Morphological Divergence, Reproductive Isolating Mechanism, and Molecular Phylogenetic Relationships Among Indonesia, Malaysia, and Japan Populations of the Fejervarya limnocharis Complex (Anura, Ranidae)

Tjong Hon Djong ${ }^{1,4}$, Masafumi Matsui ${ }^{2}$, Mitsuru Kuramoto ${ }^{3}$, Daicus M. Belabut ${ }^{5}$, Yong Hoi Sen ${ }^{5}$, Midori Nishioka ${ }^{1}$ and Masayuki Sumida ${ }^{1 *}$
${ }^{1}$ Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
${ }^{2}$ Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
33-6-15 Hikarigaoka, Munakata, Fukuoka 811-3403, Japan
${ }^{4}$ Department of Biology, Faculty of Science, Andalas University, Padang 25136, West Sumatra, Indonesia
5 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

In order to elucidate the taxonomic status of the Fejervarya limnocharis complex relative to Malaysia and Japan populations, morphological observations and molecular phylogenetic analysis were carried out using three populations from Indonesia (type locality), Malaysia, and Japan. In addition, we conducted histological and spermatogenic observations using hybrids among these populations. Principal component and cluster analyses demonstrated that these populations could be clearly separated from one another. Abnormal testes were found in the hybrids between the Japan and Indonesia populations and between the Japan and Malaysia populations, but testes of the controls and hybrids between the Malaysia and Indonesia populations were quite normal. The mean number of univalents per cell was $5.42,4.58$, and 0.20 in hybrids between the Indonesia and Japan populations, Malaysia and Japan populations, and Indonesia and Malaysia populations, respectively. Sequence divergences in 16S rRNA and Cyt b genes were $0-0.4 \%(\bar{x}=0.2 \%$) and $0.3-1.5 \%(\bar{x}=1.0 \%)$, respectively, between the Malaysia and Indonesia populations, and $2.4-2.6 \%$ ($\bar{x}=2.5 \%$) and $11.0-12.0 \%$ ($\bar{x}=11.5 \%$) between the Japan population and F. limnocharis complex, including the Malaysia and Indonesia populations and F. multistriata from China. This study indicated that the Malaysia population and E multistriata from China should be designated as a subspecies of topotypic E. limnocharis, and that the Japan population should be regarded as a distinct species.

Key words: morphology, spermatogenesis, sequence divergence, molecular phylogeny, Asia, Fejervarya limnocharis, species complex, speciation

INTRODUCTION

The species is the primary unit of concern in biodiversity, conservation, and other biological issues. More than 25 species concepts are recognized in the literature (reviewed by de Queiroz, 1998; Coyne and Orr, 2004), each with its own limitations (Hey, 2001). These authors pointed out that reproductive isolation is an important component of all lineages based on the phylogenetic species concept. Hanken

[^0]doi:10.2108/zsj.24.1197
(1999) argued that the biological species concept emphasizes the degree of actual or potential reproductive isolation as the predominant criterion for assessing taxonomic identity. Bradley and Baker (2001) mentioned that in the process of determining the validity of putative species, systematists generally rely on indirect information in the form of the same, characteristic systems, e.g., variation in size and shape of morphologic characteristics, cytogenetics, allozymes, and DNA sequences. Consequently, de Queiroz (1998) and Hey (2006) developed the general lineage species concept, stressing species as an independent evolutionary lineage diagnosed by multiple criteria. Multiple criteria are very useful for determining species in species
complexes, e.g., sympatric and allopatric species. Application of multiple criteria has been carried out for elucidating the species complex in Philautus (Ranidae, Rhacophorinae) from Sri Lanka (Meegaskumbura and ManamendraArachchi, 2005), in Discoglossus from the western Mediterranean (Zangari et al., 2006), in neotropical hylid frogs (Lougheed et al., 2006), and in several frogs from Malagasy (Vences et al., 2003).

Fejervarya limnocharis is a species complex of frogs (Toda et al., 1998; Iskandar and Colijn, 2000) widely distributed in Asia from Pakistan to Japan and Indonesia (Iskandar, 1998; Iskandar and Colijn, 2000; Dubois and Ohler, 2000). It probably consists of several species or subspecies over all of Asia (Dharne et al., 2004; Djong et al., 2007; Sumida et al., 2007). Recently, analyses using nonmorphological characteristics such as mating calls, allozymes, and mitochondrial DNA revealed that F. limnocharis is a composite of several different species (Dubois, 1975, 1992; Dutta, 1997; Toda et al., 1997, 1998; Veith et al., 2001). Dubois (1992) proposed that the whole group was composed of at least 15 species and probably many more in South India. Dutta (1997) reported nine nominal species in India. Toda et al. (1998) suggested the presence of at least four species in Southeast Asia, based on allozyme data. Djong et al. (2007) found that, based on allozyme analyses and crossing experiments, the F. limnocharis complex can be divided into two groups, the F. limnocharis group and the F. iskandari group. The F. limnocharis group consists of topotypic F. limnocharis and the Malaysia and Japan populations, while the F. iskandari group consists of topotypic F. iskandari and populations from Thailand and Bangladesh. The F. limnocharis group might comprise several species or subspecies.

In the present study, we studied the morphological divergence, reproductive isolating mechanisms, and molecular phylogenetic relationships among Indonesia (type locality), Malaysia, and Japan populations, to elucidate the taxonomic status of the Malaysia and Japan populations by using multiple criteria and by comparing them with topotypic F. limnocharis.

MATERIALS AND METHODS

Morphometry

A total of 45 mature specimens consisting of 28 males and 17 females were used for morphological observations. These were from three populations of the Fejervarya limnocharis group: Higasihiroshima (Japan), Kuala Lumpur (Malaysia), and Bogor (Java, Indonesia, type locality). These specimens were deposited in the Institute for Amphibian Biology, Hiroshima University (IABHU). Thirty-one characters were measured with calipers to the nearest 0.1 mm ; these characters were as follows, with abbreviations in parentheses: snout-vent length (SVL), head length (HL), head width (HW), snout-tympanum length (STL), mouth angle-snout length (MSL), distance from nostril to tip of snout (NS), distance from front of eye to tip of snout (SL), nostril-tympanum length (NTL), distance from front of eye to nostril (EN), tympanum-eye distance (TEL), tympanum diameter (TD), distance from back of mandible to nostril (MN), distance from back of mandible to front of eye (MFE), distance from back of mandible to back of eye (MBE), internarial space (IN), eye length (EL), interorbital distance (IOD), maximum width of upper eyelids (UEW), hand length (HAL), forearm length (FAL), lower arm length (LAL), hindlimb length (HLL), thigh length (THIGHL), tibia length (TL), foot length (FOL), length of tarsus and foot (TFOL), third finger length (3FL), first finger length (1FL), fourth
toe length (4TL), length of inner metatarsal tubercle (IMTL), inner toe length (ITL).

To standardize different over-all body size among specimens, all measurements were divided by snout-vent length (SVL) and are shown as percentages. The data were transformed into $\log _{10}$ values before cluster and principal component analyses (PCA) using MVSP 3.1 software. Morphological variation among populations was examined by the nonparametric Kruskall-Wallis test, and differences between populations were tested using the nonparametric Mann-Whitney U test at a significance level of 5% using SPSS statistics software for personal computers.

Histology and observations of spermatogenesis

Testes of mature hybrids among three populations and the controls produced by Djong et al. (2007) were used for histological and spermatogenic observations. One testis was fixed in Navashin's solution, sectioned at $10 \mu \mathrm{~m}$, and stained with Heidenhain's iron hematoxylin for histological observation, while the other was used to make chromosome preparations. Meiotic chromosomes were prepared according to the technique described by Schmid et al. (1979) with a slight modification. The chromosomes were stained with a 4% Giemsa solution for 15 min . Chromosome analyses were carried out using only diploid cells at diakinesis and metaphase of the first reduction division, when bivalent and univalent chromosomes could be easily distinguished from each other.

DNA extraction, PCR, and sequencing

The specimens used for molecular analysis are listed in Table 1. Total genomic DNA was extracted from the clipped toes of each frog using a DNA extraction kit (DNeasy® Tissue Kit, QIAGEN). Two sets of primers, F51 and R51 (Sumida et al., 2002), and Fow 1-1 and Rev-1, were used for amplification and sequencing of the 5' portion of the 16 S rRNA and Cyt b genes corresponding to positions 6189-6761 and 16662-17491, respectively, in Fejervarya limnocharis (probably F. multistriata) (Liu et al., 2005). The primer sequences were F51 (5'-CCC GCC TGT TTA CCA AAA ACA T-3'), R51 (5'-GGT CTG AAC TCA GAT CAC GTA-3'), Fow 1-1 (5'-ACM GGH YTM TTY YTR GC ATR CAY TA-3') and Rev-1 (5'-TAD GCR AAW AGR AAR TAY CAY TCN GG-3'). PCR mixtures were prepared with the TaKaRa Ex Taq ${ }^{\text {™ }}$ Kit according to the manufacturer's protocol. The 16 S rRNA and Cyt b genes were amplified by 35 cycles of 10 sec at $98^{\circ} \mathrm{C}, 30 \mathrm{sec}$ at $50^{\circ} \mathrm{C}$, and 1 min 20 sec at $72^{\circ} \mathrm{C}$. The PCR products were sequenced with an automated DNA sequencer (3100-Avant, ABI) with the BigDye® Terminator Cycle Sequencing Kit (ABI). The resultant sequences were deposited in the DDBJ database (accession nos. AB296085-AB296101). Nucleotide sequences were analyzed using DNASIS (Ver.3.2, Hitachi Software Engineering) and Clustal W (Thompson et al., 1994).

Phylogenetic analysis

Nucleotide sequences of the 16S rRNA and Cyt b genes from nine and 12 specimens of the F. limnocharis group, respectively, were aligned using Clustal W with ambiguous sites manually eliminated. Phylogenetic analyses were performed by the maximum likelihood (ML), neighbor-joining ($\mathrm{NJ} \mathrm{)} ,\mathrm{and} \mathrm{maximum-parsimony}$ (MP) methods, and sequence divergence among haplotypes was calculated as uncorrected p-values using PAUP* Ver.4.10b (Swofford, 2002). Limnonectes fujianensis was used as an outgroup (Accession No. AY974191, Nie et al., unpublished). The ML and NJ analyses were carried out using substitution models and parameters estimated by MODELTEST Ver. 3.06 (Posada and Crandall, 1988). The MP tree was constructed under a heuristic search with ten replicates, using simple sequence addition and tree bisectionreconnection (TBR). This tree was then used as a starting tree for ML analysis. The reliability of the resultant trees was evaluated by bootstrap (BP) percentages based on analyses of 1,000 pseudoreplicates.

