

加速電圧への依存性は傾向的によく一致する。

5 Phonon Magnon について

原研 浜 口 由 和

1. Introduction

Neutron の inelastic scattering, quasi-elastic scattering を利用しての研究の対象は大別すると次の4つとなる。

a 固体のdynamics-格子振動(拡散)

b 液体 (気体)の dynamis 一分子内運動,拡散 collective motion

c 磁性体の spin collective motion-spin wave

d " dispersive motion-spin diffusion etc.

thermal neutron の energy, transmission 等から考えて上記の性質 の研究が可能であることは旧くから指摘されて居り van Hone の理論を始め として多くの理論的研究は行われてきたのであるが,実験の方は 1953年 Brockhouse が格子振動の観測に成功, Lowde,Liste が白色中性子を用い て spin wave の観測に成功しておりながら中性子源の弱さの為に,測定を可

-D33-

rnonon, Magnon 2007

能にする様な大型単結晶の入手難分解能の悪さ等の困難さを生じ,又測定の為 長時間のmachine time を必要とすることもあって,その後 12 - 13 年 は 飛躍的な進展がなかった。しかし最近にいたり 10¹⁴級の原子炉が各地に建設, 稼働を始め,それによる実験データーが発表されだしたことや、 HFBR HFIR の様な 10⁵級の原子炉が米,英,独,ソ等で建設,稼働を開始又は計画される という気運になって来て,中性子回折の実験の主流が非弾性散乱になって来る 日もそう遠くはないと思われる。我が国に於ても 10¹⁴級である JRR-2の運 転が軌道に乗り分光器の建設も完了して,やっと 1,2 の測定結果が得られた様 な状態になった。しかし後に示す様に夫々の研究はやっと一応のデーターが得 られたという程度であり, 10¹⁵級の中性子源の建設を急がないと又々 10年の 遅れを取もどすことは不可能となってしまうであろう。

2. 固体,液体の collective motion

現在迄に一番多くの測定データが得られているのは固体の格子振動の分野で ある。これは Brockhouse, Woods を中心とする Chalk River の group の精力的な研究,及びここで勉強した人達が各国にもどって同様な方法で測定 を行い出した為である。この分野で最も良く用いられている方法は三軸型分光 器を用いての Q-const 法であり,これは反射強度の profile をきっちり決 める必要はなく, peak の位置を決めれば良いので,分解能の影響を受けるこ とが比較的少く,なかなかきれいな測定結果が得られている。

0

2.1 元素特に金属

第1表に現在迄に格子振動の分散関係が測定された元素を周期律表の上で示 す。一見してわかることは先づ実験し易い(常温で安定な大型単結晶の出来る もの中性子吸収断面積の小さいもの)元素から始められたということである。 従って個々のものを夫々見て行くことはあまり意味がないので,この中から一 二興味のある点について述べる。これは主として金属の格子振動の問題に関係 したものである。金属の格子振動に関しては戸谷氏の総合報告が二三発表され ているので詳しいことはそれを見ていただくこととする。この理論的取扱いも 戸谷氏によって始められたもので、electron phonon interaction によ) dispersion relation に見られる anomaly (所調 Kohn anomaly)を説

-D34-

浜口由和

明しようとするものであるが、それによると Fermi surface の形が問題とな ってくる。その例として議論されるのがV及びN族金属の格子振動である。 V 族の元素 Nb, Ta, VI 族の元素 Cr, Mo, W の夫々について格子振動の測定があ るが,それを見るといづれも Cu,Na 等にくらべて複雑な様相を示している。 しかしV族及びVI族の夫々の間では energy の scale をかえるだけでよく似 た curve を示す。 band structure の計算結果から, V及び N族は夫々似 た Fermi surface を持っていることが知られているが, 夫々の anomaly を 示す点は bond 間の transition の k を考えると Kohn anomaly として対 応ずけることが出来る。又両族とも b.c.c structure を持ち性質が似てい るので固溶体を作ることが出来るので, Nb-Mo alloy について Nb から Mo に変る間に dispersion relation がどう変化するかをしらべる実験が Chalk River で行われたが,比較的順調な変化があることがわかりdispersion relation が band structure と関係していること及びこの合金間では rigid band model が成立することが確められた。一方 Pb の dispersion relation にあらわれる anomaly は Kohn anomaly であることは Brockhouse が指摘して以来有名な事実であるが,前のrigid band の考えを用い て Pb に Tl, Bi 等を合金させ, electron の数を変化させ, 即ち Fermi surface の相対位置を変化させた時 Kohn anomaly の位置がどう変るかを しらべることは、戸谷氏も指摘して居られる様に興味のあることである。この 経験は我々も計画して準備を行っていたが,ごく最近 Brockhouse により一 連の実験結果が報告された。

