<table>
<thead>
<tr>
<th>Title</th>
<th>Synchrotron-Radiation-Based Mössbauer Spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Seto, Makoto; Masuda, Ryo; Higashitaniguchi, Satoshi; Kitao, Shinji; Kobayashi, Yasuhiro; Inaba, Chika; Mitsui, Takaya; Yoda, Yoshitaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review Letters (2009), 102(21)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/85356</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 The American Physical Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Synchrotron-Radiation-Based Mössbauer Spectroscopy

Makoto Seto,1,2,4 Ryo Masuda,2,4 Satoshi Higashitaniguchi,1,4 Shinji Kitao,1,4 Yasuhiro Kobayashi,1,4 Chika Inaba,1 Takaya Mitsui,2,4 and Yoshitaka Yoda3,4

1Research Reactor Institute, Kyoto University, Kusumoto-cho, Sennan-gun, Osaka 590-04, Japan
2Japan Atomic Energy Agency, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
3Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
4CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan

(Received 23 August 2008; published 27 May 2009)

We have developed a new method that yields Mössbauer absorption spectra using synchrotron radiation (SR); this method is applicable for almost all Mössbauer nuclides including those that cannot be measured by previous methods using radioisotope (RI) sources. The Mössbauer spectrum of the 68.752 keV excited state of 73Ge, which cannot be measured using a RI source, was measured using SR. Our results show that this method can be used to perform advanced Mössbauer spectroscopy measurements owing to the excellent features of SR.

DOI: 10.1103/PhysRevLett.102.217602

PACS numbers: 76.80.+y, 78.70.Ck, 82.80.Ej, 87.64.kx

Mössbauer spectroscopy [1] is a powerful and well-established method employed for conducting research in various fields such as physical, chemical, biological, earth, and fundamental physical sciences. Mössbauer spectroscopy provides element-specific information on surrounding electronic states and magnetism, which is required in modern materials science and in complex systems such as biological substances. Mössbauer effects can be observed for approximately 100 nuclear transitions of nearly 50 elements. However, we think that, except for some elements such as 57Fe, 119Sn, and 151Eu, difficulty in preparing and storing RI sources with finite lifetimes has prevented the wide and familiar use of Mössbauer spectroscopy for other elements. In contrast, energy-tunable, highly bright, well-collimated, pulsed, and polarized SR is very distinct.

In this study, we have developed a new method that yields Mössbauer absorption spectra using SR. This method was proposed in 1974 [2]; however, from a contemporary viewpoint, it is appropriate for synchrotron measurements of Mössbauer nuclides with high-energy and short-lifetime excited levels. We present the first experimental results of the Mössbauer absorption spectra of 73Ge and 57Fe using the developed method.

The use of nuclear Bragg scattering in previously developed Mössbauer spectroscopy using SR provides a Mössbauer source with a single-line energy spectrum [3]. However, such a source has been developed only for 57Fe [3–5], because, in the case of other elements, it is difficult to produce perfect single crystals with pure nuclear reflections. The standard approach adopted using SR is nuclear resonant forward scattering (NFS) measurement in the time domain [6]. This established method is most effective for nuclides with relatively low excited-state energy and a sufficiently long lifetime. Si avalanche photodiode (APD) detectors are mostly used in NFS measurements [7]. The efficiency in the detection of high-energy x rays increases when a thick Si layer is used; however, the time resolution decreases. Despite the drawback, it was recently shown that NFS is applicable to the high-energy nuclides 61Ni (67.41 keV) using multielement (stacked) APDs [8]. A nuclear lighthouse effect is effective for high-energy short-lifetime excited states [9]; however, the sample environment in such a case is severely restricted. A heterodyne (stroboscopic) detection method for NFS [10,11] measurements is effective for nuclides with a very long lifetime; however, the application of this method to high-energy excited states may be difficult, as discussed above.

The concept of the proposed method is similar to that of conventional (conversion electron) Mössbauer spectroscopy and heterodyne detection method using SR [10]. In addition to deexcited γ rays, in this method, fluorescent x rays and internal conversion electrons, which are easier to detect than high-energy γ rays using an APD detector, are measured only as a function of the Doppler velocity. In this method, two targets—a transmitter and a scatterer—containing the same resonant Mössbauer nuclides are used; the scatterer is placed behind the transmitter on the path of the synchrotron beam. The transmitter or scatterer is Doppler shifted using a common Mössbauer velocity transducer, and delayed 4π scattering from the scatterer is measured as a function of the relative velocity using a detector placed below and/or above the scatterer. The experimental setup for 73Ge measurement is shown in Fig. 1. This velocity-dependent scattering intensity yields a spectrum in the energy domain. When the resonance energy of the scatterer is considerably different from that of the transmitter, radiation at the resonance energy of the scatter is attenuated when the γ rays pass through the transmitter due to electronic processes and nuclear resonant inelastic absorption; the attenuation rate is almost independent of the relative energy when this energy is large. In addition to the attenuation, strong nuclear resonance absorption occurs in the transmitter when the relative energy is zero or small. Therefore, if we measure the...
scattering from the scatterer as a function of the relative energy (velocity), a local minimum is observed when the energy is zero. This energy spectrum corresponds to a Mössbauer spectrum.

