiments, optimal objective values
were always zero when τ = 0.2, regardless of R. However, optimal objective values are always greater than
zero in our experiments when τ = 0.2 and R ≤ 0.4.

Finally, to evaluate the impact of the dominance conditions on the efficiency of our algorithm, we tested
the following three algorithms:

(A) the proposed algorithm,

(B) the proposed algorithm without the lower bound improvement by dominance conditions: Lower bounds
are computed by using (32) instead of (31),

(C) the proposed algorithm without the dominance conditions (without Rules 1 nor 2 and without the
lower bound improvement by the dominance conditions)

The results are shown in Table 4, where the average and maximum CPU times over the instances that
cannot be solved at the root node (125 − N2 instances) are given in seconds. With regard to (C), only
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Table 4: Effect of the lower bound improvement on computational times

(a) n = 20

m
2 3 4 5

number of instances 64 56 41 31

time
ave. 1.221 0.879 0.566 0.368
max. 2.282 4.467 4.416 0.662(A)

node
ave. 36028 217221 164277 13444
max. 478004 5877356 6334218 153498

time
ave. 1.337 1.194 0.702 0.373
max. 4.218 17.393 9.883 0.662(B)

node
ave. 175712 639669 379965 23078
max. 3677057 23227181 15027275 342505

time
ave. 387.653 21.870 135.324 2.424
max. 9621.086 943.029 5505.958 62.598(C)

node
ave. 1592650484 84994506 488384273 8099768
max. 40615449451 3798862538 19936585429 245482207

m
6 7 8 9 10

number of instances 24 21 7 13 8

time
ave. 0.275 0.262 0.228 1.182 0.346
max. 0.565 0.503 0.393 10.886 0.698(A)

node
ave. 12876 10513 12574 1433149 117789
max. 140119 31582 33914 16803230 732266

time
ave. 0.278 0.260 0.228 1.159 0.344
max. 0.570 0.500 0.391 10.576 0.671(B)

node
ave. 13828 10853 12794 1447177 132038
max. 141682 32747 33924 16808410 846100

time
ave. 0.298 0.261 0.223 1.076 0.344
max. 0.753 0.499 0.400 9.472 0.707(C)

node
ave. 88082 12406 12311 2337923 249338
max. 1069544 35779 37780 26917324 1544446

(b) n = 25

m
2 3 4 5

number of instances 70 53 51 53

time
ave. 2.801 50.797 130.333 37.600
max. 14.954 885.132 4703.301 1719.265(A)

node
ave. 968394 63969962 174139084 45619355
max. 17713505 1146752242 6260506105 2109984069

time
ave. 8.702 365.592 799.505 208.348
max. 259.715 11768.664 36689.496 10631.435(B)

node
ave. 6690022 445964109 1056602500 293879986
max. 246345216 13775008021 48243633225 15050139269

m
6 7 8 9 10

number of instances 30 35 25 17 9

time
ave. 1.769 0.711 0.628 1.550 0.790
max. 31.901 3.238 1.184 16.302 3.838(A)

node
ave. 1468712 266359 120606 1465728 559539
max. 37155822 3045539 657458 22364993 4448242

time
ave. 3.469 0.783 0.620 1.410 0.789
max. 75.994 3.190 1.167 14.078 3.831(B)

node
ave. 4230306 410512 134801 1469788 560107
max. 109705840 3541277 708900 22397383 4448242
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Figure A: Choice of sS

the results for 20 jobs instances are presented because not all the instances with n = 20 and m = 2 can
be solved optimally within 50,000 seconds. Thus in this case the average and maximum CPU times and
nodes are over optimally solved instances (58 out of 64 instances). By comparing (A) with (B) or with (C),
we can see that the efficiency of the algorithm improves by taking into account the dominance conditions
especially for smaller m. It is because Rule 2 works effectively when m is small, which requires that one of
the dominance conditions are satisfied on all the machines. The effect of the dominance conditions reduces
as m becomes large, and average CPU times of (A) are longer than those of (B) or (C) in some problem
instances (e.g. m = 9), although the number of nodes is smaller. It is because it takes a little more time to
compute a lower bound itself and to check the dominance conditions.

6 Conclusion

In this study a new branch-and-bound algorithm is proposed for a class of scheduling problems to minimize
total tardiness on identical parallel machines. In our algorithm, the Lagrangian relaxation technique is
applied for lower bound computation. In addition, job dominance conditions are utilized for both branch
restriction and lower bound improvement. Computational experiments showed that most problem instances
have no duality gaps and can be solved at the root node without branching. Even when an optimal solution
is not found at the root node, the proposed algorithm can find an optimal solution efficiently. Indeed, it
can handle instances with up to 25 jobs and any number of machines. To improve its efficiency, it would be
necessary to consider better choices of the step size parameter for the subgradient optimization. It would
be also necessary to apply other types of Lagrangian relaxation such as the one proposed by Babu et al.
(2004).

A Proof of Lemma 1

The assertion of the lemma is proved by dividing into dummy jobs the periods that the machines are
unavailable. It is done by the following procedure.

0◦ Let LS := LSPT(J ) and construct a schedule SS by applying D(LS). Let nS := n.

1◦ Let
mS := arg max

1≤j≤m
Rj . (34)

If RmS = 0, terminate.

2◦ Let
kS := arg min

Jj∈LS

R
mS≤Cj

Cj . (35)

If JkS is the first element of LS, let sS := max(RmS − pkS , 0) and go to 4◦.

3◦ Denote by JlS the immediate predecessor of JkS in LS. Let sS := max(RmS −pkS , ClS −plS) (see Figure
A). Here, it should be noted that ClS − plS ≤ sS ≤ CkS − pkS and plS ≤ RmS − sS ≤ pkS hold.
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4◦ nS := nS + 1. Generate a dummy job JnS such that pnS = RmS − sS and CnS = dnS = RmS . Insert
JnS immediately before JkS in LS. Let RmS := sS and go to 2◦.

By using LS obtained by this procedure, let us construct a schedule SS by D(LS), where all the machines
are assumed to be available from time zero. Denote by CS

j the completion time of Jj (1 ≤ j ≤ nS) in this
schedule. Then, CS

j = Cj (1 ≤ j ≤ n) and CS
j = dj (n + 1 ≤ j ≤ nS) hold1. Moreover, the problem

to minimize the total tardiness of Jj (1 ≤ j ≤ nS) with the dummy jobs fixed to their positions in SS is
equivalent to the problem to minimize the total tardiness of Jj (1 ≤ j ≤ n) under the condition that Mj

is available only from Rj . Therefore, if Cj = CS
j ≥ dj (1 ≤ j ≤ n), SS minimizes the total tardiness of Jj

(1 ≤ j ≤ nS) from Corollary 3 and hence SS also minimizes the total tardiness of Jj (1 ≤ j ≤ n).

B A procedure to remove non-tardy jobs

A procedure to remove non-tardy jobs satisfying (18) is given as follows.

0◦ J ′ := J , L := φ.

1◦ j = 1.

2◦ If Jj /∈ J ′, go to 5◦.

3◦ If Jj satisfies dj ≥
∑

Ji∈J ′ pi/m + (m − 1)pj/m, go to 4◦. Otherwise, go to 5◦.

4◦ Remove Jj from J ′ and insert Jj into the first position of L. Go to 1◦.

5◦ j := j + 1. If j ≤ n, go to 2◦.

Its time complexity is O(n2).
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