これによると Pb に Tl を入れた場合 Kohn anomaly の q は Tl の濃度が増加 すると共に大きい方に移動している。 (curve の形はそんなに大きくは変ら ないが次第に Cu に近い素直な形になっていく)

我々の所ではやはり同様な試みを Cu-Ni 合金について行った。 Cu 及び Ni は いずれも f.c.c. structure を持ち全率固溶体を作る。格子振動の dispersion relation もよく似て居り, Cu のそれを energy について約 1.3 倍すると Ni のものになる。ただ異っていると考えられるのは Ni の 3d band の effect である。 magnetic properties からはこの合金では rigid band model が成立し Ni の 0.6 の 3d band の hole は Cu の 4s electron でうめられ

-D35-

Phonon, Magnon KOUT

Ni 40% Cu alloy から強磁性が出現しなくなると言われている。我々の求 めた Cu及び Cu-10% N1 合金の dispersion relation を図に示す。一見 にてわかることはわずか 10% N1 を入れただけで dispession relation が非常に複雑なものに変化していることである。 Kohn anomaly が現われる 条件についてはまだ完全な検討を終っていないが, Cu で出現しないのが 10% N1 を入れただけで大きくあらわれることは簡単には説明が出来そうにも ない。試みにこれらの dispersion wwrve を Fourier 分解し面間の interaction force を求めてみると表の様になり Nb-Mo の場合には第2, 第3の近い layer 間の force が大きく変化していたのに対し,第3迄はあ まり変らず第4以上が少しずつ変ってN1 合金の dispersion curve を形成 していることがわかる。

2.2 液 体

主として simple liquid の dynamics について述べる。時間の関係で詳 しくは "Contemporary Physics" にある Egelstaff & Schofield の report を参照されたい。同上6 (1965) 274~284,453~464

i) incoherent scattering よりきまる S_s(Q, ω)を外挿した spectral dencity z(ω)と velocity correlation function との関係

$\beta = \hbar \omega / K T$

jump diffusion → simple diffusion に移行する時間。 c は大体 $1 \sim 2 \times 10^{-12}$ c れはある diffusion process · general feature を 示すものと思われる。

i) coherent inelastic scattering

浜口由和

Brilliouin scattering に対応するものが neutron で見られ, これから liquid の acoustie lattice vibration の dispersion relation が得られる。 Pb, Al 等の例が最近報告されている。測定方法は未だ S(Q, w) を求める方法。 spin wave に於ける diffration method に相当するもの 等であるが, 今後もっと詳しくしらべられるであろう。

3. 磁性体の collective motion

固体の格子振動にくらべてスピン波の測定されている物質の数は非常に少い。

 $\overline{h} \omega = D q^2 \quad (1 - \beta q^2 + \gamma q^4 \quad \cdots \quad)$

β, rが有限の値をとるものもある。

表に示す様に金属強磁性体,即ちN1,Co,Fe ではスピン波エネルギー(これは 大体 zone boundary で hTc になる)が非常に大きく,Fe では zone boundary で 100 meV 位であろう。従って $\frac{2\pi}{a}$ で 0.2 位迄しか測定されてい ない。

もし zone boundary 迄測定されれば r がどの位の range に亘っているかが わかる筈。

 $q = 0.2 位でも \beta$, rの term があらわれている Dの electron number による変化のみであれば $\overline{h}\omega = Dq^2$ を仮定し small angle scattering で求め

Kohn anomaly でないかといわれているもの。 Co-9% Fe alloy 詳しくはかるとどうもあるらしい。これに対する説明としては,

() elastic-magnon

られる。

(2) Kohn anomaly $|q-\tau| = 2k_F$ $|q-\tau| = (k_F^+ - k_F^-)$

-D37-

Phonon, Magnon について

antiferromagnetic

一般にT_Nの低いものが多いので zone boundary 迄観測される。 J₁ J₂がわ かっている。

4. Critical scattering

最近は KMnFa, B-CuZn できちんと resolution function を correct した実験データーの analysis が行われた。

 $\kappa_i^2 \sim (T-T_c)^4$ ----- KM n F₃

$$x = \frac{1}{(T-T_c)^{1/25}} \qquad \beta - brass$$

O-Zの式との関係がしらべられ, KMnF, β -brass ではよく合っていると 云われる。Fe ではあまり合わない。これは Averback, Parcell 共

