TITLE:
Photoelectrochemical evaluation of pH effect on hole transport through triplex-forming DNA immobilized on a gold electrode

AUTHOR(S):
Haruna, Ken-ichi; Iida, Haruka; Tanabe, Kazuhito; Nishimoto, Sei-ichi

CITATION:
Haruna, Ken-ichi ...[et al]. Photoelectrochemical evaluation of pH effect on hole transport through triplex-forming DNA immobilized on a gold electrode. Organic & Biomolecular Chemistry 2008, 6(9): 1613-1617

ISSUE DATE:
2008-05

URL:
http://hdl.handle.net/2433/85294

RIGHT:
Org. Biomol. Chem., 2008, 6(9), pp.1613-1617 - Reproduced by permission of The Royal Society of Chemistry (RSC); This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Photoelectrochemical Evaluation of pH Effect on Hole Transport through Triplex-Forming DNA Immobilized on a Gold Electrode

Ken-ichi Haruna,* Haruka Iida, Kazuhito Tanabe* and Sei-ichi Nishimoto*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,

Kyoto University, Katsura Campus, Kyoto 615-8510, Japan

*corresponding author. Phone: +81-75-383-2500. FAX: +81-75-383-2501,
e-mail: hrn@pg.highway.ne.jp, tanabeka@scl.kyoto-u.ac.jp, nishimot@scl.kyoto-u.ac.jp
We characterized the pH effect on the hole transport through a photosensitizer-tethered DNA duplex possessing a partial triplex-forming region by measurement of photocurrent response of a DNA system immobilized on a gold electrode.
Abstract

We characterized a pH effect on the hole transport through DNA duplexes possessing a partial triplex-forming region. Direct electrochemical measurement of the current response of photosensitizer-tethered DNA immobilized on a gold electrode revealed that the partial triplex formation under acidic conditions suppressed photocurrent due to hole transport, while dissociation of the triplex into the duplex as occurred upon increasing pH values recovered the photocurrent efficiency. Reversible conversion between duplex and triplex induced upon cyclic alternation of pH values resulted in a rise and fall of photocurrent responses, indicating that pH change may feature in the switching function of hole transport in DNA. These electrochemical behaviors could be correlated to the results obtained in the long-range photo-oxidative DNA cleavage experiments, in which DNA cleavage at the hole trapping site beyond the triplex region was significantly suppressed under triplex-forming acidic conditions.
Introduction

Hole transport in DNA is a remarkable characteristic of double helical DNA.1 Since the phenomenon was firstly reported, a large number of studies have illustrated that the efficiency of DNA-mediated hole transport reaction is strongly dependent on the DNA base sequence, conformational dynamics and local flexibility.1a,d These reaction characteristics may provide a fundamental basis for possible applications of the hole transport to a gene analysis of mutation and a molecular wire in the electronic nano-devices.2,3

A pH change is among the potential external triggers for regulation of various functions of biosystems such as biosensors, supramolecules and drugs.4 DNA triplex may be a pH-responsive nano-material, in which an oligopyrimidine as the third strand associates with the corresponding DNA duplex via Hoogsteen hydrogen bonding under acidic conditions, but dissociates to form the original duplex under basic conditions.5 Recently, we have displayed the effect of a partial triplex formation on the hole transport in the DNA duplexes by electrochemical measurements.6 Anthraquinone (AQ)-photosensitized hole transport through DNA was substantially arrested by triplex formation in contrast to the efficient hole transport in the DNA duplexes.7 In this context, change in pH value may be a sensitive tool for regulation of hole transport in
the DNA duplex by pH-dependent triplex formation and dissociation.