The 68.752 keV third excited state of 73Ge [12] has suitable features (linewidth and internal conversion coefficient) to be observed, although this state is only weakly populated by the decay of 73Ga and its observation using an RI source is difficult. Therefore, in previous Mössbauer experiments, the direct population of this level was achieved by an in-beam Coulomb excitation method [13].

Prior to the measurement of 73Ge, the 57Fe Mössbauer effect was measured by using a well-known sample of α-Fe$_2$O$_3$ to confirm the validity of our method and concept. A powder sample of α-Fe$_2$O$_3$ (not enriched, 57Fe: 2 mg/cm2) was used as a transmitter, and a Pd metal foil (thickness: 25 μm) containing 57Fe (2%) was used as a scatterer. The measurement was performed at 298 K [12]. First, the time spectrum of 57Fe was measured to confirm the resonance excitation of the third excited state. This state mainly decays directly to the ground state; however, a small fraction of this state decays to the first excited state. To remove the small contribution of emission from the first excited state (13.2845 keV [12]), a 3 mm thick Al plate was placed at the entrance of the APD detector. This Al plate was removed at the time of the Mössbauer spectrum measurement.

We performed 73Ge measurements at the nuclear resonant scattering beam line (BL09XU) of SPring-8. To confirm the possibility of carrying out Mössbauer measurements of a sample made from natural Ge (73Ge: 7.73%), we used a powder sample of Li$_2$GeO$_3$ (not enriched, 73Ge: 9.4 mg/cm2) as the transmitter (20 K). A disk (diameter: 10 mm) of enriched GeO$_2$ powder (12 mg, 96.4% 73Ge enriched, rutile structure with a tetragonal unit cell) was used as the scatterer (77 K). The storage ring was operated in a 203-bunch mode, yielding a bunch distance of 23.6 ns. First, the time spectrum of GeO$_2$ was measured to confirm the resonance excitation of the third excited state. This state mainly decays directly to the ground state; however, a small fraction of this state decays to the first excited state. To remove the small contribution of emission from the first excited state (13.2845 keV [12]), a 3 mm thick Al plate was placed at the entrance of the APD detector. This Al plate was removed at the time of the Mössbauer spectrum measurement.
x rays were mainly detected following deexcitation, with 68.752 keV γ rays making a small contribution. The delayed scattering with a time window from 6 to 19 ns after each prompt pulse was counted (\sim150 counts/s). The total acquisition time was about 90 h. The theory about spatially incoherent (4\pi) nuclear resonant scattering has already been developed by Smirnov et al. [15,16]. This theory can be applied to the description of the obtained absorption spectrum by explicitly adopting the difference between the resonance energies of the transmitter and scatterer, caused by Doppler motion and hyperfine interactions (isomer shift, etc.). Note that each Ge ion in GeO$_2$ (tetragonal structure, $P4_2/mnm$) is surrounded by six oxygen ions in a slightly distorted octahedral configuration; however, no quadrupole splitting has been reported [13]. Furthermore, in Li$_2$GeO$_3$ (orthorhombic, Cmc2$_1$), each Ge ion is coordinated by four oxygen ions, forming a GeO$_4$ tetrahedron. This local structure is similar to that in GeO$_2$ (trigonal quartz structure, $P3_21$), whose 73Ge Mössbauer spectrum showed no conclusive evidence for quadrupole splitting [13]. Furthermore, Li$_2$GeO$_3$ and GeO$_2$ are non-magnetic. Therefore, we assumed no hyperfine splitting for Ge atoms in GeO$_2$ and Li$_2$GeO$_3$. In this case, propagating coherent field amplitudes of the transmitter, $E_i(w)$, at a dimensionless frequency w of the incident x ray in the unit of the natural width of the nuclear excited state and propagating coherent field amplitudes of the scatterer, $E_s(w, w_s, z)$ at w, relative shift w_s, and depth z of the scatterer are given by the following expressions:

\[E_i(w) = E_{0i} \exp\left(-\frac{\mu_{el} z_i}{2}\right) \exp\left(-i\frac{\mu_{nr} z_i}{2(w + i)}\right). \]

\[E_s(w, w_s, z) = E_{0s} \exp\left(-\frac{\mu_{el} z_s}{2}\right) \exp\left(-i\frac{\mu_{nr} z_s}{2(w - w_s + i)}\right). \]

where z_i denotes the thickness of the transmitter; μ_{el} (μ_{nr}), the linear absorption coefficient of radiation by the nuclei at resonance in the transmitter (scatterer); μ_{el}, the electronic absorption coefficient of the transmitter (scatterer); and E_{0i} (E_{0s}), the amplitude of the radiation field at the entrance of the transmitter (scatterer). Under the measurement conditions employed in our study, the following two processes are dependent on the relative shift w_s; nuclear recoilless absorption of radiation (A channel in Ref. [15]) and scattering of the radiation due to photoelectron absorption (C channel in Ref. [15]). The dependence of other processes such as nuclear absorption of radiation with recoil (B channel in Ref. [15]) on the relative shift is small and thus ignored. The absorption spectrum intensity $I(w)$ can be expressed as follows:

\[I_A(w_s) = C_A \int_{\tau_1}^{\tau_2} d\tau \int_{0}^{z_i} dz \left| \int \frac{dw}{2\pi} \exp(-iw\tau) E_i(w) E_s(w, w_s, z) \right|^2, \]

\[I_C(w_s) = C_C \int_{\tau_1}^{\tau_2} d\tau \int_{0}^{z_i} dz \left| \int \frac{dw}{2\pi} \exp(-iw\tau)(E_i(w) E_s(w, w_s, z) - 1) \right|^2, \]

\[I(w_s) = I_A(w_s) + I_C(w_s) + I_B, \]

where I_A, I_C, and I_B are the intensities corresponding to the above-mentioned three processes; C_A and C_C are constants; and τ_1 and τ_2 are the starting and ending times, respectively, of the measured time window in units of the lifetime of the nuclear excited state. By thin-sample approximation, a Lorentzian line shape can be obtained in the time range ($\tau_1 = 0$, $\tau_2 = \infty$) by ignoring the contribution of I_C [16]. The isomer shift of Li$_2$GeO$_3$ relative to tetragonal GeO$_2$, obtained by fitting the calculated spectrum to the observed spectrum, is $-0.21(12)$ mm/s. The observed linewidth of the spectrum is broader (4.4 mm/s) than that expected for ideally thin samples (2.2 mm/s), and this broadening is due to the use of relatively thick samples. The features seen at the wing are thought to be a result of statistical errors.

FIG. 4 (color online). Mössbauer spectrum of 73Ge measured using SR. A powder sample of Li$_2$GeO$_3$ was used as the transmitter, and a powder sample of GeO$_2$ was used as the scatterer. The solid line shows the fitted spectrum described in the text.
To prevent the time response of the APD detector from being affected by strong prompt incident radiation pulses, the measurement was performed from 6 ns after each prompt pulse, and this relatively late start time of measurement reduced the measured delayed counts. Since the energy width of the incident synchrotron radiation (~eV) is considerably wider than that of the energy range usually used in Mössbauer spectroscopy (<100 μeV), almost all of the incident radiation is unnecessary. Therefore, by using a high- [17] or medium- [8] resolution monochromator, which reduces unnecessary incident radiation and allows the use of an earlier start time for the measurements, an increase in the delayed counts is expected. In particular, the use of the high-resolution monochromator, which reduces the contribution of phonons, will give a high-quality spectrum because scattering with phonons from the scatterer increases the unwanted background. Since we used the natural sample as the transmitter to demonstrate the possibility of measurement of a natural sample, the measurement took considerable amount of time. However, the use of an enriched sample as a transmitter, an optimized thin rectangular-flat plate as a scatterer, a large-area detector, and even a medium-resolution monochromator reduce the acquisition time by more than 1 order of magnitude.

It should be noted that exact line shapes of the Mössbauer spectra are obtained by the transmission integral method [18]; the exact line shape of our spectrum is obtained by the above-mentioned method. This indicates another aspect of the proposed method that it is similar to delayed coincidence Mössbauer spectroscopy [19,20] and it yields a narrow and modified line shape. In fact, the changes in the line shape have been previously observed using SR by different measurement methods [11,21].

As a benefit of the excellent features of SR, the applicability of SR-based Mössbauer spectroscopy will increase. The comparison between SR-based Mössbauer spectroscopy and Mössbauer spectroscopy using radioactive sources is shown in Table I.

In conclusion, in this study, the Mössbauer spectrum of 73Ge was successfully measured using SR for the first time, and the validity of the proposed method was confirmed. The freedom in selecting the scatterer or transmitter as a sample reduces the restrictions on type of samples and sample environments. With the wide availability of Mössbauer nuclides, this method enables advanced measurements in various scientific fields such as microscopic measurements, measurements of ultrasmall samples under extreme conditions, and measurements of complex nanostructured materials.

We are thankful to the entire staff of SPring-8 for their support. This study was conducted under the Power User Priority Program of SPring-8.

<table>
<thead>
<tr>
<th>Surface, interfaces, multilayers</th>
<th>Synchrotron radiation [proposed energy domain method (E) and time domain NFS method (T)]</th>
<th>Radioactive sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean, unclean, and nanostructured samples (E); limited to clean surfaces (T)</td>
<td>Clean, unclean, and nanostructured samples</td>
<td>Isotopes for which appropriate sources are available</td>
</tr>
<tr>
<td>Multiple extreme conditions *, imaging</td>
<td>Relatively easy, sub-μm resolution is possible (E,T)</td>
<td>Usually not easy, limited to μm resolution</td>
</tr>
<tr>
<td>Applicable isotopes</td>
<td>Short- and extremely long-lived and high-energy isomers are possible (E); efficient for low-energy and sufficiently long-lived isomers (T)</td>
<td></td>
</tr>
</tbody>
</table>

*High pressure (~200 GPa), applied magnetic field (~10 T), high (~1000 K) or low (~ mK) temperature.