Table 1. Specimens of the F. limnocharis complex used in the present molecular study and haplotypes of nucleotide sequences of the Cyt b and 16S rRNA genes.

Species	Locality	Individual number	Haplotype	Accession number	
				Cyt b	16S rRNA
Fejervarya iskandari	Cianjur, Java, Indonesia	1	iska-cian	AB296085	AB277303 ${ }^{1)}$
F. iskandari	Malingping, Java, Indonesia	1	iska-malin	AB296086	-
F. limnocharis	Bogor, Java, Indonesia	1	limn-bogo	AB296087	AB277302 ${ }^{1)}$
F. limnocharis	Malingping, Java, Indonesia	1	limn-malin	AB296088	AB277292 ${ }^{1)}$
F. limnocharis	University of Malaya	3	limn-kual-1	AB296089	AB296097
	Campus, Kuala Lumpur,		limn-kual-2	AB296090	AB296098
	Malaysia		limn-kual-3	AB296091	-
F. limnocharis	Kota Kinabalu, Saba,	2	limn-sara-1	AB296092	AB296099
	Malaysia		limn-sara-2	AB296093	AB296100
F. multistriata	Hainan, China	1	mult	AB296094	AB296101
F. limnocharis	Higashihiroshima, Japan	1	japo-higa	AB296095	AB070732 ${ }^{\text {2 }}$
F. limnocharis	Hiroshima, Japan	1	japo-hiro	AB296096	-
Limnonectes fujianensis	China	1	-	AY974191 ${ }^{3)}$	AY974191 ${ }^{3)}$

${ }^{1)}$ Data from Kotaki et al. (2008)
${ }^{2)}$ Data from Sumida et al. (2002)
${ }^{3)}$ Data from Nie et al. (unpublished)

RESULTS

Morphometry

UPGMA dendrograms based on Euclidean distance showed that the three populations could be divided into two clusters, the Japan population and the Malaysia and Indonesia populations, in both males and females. The second cluster could be divided into two subclusters, the Malaysia and Indonesia populations (Fig. 1A, B).

Comparison of adult specimens among the three populations using the Kruskall-Wallis test showed significant differences among them in 28 morphometric parameters in males, and at 23 in females (Tables 2 and 3). Based on the Mann-Whitney U test to compare the differentiation between genetically distinct samples, the Malaysia and Indonesia populations were significantly different in males in only nine parameters, and in females in ten parameters (Tables 2 and 3). On the other hand, 24 parameters were significantly different in males between the Indonesia and Japan populations, and 12 parameters in females (Tables 2 and 3). The Malaysia and Japan populations had 26 significantly different parameters in males and 19 in females (Tables 2 and 3).

Principal component analysis (PCA) based on the 31 $\log _{10}$-transformed morphometric distances showed that the three populations are clearly differentiated both in males and females (Fig 2A, B). Two components were extracted with eigenvalues >1 that explained 46.35% and 40.86% (first component) and 16.47% and 17.69% (second component) of all morphometric variation in males and females, respectively (Table 4). Characters describing the forelimbs (HAL and FAL) and hindlimbs (HLL, THIGHL, TL, FOL, TFOL and 4TL) dominated, with high positive loading in the first component (PC1) in both males and females. In the second component (PC2), characters describing head size (MFE, HL and HW) dominated in males, with high positive loading, but characters describing metatarsal tubercle size (IMTL) and head size (HL and HW) dominated with high negative loading in females. Thus, PC1 represented differences in
hand and leg proportion, and PC2 represented different proportions in head shape.

Histological observations

Cross-sections of seminiferous tubules of the testes in hybrids among the three populations and the controls are shown in Fig. 3. In the control Japan and Malaysia populations, the testes were completely normal and the seminiferous tubules were filled with dense bundles of normal spermatozoa (Fig. 3A, B), and the same condition was found in hybrids between Malaysia and Indonesia populations (Fig. 3E). In the hybrids between Japan and Indonesia populations and between Japan and Malaysia populations, the testes showed some abnormality: the bundles of spermatozoa were small and coarse, and sparsely distributed, abnormal spermatozoa and pycnotic nuclei were observed (Fig. 3C, D).

Spermatogenesis

Spermatocytes at the first meiosis and chromosome complements in the hybrids among the three populations and the controls are shown in Fig. 4A-F. The diploid number of chromosomes in the F. limnocharis group was 26 , and in the normal first meiotic division, chromosomes consisted of 13 bivalents. In the control Japan and Malaysia populations, most meiotic spreads comprised 13 ring-shaped bivalents, five of them large and eight small (Fig. 4A), and some spreads contained several rod-shaped bivalents in addition to the ring-shaped bivalents. Hybrids among the three populations showed several variations in the number of ringand rod-shaped bivalents and in the number of univalents (Fig. 4B-H).

The number and frequency of meiotic spreads differing in number of univalents in male hybrids among the three populations of the F. limnocharis group and the controls are shown in Table 5 and Fig. 5. In the control Japan and Malaysia populations, all meiotic spreads contained 13 bivalents. In hybrids between Japan and Indonesia popula-

A

B

Fig. 1. UPGMA dendrograms based on morphological characters of the F. limnocharis group. (A) Females. (B) Males.

Table 2. Comparison of adult males of the F. limnocharis group by Kruskall-Wallis and Mann-Whitney U tests of snout-vent length (SVL) and of ratios of measurements from different populations. For each sample, minimum and maximum values, mean and standard deviation are given. df, degree of freedom; n, sample size; p, probability; U, Mann-Whitney U; *, significance level $p \leq 0.05$; ns, not significant. See the Materials and Methods for abbreviations of the morphometric measurement.

