<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Hard SuperconductorのUppercritical Fieldに関する簡単なコメント</td>
</tr>
<tr>
<td>Author(s)</td>
<td>都築 俊夫</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1965), 3(6): 373-376</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1965-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/85698</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hard Superconductor の Upper critical Field に関する簡単なコメント

（2月22日受理）

最近、物性研で開かれた、Hard Superconductor についての研究会で、いわゆる Type III の振舞をする物質の Upper critical field H_{c2} の値、磁化曲線等の実験データがいくつか発表された。Maki の理論との κ の値についての不一致（Maki の理論では、dirty limit で $\frac{1}{2} < \kappa < 1.01$ の物質が Type III の振舞をするが、実験によれば $\kappa > 1.01$ で、Type III の振舞をする物質はかなりあるようである）はここでは問題にしないことにして、reversible critical field H_{c2}^{\parallel}, super-heated と super-cooling critical field H_{c2}^{h}, H_{c2}^{c} の値の簡単な見積りをし、それらの値のずれは、実験が示すように、数％であることを示す。dirty limit に話を限る。

出発点の方程式は、一般化された G-L 方程式

$$\{ \ln \frac{T}{T_{c2}} + f_0 (\rho) \} | \Delta |^2 + \frac{f_1 (\rho)}{2(2\pi T)^2} | \Delta |^4 - \frac{3}{8(2\pi T)^4} f_2 (\rho) | \Delta |^6 = 0 \quad (1)$$

磁束密度

$$B = \overline{\Delta} = H_0 - \frac{e\tau_T n N}{mT} \rho (\rho) | \Delta |^2 \quad (2)$$

自由エネルギー

$$F_S - F_n = - \frac{m^2 V_F^3}{8\pi^2} [\beta f_1 (\rho) \frac{| \Delta |^2}{(2\pi T)^2} - \beta^* f_2 (\rho) \frac{| \Delta |^2}{(2\pi T)^4} \Delta] \quad (3)$$

である。ここで
\[
\begin{align*}
 f_0(\rho) &= \psi\left(\frac{1}{2} + \rho\right) - \psi\left(\frac{1}{2}\right) \\
 f_1(\rho) &= \sum_{n=0}^{\infty} \frac{1}{(n+\frac{1}{2} + \rho)^3} - \sum_{n=0}^{\infty} \frac{\rho}{(n+\frac{1}{2} + \rho)^4} \\
 f_2(\rho) &= \sum_{n=0}^{\infty} \frac{1}{(n+\frac{1}{2} + \rho)^5} - \sum_{n=0}^{\infty} \frac{3\rho}{(n+\frac{1}{2} + \rho)^6} \\
 g_0(\rho) &= \frac{d}{d\rho} \frac{1}{x} = \sum_{n=0}^{\infty} \frac{1}{(n+\frac{1}{2} + \rho)^2} \\
 \rho &= \frac{\mu_0 v_p^2 e H_0}{6\pi T} \\
 \beta &= \frac{|\Delta|^4}{(|\Delta|^2)^2} \\
 \gamma &= \frac{|\Delta|^6}{(|\Delta|^2)^3} \\
 \end{align*}
\]

である。\(H_0 \) は外場の強さ。その他の量については、通常の意味をもつ。
(1) Super cooline field \(H_{C_2}^C \)：これはすでに求められているように、
(1)の線形部分から決める。

\[
\ln \frac{T}{T_{CO}} + f_0(\rho) = 0
\]

\(T \ll T_{CO} \), \(T_{CO} - T \ll T_{CO} \) では

\[
H_{C_2}^C(T) = \frac{3}{2\pi \rho v_p e} \left[\left(1 - \frac{2}{3} \left(\frac{T}{T_{CO}}\right)^2\right) \frac{f_0 T_{CO}}{T} \right]
\]

\[
= \frac{1}{2} \frac{T_{CO}}{\rho v_p e} \left[\left(1 - \frac{T}{T_{CO}}\right) \left(1 + \frac{28}{3} \left(\frac{T}{T_{CO}}\right)^3\right)\right] \frac{T_{CO} - T_{CO}}{T_{CO}}T_{CO} \ll T_{CO} \]

(II) \(H_{C_2}^R \) at the reversible transition point：この点での
order parameter のとりは小さいとき仮定する。

\(H_{C_2}^R \) は \(F_S - F_n = 0 \) から決まる。(1)，(3)から \(H_{C_2}^R \) を決める方程式は

\[
-\ln \frac{T}{T_{CO}} = f_0(\rho) + \frac{\beta^2}{8} \cdot \frac{[f_1(\rho)]^2}{f_2(\rho)}
\]

となる。\(T \ll T_{CO} \) では簡単になって

\[
H_{C_2}^R(T) = \frac{3}{2\pi \rho v_p e} \left[\left(1 + \frac{504}{5} \cdot \frac{\beta^2}{\beta^2}\right) \right] \frac{2}{3} \left[1 - \frac{195}{392} \left(\frac{T}{T_{CO}}\right)^3\right]
\]
Hard Super conductor

(Ⅲ) Superheated field $H_{C^2}^h$；簡単のために、磁束密度の式(2)で
$|\mathbf{A}|^4$ の項を無視する。又この転移点である order parameter のとびは小
さいとする。$H_{C^2}^h$ は $\frac{\partial M}{\partial \rho} \to \infty$ の条件で決る。(1),(2)から

$$-\ln \frac{T}{T_{CO}} = f_0(\rho) + \frac{\beta^2}{6\beta^*} \cdot \frac{[\xi(\rho)]^2}{F_2(\rho)}$$

をうる。$T \ll T_{CO}$ では

$$H_{C^2}^T(T) = \frac{3\Delta_{00}}{2e\tau_{tr} \nu_0^2} \left\{ 1 + \frac{5}{378} \cdot \frac{\beta^2}{\beta^*} \right\}$$

$$-\frac{2}{3} \left\{ 1 - \frac{65}{98} \cdot \frac{\beta^2}{\beta^*} \right\} \left(\frac{\pi T}{\Delta_{00}} \right)^2$$

となる。

$T=0$ で H_{C^2} の値のずれを調べると

$$\frac{H_{C^2}^f(0) - H_{C^2}^C}{H_{C^2}^C(0)} = \frac{5}{504} \cdot \frac{\beta^2}{\beta^*}$$

$$\frac{H_{C^2}^h(0) - H_{C^2}^C}{H_{C^2}^C(0)} = \frac{5}{378} \cdot \frac{\beta^2}{\beta^*}$$

となる。β, β^* は 1 程度の量だから、ずれは a few % となる。実験によ
れば、H_{C^2} の値が数千ガウスの物質で、観測されたずれは数十ガウスだから
一致はよい。

(10) 以下の方程式を見てみると、このずれの大きさは、Abrikosov
structure を表わすパラメータ β, β^* で表わされていることが分る。この
ことから、ずれの大きさから、実際の structure を知ることが出来ないか
と考えられるかもしれない。しかし、例えば、三角格子と正方格子の場合で
β の値の差は 1 % 程度であり、従って、H_{C^2} の値が数千ガウスの物質で構造
による H_{C^2} の値のずれは 1 ガウス程度か、それ以下となり、実験的にチエ
テックすることは、ほとんど不可能であろう。

磁化のとびを求めるためには、(2)で $|\mathbf{A}|^4$ の項も求めておかなくてはなら
ない。ここでは簡単のために省略した。

-375-
参考文献

1) K. Maki: Physics 21 (1964)