In this study, we measured the photocurrent response of a DNA system, in which the DNA duplex-triplex equilibrium in the presence of an oligopyrimidine short strand was regulated with varying pH values, in order to characterize the pH effect on the hole transport through a DNA duplex. The photocurrent response of an anthraquinone (AQ) photosensitizer-tethered DNA duplex possessing a partial triplex region revealed that the hole transport was effectively suppressed by the triplex formation under acidic conditions (pH 5.5), while being recovered under basic conditions (pH 7.7) favoring dissociation of the triplex to a duplex. Furthermore, cyclic alternation of pH values between 5.5 and 7.7, which induced reversible triplex-duplex conversions, resulted in a fall-rise photocurrent responses. These results indicate that the pH change can regulate the photoinduced hole transport. In a long-range photo-oxidative DNA cleavage experiment, we also confirmed pH-dependent suppression of the hole transport by a partial triplex formation.

(Fig. 1)
Results and Discussion

Oligodeoxynucleotides (ODNs) listed in Figure 1 were prepared for evaluation of several properties. The melting behavior of Triplex I (ODN 1/ ODN 2/ ODN 3) was measured by UV spectroscopy in a buffer solution (10 mM sodium cacodylate, 2 mM MgCl₂) at a given pH value to confirm the triplex formation. The melting curve of Triplex I at pH 5.5 showed two transitions at temperatures of $T_m = 29.5$ and $67.1 \, ^{\circ}C$, as is a typical behavior of the system involving triplex formation of the duplex with a short strand of oligonucleotide (see Figure S1a). Thus, the transition at lower T_m is assigned to the dissociation of ODN 3 from Triplex I, and the higher T_m corresponds to melting of the resulting duplex into single strands. On the other hand, the lower transition was disappeared in the melting curve of Triplex I at pH 7.7, indicating that ODN 3 spontaneously dissociated from the triplex under weakly basic conditions. These melting characteristics of Triplex I suggest that the triplex formation could be regulated by alternating pH values between 5.5 and 7.7.

We also measured photocurrent responses due to AQ-photosensitized hole transport in Triplex I immobilized on a gold electrode. The DNA-immobilized gold electrodes (2 mm² in area) were prepared by immersing in a thiolated ODN 1 solution, followed by exposure to 1 mM mercaptohexanol to minimize nonspecific adsorption of
DNA. The AQ-incorporated ODN 2 and the third strand ODN 3 were then hybridized with the ODN 1 immobilized on the electrode to give electrodes modified with Triplex I \((1.49 \pm 0.18) \times 10^{13} \text{ DNA cm}^{-2}\). The photocurrent measurements were carried out using 365 ± 5 nm light at a power density of 13.0 ± 0.3 mW cm\(^{-2}\) with an applied potential of 500 mV versus SCE. A stable cathodic current appeared immediately upon photoirradiation. As shown in Figure 2a, photocurrent density (current per electrode area) of Triplex I at pH 5.5, where a typical triplex was formed, was 180.0 ± 8.9 nA cm\(^{-2}\). Upon increasing pH value from 5.5 to 7.7, the photocurrent density was enhanced to a substantial extent up to a 1.6-fold increase (280.8 ± 21.9 nA cm\(^{-2}\)). When Triplex I was re-exposed to solution at pH 5.5 from pH 7.7, the photocurrent density decreased to the original level. This reversible alternation of photocurrent density was synchronized with the cyclic pH change in solution between 5.5 and 7.7. In view of the melting characteristics of Triplex I, these results indicate that the hole transport through DNA duplex was effectively altered in the presence of a partial triplex region formed under acidic conditions, but was recovered as a result of dissociation of the short strand ODN 3 from the triplex into the original duplex under basic conditions. To confirm the effect of partial triplex formation on the hole transport, the control experiments with a duplex (Duplex I, ODN 1/ODN 2)-modified gold electrode were further performed to
measure the photocurrents at a given pH. As shown in Figure 2b, while all photocurrent densities of **Duplex I** were similar to those of **Triplex I** observed at pH 7.7, the changes in photocurrent response upon cyclic pH alternation were small.\(^{12}\) These results strongly suggest that partial triplex formation, as can be regulated by pH value, is responsible for the pH-dependent change in photocurrent density. It is also clear from Figure 2b that the efficiency of hole transport in the present duplex immobilized on the gold electrode is not affected at pH 5.5, while cytosine is known to have a pKa around 5.5. Even if some bases like cytosine might be protonated at pH 5.5, there seems to be less pH effect on the hole transport process in this particular case. In this relation, we confirmed that the ion strength of solution to be measured does not affect the photocurrent response (Figure 2c).\(^{13}\)