Morphometricmeasurement or ratio	$\begin{gathered} \text { F. limnocharis } \\ \text { (Indonesia) } \\ n=9 \end{gathered}$	$\begin{gathered} \text { Malaysia } \\ \mathrm{n}=9 \end{gathered}$	$\begin{gathered} \text { Japan } \\ \mathrm{n}=10 \end{gathered}$	Kruskall-Wallis test $\mathrm{df}=2$ significance level $p \leq 0.05$	Mann-Whitney U test significance level $p \leq 0.05$		
					Indonesia-Malaysia	Indonesia-Japan	Malaysia-Japan
SVL	39.0 ± 3.6	38.1 ± 2.0	37.7 ± 1.2	$x^{2}=0.504$	$U=38$	$U=36.5$	$U=39.5$
	34.7-44.8	35.5-41.7	36.1-39.5	$p=0.777_{\text {ns }}$	$p=0.825_{\text {ns }}$	$p=0.487{ }_{\text {ns }}$	$p=0.653_{\text {ns }}$
	46.2 ± 1.9	39.7 ± 0.8	40.0 ± 1.6	$x^{2}=17.813$	$U=0$	$U=0$	$U=39.5$
HL/SVL	44.0-49.6	38.8-40.6	38.0-42.7	$p=0.00{ }^{*}$	$p=0.000^{*}$	$p=0.000^{*}$	$p=0.653_{\text {ns }}$
	37.8 ± 1.3	34.0 ± 0.8	37.9 ± 1.4	$x^{2}=17.752$	$U=0$	$U=42$	$U=0$
HW/SVL	36.1-40.2	32.9-35.0	36.2-40.2	$p=0.000^{*}$	$p=0.000^{*}$	$p=0.806_{\text {ns }}$	$p=0.000^{*}$
	30.6 ± 1.1	30.7 ± 0.6	28.6 ± 1.3	$x^{2}=12.919$	$U=37$	$U=10.5$	$U=5$
STL/SVL	29.0-32.4	29.6-31.7	26.8-30.7	$p=0.002^{*}$	$p=0.756_{\text {ns }}$	$p=0.005^{*}$	$p=0.001^{*}$
	35.6 ± 1.4	34.9 ± 1.3	33.6 ± 1.6	$x^{2}=9.297$	$U=24.5$	$U=14.5$	$U=15$
MSL/SVL	33.2-37.8	34.0-38.1	31.4-37.4	$p=0.010^{*}$	$p=0.157$ ns	$p=0.013$ *	$p=0.0134^{*}$
	8.2 ± 0.7	8.2 ± 0.7	9.2 ± 0.9	$x^{2}=7.509$	$U=38.5$	$U=15$	$U=18$
NS/SVL	$6.9-9.1$	7.6-9.1	7.3-10.2	$p=0.023$ *	$p=0.859_{\text {ns }}$	$p=0.014$ *	$p=0.027^{*}$
	15.7 ± 0.8	17.3 ± 0.7	14.9 ± 0.8	$x^{2}=17.693$	$U=4$	$U=23$	U0.5
SL/SVL	14.5-7.0	16.1-18.3	13.5-16.1	$p=0.000^{*}$	$p=0.001^{*}$	$p=0.072^{\text {ns }}$	$p=0.000^{*}$
	24.0 ± 0.7	24.7 ± 1.0	22.3 ± 1.1	$x^{2}=14.186$	$U=30$	$U=8.5$	$U=4.5$
NTL/SVL	23.1-24.9	23.5-26.1	21.2-23.8	$p=0.001$ *	$p=0.352_{\text {ns }}$	$p=0.003^{*}$	$p=0.001^{*}$
	9.7 ± 0.5	10.2 ± 1.0	7.5 ± 0.5	$x^{2}=19.300$	$U=22$	$U=0$	$U=1$
EN/SVL	$8.9-10.2$	8.5-11.5	6.9-8.6	$p=0.000$ *	$p=0.102_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	4.1 ± 0.5	4.5 ± 0.2	4.4 ± 0.3	$x^{2}=5.103$	$U=18$	$U=24$	$U=35$
TEL/SVL	3.2-4.9	4.2-4.8	4.1-4.9	$p=0.078_{\text {ns }}$	$p=0.046$ ns	$p=0.084$ ns	$p=0.405_{\text {ns }}$
	7.7 ± 0.6	7.4 ± 0.33	8.8 ± 0.4	$x^{2}=17.717$	$U=27$	$U=4.5$	$U=0$
TD/SVL	6.7-8.6	7.0-7.9	8.5-9.7	$p=0.000^{*}$	$p=0.232_{\text {ns }}$	$p=0.001$ *	$p=0.000^{*}$
	39.6 ± 2.6	36.8 ± 1.6	35.5 ± 2.0	$x^{2}=10.803$	$U=16.5$	$U=9.5$	$U=22.5$
MN/SVL	35.3-42.4	33.8-39.8	32.8-39.9	$p=0.005^{*}$	$p=0.034$ ns	$p=0.004$ *	$p=0.066_{\text {ns }}$
	31.8 ± 2.3	26.7 ± 0.7	31.0 ± 2.5	$x^{2}=15.320$	$U=5$	$U=32$	$U=2$
MFE/SVL	26.8-34.8	25.6-27.9	27.3-35.5	$p=0.000^{*}$	$p=0.001$ *	$p=0.288_{\text {ns }}$	$p=0.000^{*}$
	20.2 ± 2.6	16.2 ± 0.7	23.2 ± 2.4	$x^{2}=18.882$	$U=3.5$	$U=18$	$U=0$
MBE/SVL	16.4-24.5	15.4-17.4	19.5-26.6	$p=0.000^{*}$	$p=0.001$ *	$p=0.027^{*}$	$p=0.000^{*}$
	8.3 ± 0.6	8.0 ± 0.6	8.9 ± 0.9	$x^{2}=7.670$	$U=27.5$	$U=19$	$U=16$
IN/SVL	$6.9-9.1$	7.3-9.1	6.6-9.8	$p=0.022^{*}$	$p=0.250_{\text {ns }}$	$p=0.033^{*}$	$p=0.018^{*}$
	13.5 ± 1.1	13.2 ± 0.4	14.2 ± 1.3	$x^{2}=9.313$	$U=24$	$U=24.5$	$U=9$
EL/SVL	11.3-14.8	12.5-13.5	10.9-16.0	$p=0.009^{*}$	$p=0.142_{\text {ns }}$	$p=0.094{ }_{\text {n }}$	$p=0.003^{*}$
	8.1 ± 0.7	6.1 ± 0.4	5.2 ± 1.0	$x^{2}=19.070$	$U=0$	$U=3$	$U=15$
IOD/SVL	6.9-9.3	5.6-6.5	4.1-7.6	$p=0.000^{*}$	$p=0.000^{*}$	$p=0.001^{*}$	$p=0.014^{*}$
	14.4 ± 0.6	14.1 ± 0.7	15.7 ± 1.4	$x^{2}=11.127$	$U=28$	$U=10.5$	$U=11.5$
UEW/SVL	13.4-15.3	13.2-15.4	12.4-17.5	$p=0.004$ *	$p=0.268{ }_{\text {ns }}$	$p=0.005^{*}$	$p=0.006$ *
	23.1 ± 1.1	23.5 ± 0.9	20.7 ± 0.9	$x^{2}=16.252$	$U=35$	$U=5.5$	$U=1$
HAL/SVL	21.0-24.3	21.7-25.2	19.6-22.2	$p=0.00{ }^{*}$	$p=0.626_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	23.4 ± 1.2	23.9 ± 0.8	21.4 ± 1.3	$x^{2}=12.483$	$U=33$	$U=12$	$U=5.5$
FAL/SVL	21.5-25.0	22.5-25.4	19.7-23.7	$p=0.002^{*}$	$p=0.507_{\text {ns }}$	$p=0.007^{*}$	$p=0.000^{*}$
	26.4 ± 2.8	29.8 ± 1.3	29.0 ± 1.2	$x^{2}=9.350$	$U=9.5$	$U=19.5$	$U=26.5$
LAL/SVL	21.8-30.0	27.6-31.7	27.2-30.9	$p=0.009^{*}$	$p=0.006$ *	$p=0.037$ *	$p=0.1330$ ns
	158.9 ± 5.6	171.4 ± 6.4	137.1 ± 5.7	$x^{2}=23.002$	$U=4$	$U=0$	$U=0$
HLL/SVL	152.4-169.6	164.9-183.0	128.0-144.4	$p=0.000^{*}$	$p=0.001$ *	$p=0.000^{*}$	$p=0.000^{*}$
	50.0 ± 1.6	49.3 ± 3.1	42.5 ± 1.4	$x^{2}=19.109$	$U=28.5$	$U=0$	$U=0$
THIGHL/SVL	47.7-52.5	46.1-55.2	39.4-43.8	$p=0.00{ }^{*}$	$p=0.289_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	54.2 ± 2.2	55.1 ± 2.8	45.7 ± 1.7	$x^{2}=18.765$	$U=34$	$U=0$	$U=0$
TL/SVL	51.2-58.1	50.5-60.2	42.9-48.5	$p=0.000^{*}$	$p=0.566{ }_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	53.1 ± 2.7	55.6 ± 2.6	47.1 ± 2.4	$x^{2}=17.923$	$U=23$	$U=5$	$U=0$
FOL/SVL	47.7-56.5	52.3-60.4	42.9-50.1	$p=0.000^{*}$	$p=0.122_{\text {ns }}$	$p=0.001$ *	$p=0.000^{*}$
	77.0 ± 4.0	80.6 ± 3.6	65.3 ± 2.4	$x^{2}=19.745$	$U=22$	$U=0$	$U=0$
TFOL/SVL	72.1-82.4	74.9-87.1	60.9-69.2	$p=0.000^{*}$	$p=0.102_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	12.7 ± 0.7	12.2 ± 0.8	10.7 ± 0.6	$x^{2}=16.485$	$U=28.5$	$U=2$	$U=5$
3FL/SVL	11.8-14.0	10.7-12.9	9.9-11.9	$p=0.00{ }^{*}$	$p=0.287$ ns	$p=0.000^{*}$	$p=0.000^{*}$
	12.9 ± 0.7	12.4 ± 0.7	11.3 ± 1.1	$x^{2}=11.401$	$U=20.5$	$U=9$	$U=17$
1FL/SVL	11.4-13.7	11.4-13.1	8.9-13.2	$p=0.003^{*}$	$p=0.076_{\text {ns }}$	$p=0.003^{*}$	$p=0.021^{*}$
	32.0 ± 1.6	34.0 ± 2.2	25.7 ± 1.6	$x^{2}=19.597$	$U=23.5$	$U=0$	$U=0$
4TL/SVL	29.0-33.8	31.0-37.0	23.3-28.6	$p=0.000^{*}$	$p=0.132_{\text {ns }}$	$p=0.000^{*}$	$p=0.000^{*}$
	6.6 ± 0.6	6.2 ± 0.3	6.7 ± 0.6	$x^{2}=3.938$	$U=26$	$U=40.5$	$U=20.5$
IMTL/SVL	6.0-7.6	5.7-6.6	5.6-7.3	$p=0.140_{\text {ns }}$	$p=0.197_{\text {ns }}$	$p=0.712^{\text {ns }}$	$p=0.044^{*}$
	10.7 ± 1.1	17.4 ± 0.7	9.7 ± 0.5	$x^{2}=20.013$	$U=0$	$U=18$	$U=0$
ITL/SVL	$9.4-12.3$	15.8-18.1	9.1-10.5	$p=0.000^{*}$	$p=0.000^{*}$	$p=0.027^{*}$	$p=0.000^{*}$

T. H. Djong et al.

Table 3. Comparison of adult females of the F. limnocharis group by Kruskall-Wallis and Mann-Whitney U tests of snout-vent length (SVL) and of ratios of measurements from different populations. For each sample, minimum and maximum values, mean and standard deviation are given. df, degree of freedom; n, sample size; p, probability; U, Mann-Whitney U; *, significant level $p \leq 0.05$; ns, not significant. See the Material and Methods for abbreviations of the morphometric measurement.