T (C)	a,,,(a _w n
2 5	0.0 1	0.2 5
467	0.0 2	0 .1 5 add to 1
609	0.04	0.13
711	0.0 8	0.1 5
770	0.2 1	0.21
- `		

jirst neighbour correlation coef

a E

-D38-

浜口由和

金属 Cr の場合

o

$$\frac{1}{\kappa_1^2} \propto (T-T_C)^{0.5} \sim 0.6$$

$$\frac{1}{\kappa_1} \approx 300 \text{\AA} q_{\prime\prime}$$

$$500 \text{\AA} q_{\downarrow}$$

0, Zにあまり良く合わない。特に q,の場合

$$\frac{\partial M(r, t)}{\partial t} = \Lambda \Delta M$$

$$\frac{1}{\tau_{q}} = \Lambda q^{2}$$

$$\frac{d^{2} \ddot{\sigma}}{d \omega d \varepsilon} \sim \frac{1}{\frac{V}{\tau_{q}} + Aq^{2} + Bq^{4}} \times \frac{\Lambda q^{2}}{\omega^{2} + \Lambda^{2} q^{2}}$$

次頁のは中性子散乱の references です。

Ferromagnetic & Ferrimagnetic Substances

Subt ance	(r. A)	κ_1 (A)	$\Lambda_1 (cm/sec)$	Mcthod	Reference
Fe	۰.	· · · · · · · · · ·		0.9A neutr-	Gersh Sh-
	1.05	-16 °C 2.88×10^{-2}		on n Small	ull Wijk-
	1.05	+20° 14.7×	11 fe an aire agus an an an an an an	angle Sca-	inson
	0.91	+66° 23.2×	•	ttering O	P.R.103(56)
	0.7 4	+84° 31.2×		Fourier 変	525
	4	•**	····	换	ngtagt det minge tiere a
				白色中性子の	Lowde
		$r = 25 \times 10^{-2} / T = T$		単結晶による	R.M.P.30
	1.4	$h_1 - 2.5 \wedge 10$ V $1 - 10$		散乱強度の角	(58)
·				度変化。	69
	71 (Tc)	$+10^{\circ}C$ 4×10^{-2}	$\wedge_{\mathbf{I}}$ (T _c)=0	3~6 品中性	Ericson &

-D39-

Subt	71 (Å)	$\kappa (A)$	A (^{Cm} sec)	Method	Reference
=	=1.46 ±0.17 がの 温度 変化	$\begin{array}{c c} 2 & 0 \\ \circ \\ 3 & 0 \\ \end{array} & \begin{array}{c} 6.0 \times \\ 8.0 \times \end{array}$	$\bigwedge_{1} (\mathbf{T}) = 1.5 \ 1 \times 1 \ 0^{-5}$ (T-T _c)	子の3 ℃お ける反射強 度変化及び エネルギー	Jacrot JPoS 13 ('60) 235
	は+5 0°Cで 約 1 0 %	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		変化	
		$\kappa_{1}^{2} = 0.9 \times 10^{-4} \text{ (T} \\ -T_{c})^{\frac{4}{3}} \\ \kappa_{1} \approx 1.6 \times 10^{-2} \\ \sqrt{T} - T_{c})$			
	同上	κ_{i} (T _C) < 5×10 ⁻⁵ q ⁴ term はそう 大きくない。 $\kappa_{i}^{2} = 0.9 \times 10^{-4}$ (T $-T_{c})^{\frac{3}{4}}$	\land_1 (T _C) =2.20.× 10 ⁻³ (後の計算→ 3.9× 10 ⁻³) upto+30°迄 const	4.79A 中性子 の小角散乱強 度の角度変化 及びエネルギ ー分布 (ローター)	Jacrot et al ISN 1n SL IAEA '63V01,317
	1.26)	Static app, では上と大体问 様であるが人i を入れるとやや 大きくなる。 $\kappai \propto (T-T_c)^3$ $(q)^4 = 29 A^2 (TT_c=0~109)$	<pre>/\1 = 3.88×10⁻³ (T 1/C 1ndepen- den t)</pre>	4.28 A 中性 子の小角散 乱強度の角 度分布及び エネルギー分 分 (マイカ, Z _n 単結晶)	Passell et al P1 R.139 (65) A 1866
N 1		$\kappa_{1}^{2} = 0.46 \times 10^{-4}$ (T-T _c) ⁴	$T_{c} = 31.6 \times 10^{-3}$ + 11°C = 5.68×	。 4.7 5 ^A 中性子 の小角散乱強 度の角度分布	Cribier, Jacrot P- arette