(Fig. 2)

To obtain further insight into the effect of pH-dependent triplex formation on the hole transport in DNA, we determined a correlation between photosensitized hole transport and subsequent piperidine-induced cleavage of **Triplex II** (ODN 4/ODN 5/ODN 6) consisting of AQ-tethered 24 mer ODN 5, \(^{32}\)P-labeled complementary ODN 4,
and the third strand ODN 6 (Figure 1). ODN 4 in Triplex II contained two 5’-GG-3’ sites of G₁₈G₁₉ and G₇G₈ across the triplex-forming region along with G₁₁AG₁₃ in the interior of triplex-forming region, as internal indicators for the photoinduced hole transport. Figure 3a is a representative gel picture indicating the result of photoirradiation at pH 5.5, 6.2, 6.8 and 7.7, and Figure 3b graphically shows quantitative comparisons of the normalized amounts of oxidative cleavage at G₁₈G₁₉, G₁₁AG₁₃ and G₇G₈ as a function of pH value. Under neutral and basic conditions at pH > 6.8, where ODN 6 favors dissociation from Triplex II to form the corresponding duplex (Duplex II, ODN 4/ ODN 5), the DNA cleavage occurred in larger amounts at G₁₈G₁₉ and G₇G₈, while in smaller amount at G₁₁AG₁₃. This DNA cleavage profile implicates that the photoinjected hole could be distributed over the base sequences inserted between the indicator sites of G₁₈G₁₉ and G₇G₈. In contrast, under acidic conditions at pH < 6.8, the DNA cleavage at G₁₈G₁₉ as located adjacent to the AQ-photosensitizer occurred to a greater extent relative to those at G₁₁AG₁₃ and G₇G₈, which located in the interior of and beyond the triplex-forming region, respectively. These results strongly suggest that the photoinjected hole was mainly trapped at G₁₈G₁₉ under acidic conditions, where ODN 6 associates with the triplex-forming region of Duplex II into Triplex II and thereby suppress the long-range hole transport over the
triplex-forming region. The long-range photo-oxidative cleavage experiments are consistent with the results obtained from the separate photocurrent measurements. Thus, a conclusion may be drawn that the duplex-triplex conversion induced by pH alternation can regulate the hole transport through DNA duplex.¹⁸

(Fig. 3)

Conclusions

In summary, we characterized the pH effect on the hole transport through an AQ-linked DNA duplex possessing a partial triplex-forming region. The photocurrent responses due to the hole transport through DNA duplex immobilized on a gold electrode was clearly decreased under acidic conditions, where formation of a partial triplex structure occurred to effectively suppress the hole transport. Under basic conditions, on the other hand, the triplex dissociated into the corresponding duplex and a short strand to enhance the hole transport and thereby photocurrent response. Additionally, we confirmed that the photocurrent characteristics can be correlated to the long-range photo-oxidative DNA cleavage results, which showed that the DNA
cleavages at the hole trapping sites beyond the triplex-forming region was efficiently suppressed by partial triplex formation under acidic conditions. This property of DNA triplexes would provide a useful functionality of on/off regulation of the hole transport upon cyclic alternation of pH values. Such a regulation method will facilitate a possible application of DNA duplexes to potential nano-scale devices.
Experimental

Material. Modified oligodeoxynucleotide (ODN 1, ODN 2 and ODN 5) were synthesized by the previously reported method.6,8,14 In the measurement of photocurrent with amperometry, the reagents for DNA synthesis were purchased from Glen Research. ODNs, T4 polynucleotide kinase, and \(\gamma\)-\([^{32}P]\)-ATP (10 mCi/ml) were used as received from Invitrogen, NIPPON GENE (10 units/\(\mu\)L), and Amersham Bioscience, respectively. All aqueous solutions were prepared using purified water (YAMATO, WR600A).