Morphometric measurement or ratio	$\begin{gathered} \text { F. limnocharis } \\ \text { (Indonesia) } \\ n=3 \end{gathered}$	$\begin{gathered} \text { Malaysia } \\ \mathrm{n}=4 \end{gathered}$	$\begin{gathered} \text { Japan } \\ \mathrm{n}=10 \end{gathered}$	Kruskall-Wallis test df $=2$ significance level $p \leq 0.05$	Mann-Whitney U test significance level $p \leq 0.05$		
					Indonesia-Malaysia	Indonesia-Japan	Malaysia-Japan
SVL	45.3 ± 7.4	47.1 ± 0.8	42.7 ± 1.5	$x^{2}=6.286$	$U=4$	$U=14$	$U=0$
	40.4-53.8	46.3-47.9	40.1-45.2	$p=0.043^{*}$	$p=0.480_{\text {ns }}$	$p=0.866_{\text {ns }}$	$p=0.005^{*}$
	46.1 ± 2.0	40.3 ± 1.3	40.1 ± 0.9	$x^{2}=7.132$	$U=0$	$U=0$	$U=17$
HL/SVL	44.1-48.0	38.8-41.7	38.7-41.8	$p=0.028$ *	$p=0.034 *$	$p=0.011^{*}$	$p=0.671_{\text {n }}$
	38.0 ± 1.2	33.8 ± 0.7	36.8 ± 1.5	$x^{2}=7.200$	$U=0$	$U=11$	$U=3$
HW/SVL	37.1-39.3	32.9-34.5	33.4-38.1	$p=0.027^{*}$	$p=0.034^{*}$	$p=0.496{ }_{\text {ns }}$	$p=0.016^{*}$
	29.6 ± 1.7	30.4 ± 1.0	28.2 ± 0.9	$x^{2}=7.550$	$U=5.5$	$U=8$	$U=0$
STL/SVL	27.7-30.9	29.4-31.8	26.6-29.3	$p=0.023$ *	$p=0.858$ ns	$p=0.236$ ns	$p=0.005^{*}$
	34.2 ± 2.0	34.6 ± 1.6	32.4 ± 1.3	$x^{2}=5.874$	$U=5$	$U=6$	$U=4.5$
MSL/SVL	32.0-36.0	32.9-36.7	30.2-34.3	$p=0.053^{*}$	$p=0.724_{\text {ns }}$	$p=0.128{ }_{\text {ns }}$	$p=0.0280^{*}$
	8.9 ± 0.8	7.1 ± 0.4	8.8 ± 0.5	$x^{2}=8.983$	$U=0$	$U=11$	$U=0$
NS/SVL	7.9-9.4	6.5-7.4	7.8-9.4	$p=0.011^{*}$	$p=0.034^{*}$	$p=0.497{ }_{\text {n }}$	$p=0.005^{*}$
	16.1 ± 1.2	16.6 ± 1.2	15.6 ± 0.7	$x^{2}=1.871$	$U=3.5$	$U=12$	$U=11$
SL/SVL	15.3-17.5	15.4-18.0	14.5-16.5	$p=0.392_{\text {ns }}$	$p=0.373_{\text {ns }}$	$p=0.611{ }^{\text {n }}$	$p=0.202_{\text {ns }}$
	23.4 ± 1.1	24.8 ± 0.4	22.6 ± 0.8	$x^{2}=9.466$	$U=0$	$U=8.5$	$U=0$
NTL/SVL	22.1-24.0	24.5-25.4	21.5-24.0	$p=0.009^{*}$	$p=0.032^{*}$	$p=0.267$ ns	$p=0.005^{*}$
	9.6 ± 0.8	9.6 ± 0.7	9.1 ± 0.8	$x^{2}=1.758$	$U=6$	$U=10$	$U=11.5$
EN/SVL	8.9-10.6	8.8-10.3	7.4-10.2	$p=0.415_{\text {ns }}$	$p=1.000_{\text {ns }}$	$p=0.396$ ns	$p=0.228_{\text {ns }}$
	4.5 ± 0.9	4.0 ± 0.2	4.2 ± 0.6	$x^{2}=0.830$	$U=4$	$U=12$	$U=15$
TEL/SVL	3.8-5.4	3.6-4.2	3.5-5.0	$p=0.660$ ns	$p=0.480$ ns	$p=0.611_{\text {n }}$	$p=0.476_{\text {ns }}$
	7.5 ± 0.4	7.3 ± 0.3	8.7 ± 1.1	$x^{2}=8.329$	$U=3$	$U=3$	$U=3$
TD/SVL	7.2-7.9	7.1-7.8	7.4-10.2	$p=0.016^{*}$	$p=0.266_{\text {ns }}$	$p=0.042^{*}$	$p=0.016^{*}$
	39.0 ± 0.4	36.2 ± 1.5	35.7 ± 1.8	$x^{2}=6.797$	$U=0$	$U=1$	$U=14$
MN/SVL	38.5-39.3	35.0-38.1	33.6-38.9	$p=0.033^{*}$	$p=0.034 *$	$p=0.018^{*}$	$p=0.396$ ns
	31.5 ± 1.6	26.3 ± 1.4	30.2 ± 1.8	$x^{2}=7.807$	$U=0$	$U=8$	$U=3$
MFE/SVL	30.5-33.3	24.3-27.4	26.2-32.6	$p=0.020^{*}$	$p=0.034^{*}$	$p=0.235_{\text {ns }}$	$p=0.016^{*}$
	20.8 ± 1.37	16.1 ± 0.3	21.9 ± 2.2	$x^{2}=8.950$	$U=0$	$U=11$	$U=0$
MBE/SVL	19.3-22.0	15.8-16.5	19.2-25.0	$p=0.011^{*}$	$p=0.034 *$	$p=0.498{ }_{\text {ns }}$	$p=0.005^{*}$
	8.1 ± 0.1	8.4 ± 0.4	8.1 ± 0.6	$x^{2}=1.915$	$U=2.5$	$U=13.5$	$U=11.5$
IN/SVL	7.9-8.2	7.9-8.8	7.0-9.2	$p=0.384_{\text {ns }}$	$p=0.208_{\text {ns }}$	$p=0.796_{\text {ns }}$	$p=0.224_{\text {ns }}$
	13.2 ± 1.3	12.9 ± 0.3	13.3 ± 0.4	$x^{2}=2.370$	$U=4.5$	$U=10.5$	$U=9$
EL/SVL	12.3-14.6	12.6-13.3	12.6-13.8	$p=0.306_{\text {n }}$	$p=0.593_{\text {ns }}$	$p=0.433_{\text {n }}$	$p=0.111_{\text {n }}$
	8.0 ± 0.4	6.3 ± 0.1	7.1 ± 0.9	$x^{2}=4.858$	$U=0$	$U=5.5$	$U=13$
IOD/SVL	7.7-8.4	6.3-6.4	$5.8-8.2$	$p=0.088_{\text {ns }}$	$p=0.031$ *	$p=0.108_{\text {ns }}$	$p=0.320{ }_{\text {ns }}$
	13.9 ± 1.1	13.9 ± 1.0	14.7 ± 0.4	$x^{2}=2.931$	$U=5$	$U=8.5$	$U=9$
UEW/SVL	13.2-15.1	12.9-15.3	14.2-15.4	$p=0.231$	$p=0.724_{\text {ns }}$	$p=0.269_{\text {ns }}$	$p=0.119_{\text {ns }}$
	23.5 ± 1.5	$22.6 \pm .3$	20.8 ± 1.4	$x^{2}=8.612$	$U=4$	$U=3$	$U=2$
HAL/SVL	21.7-24.5	22.3-23.0	18.6-22.5	$p=0.013^{*}$	$p=0.476{ }_{\text {ns }}$	$p=0.043$ *	$p=0.011^{*}$
	23.1 ± 0.7	22.9 ± 0.7	20.9 ± 1.3	$x^{2}=9.187$	$U=5$	$U=2$	$U=2$
FAL/SVL	22.3-23.6	22.1-23.8	18.6-22.6	$p=0.010^{*}$	$p=0.724_{\text {ns }}$	$p=0.028^{*}$	$p=0.011^{*}$
	25.7 ± 3.3	30.2 ± 0.5	29.5 ± 1.4	$x^{2}=6.448$	$U=0$	$U=2$	$U=13.5$
LAL/SVL	22.0-28.5	29.8-30.8	26.2-31.4	$p=0.040^{*}$	$p=0.032^{*}$	$p=0.028$ *	$p=0.356$ ns
	162.0 ± 8.8	174.1 ± 4.8	139.1 ± 6.5	$x^{2}=12.254$	$U=1$	$U=0$	$U=0$
HLL/SVL	154.1-171.5	167.7-178.1	126.2-149.6	$p=0.002^{*}$	$p=0.077_{\text {ns }}$	$p=0.011^{*}$	$p=0.005^{*}$
	48.9 ± 3.9	48.6 ± 1.2	43.1 ± 2.0	$x^{2}=9.754$	$U=4$	$U=3$	$U=0$
THIGHL/SVL	44.4-51.5	47.3-50.2	39.2-45.9	$p=0.008$ *	$p=0.480_{\text {ns }}$	$p=0.043^{*}$	$p=0.005^{*}$
	56.3 ± 2.7	56.8 ± 2.3	46.0 ± 3.0	$x^{2}=11.690$	$U=5$	$U=0$	$U=0$
TL/SVL	53.9-59.2	54.6-59.5	39.8-50.6	$p=0.003^{*}$	$p=0.724_{\text {ns }}$	$p=0.011^{*}$	$p=0.005^{*}$
	53.4 ± 3.5	56.2 ± 1.7	46.2 ± 2.8	$x^{2}=11.873$	$U=3$	$U=0$	$U=0$
FOL/SVL	50.2-57.1	54.2-58.3	41.4-50.1	$p=0.003^{*}$	$p=0.289_{\text {ns }}$	$p=0.011^{*}$	$p=0.005^{*}$
	77.4 ± 6.8	81.1 ± 4.0	66.1 ± 4.2	$x^{2}=11.066$	$U=5$	$U=1$	$U=0$
TFOL/SVL	71.2-84.7	75.2-84.0	59.9-73.3	$p=0.004$ *	$p=0.724$ ns	$p=0.018$ *	$p=0.005^{*}$
	12.0 ± 0.6	12.4 ± 0.3	11.4 ± 0.7	$x^{2}=5.575$	$U=3$	$U=9$	$U=4$
3FL/SVL	11.5-12.6	11.9-12.7	10.0-12.5	$p=0.062_{\text {ns }}$	$p=0.289_{\text {ns }}$	$p=0.310_{\text {ns }}$	$p=0.023$ *
	13.0 ± 1.3	11.5 ± 0.5	12.2 ± 0.8	$x^{2}=5.357$	$U=1$	$U=7.5$	$U=7$
1FL/SVL	11.9-14.4	11.0-12.1	11.1-13.5	$p=0.069_{\text {ns }}$	$p=0.075_{\text {ns }}$	$p=0.204_{\text {ns }}$	$p=0.065_{\text {ns }}$
	32.8 ± 0.9	33.7 ± 1.2	27.6 ± 2.4	$x^{2}=11.239$	$U=3.5$	$U=1$	$U=0$
4TL/SVL	31.8-33.6	32.5-35.3	24.3-31.9	$p=0.004$ *	$p=0.373_{\text {ns }}$	$p=0.018{ }^{*}$	$p=0.005^{*}$
	7.0 ± 1.0	5.6 ± 0.6	6.2 ± 0.5	$x^{2}=4.831$	$U=2$	$U=7$	$U=7$
IMTL/SVL	5.9-7.9	4.8-6.1	5.2-6.8	$p=0.089_{\text {ns }}$	$p=0.157$ ns	$p=0.175_{\text {n }}$	$p=0.065_{\text {ns }}$
	12.0 ± 1.6	17.9 ± 0.6	10.3 ± 0.7	$x^{2}=10.789$	$U=0$	$U=4$	$U=0$
ITL/SVL	10.4-13.7	17.2-18.6	7.0-11.3	$p=0.005^{*}$	$p=0.034 *$	$p=0.061{ }^{\text {ns }}$	$p=0.005^{*}$

Fig. 2. Plot of principal component 1 (PC1) versus principal component 2 (PC2) for the principal component analysis of the F. limnocharis group. (A) Males. (B) Females.
tions, 10.2% contained 13 bivalents and 89.8% contained $2-$ 16 univalents. Among them, 21.4\% contained 2 univalents, 21.2% contained 4 univalents, and 19.6% contained 6 univalents, with the mean number per cell 5.27. In hybrids between Japan and Malaysia populations, 12.4\% contained 13 bivalents, and 87.6% contained $2-14$ univalents. Among them, 29.2% contained 4 univalents, 20.8\% contained 2 univalents, and 15.4% contained 6 univalents, with the mean number per cell 4.58 . In hybrids between Malaysia and Indonesia populations, 80.4% contained 13 bivalents and 19.6\% contained 2-6 univalents, with the mean number per cell 0.48 .