C

v

Q

-D40-

	Subt ance	r (Å)	$\kappa_1 (A)$	∧ı(cm/sec)	Method	Reference
			$(q^4) = 200 A^2 (110 A^2)$	-28 9.46×	布及びエネルギ	J.P.S.Japan
			(q ²)	53:5 17.3×	- 分布	17 (* 62) 67
	•			4	(ローター)	
-			$\kappa_1 = 4.9 \times 10^{-2} \sqrt{T-T_2}$	7.5×1 0 ⁻³	白色中性子・単	Rıste
	F os O₄	4±0.1		(T 17 1nd-	結晶法	JPCS17 (* 61)
-	, in the second		an a	ependent)	an An an an an Island	308
			$770 \frac{1}{\infty} 10.6$		138名の中性子	$\operatorname{Spooner}^{\infty}$
			778 9.0		による単結晶の	Averback
	Fe		782 8.4		広角度空間分布	P.R.142 (66)
			812 6.0		<u> </u>	291
			$\frac{1}{2}$ $(m m)^{127}$	· .		
			$-\frac{\kappa_1^2}{\kappa_1^2}$		山牧	
				÷		
		с. ся. т				
·				- -		

Q

0

-D41-

Subs tane	$r_1(A)$	$\kappa_{I} (A)$	inelas- ticity	Method	Reference
C ₀ O	〔存	在を示したのみ〕		1 A 中性子の格 子点附近の散乱 強度の Four ier 変換(単結晶 1.7)	McReynolds Riste J,Phys.etRod 20 (* 59) 175
∝ – F _{e2} 0 ₃	1.68Å ×	$\kappa_{1}^{2} = 3.2 \times 10^{-4} (T - T_{N})^{\frac{4}{3}}$ (up to $T - T_{N}^{-709}$		1.5 A 中性子の 格子点附近の散 乱強度の空間分 布	Rıste,Wanıc JPCS17 (61) 318
Cr ₂ O3		ĸ i = 2.3×10 ⁻⁴ (T -T _N) ⁴ 余りよく合はない		白色光の単結晶 による散乱の角 度分布	Krasnichigt al ISN in SL (IAEA,1963) Vol.2 327
Mn F2			6×10 ⁴ (常温) ∧==0.36 a ² S (S+1) ²⁺ ∧ h→ 6.9 ×10 ⁻⁴	4.27A 中雄子の 7.5°に於けるエ ネルギー巾 (ローター)	Cribier,Ja crot ISN 1n SL (IAEA,1967) Vol.2 309
M _n F ₂		$\kappa (0 01) (T_N) \neq 0$ $\kappa (1 0 0) (T_N) = 0$ $\kappa_2 \propto (T - T_N)^{13 \pm 03}$ $k_{11} \propto (T - T_N)^{12 \pm 02}$	T _N でのひ ろだり 5% (8× 11 ^{11 -1})	3A中性子の空 及びエネルギー 分布 (ローター)	Turberfield OkaZaki,St- evenson Proc,Puys, Sol 85 (65)743

-D42-

·

Q

Ø

Q

	Subs tane	71 (Å)	$\kappa_1 (A)$	inelas- ticity	Method	Reference
	F _e S		$\kappa_1 \cong 1 \times 10^{-2}$ (a t+20°)	$\Lambda_1 = (4.0 \pm 1.0)$ $\times 1.0^{-3}$ (a t+2.0%)	1.376A 中性子 の単結晶による 散乱のエネルギ ー分布 (結晶, 2 _n)	Wanıc et al J,Phys.25 (64)
	° _r		$\frac{1}{\kappa_{f}^{2}} \approx (T - \frac{1.1 + 0.1}{T_{N}})^{-1.1 + 0.1}$ $\kappa_{i} = 0.01 \text{ OA}$ (39.4°O		0.855A 中性子の 単結晶による散 乱の空間分布	Møller, et al Solid State Conm 2(64) 109 Proc Nothing- ham Conf 101
	KM _n F3		κ ² α (T−T ⁴ _{C)} ⁴ ₃		1.05 A 中性子の 単結晶による散 乱の空間分布	Cooper & Nat- hans J.A.P.37 (* 66) 1041
والمتعد بالمتعاد المتحافظ المتحاف المتعارية والمتنابع والمتكرم المتحالي المتحالي والمتعارية والمتعاد المتحافظ	M _n F₂		$\frac{1}{\kappa_1} = 17 \stackrel{\text{O}}{\text{A}} \text{ at} +0.92^{\circ}\kappa$		0 4.27 Aの中性子 の単結晶による 散乱空間分布の エネルギー分布	An taini J.P.C.S28 ('67) 11

