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Abstract 

The insect molting hormone, 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) 

specifically bind to the ecdysone receptor. Previously, we synthesized various 

ecdysteroids containing the side chain moiety of ponasterone A (PonA), and measured 

the binding activity against Drosophila Kc cells to study the structure-activity 

relationship.  Here we quantitatively analyzed the structure-activity relationship for the 

ligand binding of ecdysteroids including 20E and PonA.  Since the hydrogen bonding 

(HB) is one of the important physicochemical properties for ligand binding to the 

ecdysteroid receptor, the number of possible HBs between the ligand molecule and the 

receptor was manually counted in the modeled ligand-receptor complex for all 

compounds. The construction of the ligand-receptor model was executed by the 

full-automatic modeling system (FAMS) in which calculation was done by simulated 

annealing. The binding potency of 15 ecdysteroids to Kc-cells were linearly correlated 

(r2=0.63) with the number of HBs which are observed between ligand and receptor 

molecule. Contribution of steric and electrostatic effects on the ligand-receptor binding 

was also examined using a three-dimensional quantitative structure-activity relationship 

(3-D QSAR), comparative molecular field analysis (CoMFA).    

 

Keywords Ecdysone receptor, Drosophila melanogaster, ponasterone A, 

hydrogen bond, QSAR, FAMS, CoMFA 
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1. Introduction 

Molting and metamorphosis in arthropods is regulated by a steroidal hormone, 

usually 20-hydroxyecdysone (20E) 1, 2.  The activity of ecdysteroids is mediated by a 

heterodimer protein complex composed of ecdysone receptor (EcR) and ultraspiracle 

(USP; a homolog of retinoid X receptor, RXR), which activates the translation of the 

associated genes after the trigger caused by the binding of the corresponding ligand 

molecule. Many steroidal as well as non-steroidal compounds have been shown to 

mimic 20E as a ligand molecule for EcR.  In particular, non-steroidal compounds have 

considerable structural diversity, exemplified by dibenzoylhydrazine (DBH),3, 4 

3,5-di-t-butyl- 4-hydroxy-N-i-butylbenzamide,5 α-acylaminoketone,6 

benzoyltetrahydroquinoline,7 oxazolines,8 and γ-methylene-γ-lactams.9  Despite such 

diversity, however, it has been demonstrated that all of the hormonally active 

compounds, or ‘ecdysone agonists’ target the same binding site in EcR to mediate their 

activity, and the structural basis which allows for the activation of a wide range of 

compounds has attracted attention. 

Crystallography-based comparative study of the EcR binding mode between 

steroidal and non-steroidal ecdysone agonists was first performed by Billas et al.10 They 

demonstrated that the ligand binding domain (LBD) of EcR of the tobacco budworm 

Heliothis virescens (Lepidoptera; HvEcR) can accommodate both ponasterone A 

(PonA), one of the most potent steroidal agonists, and a DBH-type non-steroidal agonist, 

although the corresponding binding pockets were slightly different from each other. 

Crystal structures of the PonA-bound LBDs have also been solved for EcRs of the 

sweet potato whitefly Bamisia tabaci (Hemiptera)11 and the flour beetle Tribolium 

castaneum (Coleoptera),12 which revealed a substantial similarity in terms of overall 
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tertiary structures of LBDs among these three insects.  The ligand-receptor interaction 

was characterized by seven or eight potential hydrogen bonds (HBs) in each of the 

crystal structures, indicating the importance of the proper spatial arrangement of HB 

forming groups in an agonist to determine the affinity with the receptor. 

Previously, we synthesized a series of ecdysteroid analogues and measured 

their receptor binding activity in Drosophila Kc cells.13 The result showed that the 

presence of functional groups such as OH and C=O in the ecdysteroids in appropriate 

positions significantly enhanced the receptor binding.  Taking the result of our study 

into consideration that the presence of multiple HBs forming groups such as NO2 and 

SO2CH3 of DBHs increased the larvicidal activity to Colorado potato beetle 

Leptinotarsa decemlineata (Coleoptera),14 we analyzed the effects of these functional 

groups in the ecdysteroids on the activity in terms of their HB properties (as 

HB-acceptors or -donors). However, the total number of HB-forming groups in a 

molecule was not a sufficient parameter to account for the variation of activity, as 

exemplified by the difference between ecdysone (E) and PonA.  E is about 1000 – 

2400 times less potent than PonA despite having the same number of HB-forming 

groups present in these two molecules. Therefore, it was thought that whether each of 

the HB-forming functional groups can effectively form a bond with the acceptor/donor 

group in the receptor molecule should be taken into consideration to analyze the 

structure-activity relationship (SAR) in a quantitative manner. 