The numbers of ring- and rod-shaped bivalents in the three populations and in the hybrids are shown in Table 6. In the control Japan and Malaysia populations, the frequency of ring-shaped bivalents was 99.7% and 99.6%, respectively, with the mean number per cell 13. In hybrids between the Japan and Indonesia populations, the Japan and Malaysia populations, and the Malaysia and Indonesia populations, the frequency of ring-shaped bivalents was $36 \%, 36 \%$, and 59.5% with the mean number per cell 10.47 , 10.74 , and 12.70, respectively.

Sequence divergence and phylogeny

Nucleotide sequence data comprising 499-bp and 591-bp

Table 4. Factor loading on the first two principal component analyses extracted from the correlation matrix of 31 characters for male and female of the F. limnocharis group.

Characters	Male		female	
	PC1	PC2	PC1	PC2
SVL	0.06	0.09	0.03	0.06
HL	0.08	0.34	0.13	-0.35
HW	-0.14	0.30	-0.07	-0.34
STL	0.19	0.15	0.24	-0.07
MSL	0.13	0.25	0.23	-0.12
NS	-0.12	0.13	-0.16	-0.27
SL	0.18	-0.13	0.14	-0.05
NTL	0.22	0.01	0.23	0.08
EN	0.24	-0.01	0.12	-0.03
TEL	-0.02	-0.16	0.01	-0.14
TD	-0.21	0.09	-0.19	0.04
MN	0.12	0.31	0.08	-0.24
MFE	-0.10	0.38	-0.15	-0.30
MBE	-0.19	0.24	-0.20	-0.21
IN	-0.13	0.12	0.14	0.03
EL	-0.13	0.12	-0.02	-0.18
IOD	0.15	0.25	0.03	-0.30
UEW	-0.17	0.14	-0.10	-0.07
HAL	0.24	0.09	0.22	-0.15
FAL	0.21	0.08	0.22	-0.07
LAL	0.00	-0.14	-0.01	0.19
HLL	0.26	-0.03	0.27	0.01
THIGHL	0.24	0.09	0.25	-0.08
TL	0.25	0.07	0.27	-0.06
FOL	0.23	0.01	0.27	-0.01
TFOL	0.25	0.01	0.27	-0.02
3FL	0.21	0.13	0.21	0.03
1FL	0.17	0.20	0.00	-0.27
4TL	0.25	-0.03	0.27	-0.02
IMTL	-0.06	0.28	0.01	-0.36
ITL	0.19	-0.22	0.23	0.20
Eigenvalues	14.37	5.11	12.67	5.49
Variance explained (\%)	46.35	16.47	40.86	17.69
Cumulative explained (\%)	46.35	62.82	40.86	58.55

segments of the 16 S rRNA and Cyt b genes, respectively, were used for analyses. The 16 S alignment contained 112 polymorphic sites, of which 20 were parsimony-informative, and the Cyt b alignment contained 200 polymorphic sites, of which 137 were parsimony-informative. Tables 7 and 8 show the sequence divergence among 16 S and Cyt b haplotypes in the F. limnocharis group (including F. multistriata), F. iskandari, and the outgroup (Limnonectes fujianensis). Sequence divergences were smaller in 16S than in Cyt b. In 16S rRNA, sequence divergence was 17.0-18.1\% (\bar{x} $=17.2 \%$) between the outgroup (L. fujianensis) and the F. limnocharis group and F. iskandari; 10.6-11.0\% ($\bar{x}=10.9 \%$) between F. iskandari and the F. limnocharis group; 2.42.6\% ($\bar{x}=2.52 \%$) between the Japan population and another F. limnocharis group; $0.2-0.4 \%$ ($\bar{x}=0.3 \%$) between F. multistriata and the Malaysia and Indonesia populations; and $0.0-0.4 \% ~(\bar{x}=0.23 \%)$ among the Malaysia and Indonesia populations. Sequence divergence in the Cyt b gene for

Fig. 3. Cross-sections of seminiferous tubules in the testes of controls and of hybrids among three populations of the F. limnocharis group. Scale bars, $20 \mu \mathrm{~m}$. (A) Control Japan population. (B) Control Malaysia population. (C) Hybrid between Japan female and F. limnocharis (Indonesia) male. (D) Hybrid between Japan female and Malaysia male. (E) Hybrid between Malaysia female and F. limnocharis (Indonesia) male.
each of the above combinations was 20.6-23.7\% (\bar{x} $=21.5 \%$); 18.3-20.6\% ($\bar{x}=19.0 \%$); 11-12\% ($\bar{x}=11.46 \%$); $0.3-$ $1.2 \% ~(\bar{x}=0.8 \%)$; and $0.3-1.5 \% ~(\bar{x}=1.0 \%)$.

The ML tree based on the 16S rRNA gene sequences showed that the Malaysia, and Indonesia populations and F. multistriata from China made up one cluster, with strong bootstrap support (BP) of 97, 99, and 100% in the ML, MP and NJ trees (Fig. 6), respectively. However, the Japan population was separate, with 100% BP in the ML, MP and NJ
trees. The same result was also obtained for Cyt b, with BP of 96,100 , and 100% in the ML, MP, and NJ trees (Fig. 7). The Indonesia population was less differentiated from the Malaysia population and F. multistriata from China, with BP of 60,81 , and 93% in the ML, MP, and NJ trees, and F. multistriata from China formed a clade with the Malaysia population.

Fig. 4. Spermatocytes at the first meiosis and chromosome complements in controls and in hybrids among three populations of the F. limnocharis group. Bars under the chromosomes indicate univalents. (A) Control Japan population containing 13 bivalents, all of them ringshaped. (B) Hybrids containing 13 bivalents, and ring- or rod-shaped chromosomes. (C-G) Hybrids contained 2-10 univalents. Hybrids containing 14 univalents.

Table 5. Numbers of meiotic spreads differing in number of univalents in male hybrids among three populations of the F. limnocharis group and the controls.

Type of frogs	No. of meioses	No. of univalents (\%)									Mean no. of univalents per cell
		0	2	4	6	8	10	12	14	16	
Japan control	323	323 (100)									0
Malaysia control	166	166 (100)									0
Japan \times F. limnocharis	394	39 (10.2)	82 (21.4)	81 (21.2)	75 (19.6)	53 (13.8)	39 (10.2)	14 (3.7)	10 (2.6)	1 (0.3)	5.27
Japan x Malaysia	332	41 (12.4)	69 (20.8)	97 (29.2)	51 (15.4)	38 (11.5)	27 (8.1)	6 (1.8)	3 (0.9)		4.58
Malaysia x F. limnocharis	311	250 (80.4)	51 (16.4)	7 (2.3)	3 (1.0)						0.48

Fig. 5. Frequency distributions of univalents in the meiotic spreads of male hybrids among controls and among three populations of the F. limnocharis group. (A) Control Japan population. (B) Control Malaysia population. (C) Hybrid between Japan female and F. limnocharis (Indonesia) male. (D) Hybrid between Japan female and Malaysia male. (E) Hybrid between Malaysia female and F. limnocharis (Indonesia) male.

Table 6. Numbers of the ring- and rod-shaped bivalents in male hybrids among three populations of the F. limnocharis group and the controls.

Type of frog	No. of bivalents	Large chromosome		Small chromosome		Total		Mean no. of bivalents per cell
		Ring (\%)	Rod (\%)	Ring (\%)	Rod (\%)	Ring (\%)	Rod (\%)	
Japan	4199	1610 (99.6)	5 (0.2)	2577 (99.7)	7 (0.2)	4187 (99.7)	12 (0.3)	13
Malaysia	2158	826 (99.5)	4(0.3)	1324 (99.7)	4(0.2)	2150 (99.6)	8 (0.4)	13
Japan x F. limnocharis	4577	810 (48.3)	866 (51.7)	840 (29.0)	2061 (71.0)	1650 (36.0)	2927 (64.0)	10.47
Japan x Malaysia	3566	517 (39.1)	804 (60.9)	768 (34.2)	1477 (65.8)	1285 (36.0)	2281 (64.0)	10.74
Malaysia x F. limnocharis	3949	1309 (87.3)	191 (12.7)	1040 (42.5)	1409 (57.5)	2349 (59.5)	1600 (40.5)	12.70

Table 7. Percent sequence divergences based on the uncorrected p-distances among haplotypes of 16 S rRNA gene sequences in the F. limnocharis complex from several Asian countries.

	Kual-1	Kual-2	Kota-1	Kota-2	Mali (lim)	Bogo (lim)	Hai (mul)	Hiro	Cian (isk)	China (Limno)
Kuala Lumpur-1 (Malaysia)	-									
Kuala Lumpur-2 (Malaysia)	0.4	-								
Kota Kinabalu-1(Sabah, Malaysia)	0.2	0.2	-							
Kota Kinabalu-2 (Sabah, Malaysia)	0.2	0.2	0	-						
F. limnocharis (Malingping, Java, Indonesia)	0.4	0.4	0.2	0	-					
F. limnocharis (Bogor, Java, Indonesia)	0.2	0.2	0	0.2	0.2	-				
F. multistriata (Hainan, China)	0.4	0.4	0.2	0.2	0.4	0.2	-			
Higashihiroshima (Japan)	2.6	2.6	2.4	2.4	2.6	2.4	2.6	-		
F. iskandari (Cianjur, Java, Indonesia)	10.4	11.0	10.8	10.8	11.0	10.8	11.0	10.6	-	
Limnonectes fujianensis (China)	17.2	17.2	17.0	17.0	17.2	17.0	17.0	17.6	18.1	

Table 8. Percent sequence divergences based on the uncorrected p-distances among haplotypes of Cyt b gene sequences in the F. limnocharis complex from several Asian countries.

