表1

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>二時間グリーン函数の理論とその応用 (講義ノート)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>松原 武生</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1964), 1(4): 300-310</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964-01-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/85542</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
講義ノート

二時間グリーン函数の理論とその応用 (IV)

松 原 武 生（京大理）

§ 6 母函数の方法

§ 4, § 5 にあげた例題中の計算を詳しく追って見た人ならば、多くのごまかしさがなされていることに気づかれるであろう。実際、最後のもつともな結果に到着するまでに、いくつもの道徳があり、近似を進める程このことはひどくなくって、あいまいさの度合が増してくる。高次のグリーン函数を低次のグリーン函数に分解する "decoupling" の方法に、一般的な原理を見出すことが大変望ましい。この節に述べる二時間グリーン函数の母函数の方法は、面倒な高次グリーン函数の decoupling を統制化すると共に、グリーン函数の近似法に何らかの原理想を見出そうとする一つの試みである。

(1) 簡単なモデル

話をできるだけ明快にするために、単純なモデルについて詳しい議論をする。

1 頭の電子がエネルギー ω_0 の準位にあって、多数の間葉振子と接触し、時間的に変動するポテンシナルを感じている場合を考え、電子のエネルギー準位のぼけを問題にする。ハシルトニアンとしては次の形を仮定する：

$$H = \omega_0 \ a^+ a + \omega \sum_{k} \ b_k^+ b_k + \sum_{k} f_k (\ b_k^+ + b_k^{-}) \ a^+ a$$ (6.1)

a^+, a は電子の演算子、b_k^+, b_k は k 番目の振子の演算子で、簡単のためすべての振子は同じ振動数 ω をもつとしたが、この制限を除くことは容易である。

$$B \equiv \sum_{k} f_k (\ b_k^+ + b_k^{-})$$ (6.2)

が時間的に変動する電子に対するポテンシナルであるが、よく知られているよ
うに，そのゆらぎの大きさ（例えば $<B^2>$ で測られる）とゆらぎの速さ（例えば w で測られる）の大小関係によって

(i) slow modulation : $w \ll \sqrt{<B^2>}$ ならば ω_0 の周りの帯 $<B^2>$ のガウス分布

(ii) fast modulation : $w \gg <B^2>$ ならばシャープな ω_0 一定位

となることが物理的に期待される。この問題をグリーン函数法で解くには

$$G(\omega) = \ll a : a^+ \gg_\omega$$

を求めその虚数部分（状態密度）を ω の函式として計算すればよい。（6.1）

から運動方程式をつくると，振子系は（6.2）の B の他に

$$C = \sum_k f_k (b_k - b_k^+)$$

を用いて完全に記述でき，とした基礎方程式の組（$\hbar = 1$）

$$i \frac{da}{dt} = (\omega_0 + B) a,$$

$$i \frac{dB}{dt} = wC$$

$$i \frac{dC}{dt} = wB + 2f^2 a^+ a$$

が得られる。但し

$$f = \sum_k \frac{f_k^2}{f_k}$$

従って $G(\omega)$ に対する方程式は

$$\omega G(\omega) = 1 + \omega_0 G(\omega) + \ll B a : a^+ \gg$$

である。以下続いて現われる高次のグリーン函数に対して次の記号を用意する。

-301-
松原武生

\[G_{nm}(\omega) = \langle C^m B^n a : a^+ \rangle \quad (6.8) \]

すると (6.6) を逐次用い \(a^2 = 0 \) に注意すると次の形の方程式の鎖がつくられる。

\[\omega G'(\omega) = 1 + \omega_0 G(\omega) + G_{01}(\omega) \quad (6.9\ a) \]
\[\omega G_{01}(\omega) = \langle C> G(\omega) + w G_{10}(\omega) + G_{02}(\omega) \quad (6.9\ b) \]
\[\omega G_{10}(\omega) = \langle C> G(\omega) + w G_{01}(\omega) + G_{11}(\omega) \quad (6.9\ c) \]
\[\omega G_{02}(\omega) = \langle B^2 > + \omega_0 G_{02}(\omega) + 2 w G_{11}(\omega) + G_{03}(\omega) \quad (6.9\ d) \]
\[\omega G_{11}(\omega) = \langle C B > + \omega_0 G_{11}(\omega) + w G_{02}(\omega) + w G_{20}(\omega) + G_{12}(\omega) \quad (6.9\ e) \]

今まで述べてきたグリーン関数法の処方箋は、方程式の鎖 (6.9) をどこかで切断し、残ったグリーン関数の最高次のものを低次のもので近似してとんだ方程式系にすることであった。それに従えば次のよう逐次近似が考えられる。

(1) (6.9 a) で切断:

\[G_{01}(\omega) = \langle B > G(\omega) + g_{01} \approx \langle B > G(\omega) \quad (6.10) \]
\[G(\omega) = \frac{1}{\omega - \omega_0 - \langle B >} \]