- part in an and a second and a second and a second as	· · · · · · · · · · · · · · · · · · ·	T		
Suls tane	Method	Range	Data	Refrence
Mn F₂	Energy	〔001〕方向	0.75Tn 迄はあま	Turberfield et
4.2° k	Analy.	hw:5~70°k	り変化なし	al Pnos.Rhyo.
4 9.5° k	(TOF)	(0.5~7 mev)	1.2. Tn になつて	Soc
62.° k			🗞 total ene-	88 (65) 743
T _n =67.℃k			rgg range /1	
			変はらをい。	
MnO	同上	(100) 方向	二本に分れる	Collins
(4.2 °k)		q :~0~0.2	$J_1 = -0.33 \pm 0.04$	Pnoc.Notting-
		1199:1~6mev	mev	ham Conf 319
			$J_2 = -0.29 \pm 0.013$	
			mev $\kappa_1 = 1.9.0 \pm 0.1.3$ $\times 1.0^7$ ergcc	
KM _n F3 (4 2.°k)	同上	q:0.02~0.85 o-1 A h∞=1~9mev	$J_{1} / k = 3.80 \pm 0.04^{\circ}k \\ J_{2} / k = 0.11^{\circ}k \\ 0.02^{\circ}k \\ E_{A} (an 1 so tro - p y en ergy) \\ E_{A} / k = 0.41 \pm 0.05\kappa$	Pickart et al J.A.P. <u>37</u> (66) 1054
PbM _n F3	同上	q :~0~0.7 Å ^{−1}	J₁ −3.4°π	Windsor & St-
(4.2° K)		hω :~0~9 mev	$J_2 = J_3 = 0$	evenson Fros.
				Phyo.soc 87 (* 66) 501
C _C F ₂	Energy	a-方向,	5 本観測	Cowley,et al
(4.5° K)	analy	c方向	遠赤外に出ない	P.R.L18 ('67)
	(3-axis)	q: 0~0.5 $\omega: 1~6 \times 10^{12}$ hw::06~4 meV	ものゆり	162

-D44-

0

Ø

Q

Substance	Method	Range	Data	Reference
Тb (90°к)	Energy Analy.	a,b,c,方向 h@:2~14mev	$J_1 \sim J_5$ $J_1 \prime \sim J_5 \prime$	Møller e Hou- man
	(3-axis)	ac <u>e</u> op br- anch	anomaly in Q -direction	P.R.L <u>16</u> (* 66) 737
Fe ₃ O4	Energy Analy (3-axis)	〔0.0.1〕 方向 ac <u>e</u> op branch	J _{AB} =2.0mev	Brockhause P.R. <u>106</u> (* 57) 859
		hω:2~80mev		Brockhouse.Wa- tanabe Phyo.Jettere <u>1</u> ('62)189
	Diffract ion (polariZ- ed)	q:0.05~0.32 hω:1~20mev	h $\omega = (h^2 / 2m) (\alpha$ $q^2 + \beta q^4)$ $\alpha = 297 \pm 15$ $\beta = (-2.2 \pm 0.4)$ $J_{AB} = 2.35 m ev$	Alperin et al P.R. <u>154</u> (67) 508
Y 1 G	Diffract ion の変形 (Polarized)	-	D=250mev 260 ≁ 260±0.02mev	Ferguson. Samz Poagor J.A.P37 (* 66) 1050