	Kual-1	Kual-2	Kual-3	Kota-1	Kota-2	Bogo (lim)	Mali (lim)	Hain (mul)	Higa	Hiro	Cian (isk)	Mali (isk)	China (Limno)
Kuala Lumpur-1 (Malaysia)	-												
Kuala Lumpur-2 (Malaysia)	0.5	-											
Kuala Lumpur-3 (Malaysia)	0.7	0.5	-										
Kota Kinabalu-1 (Sabah, Malaysia)	0.7	0.7	1.0	-									
Kota Kinabalu-2 (Sabah, Malaysia)	0.7	1.2	1.4	1.0	-								
F. limnocharis (Bogor, Java, Indonesia)	1.0	1.2	1.4	1.0	1.4	-							
F. limnocharis (Malingping, Java, Indonesia)	1.2	1.4	1.5	1.2	1.5	0.9	-						
F. multistriata (Hainan, China)	0.3	0.9	1.0	0.7	0.7	1.0	1.2	-					
Higashihiroshima(Japan)	11.7	11.3	11.7	11.5	11.8	11.8	12.0	11.7	-				
Hiroshima (Japan)	11.0	12.0	11.0	11.2	11.2	11.2	11.3	11.0	2.0	-			
F. iskandari (Cianjur, Java, Indonesia)	18.6	19.0	19.1	18.8	19.0	18.8	18.8	18.4	20.6	19.8	-		
F. iskandari (Malingping, Java, Indonesia)	18.4	18.8	19.0	18.6	18.8	18.6	18.6	18.3	20.5	19.6	0.2	-	
Limnonectes fujianensis (China)	20.6	20.8	20.0	20.6	20.0	20.0	10.8	20.6	23.7	22.8	22.2	22.2	-

DISCUSSION

Taxonomic status of the Malaysia population

Toda et al. (1998) first recognized two syntopically occurring species within the F. limnocharis complex in Java, Indonesia. On the basis of allozyme data, they further suggested the presence of at least four species, including the two above, within the F. limnocharis complex from Indonesia, Laos, Hong Kong, and China. However, Toda et al. (1998) reserved taxonomic decisions on these taxa, because they thought it premature to do so without examining sufficient samples of the F. limnocharis complex to cover its wide distribution. Later, Veith et al. (2001) similarly recognized two cryptic species in the F. limnocharis complex occurring in sympatry in Java. These two species show substantial genetic differentiation, but are morphologically hardly distinguishable from one another. They applied the name F. limnocharis (Gravenhorst) to the taxon widely distributed in Java, Sumatra and Borneo, and described the taxon known only from Java as F. iskandari. Meanwhile,

Dubois and Ohler (2000) designated a neotype for Rana multistriata (Hallowell, 1860) from Hong Kong, China. Fei et al. (2002) considered this name to be applied to the Chinese rice frog, long treated as R. (=Fejervarya) limnocharis (e.g., Peters, 1863), and used the name F. multistriata for the frogs from all over China and Taiwan (Fei et al., 2005). Similarly, the Malaysia population has been treated as R. limnocharis (e.g., Boulenger, 1912; Smith, 1930: Berry, 1975; Inger and Voris, 2001). However, on the basis of allozyme analyses and crossing experiments, Djong et al. (2007) suggested that F. limnocharis from Malaysia may differ from the topotypic F. limnocharis at the subspecies or species level.

Morphological differentiation of amphibian taxa of subspecies and even specific rank is often very small and involves mainly difference in body proportions (Babik and Rafinski, 2000). The present analyses showed that nine and ten morphological characteristics differed between the Malaysia population and F. limnocharis in males and females, respectively. The main difference was in the head shape. The head of F. limnocharis was longer and broader
T. H. Djong et al.

Fig. 6. Phylogenetic tree constructed by the maximum likelihood (ML) method for the F. limnocharis group based on nucleotide sequences of the 16 S rRNA gene. The numbers at each node indicate BP values calculated by MP/ML/NJ. BP values were calculated based on 1,000 replicates. The scale bar represents branch length in nucleotide substitutions per site. ${ }^{1)}$ Kotaki et al. (2008). ${ }^{2)}$ Sumida et al. (2002). ${ }^{3)}$ Nie et al. (unpublished).

- 0.01 substitutions/site

Fig. 7. Phylogenetic tree constructed by maximum likelihood (ML) method for the F. limnocharis group based on nucleotide sequences of Cyt b gene. The numbers at each node indicate BP values calculated by MP/ML/NJ. BP values were calculated based on 1,000 replicates. The scale bar represents branch length in nucleotide substitutions per site. ${ }^{1)}$ Nie et al. (unpublished).
than that of the Malaysia population. Veith et al. (2001) likewise found that F limnocharis from Sumatra, Borneo, and Java was significantly different in head shape. Our present morphological data subjected to cluster and principal component analyses indicated that the Malaysia population could be reasonably regarded as a subspecies of F. limnocharis.

Histological observation on the testes of hybrids between Malaysia and Indonesia populations showed almost the normal condition, filled with dense bundles of normal spermatozoa. Sumida et al. (2002) found that in hybrids between the Sakishima Island (Ishigaki and Iriomote) populations and main-island Japan populations of F. limnocharis, the testes were almost normal in inner structure, and regarded these populations as subspecies. Spermatogenesis also showed some abnormality: 80.4% contained 13 bivalents and 19.6\% contained 2-6 univalents, with the mean number of univalents per spermatocyte 0.48 and the frequency of ring-shaped and rod-shaped bivalents 59.5% and 40.5%, respectively. Callan and Spurway (1951) found that hybrids between European newts Triturus cristatus carnifex (=T. carnifex) and T. c. karelinii ($=$ T. karelinii) had 0.9-4.3 (mean 2.44) univalents per spermatocyte and drastic reduction in chiasma frequency, with most of the chiasma forming terminals, and they regarded these taxa as subspecies. The current taxonomic status of these distinct species is considered to be correct on the basis of the degree of abnormality in spermatogenesis. Sumida et al. (unpublished) also found that the testes in hybrids between Sakishima Island (Ishigaki and Iriomote) and main-island Japan populations showed some abnormal spermatogenesis: 65.9% contained 13 bivalents and 34.1% contained $2-$ 6 univalents, with the mean number of univalents per spermatocyte 0.88 and the frequency of ring-shaped and rodshaped bivalents 84.9% and 15.1%, respectively. Thus, it is not unreasonable to regard the Malaysia populations as a subspecies of F. limnocharis.

The mean sequence divergence of 16 S rRNA and Cyt b was 0.2% and 1.3%, respectively, between Malaysia and Indonesia populations of F. limnocharis. Several previous studies on sequence divergence among amphibian populations have used 16S and Cyt b sequences. 16S sequence divergence was 0.7-1.5\% among Mantidactylus granulatus populations (Vences et al., 2003). Vences et al. (2004b) mentioned that differentiation among conspecific populations never exceeds 2% for the 16 S rRNA gene. Sequence divergence of Cyt b was $0.2-2.1 \%$ among populations and 3.7-4.6\% among subspecies in Japanese pond frogs (Sumida et al., 1998). Our present data suggested that Malaysia populations of F. limnocharis complex are one species. Our ML trees showed that the Malaysia and Indonesia populations diverged in Cyt, but not in 16S. On the other hand, Djong et al. (2007) showed that the mean Nei's (1972) genetic distance between Malaysia and Indonesia populations was 0.451 (range $0.410-0.526$). This genetic distance could be regarded as delimiting either subspecies or species based on Thorpe (1982), Highton (1989), and Skibinski et al. (1993), who reported that genetic distances above 0.15 can be considered to indicate different species. Nishioka and Sumida (1990) also viewed genetic distances above 0.301 as the borderline between species and
subspecies. Thus, the previous allozyme data also showed clear differentiation between Malaysia and Indonesia populations probably at above the subspecies level.

The mean sequence divergence between topotypic F. limnocharis and Chinese F. multistriata was 0.2-0.4\% (mean 0.3\%) and 1.0-1.2\% (mean 1.1\%) for 16S and Cyt b, respectively. Although the 16 S ML tree showed no differentiation among topotypic F. limnocharis, Chinese F. multistriata, and Malaysia populations, the Cyt $b \mathrm{ML}$ tree showed slight differentiation between topotypic F. limnocharis and Chinese F. multistriata. Based on these results, it is reasonable to regard F. multistriata as a subspecies of F. limnocharis, although further examination will be necessary for clarifying the taxonomic status of this species.

The concept of subspecies has been used at least since Linnaeus' time. Charles Darwin proffered qualitative definitions and considered varieties to be incipient species, potentially evolving into full species. Mayr (1963) defined subspecies as geographically defined aggregates of local populations that differ taxonomically from other such subdivisions of the species, ordinarily under conditions of allopatry (reproductive barriers are geographic). Traditionally, subspecies have been defined by morphological traits or color variations, but recent critics have been concerned that these traits may not reflect underlying genetic structure and phylogeny (Ball and Avise, 1992). Therefore, it is important to provide formal criteria for subspecies classification. O'Brien and Mayr (1991) offered several guidelines: members of a subspecies share a unique geographic range or habitat, a group of phylogenetically concordant phenotypic characteristics, and a unique natural history relative to other subdivisions of the species; they are below the species level, and different subspecies are reproductively compatible. Sumida (1994) maintained that in cytogenetic studies of meiosis in F1 hybrids between closely related species or subspecies, the one important criterion by which to conclude species or subspecies status is chromosome behavior at spermatogenesis. Avise (2000) suggested that analysis of mitochondrial DNA (mtDNA) sequence variation within and among subspecies reveals whether subspecies are evolving independently, are freely exchanging breeding individuals, or are at some intermediate stage of isolation.

In the present study, the morphological data, backcrossing experiments, and histological and spermatogenic observations of the testes of the hybrids between F. limnocharis and Malaysia populations and the molecular phylogenetic relationship based on the Cyt b gene data suggest that the Malaysia population be regarded as a subspecies of F. limnocharis. Further examination is necessary to accurately elucidate the status of this population.