(2) (6.9 b) で切断:

\[G_{10}(\omega) = \langle C > G(\omega) + g_{10} \approx \langle C > G(\omega) \quad (6.11) \]
\[G_{02}(\omega) = \langle B^2 > G(\omega) + 2 \langle B > G_{01}(\omega) + g_{02} \]
\[\approx \langle B^2 > G(\omega) + 2 \langle B > G_{01}(\omega) \quad (6.12) \]
\[G(\omega) = \frac{1}{\omega - \omega_0 - \langle B >} \frac{w \langle C > + \langle B^2 > + \langle B >^2}{\omega - \omega_0 - \langle B >} \]

-302-
(3) で切断：

\[G_{11}(\omega) = <C^2>B + G(\omega) + <C>G_{01}(\omega) + G_{10}(\omega) + g_{11}(\omega) \] (6.13)

\[G_{02}(\omega) = <B^2>G(\omega) + 2G_{01}(\omega) \]

\[
\begin{pmatrix}
1 & -1 & 0 \\
 & \omega - \omega_0 & -2 & -w \\
<C> & -w & -C > & \omega - \omega_0 & \\
\omega - \omega_0 & -1 & 0 \\
<B^2> & \omega - \omega_0 & -2 & -w \\
<C^2>B > & -w & -C > & \omega - \omega_0 & \\
\end{pmatrix}
\]

\[G(\omega) = \frac{1}{\omega - \omega_0 - } + \frac{w^2 - B^2 + wCB + wB^2C}{\omega - \omega_0 - } \]

等々……

ここで "decoupling" のしかたとしては、あらゆる可能な分解を考えた。

この逐次近似法からわかるように、n 番目の方程式で鎖を切断して \(G(\omega) \) の

近似解を求めると

\[G(\omega) = \frac{\omega \cdot (n-1) \text{次の多項式}}{\omega \cdot n \text{次の多項式}} \]

の形になり、電子の状態密度は \(G(\omega) \) の虚数部分をつくって

\[\lim_{\varepsilon \to 0^+} \text{Im} \left(\frac{G(\omega + i \varepsilon)}{\pi} \right) = \sum_{i=1}^{n} p_i \delta(\omega - \omega_i) \quad \sum_{i=1}^{n} p_i = 1 \] (6.14)
松原武生

のように表わされる。すなわち δ -函数の集りが得られる。はじめに注意したように $w<\sqrt{B^2}$ の極限でガウス分布を得るためには、無限次元まで近似を進めなければならない。換言すると "slow modulation" の場合で力学的なコヘレンスが重要になり、グリーン函数の鎖を途中で切断できない場合には、従来の処方策は無力である。

(2) 母函数の導入

方程式の鎖 (6.9) をすべて考慮しなければならないとすると、この鎖の元になった運動方程式自身を解かなければならないことは明らかである。グリーン函数のわく内でこれに相当することをやるには、次の母函数を考えるのがよい。二つのパラメータ $\xi \eta$ を用いて

$$F(\xi \eta; \omega) = \sum_{n=0}^{\infty} \frac{\xi^n \eta^m}{n! m!} G_{nm}(\omega) \quad (6.15)$$

を定義する。 $G(\omega) = G_{00}(\omega)$ と約束する。同様に

$$I(\xi \eta) = \sum_{n=0}^{\infty} \frac{\xi^n \eta^m}{n! m!} \langle C^n B^m \rangle \quad (6.16)$$

も定義しておく。もし何らかの方法で $F(\xi n; \omega)$ が ξ , η の函数として陽に求まれば、$G(\omega) = F(\omega_0; \omega)$ によって $G(\omega)$ が求まるわけである。そこで $F(\xi \eta; \omega)$ がみたす方程式を見出そう。まず (6.6) を使って $G_{nm}(\omega)$ がみたす方程式を作ると容易に $\omega - \omega_0 = \bar{x}$ として

$$x G_{nm}(x) = \langle C^n B^m \rangle + n w G_{n-1} \quad m+1(x) + m w G_{n+1} \quad m-1(x) + G_{n,m+1}(x)$$

$$- f^2 n (n-1) w G_{n-2,m}(x) - f^2 m(m-1) w G_{nm+2}(x) \quad (6.17)$$

を得る。但し、$\{ B, C \} = -2 f^2$ の関係を用いた。この両端に $\xi^n \eta^m / n! m!$ をかけて、n , m について和をとると直ちに

$$x F(\xi \eta; x) = I(\xi, \eta) + w \left \{ \frac{\xi}{\partial \eta} + \frac{\eta}{\partial \xi} - f^2 (\xi^2 + \eta^2) \right \} F(\xi \eta; x) + \frac{\partial}{\partial \eta} F(\xi \eta; x)$$

$$- 304 - \quad (6.18)$$
二時間グリーン函数
となる。これが$F(\xi, \eta; x)$に対する偏微分方程式である。これはさらに簡単にできる。Kubo に従って cumulant average $\langle C^n B^m \rangle_c$ を次で導入する。

\[
\Gamma(\xi, \eta) = \exp \left\{ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\xi^n \eta^m}{n! m!} \langle C^n B^m \rangle_c \right\} = \exp \left\{ J(\xi, \eta) \right\}
\]