The aim of this study is to examine the effects of HB on the binding of 

ecdysteroids to receptors. To evaluate the possible number of HBs between ligand 

molecule and receptor, we constructed a model of the ligand-receptor complex for the 

LBD of EcR of Drosophila melananogaster (Diptera; DmEcR), which had been 
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constructed from the known crystal structure of HvEcR-LBD10 by a full-automatic 

modeling system (FAMS) developed by Ogata and Umeyama.15 Then, the binding 

activity of ecdysteroids to DmEcR13 was quantitatively analyzed using the number of 

HBs formed in the ligand-receptor complex as a parameter to determine if there was a 

significant correlation. 

 

2. Results 

2.1 Evaluation of hydrogen bonding 

The number of all possible HBs between ligand molecules and the receptor proteins in 

the virtual ligand-receptor docking models are listed in Table 1.  The highest number 

of HBs (=10) was found in the receptor complex with PonA.  Other potent 

ecdysteroids such as 20E, inokosterone, makisterone and cyasterone formed 7 - 8 HBs 

with the receptor.  Although E carries the same number of functional groups that could 

be involved in the formation of HBs as PonA, the actual number of HBs found in the 

E-bound complex was only six.  All active compounds had more than four HBs in the 

complexes, but the numbers of HBs for inactive compounds 8, 10, 13 and 15 were all 

less than three. 

The gap between the number of HBs actually found in the complex models and 

those expected from the number of functional groups of a ligand that can be involved in 

the formation of HB is typically shown in the constructed models for PonA and 20E 

(Fig. 1).  Although the number of functional groups existing in PonA is six 

(2,3,14,20,22-OH groups and 6-oxo group), the number of HBs of PonA in the virtual 

complex is larger than that of 20E, which has seven possible functional groups in the 

molecule (2,3,14,20,22,25-OH groups and 6-oxo group).  A closer examination of each 
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model reveals that six amino acid residues (Glu435, Thr467, Arg507, Ala522, Tyr532, 

Asn628) are commonly involved in the formation of HBs with the ligand molecules, 

PonA and 20E.  Amongst them Tyr532, Thr467, and Ala522 interact with the 20-OH, 

14-OH and 6-oxo groups of both steroids, respectively. But the other three interactions 

are different between 20E and PonA. Glu435 interacts with two OHs at C-2 and C-3, 

even though the binding modes are different between the two ligand molecules. Arg507 

interacts with 2-OH and allows the formation of two HBs for the case of PonA, but only 

one HB for the case of 20E. Asn628 forms a HB with the 22-OH of PonA and the 

25-OH of 20E.  In addition to these common amino acid residues, Asn540 and Arg511 

form HBs with the 22- and 3-OH groups of PonA, respectively, in a ligand specific 

manner.  Consequently, the number of HBs in the ligand receptor complex is 10 for the 

case of PonA, and seven for the case of 20E, which does not necessarily reflect the 

number of functional groups for each ligand.    

Thus, the ligand-binding activity of PonA is about 2000-times higher than that of 

E, though each ecdysteroid has the same number of functional groups. The difference 

can be accounted for by the actual number of HBs in the virtual model of 

ligand-receptor complex.  The 200-fold enhancement of the activity by the conversion 

of stereochemistry with respect to A/B ring fusion from trans (16) to cis (17) is 

inconsistent with a smaller number of HB (=5) found in the more active compound 17 

compared to that of 16 (HB=6).  This indicates that other physicochemical properties 

such as steric and electrostatic effects as well as hydrophobicity are likely to be also 

important properties for determining the binding activity of a compound, in addition to 

the HBs. Therefore, the following QSAR analyses were performed to characterize the 

physicochemical properties that significantly affect the ligand-receptor binding. 
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2.2 QSAR analysis 

The relationship between the binding activity and the sum of HB number was analyzed 

to derive the statistically significant Eq.1.  

 

pIC50 = 0.609 HB + 2.583   (1) 

n = 15,    s=0.920,   r2 = 0.626,    F1,13=21.753 

 

In this and the following equations n is the number of compounds used to formulate the 

correlation, s is the standard deviation, r is the correlation coefficient, and F is the 

F-value of the ratio between regression and residual variances. Although a significant 

correlation equation was also derived using molecular hydrophobicity log P as the 

independent variable instead of HB, it was worse (s=1.072, r2=0.491, F1,13=12.575) than 

Eq. 1 and the coefficient of log P was negative (-0.418) .   