Instrumentation. UV absorption spectra were recorded on a Jasco V-530. Photoirradiation at 365 nm for DNA cleavage experiment was carried out using a ULTRA-VIOLET PRODUCTS NTFL-40 transilluminator, and a 100 W UV lamp (ASAHI SPECTRA, LAX101) with monochromatic excitation light through a 365 ± 5 nm band pass filter (ASAHI SPECTRA, \(\phi\) 25 mm) was used for the measurement of photocurrent responses. A GIBCO BRL Model S2 sequencing gel electrophoresis apparatus was used for PAGE. The gels were analyzed by densitometry with an ATTO Lane Analyzer (version 3). The photocurrent was measured in a three-electrode
arrangement (ALS, model 660B). Mass spectrometry of oligodeoxynucleotides (ODNs) were performed with a MALDI-TOF MS (Perseptive Voager Elite, acceleration voltage 21 kV, negative mode) with 2’,3’,4’-trihydroxyacetophenone as a matrix, using T₈ ([M–H]⁻ 2370.61), T₁₇ ([M–H]⁻ 5108.37) and T₂₇ ([M–H]⁻ 8150.33) as the internal standards. Reversed-phase HPLC was performed with Shimadzu 10A or HITACHI D-7000 HPLC system. Sample solutions were injected on a reversed phase column (Inertial ODS-3, GL Science Inc, φ 4.6 mm × 150 mm).

DNA characterization. Each ODN synthesized in this study was characterized by MALDI-TOF MS:

- 5’-TACGGAAGGAAGAGGGAGTC-(CH₂)₆-S-S-(CH₂)₆-T)-3’, m/z 6911.92 (calcd for [M–H]⁻ 6911.71);
- 5’-GACTCCCTCTTCGGAGTA-3’, m/z 6286.60 (calcd for [M–H]⁻ 6286.16);
- 5’-AQ’-TTTAGCCACTCTCTAAGAGT-3’, m/z 7665.51 (calcd for [M–H]⁻ 7666.05)

(Tₘ Measurement. 2.5 μM solutions of the appropriate ODNs in a reaction buffer (10 mM sodium cacodylate buffer at pH 5.5, 6.8 or 7.7 and 2 mM MgCl₂) were prepared to determine the melting temperatures (Tₘ) of duplex and triplex. Duplex formation was achieved by heating the sample at 90 °C for 5 min and slowly cooling to room
temperature. Furthermore, a partial triplex formation was achieved by cooling at 4 °C for 12 h after addition of a third strand to the duplex sample. Melting curves were obtained by monitoring variation of the UV absorbance at 260 nm with elevating temperatures from 2 °C to 90 °C at a rate of 1 °C/min.

Immobilization of Thiolated ODN 1 on a Gold Electrode. A gold electrode with 2 mm² in area was used for this study. Prior to ODN immobilization, the electrode was soaked in boiling 2 M potassium hydroxide for 3 hours and washed with deionized water. Following this treatment, the electrode was further soaked in concentrated nitric acid for 1 hour and washed with deionized water. For chemisorption of ODN 1, a 1 μL solution of 5 μM thiolated ODN 1 was placed on a gold electrode turned upside-down and the opening of the electrode vessel was then stuffed with a rubber stopper to avoid evaporation of the solvent. After leaving the assembly for 2 hours at room temperature, a 1 μL solution of 1 mM 6-mercaptopheanol in deionized water was placed on a gold electrode for masking of the gold surface and the opening of electrode vessel was stuffed with a rubber stopper, again. After leaving the assembly for 1 hour at room temperature, the electrode was carefully washed with small amount of deionized water. For the duplex formation with thiolated ODN 1 immobilized on a gold electrode, 1 μL
of 10 μM AQ-linked ODN 2 in aqueous solution was placed on a gold electrode turned upside-down and the opening of electrode vessel was then stuffed with a rubber stopper. The assembly (Duplex I) was left for 2 hours at 4 °C prior to photoelectrochemical measurement. For the triplex formation with the third strand (ODN 3), 1 μL of 20 μM ODN 3 in 10 mM sodium cacodylate buffer (pH 5.5) containing 2 mM MgCl₂ was placed on a duplex-modified gold electrode turned upside-down and the opening of electrode vessel was then stuffed with a rubber stopper. The assembly (Triplex I) was left for 12 hours at 4 °C prior to photoelectrochemical measurement.