(6.19)

そして

\[
F(\xi, \eta; x) = \Gamma(\xi, \eta) f(\xi, \eta; x)
\]

(6.20)
とおこう。そうすると$f(\xi, \eta; x)$に対する方程式は

\[
\left[x - w \left(\frac{\partial}{\partial \xi} + \xi \frac{\partial}{\partial \eta} \right) - \frac{\partial}{\partial \eta} + f^2 w \left(\xi^2 + \eta^2 \right) - w \left(\xi \frac{\partial f}{\partial \eta} + \eta \frac{\partial f}{\partial \xi} \right) - \frac{\partial f}{\partial \eta} \right] \times f(\xi, \eta; x) = 1
\]

(6.21)
の形になる。この方程式の解を議論する前に、$f(\xi, \eta; x)$の意味について少し注意を述べておこう。(6.19) にならって cumulant グリーン函数$g_{nm}(x)$ を

\[
f(\xi, \eta; x) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\xi^n \eta^m}{n! m!} g_{nm}(x)
\]

(6.22)
で定義することができるが、(6.22)(6.19) を (6.20) と組合せたものが、グリーン函数の "decoupling" 一つの一般方式を与えている。実際 (6.20) の両辺をξ, η のべきに展開し、係数と比較すれば、先に仮定した (6.10)-(6.13) の形の decoupling がそのまま現われていることが確かめられる。高次の decoupling をこここつやるのは大変面倒な仕事であるが、この方法によれば全く機械的に decoupling を遂行でき、しかも cumulant グリーン函数に対する方程式は (6.21) をξ, η のべきに展開することによって容易に導けるのである。勿論 (6.20) の形は決してユニタにきまったのでなく、むしろ$f(\xi, \eta; x)$に対する方程式が一番簡単な形
になるように選んだものと見るべきである。もしも（6.20）以外の形に選んだとすれば、別の方程式が得られ、それには＜C^n B^m＞_c がもっと複雑に姿を現わしているはずである。微分方程式を厳密に解く限りでは、どのような数学的変換を施しても結果が変わるはずがないが、近似計算を途中でやるとなると話がちがってくれる。この点がわれわれの悩みの種であった。上の議論で暗示される解決策の一つは、f(ξη; x) に対する方程式を（6.21）のように最も簡単な形に選び、その方程式に現われたパラメーターの大小に従って “物理的な近似” を加えて解くことである。他の一つは（6.21）を変分問題にすりかえることである。後者についてはまだ十分研究が進んでいない。

ハミルトニアンが（6.1）で与えられる場合、a+a = 1 の空間に限れば、（6.19）の J(ξη) を厳密に求めることができる。よく知られたように、調和振子の系は力学量のゆらぎが厳密にガウス分布できまる唯一の例であるから、cumulant average に 2 次以上のものが現われるはずがない。実際容易に次の関係を確かめることができる。

\[
\begin{align*}
\langle C \rangle_c &= 0 \\
\langle B \rangle_c &= -\frac{2f^2}{w} \\
\langle C^2 \rangle_c &= -2f^2 (n + \frac{1}{2}) \\
\langle B^2 \rangle_c &= 2f^2 (n + \frac{1}{2}) \\
\langle CB \rangle_c &= f^2
\end{align*}
\]

（6.23）

但し

\[
n = \frac{1}{e^{\beta w} - 1}
\]

（6.24）
従って

\[
J(\xi, \eta) = \frac{-2f^2}{w} \eta - f^2 \left\{ (\xi^2 - \eta^2) (n + \frac{1}{2}) - \xi \eta \right\} \tag{6.25}
\]

となる。この \(J(\xi, \eta)\) を (6.21) に用いると \(f(\xi, \eta; x)\) に対する方程式は

\[
\left\{ x - \frac{2f^2}{w} - w \left(\frac{\partial}{\partial \eta} + n \frac{\partial}{\partial \xi} \right) - \frac{\partial}{\partial \eta} + f^2 \xi - 2f^2 (n + \frac{1}{2}) \eta \right\} f(\xi, \eta; x) = 1 \tag{6.26}
\]

これは \(f(\xi, \eta; x)\) に対する一階の偏微分方程式であるから、適当な境界条件あるいは初期条件が与えられると解くことができるはずである。

(3) "slow modulation" の極限

(6.26) を一般に解くことは断念して（誰か試みて下さい！）。振子系が十分高温にあり、かつ "slow modulation" の場合

\[
w^2 \gg 1
\]