þ

-D45-

0	T	1	r	
tance	Method	Ran ge	Data	Reference
Fe	Diffraction	q:0.05~0.2	$h\omega = Dq^2 (1 - \beta q^2)$	Shirane, Natha-
Fe-S1	(Polar 1Zed)	hω:3~30mev	+794)	ns et al
alloy			D=266mev	P.R.L.15 (65)
1			β==3.2 A ²	146
			γ=8.4 A ⁴	
00	Energy analy	q:0.03~0.2	$h\omega = C + 12JS \times 2\pi$	Sinclair & Br-
(f.c.c)	(3-axis)	h w: 2~50 mev	(1-000 (200)	ockhouse
co-Fe			$\frac{qa}{2\pi}$)	P.R. <u>120</u> (* 60)
alloy			JS= (1.47±0.15)	1638
			$\times 10^{-2} \mathrm{ev}$	
			(= (1.3±0.5) ⊪ev	
	Diffraction		$\mathbb{E}(q) = \frac{h^2}{(\alpha \alpha^2 + \beta)}$	Frikkee & Pis-
	non-Palari-		2 mo	te
	Zed		<i>α</i> =84+8	Proc Notting-
	non-magnet-	1. 1. 9 2 a. A	$J S = \frac{\alpha h^2}{1 \sigma^2} = 6.94$	ham Conf.299
	gu	$a = \int_{-\infty}^{\infty} dx = \int_{-\infty}^{$	4 a m <u> </u>	
			$E(0 + \frac{Bh_2}{2m} = 2.9 \pm 0.6$	
	· ·		Z m mev	
			kohn anomaly	
	Diffraction	κ.	Khon anomaly	Riste,Shirane
	(Polarized)		を否定	et al
To the second seco				J.A.P.36 (' 6 5)
				1076
	Diffraction		$h\omega = E(0) = 2JSa^2q^2$	Furrer,Schnei-
	(Polarized)		JS=7.0±0.6mev	der,Halg Solid
			E (=)=1.9±0.5 mev	State Comm
			$\vec{lq} + \vec{\tau}_{hke} l = 2 k_F$	<u>3</u> (65) 339

į

0

19**4**4

-D46-

	1	[
			に anomaly あ	
		· · ·	в	
			$1 \vec{k}_{\rm F} = 1.44 \pm$	
			0.0 2Å	
		a:005.01	$har \frac{1}{2}$	Frikkoo
	Diffaction	Q.0.05~0.1	$D = 275 \pm 16 \text{ meV}$	LT TYYCA
	(magnet1zed)	$h\omega: 3\sim 10 \text{ mev}$		Physica <u>32</u> ('66)
	· · · · ·		⊡o ; =0.52+0.16¢≆v mev	2149
			anomaly 有り、	
			elas to-magn	
			on or $1q+2\pi\tau$	
	2780 to 199		$1=1 F-k_F$	
Сo	Diffraction	q:0.04~0.2	h $\omega = Dq^2 (1 - \beta q^2)$	Alperin et al
(h.c.p	(polarized)	hω: 2~33mev	+ 7 q* -)	J.A.P.37 (66)
			$D=490\pm20$ meV	1052
			$\beta = 3.3 \pm 0.4 \text{ A}^2$ 7	
NI	P. P. Dunnet	q:0.05~0.11		Riste,Shirane
		ho:3~13mev	D=340+45mev	et al
			2000 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 -	J.A.P. <u>36</u> (* 65) 1076

ķ

.

-D47-

. .

1. R.E.Schmunk. R.M.Brugger, P.D.Randolph. K.A.Strong.

P.R. 128 (1962) 562.

2. R.E.Schmunk.

P,R. 149 (1966) 450

3. E.W.J.Mitchell, J.R.Itardy. D.H.Saunderson

ISNSL] (1963) 49

4. J.L.Warrer, R.S.Weutzel, J.L.Yarnell

ISN vol [(1965) 361

5. G.Dolling, B.u.Brockhouse

P.R. 128 (1962) 1120

- 6. P.A.Egelstaff, D.H.C.Harris. Physics Letters 7 (1963) 220
- 7. B.C.Haywood, I.M.Thorxco. I.S.U.S.L vol [(1963) 111