Photoelectrochemical Measurement. Photocurrents were measured for solutions in 10 mM sodium cacodylate buffer (pH 5.5) containing 2 mM MgCl₂ in a one-compartment Pyrex cell at an applied potential of 500 mV vs SCE under illumination by a 100 W UV lamp with monochromatic excitation light through a 365 ± 5 nm band pass filter. The cell for photocurrent measurement consisted of a three-electrode arrangement (ALS, model 660B) of a modified Au working electrode (electrode area, 2 mm²), a platinum counter electrode and an SCE reference electrode. The measurements of triplex samples were performed in 10 mM sodium cacodylate buffer containing 2 mM MgCl₂ and 2 μM ODN 3 at 15 °C. The duplex-triplex conversion was accomplished by cyclic alteration
of pH value between 5.5 and 7.7, which was achieved by addition of appropriate amount of 5 M NaOH or 5M HCl to buffer solution. The solution was kept at 15 °C for 15 min before each photocurrent measurements.

Preparation of 5’-32P-End-Labeled ODN 4. ODN 4 (400 pmol strand concentration) were labeled by phosphorylation with 4 μL of [γ-32P] ATP and 4 μL of T4 polynucleotide kinase using standard procedures.19 The 5’-end-labeled ODN 4 were recovered by ethanol precipitation, further purified by 15% nondenaturing gel electrophoresis, and then isolated by the crush and soak method.

General Procedures for Photoinduced Cleavage of 32P-5’-End-Labeled Triplex II.

Triplex samples were prepared by hybridizing a mixture of cold and radiolabeled ODN 4 (1 μM) with 1 μM of ODN 5 and 1 μM of ODN 6 in sodium cacodylate buffer containing 2 mM MgCl₂ at a given pH value. The ³²P-5’-end-labeled Triplex II were irradiated at 365 nm at 0 °C under given pH conditions. After photoirradiation, all reaction mixtures were precipitated with addition of 10 μL of herring sperm DNA (1 mg/mL), 10 μL of 3 M sodium acetate and 800 μL of ethanol. The precipitated DNA
was washed with 100 μL of 80% cold ethanol and dried in vacuo. The resulting DNA was resolved in 50 μL of 10% piperidine (v/v), heated at 90 °C for 20 min and then concentrated. The radioactivity of the samples was assayed using an Aloka 1000 liquid scintillation counter and the dried DNA pellets were resuspended in 80% formamide loading buffer (a solution of 80% formamide (v/v), 1 mM EDTA, 0.1% xylene cyanol and 0.1% bromophenol blue). All reactions, along with the Maxam-Gilbert G+A sequencing reactions were heat-denatured at 90 °C for 3 min and quickly chilled on ice. The samples (1–2 μL, 2–5 \times 103 cpm) were loaded onto 15% of polyacrylamide/7 M urea sequencing gels, electrophoresed at 1900 V for 60 min, transferred to a cassette and then stored at −80 °C with Fuji X-ray film (RX-U). The gels were analyzed by autoradiography with the ATTO densitograph software library (version 3.0). The intensity of the spots resulting from piperidine treatment was determined by volume integration.

Acknowledgements

We acknowledge Dr. Akimitsu Okamoto (RIKEN) for providing guidance in the
experimental techniques of photocurrent measurements.

Electronic supplementary information (ESI) available: UV data for the measurement of melting temperature and gel picture for the long-range oxidative cleavage of Triplex II with pH change.
References and Notes

Excess amount of a blocking agent MCH could form effectively the MCH monolayer on the electrode to replace unfavorable thiol-modified ODNs with non-specific and weak interactions between their nucleotide bases and the surface of gold electrode. The MCH monolayer would also minimize a direct contact of AQ photosensitizer at the 3’-end of ODN with the gold electrode. See: Herne, T. M.; Tarlov, M. J. *J. Am. Chem. Soc.* **1997**, **119**, 8916, ref. 6 and ref. 8.