がみたされる場合を考える。以下 \(x = \frac{2f^2}{w}\) を改めて \(x\) と書いて (6.26) を次の簡単化した方程式ですりかえてしまう:

\[
\left\{ x - \frac{\partial}{\partial \eta} - (B^2)_c \eta \right\} f(\eta; x) = 1 \tag{6.27}
\]

この一般解は

\[
f(\eta; x) = C \exp \left(\frac{1}{2} B^2 c \eta^2 - x \eta \right) + \exp \left(- \frac{1}{2} B^2 c \eta^2 + x \eta \right)
\]

\[
\times \int_\eta \exp \left(\frac{1}{2} B^2 c \zeta^2 - x \zeta \right) d\zeta \tag{6.28}
\]

であるが、ここで初期条件を与える際、困難にぶつかってしまう。われわれが欲しいのは

\[
f(0; x) = G(x) \tag{6.29}
\]
でるから、(6.29)を初期条件に使うわけにはいかない。
そこでもう一度近似方程式(6.27)の意味を考えて見よう。

\[f(\eta:x) = G(x) + \eta g_1(x) + \frac{1}{2} \eta^2 g_2(x) + \cdots \quad (6.30) \]

と展開して(6.27)に入るとわかるように、われわれは元の方程式の解を大胆に近似して

\[xG(x) = 1 + g_1(x) \]

\[xg_1(x) = \langle B^2 \rangle_c G(x) + g_2(x) \]

\[xg_2(x) = 2\langle B^2 \rangle_c g_1(x) + g_3(x) \quad (6.31) \]

\[\cdots \cdots
考えると。これは（6.27）の代わりに

\[x + \frac{1}{\lambda} \frac{\partial}{\partial \eta} - c \eta \cdot \exp(-\frac{c^2}{2} \eta^2) \int_0^\infty \exp(-\frac{\lambda c^2}{2} \eta^2 + \lambda x \zeta) d\zeta \]

（6.34）

を探ると同等である。明らかに \(\lambda \to \infty \) の極限で "narrowing limit"

\[G(x) = \frac{1}{x} \quad f(\eta : x) = \frac{1}{x - c \eta} \]

（6.35）

になるから、（6.34）の一般解の中 \(\lambda \to \infty \) の極限で（6.35）の漸近形を求める。それは

\[f(\eta : x) = \lambda \exp(-\frac{\lambda c^2}{2} \eta^2 + \lambda x \zeta) \int_0^\infty \exp(-\frac{\lambda c^2}{2} \eta^2 + \lambda x \zeta) d\zeta \]

（6.36）

で与えられる。実際（6.36）は方程式（6.34）を満たしているし、\(\lambda \to \infty \)の漸近形を調べると

\[f(\eta : x) \to \frac{1}{x - c \eta} \left[1 - O\left(\frac{1}{\lambda^2} \right) \right] \]

となっている。結果求めるグリーン関数 \(G(x) \) は（6.36）で \(\eta = 0 \quad \lambda = -1 \), \(\zeta \to -i t \) において

\[G(x) = i \int_0^\infty \exp(-\frac{\lambda c^2}{2} t^2 + i x t) d t \]

（6.37）

となり、予想通り、この虚数部分は \(c^{-1} \exp \) を半径にもつガウス分布になる。

ここで考えたモデルは非常に簡単なもので、グリーン関数法によらずなくても同様にとることができる。詳細は省くがハミルトニアンの性質を使うだけで

\[G(\omega) = i \int_0^\infty d t \quad e^{i(\omega - \omega_0) t} e^{-iH_0 t} e^{-(H_0 + B) t} \geq 0 \]

（6.38）
松原武生

関係を証明することができる。ここで

\[H_0 = \sum \omega b_k^+ b_k \quad (6.39) \]

\[\langle \ldots \rangle_0 = \frac{\text{Tr} \{ e^{-\beta (H_0 + B)} \ldots \} \text{Tr} [e^{-\beta (H_0 + B)}]}{\text{Tr} [e^{-\beta (H_0 + B)}]} \]

(6.38) から "slow modulation" の極限で (6.37) を導くことは容易で
(6.37) が正しいことを別法で裏づけることができる。その意味ではグリーン
函数法を出すのは今の場合大いにすぎたが、むしろグリーン函数法が
最も有力になると思われる特殊な場合について母函数を使いつつ解いたのであ
って、グリーン函数法のもつ性格の一面を少し明らかにできたと思う。

以上に述べた母函数の方法はもっと一般化することができる。既に二体相
互作用をもつフェルミ粒子系のグリーン函数の母函数と、それがみたす方程
式を導いてあるが、その有効性の議論とともに詳細は改めて論じたい。