Taxonomic status of the Japan population

The rice frog from Japan was treated as Rana limnocharis (=Fejervarya limnocharis) (Stejneger, 1907; Okada, 1931; Nakamura and Ueno, 1963). These authors designated this name for populations distributed on the main islands, Honshu from the Chubu district and westwards, Shikoku, and Kyushu, and the southwestern islands of Japan. Kuramoto $(1973,1979)$ and Ota $(1981,1983)$ carried out a series of studies on morphological variation in the Japan populations of this species, and Nishioka and Sumida
(1990) and Toda et al. $(1997,1998)$ studied genetic variation. The taxonomic status of the populations from the Sakishima Islands was still under debate. Maeda and Matsui (1989) concluded on the basis of external morphology, mating calls, and genetic distances that the Sakishima Island populations were differentiated as a species distinct from the main-island populations. On the other hand, Sumida et al. (2002) inferred from the crossing experiments and molecular data that it is reasonable to regard the Sakishima Island populations as a subspecies.

Our morphological data based on the cluster and principal component analyses showed that the Japan population is considerably differentiated from the Malaysia and Indonesia populations. The main different characteristics were head length, tympanum diameter, and forelimb and hindlimb length. The head in the Japan population was shorter than that of the Indonesia population. Tympanum diameter in the Japan population was larger than that in the Indonesia population. The forelimb of the Japan population was shorter than that of the Indonesia population, especially in hand length and forearm length. The hindlimb of the Japan population was also shorter than that of the Indonesia population in hindlimb length, thigh length, tibia length, and foot length. These data strongly suggest that the Japan population is morphologically differentiated from Indonesia F. limnocharis as a distinct species. Emerson (1986) mentioned that differences in relative hindlimb length might be the result of unequal growth and developmental rate during the larval period. Wilbur and Collins (1973) suggested that one of the main factors influencing the length of the amphibian larval period is temperature. Blouin and Brown (2000) showed that temperature-induced variation in the growth rate of tadpoles of Rana cascadae caused some variation in head width and leg length at metamorphosis. Babik and Rafinski (2000) showed that differences in water temperature during the larval period may be responsible for variation in hindlimb length in Central European Rana arvalis, as indicated by the generally shorter legs in Polish specimens correlating with the cooler climate of the northern area. Ishchenko (1977) also showed an altitudinal cline in body proportions in R. macrocnemis, in which frogs from higher altitudes were relatively short legged. These observations indicate that temperature may be the most important factor influencing relative hindlimb length in frogs.

Histological and spermatogenic observations showed some abnormalities in hybrids between the Indonesia and Japan populations and also between the Malaysia and Japan populations. In the seminiferous tubules of the testes, there were considerably abnormal spermatozoa (the sperm head was larger than that of normal spermatozoa) and pycnotic nuclei, as reported in several interspecific hybrids (Ueda, 1977; Kawamura et al., 1980; Kuramoto, 1983; Sumida et al., 2003). Spermatogenic observation also showed considerable abnormality in meiosis in these hybrids. In the hybrids between the Japan and Indonesia populations, 10.2% of meiotic spreads contained 13 bivalents and 89.8% of meiotic spreads contained $2-16$ univalents, with the mean number per spermatocyte 5.27. In hybrids between the Japan and Malaysia populations, 12.4\% contained 13 bivalents and 87.6% contained $2-14$ univalents, with the mean number per spermatocyte 4.58 . White (1946) also
observed abnormal meioses with an increase in the number and frequency of univalents in hybrids between Triturus marmoratus and T. cristatus carnifex ($=$ T. carnifex), and Spurway and Callan (1960) in hybrids between T. vulgaris and T. helveticus, with a mean univalent frequency per spermatocyte of 11.3 ± 0.2. Mancino et al. (1978) found that in hybrids between T. cristatus carnifex ($=T$. carnifex) and T. vulgaris meridionales, most of the primary spermatocytes contained only univalents. In hybrids between T. cristatus and T. vulgaris, the first spermatocytes tended to be asynaptic (Mancino et al., 1979). Okumoto (1980) found that in hybrids between female Rana nigromaculata and male R. porosa brevipoda, the mean number of univalents per spermatocyte was 13.51, and in the reciprocal hybrids, 14.13. These data show that the number of univalents per spermatocyte in the several interspecific hybrids between the Japan and Indonesia or Malaysia populations was smaller than that in the several interspecific hybrids mentioned above. Establishment of reproductive isolation between these populations of the F. limnocharis complex is not yet complete and is still in progress.

Molecular analyses of both 16S and Cyt b confirmed that the Japan populations comprise a separate cluster from the F. limnocharis complex of the Indonesia, Malaysia, and China populations. Sequence divergences between the Japan population and F. limnocharis from Indonesia and Malaysia and F. multistriata from China were 2.4-2.6\% (mean 2.5\%) and 11.0-12.0\% (mean 11.5\%) for 16S and Cyt b, respectively. Vences et al. (2002) mentioned that sequence divergence in 16 S was smaller than 5% in allopatrically separated species. Furthermore, sequence divergence of the Cyt b gene was shown to be 10.4-12.4\% among Japanese pond frog species (Sumida et al., 1998), and above 12.2\% among Discoglossus species (Zangari et al., 2006). Bradley and Baker (2001) mentioned that a sequence divergence in Cyt b between 2% and 11% would merit additional study concerning specific status, and that values more than 11% would indicate as recognition of species. After reviewing 24,000 vertebrate and invertebrate species, Kartavtsev and Lee (2006) showed that the average sequence divergence in Cyt b among species within a genus is $10.7 \% \pm 1.3 \%$. Phylogenetic trees constructed by the ML, MP, and NJ methods clearly show that the Japan populations diverged from other populations of the F. limnocharis complex in both $16 S$ and Cyt b. The data from both these genes data clearly showed that the Japan population is considerably diverged from F. multistriata from Hainan, China. Thus, we consider that the Japan population forms a lineage separate from both F. limnocharis and F. multistriata, and can be regarded as an undescribed species; its description is underway (Djong et al., in preparation).

The present results also confirm the conclusion by Djong et al. (2007) that Japan populations may be a subspecies or distinct species of topotypic F. limnocharis. Futhermore, Djong et al. found that Nei's (1972) genetic distance between the Indonesia and Japan populations was $0.365-0.638$ (mean 0.480). If species delimitation based on genetic distance can be applied as mentioned in the section "Taxonomic status of the Malaysia population," this genetic distance might be regarded as indicating a different species.

Furthermore, although Sasa et al. (1998) considered that a genetic distance of 0.3 is the threshold for hybrid inviability, these populations were not isolated by hybrid inviability or hybrid sterility, but only by abnormal spermatogenesis.

ACKNOWLEDGMENTS

We thank Drs. Alain Dubois and Annemaire Ohler of Museum National d'Histoire Naturelle, France for their kindness in providing a sample of F. multistriata from Hainan, China, and the SoekarnoHatta Fish Quarantine Centre, Ministry of Marine Affairs and Fisheries, Indonesia for allowing us to bring live frog samples from Indonesia (No. 03545.TI-210.2010.IV.2005). The EconomicPlanning Unit of Malaysia kindly permitted to conduct the research, and the University of Malaysia, Sabah, headed by Professor Maryati Mohamed, provided all the facilities (to M. Matsui). This work was supported by Technological and Professional Skills Development Sector Project (TPSDP) ADB Loan No. 1792-INO, Directorate General of Higher Education, Department of Education, Indonesia (to T. H. Djong), and by a Grant-in-Aid for Scientific Research (C) (No. 17570082) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to M. Sumida). The present molecular work was carried out with the kind cooperation of the Analysis Center of Life Science and Natural Science Center for Basic Research and Development, Hiroshima University.

REFERENCES

Avise JC (2000) Phylogeography. Harvard University Press, Boston
Babik W, Rafinski J (2000) Morphometric differentiation of the moor frog (Rana arvalis Nilss.) in central Europe. J Zool Syst Evol Res 39: 239-247
Ball Jr RM, Avise JC (1992) Mitochondrial DNA phylogeography differentiation among avian populations and the evolutionary significance of subspecies. Auk 109: 626-636
Berry PY (1975) The Amphibian Fauna of Peninsular Malaysia. Tropical Press, Kuala Lumpur
Blouin MS, Brown ST (2000) Effect of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia 125: 358-361
Boulenger GA (1912) A Vertebrate Fauna of the Malay Peninsula from the Isthmus of Kra to Singapore Including the Adjacent Islands. Reptilia and Batrachia. Taylor and Francis, London
Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82: 960973
Callan HG, Spurway H (1951) A study of meiosis in interracial hybrids of the newt, Triturus cristatus. J Genet 50: 235-249
Coyne JA, Orr H A (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts
De Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation. In "Endless Forms: Species and Speciation" Ed by DJ Howard, SH Berlocher, Oxford University Press, New York, pp 57-75
Dharne MS, Gate HV, Padhye AD, Shouche YS (2004) Molecular phylogeny of Indian Anura (Amphibia: Lissamphibia): a preliminary report. Frog leg 10: 1-5
Djong TH, Islam MM, Nishioka M, Matsui M, Ota H, Kuramoto M, Khan MMR, Alam MS, De Silva A, Khonsue W, Sumida M (2007) Genetic relationships and reproductive isolation mechanisms among the Fejervarya limnocharis complex from Indonesia (Java) and other Asian countries. Zool Sci 24: 360-375
Dubois A (1975) Un nouveau complexe d'especes jumelles distinguees par le chan: les grenouilles du Nepal voisnes de Rana limnocharis Boie (amphibiens, anoures). C R Acad Sci Paris 281: 1717-1720
Dubois A (1992) Notes sur la classification des Ranidae (Amphibiens Anoures). Bull Mens Soc Linn Lyon 61: 305-352