We confirmed that the T_m values of duplex and triplex after cyclic pH change were similar to those before pH alteration.

The degradation of ODNs immobilized on a gold electrode possibly occurring upon pH alternation may be partly responsible for the slight decrease in photocurrent density.

Consecutive purine bases such as guanine doublets (GG) are known to be an efficient hole trapping site. See, I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, H. *J. Am. Chem. Soc.* 1998, **120**, 12686–12687.

The photosensitized cleavage intensity was normalized using the following equation

$$I_{\text{tot}} = \sum I_N$$

where I_N denotes the intensity of DNA strand cleavage at a given sequence “N” such as G$_{18}$G$_{19}$, G$_7$G$_8$ or G$_{11}$AAG$_{13}$ site at the respective pH values, and I_{tot}
is the sum of I_N values over the same lane in a gel picture. Thus, the ratio of I_N to I_{tot} determines the normalized relative amount of DNA cleavage in the relevant sequence that gives the distribution of photoinjected hole.

The spontaneous dissociation of Triplex II into the corresponding Duplex II at pH 6.8 was confirmed by the measurements of thermal denaturation profiles (Figure S1). The melting curve of Triplex II at pH 6.8 showed only single transition, which is assigned to dissociation of duplex (i.e. Duplex II) into single strands, while two transitions as in the typical behavior of triplex were observed at pH 5.5.

We also confirmed the recovery of hole transport efficiency in DNA by increasing pH value in the long-range photo-oxidative DNA cleavage experiments. Thus, the cleavage at G7G8 in Triplex II was enhanced by increasing pH value from 5.5 to 6.8. (See, Figure S2).

Fig. 1. Sequences and structures of oligodeoxynucleotides (ODNs) used in this study.
The bases arranged in the triplex region are shown in italics.
Fig. 2. (a, b) Reversible regulation of the photocurrent response by alternating duplex-triplex conversion at a pH cycle, as evaluated at an applied potential of 500 mV vs. SCE. The Duplex I (ODN 1/ODN 2) immobilized on the gold electrode were photoirradiated (365 ± 5 nm light at 13.0 ± 0.3 mW cm⁻²) at 15 °C in 10 mM sodium cacodylate buffer containing 2 mM MgCl₂ upon cyclic alternation of pH condition between 5.5 and 7.7 in the presence (a) and absence (b) of the third strand (ODN 3), respectively. The pH change was achieved by addition of appropriate amount of 5 M NaOH or 5 M HCl aqueous solutions. (c) Effect of ion strength on the photocurrent density of Triplex I immobilized on a gold electrode. To the sodium cacodylate buffer solution (pH 5.5), 5 M NaCl aqueous solution was added each time instead of the addition of 5 M NaOH or HCl solutions. The photocurrent responses of Triplex I were measured in a similar manner. Each error bar represents SE calculated from five experimental results that were collected using freshly prepared different gold electrodes.
Fig. 3. (a) Autoradiogram of a denaturing gel electrophoresis for 32P-5'-end labeled ODN 4 after photooxidation of Triplex II (ODN 4/ODN 5/ODN 6). Each sample in 10 mM sodium cacodylate containing 2 mM MgCl$_2$ was photoirradiated ($\lambda_{\text{ex}} = 365$ nm) at 0 °C, followed by hot piperidine treatment. Lanes 1-4, photoirradiation of Triplex II for 30 min at pH 5.5, 6.2, 6.8 and 7.7, respectively. The lane labeled G+A is Maxam-Gilbert sequencing lane. The designed triplex-forming site is indicated by a bracket. (b) The normalized intensity of photooxidative cleavage in Figure 3a as a function of pH value: (■) G$_{18}$G$_{19}$, (▲) G$_{11}$AG$_{13}$ and (●) G$_7$G$_8$ in ODN 4.