To further examine the effects of steric and other electrostatic factors on the 

activity, comparative molecular field analysis (CoMFA),16 a frequently used three 

dimensional QSAR technique, was conducted. Equation 2 was formulated using basic 

CoMFA steric and electrostatic terms as well as the HB term. Even though the basic 

CoMFA without addition of the HB term yields a significant correlation, the prediction 

in the cross-validation analysis was worse (q2 =0.381, Spress=1.183, component =1). 

 

pIC50 = 2.82 + 0.549 HB + [CoMFA steric and electrostatic] (2) 

q2 = 0.543 Spress = 1.017, component = 1 

r2=0.658, s=0.880,  F1,13 = 24.978  
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(contribution: HB=78%, steric= 8%, electrostatic=14%) 

 

In Eq. 2 q2 is the correlation coefficient, and Spress is the standard error for the 

leave–one-out cross-validation analysis. Increase of components did not improve the 

correlation in the cross-validation analysis (q2=0.415 for component 2, q2=0.248 for 

component 3). Even though the CoMFA hydrogen bonding term is sometimes used 

instead of HB,17 the significant correlation was not formulated (q2=0.286, Spress=1.271, 

component=1).  

Since the electrostatic features of these compounds are possibly included in HB 

terms, CoMFA electrostatic term was omitted from basic CoMFA as shown in Eq. 3.  

 

 pIC50 = 2.734 + 0.585 HB + [CoMFA steric]  (3) 

q2 = 0.536 Spress = 1.025, component = 1 

r2=0.637, s=0.906,  F1,13 = 22.835  

(contribution: HB=91%, steric= 9%) 

 

As we expected, the correlation quality did not change significantly by omitting the 

electrostatic term, and the contribution of the steric effects is similar between Eq. 2 and 

3. The CoMFA steric view for Eq. 3 was shown in Fig. 2. Two sterically favorable fields 

appear near the carbonyl group (C6) and the 2-OH group, and a small sterically 

favorable field is next to the side chain moiety.  An unfavorable field appears above 

the B ring along the C7-C8 bond.     

Neither correlation of Eq. 2 and 3 are superb, but the variation of activity among 

the compounds is fairly well accounted for by these equations.  The pIC50 values 
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calculated from Eq. 3 and the deviations between observed and calculated values are 

listed in Table 1.  Even though the activity of three compounds (16 – 18) is not 

predicted well by Eq. 3, the prediction of other compounds is acceptable.  The 

graphical expression for the relationship between observed and calculated values from 

Eq. 3 is shown in Fig. 3.  

 

3. Discussion 

In this QSAR study we estimated the numbers of HBs formed between the ecdysteroids 

and the molting hormone receptor, using the virtual ligand-receptor complex models 

constructed in silico. We then tried to relate them to the receptor binding activity. 

Although we have measured the binding activity of various ecdysteroids using Kc cells 

derived from Drosophila melanogaster, no 3-D structure of the DmEcR was available, 

and therefore, we constructed a model from the X-ray crystal structure of HvEcR10 

using a homology modeling software PDFAMS.15  The validity of this methodology 

has been demonstrated in our previous study, in which the Bombyx mori EcR (BmEcR) 

was modeled from HvEcR using PDFAMS.18 The constructed LBD of the modeled 

BmEcR was consistent with the structural characteristics deduced from QSAR for the 

activity of non-steroidal ecdysone agonists such as DBH to receptor.18 

A Boolean variable designated by integer numbers of 0 and 1 has been widely 

used as an indicator for the presence of functional groups capable of HB formation in a 

molecule at specific position in many QSAR studies. In fact, the indicator variable for 

the presence of HB donating/accepting groups in a molecule was significant in the 

QSAR for the larvicidal activity of non-steroidal ecdysone agonists against L. 

decemlineata.14 With respect to the receptor binding activity of ecdysteroids, the 
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formation of HB was likely to play an important role in complex formation, since the 

compounds with a relatively small number of HB forming groups had no or very low 

activity. The use of a widely-used indicator variable appeared to be insufficient to 

analyze the contribution of HB to the ligand-receptor interactions, since the binding 

activity of PonA is 2000 times more potent than E, in spite of the presence of the same 

number of HB-forming functional groups in these two molecules. Therefore, we tried to 

use the actual number of HB formed in the constructed models of ligand-receptor 

complexes as a parameter. As exemplified by Fig. 1, some of the HB- 

donable/acceptable groups of ecdysteroids do not always form HBs, whereas others 

form multiple HBs per single functional group.  As a result, the relatively potent 

activity of PonA could be explained because it forms the largest number of HBs (=10) 

with DmEcR.  Besides, the numbers of HB predicted in the ligand-receptor complex 

models for compounds 3, 6, 7, 9, and 16 were larger than those of 

HB-donable/acceptable functional groups in the respective compounds, whereas the 

predicted numbers of HB in the complex were smaller than those expected from the 

numbers of the functional groups, for the cases of 4, 8, 10, 13, 15, 18, and 19.  Thus, 

the number of HB worked fairly well as a parameter in the QSAR analysis for the 

receptor binding activity of a series of ecdysteroids used in this study. The formulated 

Eq. 3 indicates that about 64% of the activity is governed by HB and steric effects, and 

the activity increases 3.8 times per HB.  