8. A.D.B.Woods, B.N.Brockhouse, R.H.March

H.T.Stewart, R.Bouers. P.R. 128 (1962) 1112

9. S.T.Cocking

I.S.N.S.L (1963) vol1 227

10. M.F.Collina. Proc.Phys Soc. 80 (1962) 362

11. P.K. Iyengar. G.Venkataraman.

P.R.Vija yaraghavau A.P.Roy. I.S.N vol (1965) 153

12. R.S.Cartu, H.Paleveky, D.J.Hughes

P.R.106 (1957) 1168

13 B.N.Brsckhouse, A.T. Stewalt, Rev.Mod.Phys. 30 (1958) 236

14 K.E. (arrsou, S.Holmryd. U.Dohlborg I.S.N.L (1961) 587

15. R.E.Schmunk, R.M.Brugger, P.D.Randol ph I.S.N.S.L voll (1965) 379

16 J.L.Gainell, J.L.Warreu. S.H.Koenig "Lattice Dynamica" (1965) 57

17 R.Stedman. G.nieion

P.R. 145 (1966) 492

-D48-

18. B.N.Brochhouse

J.Phys.Uhew.Svlids 8 (1959) 400

19. G.Dolling

I.S.N.S.L (1961) 563

20. N.Krvo, G.Borgonovi, K.Skold, K.R.Larsson I.S.N.vol II (1965) 101

21. B.A.Dasaunacharya. K.R.Rao P.R.137 (1965) 417

22. B.Mozer. K.Otnea. H.Palivsky "Latt,' c Iynams' cs" (1965) 63

23. A.T.Stewalt, B.N.Brockhouse. Rev.Mod.Phys. 30 (1958) 250

24. C.M.Elsenhaver.I.Pelah, O.J.Hughes. H.Palevsky, P.R.109 (1958) 1046

25. K.C.Turbufield. P.A.Egelstaff P.R.127 (1962) 1017

26. M.G.Zemlyanow,Y.M.Kagan. N.A.Thervoplebov

A.O.Tohetserin

I.S.N.S.L (1963) vol [],125

27. R.Hass.W.Kley. K.H.Krebs. R.Rubin.

I.S.N.S.L vol [(1963) 145

28. W.Glaser, F.Carvollo, G.Ehret.

I.S.N. (1965) vol 1,99

29. H.B.Moller, A.R.Mockintosh.

I.S.N.vol I (1965) 95

30. P.K. Iyeugan. N.S. Satya, Murthy.

B.A.Dasannacharya

I.S.N.S.L. (1961) 555

31. G.E.Low

Proc. Phys. Soc. 79 (1962) 479

-D49-

- 32. J.Bergsma, C.Van.Dijk, D.Tocchatti Phys.Letters. 24A(1967) 270
- 33. N.A.Tchernoplekov, M.G.Zemlyanoy M.G.Tchetserin, B.G.Lyashtcheukc I.S.N.S.L. vol [[(1963) 159
- 34. R.J.Birgeneau, J.Corder, G.Jolling, S.D.B.Woock P.R. 136 (1964) A1359
- 35. D.Cribier, B.Jacrot, D.Saint-James I.S.N.S.L. (1961) 549
- 36. E.Z.Vintaikin U.V.Gorbachev, P.L. Gruzin Soviet Plupies 7 (1965) 296
- 37. S.K.Sinha

P.R.143 (1966) 143

- 38. G.Borgsnovi, G.Caglioti, J.J.Antal P.R.132 (1963) 683
- 39. E, Maliszewski, J.H. Rasulawski

D.Sledziewska

"Lattice Dynamics"" (1965) 33

40. B.N.Brock house, P.K.Iyeugar

P.R.111 (1958) 747

41. A.Ghose, H.Palevsky, D.J.Hughes, I.Pelah C.M.Eiseuhauer

P.R.112 (1959) 49

- 42. B.N.Brsckhause, B.A.Dasannachager Solid.State.Comm. (C1963) 205
- 43. G.E.Coote, B.C.Haywood I.S.N.S.L (1963) vol 1,249
- 44. M.Antonini, P.Ascarelli, G.Caglioti P.R 136 (1964) A1280

-D50-

45.	Y.Nakagawa, A.D.B. Woods
	Phys. Rev.Lettur 11 (1963) 271
46.	A.L.B Wovek, S.H.Cheu
••	Scld, State Consm 2 (1964) 233
47.	B.Mozer, K.otones
	I.S.N.S.L vol I (1963) 167
48.	H,Palevakg
	I.S.N.S.L (1961) 265
49.	S.J.Cocking, Z.Guner
	I.S.N.S.L vol I (1963) 237
50.	R.E.Schmunk, W.R.Gavın
•	P.R.Letters 14 (1965) 44
51.	J.M.Rowe, B.N.Arochhouse, E.C.Sveusson
	P.R.Letters 14 (1965) 554
52.	D.Long Price
	I.S.N. vol [(1965) 109
53.	A.D.B.Wooels
	P.R.136 (1964) A781
54.	S.H.Chen, 1B.N.Brockhouse
	Solid.Stale Comn. 2 (1964) 73
55.	B.N.Brockhouce. N.K.Pppe
	P.R.Letters 3 (1959) 259
56.	B.N.Brockhouse, T.Arass, G.Caglioti
	K.R.Rao A.D.B.Woods
	P.R. 128 (1962) 1029
57.	K.C.Turberfield
	Prsc. Phys. Soc. 80 (1962) 395
58	H.Palevsky