Dubois A, Ohler A (2000) Systematics of Fejervarya limnocharis (Gravenhorst, 1829) (Amphibia, Anura, Ranidae) and related species. 1. Nomenclatural status and type-specimens of the nominal species Rana limnocharis (Gravenhorst, 1829) Alytes 18: 15-50
Dutta SK (1997) A new species of Limnonectes (Anura: Ranidae) from Orissa, India. Hamadryad 22: 1-8
Emerson SB (1986) Heterochrony and frogs: the relationship of a life history trait to morphological form. Am Nat 127: 67-183
Fei L,Ye CY, Jiang JP, Xie F (2002) On taxonomic status of Rana limnocharis group with revision of nomenclature of the rice frog from China. Herpetol Sin 9: 88-96
Fei L, Ye CY, Jiang JP, Xie F, Huang YZ (2005) An Illustrated Key to Chinese Amphibians. Sichuan Publishing House of Science and Technology, Chengdu
Hallowell E (1860) Report upon the Reptilia of North Pacific Explorating Expedition, under command of Capt. John Rogers, USN. Proc Acad Nat Sci Philadelphia 1860: 480-510
Hanken J (1999) Why are there so many new amphibian species when are declining? Trends Ecol Evol 14: 7
Hey J (2001) Genes, Categories and Species. Oxford University Press, Oxford
Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21: 447-450
Highton R (1989) Biochemical evolution in the slimy salamander of the Plethodon glutinosus complex in the eastern United States. Part I. Geographic protein variation. Illinois Biol Monogr 57: 1-7
Inger RF, Voris HK (2001) Biogeographical relations of the frogs and snake of Sundaland. J Biogeogr 28: 863-891
Ishchenko VG (1977) Dinamicheski polimorfizm burych lyagusshek fauny SSSR. Nauka, Moscow
Iskandar DT (1998) The Amphibians of Java and Bali. LIPI, Yayasan Kehati, Bogor
Iskandar DT, Colijn E (2000) Preliminary checklist of Southeast Asian and New Guinean herpetofauna. I. Amphibians. Treubia 31: 1-134
Kartavtsev YP, Lee JS (2006) Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase I genes at population, species, and genus levels. Russ J Genet 42: 341-362
Kawamura T, Nishioka M and Ueda H (1980) Inter- and intraspecific hybrids among Japan, European and American toads. Sci Rep Lab Amphib Biol Hiroshima Univ 4: 1-125
Kotaki M, Kurabayashi A, Matsui M, Khonsue W, Djong TH, Tandon M, Sumida M (2008) Genetic divergences and polylogenetic relationships of the Fejervarya limnocharis complex in Thailand and neighboring countries revealed by mitochondrial and nuclear genes. Zool Sci 25 : in press
Kuramoto M (1973) The amphibians of Iriomote of the Ryukyu Islands: ecological and zoogeographical notes. Bull Fukuoka Univ Educ 22: 139-151
Kuramoto M (1979) Distribution and isolation in the anurans of the Ryukyu Islands. Jpn J Herpetol 8: 8-21
Kuramoto M (1983) Studies on the speciation of pond frogs in East Asia. Sci Rep Lab Amphib Biol Hiroshima Univ 6: 253-267
Liu ZQ, Wang YQ, Su B (2005) The mitochondrial genome organization of the rice frog, Fejervarya limnocharis (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene 346: 145-151
Lougheed S, Austin JD, Bogart JP, Boag PT, Chek AA (2006) Multicharacter perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. Evol Biol 6: 23
Maeda N, Matsui M (1989) Frogs and Toads of Japan. Bun-ichi Sogo Shuppan, Tokyo
Mancino G, Ragghianti M, Innocenti SB (1978) Experimental hybridization within the genus Triturus (Urodela: Salamandridae). I. Spermatogenesis of F_{1} species hybrids, T. cristatus carnifex 우 x T. vulgaris meridionalis ${ }^{\text {T }}$. Chomosoma 69: 27-46

Mancino G, Ragghianti M, Innocenti SB (1979) Experimental hybridization within the genus Triturus (Urodela: Salamandridae) III. Evidence for crossing-over, true chiasmata and chromosomal homologies in the spermatogenesis of F_{1} species hybrids, T. cristatus carnifex 우 \times T. marmoratus $\begin{gathered} \\ \\ \text {. Chomosoma 73: 207- }\end{gathered}$ 226
Mayr E (1963) Populations, Species and Evolution. Harvard University Press, Cambridge
Meegaskumbura M, Manamendra-Arachchi KM (2005) Description of eight new species of shrub frogs (Ranidae: Rhacoporinae: Philautus) from Sri Lanka. Raff Bull Zoo 12: 305-338
Nakamura K, Ueno S (1963) Japan Reptiles and Amphibian in Color. Hoiku-sha, Osaka
Nishioka M, Sumida M (1990) Differentiation of Rana limnocharis and two allied species elucidated by electrophoretic analyses. Sci Rep Lab Amphib Biol Hiroshima Univ 10: 125-154
O'Brien SJ, Mayr E. (1991) Recognizing endangered species and subspecies. Science 251: 1187
Okada Y (1931) The Tailless Batrachians of the Japan Empire. Imp Agr Experiment Station, Tokyo
Okumoto H (1980) Studies on meiosis in male hybrids and triploids in the Rana nigromaculata group. I. Interspecific hybrids between Rana nigromaculata and Rana brevipoda. Sci Rep Lab Amphib Biol Hiroshima Univ 4: 201-216
Ota H (1981) Notes on the herpetofauna of Hateruma Island, Ryukyu Archipelago, Jpn J Herpetol 9: 54-60
Ota H (1983) On the herpetofauna of the Yaeyama Group, Ryukyu Archipelago (1). Biol Mag Herpetol 21: 13-19
Peters W (1863) Bemerkungen über verschiedene Batrachier, namentlich über die Original exemplare der von Schneider und Wiegmann beschriebenen Arten des zoologischen Museum zu Berlin. Monatbs Akad Wiss Berlin 1863: 76-82
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818
Sasa MM, Chippindale PT, Johnson NA (1998) Patterns of postzygotic isolation in frogs. Evolution 53: 1811-1820
Schmid M, Olert J and Klett C, (1979) Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma 71: 29-55
Skibinski DOF, Woodwark M, Ward RD (1993) A quantitative test of the neutral theory using pooled allozyme data. Genetics 135: 233-248
Smith, MA (1930) The Reptilia and Amphibia of the Malay Peninsula. Bull Raffles Mus 3: 1-149
Spurway H, Callan HG (1960) The vigour and male sterility of hybrids between the species Tritrurus vulgaris and T. helveticus. J Genet 57: 84-118
Stejneger L (1907) Herpetology of Japan and adjacent territory. Bull US Nat Mus 58: $i-x x+1-557$, Pls 1-35
Sumida M (1994) Abnormalities of meioses in male reciprocal hybrid between the Hiroshima and Ichinoseki populations of Rana japonica. Experentia 50: 860-866
Sumida M, Ogata M, Kaneda H, Yonekawa H (1998) Evolutionary relationship among Japanese pond frogs inferred from mitochondrial DNA sequences of cytochrome b and 12S ribosomal RNA genes. Genes Genet Syst 73: 121-133
Sumida M, Kondo Y, Kanamori Y, Nishioka M (2002) Inter- and intraspecific evolutionary relationships of the rice frog Rana limnocharis and the allied species R. cancrivora inferred from crossing experiments and mitochondria DNA sequences of the 12S and 16S rRNA genes. Mol Phylogenet Evol 25: 293-305

Sumida M, Ueda H, Nishioka M (2003) Reproductive isolating mechanisms and molecular phylogenetic relationships among Palearctic and Oriental brown frogs. Zool Sci 20: 567-580
Sumida M, Kotaki M, Islam MM, Djong TH, Igawa T, Kondo Y, Matsui M, De Silva A, Khonsue W, Nishioka M (2007) Evolutionary relationships and reproductive isolating mechanisms in the rice frog (Fejervarya limnocharis) species complex from Sri Lanka, Thailand, Taiwan and Japan, inferred from mtDNA gene sequences, allozymes, and crossing experiments. Zool Sci 24: 547-562
Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Beta Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts
Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
Thorpe JP (1982) The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematic. Ann Rev Ecol Syst 13: 139-168
Toda M, Nishida, Matsui M, Wu GF, Ota H (1997) Allozyme variation among East Asian populations of the Indian rice frog, Rana limnocharis (Amphibia: Anura). Biochem Syst Ecol 25: 143-159
Toda M, Matsui M, Nishida M, Ota H (1998) Genetic divergence among Southeast and East Asian populations of Rana limnocharis (Amphibia: Anura), with species reference to sympatric cryptic species in Java. Zool Sci 14: 607-613
Ueda H (1977) Interspecific hybrids between Bombina orientalis (Bloulenger) and B. variegate (L). Sci Rep Lab Amphib Biol Hiroshima Univ 2: 187-198
Veith M, Kosuch J, Ohler A, Dubois A (2001) Systematics of Fejervarya limnocharis (Gravenhorst, 1829) (Amphibia, Anura, Ranidae) and related species. 2. Morphological and molecular variation in frogs from the Greater Sunda Islands (Sumatra, Java, Borneo) with the definition of two species. Alytes 19: 5-28
Vences M, Andreone F, Glaw F, Kosuch J, Meyer A, Schaefers HC, Veith M (2002) Exploring the potential of life-history key innovation: brook breeding in the radiation of the treefrog genus Boophis. Mol Ecol 11: 1453-1463
Vences M, Andreone F, Glaw F, Randrianirina JE (2003) Molecular and bioacoustic divergence in Mantidactylus granulatus and M. zavona n.sp. (Anura: Mantellidae): bearing for the biogeography of northern Madagascar. Afr Zool 38 (1): 67-78
Vences M, Kasuch J, Rodel MO, Lotters S, Channing A, Glaw F, Bohme W (2004) Phylogeography of Ptychadena mascareniensis suggests transoceanic dispersal in a widespread of African-Malagasy frog lineage. J Biogeogr 31: 593-601
White MJD (1946) The spermatogenesis of hybrids between Trirurus cristatus and T. marmoratus (Urodela). J Exp Zool 102: 179-207
Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182: 1305-1314
Zangari F, Cimmaruta R, Nascetti G (2006) Genetic relationship of the western Mediterranean painted frogs based on allozyme and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biol J Linn Soc 87: 515-536
(Received May 7, 2007 / Accepted August 26, 2007)

[^0]: * Corresponding author. Phone: +81-82-424-7482;

 Fax : +81-82-424-0739;
 E-mail: msumida@hiroshima-u.ac.jp