Steric effects are probably provided by the distortion of B-ring that was caused 

by the absence or presence of double bond in the B-ring and the difference of 

configurations of A/B ring fusion. Introduction of the double bond to the B-ring 

between C7 and C8 makes the ring system planar compared to the saturated B-ring, and 
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the direction of C=O group slightly changes. The other sterically favorable field near the 

3-OH group is dependent on the difference of the A/B ring fusion.  The small 

unfavorable field is probably related to the shift of the C7-C8 bond. Natural 

ecdysteroids (1 – 6) have the double bond between C7 and C8 at B-ring moiety and A/B 

cis conformation, and these are favorable for activity. 

Recently, Browning et al. analyzed the crystal structure of the HvEcR-20E 

complex.19 They found that eight HBs were formed between the ligand and receptor 

molecules, which was larger by one than the number of HBs in the crystal of complex 

between HvEcR and PonA (= 7). Thus, they considered that the higher hormonal 

potency of PonA than 20E can be attributed to the difference in the desolvation energy 

in the process of the transfer of a molecule from aquatic milieu into the binding pocket 

in the receptor protein, rather than to the difference in the number of HB between a 

ligand molecule and the receptor. However, the crystal structure of 20E-HvEcR 

complex includes a single water molecule that bridges between the ligand and the 

receptor by HB. Such a water molecule is absent in the crystal of HvEcR-PonA 

complex,10 and therefore these two crystal structures cannot be directly comparable, 

being inappropriate for the structure-activity study of ecdysteroids.  

The hitherto demonstrated structure activity relationships of ecdysteroids are 

very similar among insect species which is in contrast with SARs of DBHs.20, 21 

Commercial insecticides with non-steroidal structures such as tebufenozide, 

methoxyfenozide, and chromafenozide are very potent against Lepidoptera, but they are 

weak or even inactive against other taxonomic insect orders such as Diptera and 

Coleoptera. Therefore, the discovery of novel structures that mimic the structure of 

PonA should be fruitful to broaden the spectrum of insecticides. The present QSAR 
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study can provide a theoretical basis to design a new ecdysone agonist, which is 

selectively active against not only Lepidopteran insects, but those of other taxonomic 

orders.  

 

4. Conclusion 

Numbers of possible HB between ligand molecules and receptor proteins were 

evaluated in the ligand-receptor complex models constructed using full-automatic 

modeling system for each ecdysteroid.  The highest number of HBs (=10) is observed 

for the most potent ecdysteroid, PonA.  Compounds having less than three HBs were 

inactive. The binding of ecdysteroids to the ecdysone receptors of D. melanogaster is 

significantly correlated with the number of HB. Addition of steric effects slightly 

improved the correlation, even though the contribution of the steric effect was not as 

large as that of HB according to 3-D QSAR analysis. The HB term evaluated from the 

ligand-receptor complex is potentially useful for drug design. 

 

5. Experimental 

5.1. Compounds and biological activity 

Chemical structures of ecdysteroids and their binding activity are shown in Table 1. The 

data for the binding assay with Kc cell extracts were taken from our previous studies4, 13, 

22, 23.  

 

5.2. Protein modeling  

EcR-ligand complexes were constructed for all ligand molecules.  To construct the 

LBD of DmEcR, the homology modeling software PDFAMS (Protein Discovery Full 
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Automatic Modeling System; In-Silico Sciences, Inc.; Tokyo, Japan) was used.  In 

addition to the basic PDFAMS module, PDFAMS-ligand was used to optimize the 

structures of ligand-bound receptor proteins.   

First, the coordinate of 1R1K, a crystal structure of the domain of the EcR/USP 

heterodimer of H. virescens bound to PonA10 was downloaded from the PDB web site. 