te la

13

R

I.S.N (1965) p265

-D51-

Q.1

59. S.J.Cocking, P.A.Egelstaff

Phys. Letters 16 (1965) 130

- 60. P.D.Raudolph WASH-1068 P175
- 61 J.L.Yarnell, J.L.Warrer, R.G.Wenzel.S.H.Kwenig

I.B.M.J.Res.Develop, vol8 234 (1964)

62. N.B.Chermoplekov. M.G.Zernly a now

E.G.Brovnian.AG.Chicherir

I.S.N.S.L. vol [(1963) 173

63. H.Bjarrun Maller, A.R.Machin 50shP

P.R.Letters 15 (1965) 623

- 64. A.Dollig. G.Gilat Solid.state Comm.2 (1964) 79
- 65 G.Gilat, G.Doling P.R. (38 (1965) A105)
- 66. G.Dolling, G.Gilat I.S.N(1965) vol I, 3.43
- 67. E.C.Svensson, B.N.Brock houce J.M.Rowe

Solid State. (Comm. 3 (1965) 245

- 68. A.D.B.Woods B.M.Powell Phys. Rev.Letter 15 (1965) 778
- 69. W.B.Damiels, G.shirane, B.C.Frazer H.Umebayashi, J.A.LeaKe P.R teilus 18 (1967) 548
- 70. S.C.Ng (B.N.Brockhouse Solid. State Comm.5 (1967) 79

007	œ			4		2 2			2.2						
	Ð			Ne ₂		AV ,	70 70 70		Kr	69		Xe		E.	
			Q	0.0		33			6.7 6			0 9			
				E.		딩		·····	田			H		At	
		-	ЧŅ	(4		1.1			و ي يو	со 4	÷.	5		0	
				. O .		4			рц 69	ৰ ক		3.4		ГД,	······
			ďΛ	- <u>-</u>		. – д	-		AS IL			sp.		6 6 7	
	,					dr. 1			4			60		2.1	Ē
			Νt	O.	64092	S1	18	· . ·	ð	40 18	4 1 4 2	8	44556 8900 4 8	Qd	000 000 000 000 00
			Q I	222 7 7	¢	1.4	الديني . ا	-	0 4 7 0			96.2		14 4	
		·····		μœ	·····	TA	44 20 40 40	120	8			8		E	
								а П		മറ	(99.	2450	م العالي في الم	50 70 70	
		· · .							8	ന് ന	4 65	8		8 H	
			: -				- -	qI	بي 1.	35 36	37 37	-00 -00 -00	(29)	867 67	
				<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>			7 .5 (ł	8 6 /		8.0	
	. 「	S I	କ୍ <u></u>						N1,	33 34	-	R	4 (<i>L</i> 7)	L.	
		E C C	oar						7.0		T	156		440	
	ľ	е С С	D _e re					M	8			R		3 IV	· · ·
	.]_			i	<u>.</u>			•	11.0	0 4	(23)			15.	
				[]					n u u	ຕີດ	e .		na an a	8	
			•					Ша	5 13 2		ال د.	- 7 2		3e 14	
								 	T O		•	-		27 27	
								М)r 3	29	-	M.	46 68)	W 5	4 (63)
							-	Va	0.0	2 8	: .	1.0		21. 5.	~
			-		-					2 23	10, 10	ND ND	4	Ta	22
								IVa	5 4	22	ł	8	(29'92)	105 8 8	
												7		田	
	•.							Ша	N N S S		•	Ч			
				6	c	. 9			*			2.0		ev .	<u>_</u>
				Be	-0	Mg		-	જ			문	-	R	
1: Q.	81.5		l a	14		4.			1 20			4.0		29.	
	Щ					R			R		• •	R	- · ·	S	

2

đ

f

-D53-

. -