Three-dimensional structures of a series of ecdysteroids were constructed by modifying 

the conformation of PonA bound to the HvEcR LBD and their conformation energy was 

minimized using PM3 method.  Each optimized ecdysteroid was put in the PonA 

bound cavity to minimize the root mean square (RMS) deviation for the superposition 

between PonA and each ecdysteroid as described in Section 5.3.  The primary 

sequence of the LBD of DmEcR24 was aligned with that of HvEcR using RPS-BLAST 

as shown in Fig. 4 in order to replace the HvEcR-LBD with the DmEcR-LBD of the 

constructed model while accommodating each minimized steroidal compound. The 

sequence identity between DmEcR and HvEcR was calculated to be 67.4%.  The 

structure of each ligand-bound DmEcR-LBD was optimized by simulated annealing 

method of PDFAMS-ligand.15 The energy of the ligand-DmEcR complex was then 

minimized using MMFF94 of SYBYL under the limited conditions in which the main 

chain of protein is fixed.  Finally, whole DmEcR-LBD proteins containing hydrogen 

atoms were subjected to the MMFF94 calculation in order to obtain the most stable 

conformation of the complex.  The numbers of HBs between the ligand molecule and 

the receptor were manually counted for each ligand-receptor complex. In this counting, 

HB is determined based on the hydrogen-acceptor distance and the 

donor-hydrogen-acceptor angle (0.80 – 2.80 Å, -120° to +120°). 

 



 14 

5.3. QSAR analysis 

Classical QSAR analysis was performed by QREG2.05,25 and 3-D QSAR analysis was 

done by CoMFA, submodule in SYBYL (6.91). All compounds were superimposed 

based on a minimal RMS deviation fit to 13 carbon atoms (C8, C9, C11-C17, C18, 

C20-C22) of PonA by constructing C/D fused ring and side chain moieties as shown in 

Fig. 5 
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Table 1. Ligand binding activity in Kc cells and the number of hydrogen-bonds 

formed between the compound and the modeled DmEcR-LBD 

 

  pIC50(M)  

No. Compound Obsd Calcda ∆b HB 

1c 
HO

HO

H
O

OH

OH

OH

 

5.59d 6.27 -0.68 6 

2e 
HO

HO

H
O

OH

OH

OH

OH

 

7.34d 6.87 0.47 7 

3f 

HO

HO

H
O

OH

OH
OH

 

8.89d 8.66 0.23 10 

4f 

HO

HO

H
O

OH

OH
OH O

O

 

7.21d 6.94 0.27 7 

5h 
HO

HO

H
O

OH

OH
OH

OH

 

6.95d 6.88 0.07 7 

6i 
HO

HO

H
O

OH

OH
OH

OH

 

7.04d 7.47 -0.43 8 

7 

HO

OH
OH

 

4.38j 4.98 -0.61 4 



8 

OH
OH

 

<3.61j 3.35 - 1 

9 

HO

OH
OH

H  

4.38j 4.99 -0.61 4 

10 

OH
OH

H  

<3.61j 3.35 - 1 

11 
HO

OH
OH

H
O  

6.10j 5.03 1.07 4 

12 
HO

OH OH

H
O  

4.05j 5.05 -1.00 4 

13 
HO

OH
OH

OH
H  

<3.61j 4.41 - 3 

14 
HO

OH
OH

H
O  

5.02j 4.98 0.04 4 

15 
HO

OH
OH

OH
H  

<3.61j 4.52 - 3 



16 

OH
OH

H
O

HO

HO

 

4.84j 6.15 -1.31 6 

17 

OH
OH

H
O

HO

HO

 

7.23j 5.64 1.59 5 

18 

OH
OH

H
O

HO

HO

 

6.49k 5.02 1.47 4 

19 

 

4.41k 5.01 -0.60 4 

 

a) Calculated by Eq. 3. b) Differences between observed and calculated values. c) 

Ecdysone. d) Ref. [22]. e) 20-Hydroxyecdysone. f) Ponasterone A. g) Cyasterone. 

h) Makisterone A. i) Inokosterone.  j) Ref. [13].  k) Ref. [23]. 

 



Figure Legends 
 
Fig. 1. Hydrogen bonds observed between the modeled DmEcR and ligands; (A) 

Ponasterone A, (B) 20-Hydroxyecdysone  

 

Fig. 2. Stereoview of the CoMFA steric field with PonA for Eq. 3.  The contours are 

shown to surround regions where a higher steric bulk increase (green) or 

decrease (yellow) the binding.    

 

Fig. 3. Graphical presentation of observed pIC50 values versus pIC50 values 

calculated by Eq. 3. 

 

Fig 4.  Alignment of primary sequences of ligand binding domains of HvEcR and 

DmEcR by RPS-BLAST.  Identical amino acid residues are marked with 

yellow color. 

 

Fig. 5. Superposition for all 19 compounds. 
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