<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>11. Note on Green's Function Method in Many-Impurity Problems in Solids</td>
</tr>
<tr>
<td>Author(s)</td>
<td>武野 (正三)</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1967), 8(6): F57-F60</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967-09-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/86083</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
11. Note on Green’s Function Method in Many-Impurity Problems in Solids

武野正三

一体近似に基づいて、結晶格子内の多数の不純物が電子、格子振動、スピン波、Frenkel exciton等に及ぼす影響を調べる際、グリーン関数Gを用いると、一体グリーン関数Gの満たう式

\[G = \mathcal{G} + \mathcal{G}V \mathcal{G} \] \((1) \)

を解く事が必要になる。此処に\(\mathcal{G} \)は不純物が存在しない場合の完全結晶格子のグリーン関係、\(V \)は不純物の影響を表す。\(\mathcal{G} \)を既知として(1)の解を調べるのがグリーン関係の方法である。

多数の不純物がランダムに格子内に存在する場合、(1)は通常クラフ法を用いて解かれている：Langerの方法は最も標準的なものの一つである。又、(1)の座標表示に対してはMatsubara-Toyozawaの方法が用いられて来た。クラフ法は物理的意味がはっきりしていて、(1)の最もオーソドックスな解法であるが、その近似の数学的な面等は余り吟味されていないように思われる。

系の素励起エネルギーは\(\mathcal{G} \)のpole即ち行列式

\[D = \det | I - \mathcal{G}V | \] \((2) \)

（\(I \)はunit matrix）に含まれていることを考慮すれば、(1)の近似解より求められる自己エネルギー\(\Sigma \)と\(D \)の間に既関係が存在する事であろう。このような事を考慮して、(1)の別の解法を試み、そのためFeenbergの方法を適用した。

(1)の座標表示を次の形に書く

\[G(nn',E) = \mathcal{G}(nn',E) + \sum_i f(ni,E)G(in',E) \] \((3) \)

但し

\[f(ni) = \sum_j g(nj)V(ji) \] \((4) \)
Note on Green's Function Method in
Many-Impurity Problems in Solids

処に n, n' は格子点を表わし、i, j は不純物により乱された格子点を表わす。
(3) を iteration の方法を用いて解く場合、展開の各項は例えば不純物により
乱された格子点を歩く random walk に対応づけられるが、すべての走に対して異った格子点を歩くよう展開項を整理するのが Feenberg の方法の精
神である。

以下最も簡単な場合

\[V(ij) = V \Delta (ij) \] \hspace{1cm} (5)

(\Delta はクロネッカーのデルタ) に話を限る。すると(3)の解は次の形に書ける。

(i) n: host site

\[G(nn') = g(nn') + V \sum_i g(ni) \frac{1}{D(i)} g(in') + V^2 \sum_i \sum_{i_1(\neq i)} g(ni) \frac{1}{D(i)} \]

\[g(ii_1) \frac{1}{D(i_1)} g(i_1n') + V^3 \sum_i \sum_{i_1(\neq i)} \sum_{i_2(\neq i_1i)} g(ni) \frac{1}{D(i)} \]

\[g(ii_1) \frac{1}{D(i_1)} g(ii_2) \frac{1}{D(i_2)} g(i_2n') + \cdots \] \hspace{1cm} (6)

(ii) n = i impurity site

\[G(ii') = \frac{1}{D(i)} \{ (6) 式の G(nn') における n = i とおいた項 \} \] \hspace{1cm} (7)

where

\[D(i) = 1 - V g(ii) - V^2 \sum_{i_1(\neq i)} g(ii_1) \frac{1}{D(i_1)} g(i_1i) - V^2 \sum_{i_1(\neq i)} \sum_{i_2(\neq i_1i)} \]

\[g(ii_1) \frac{1}{D(i_1)} g(i_1i_2) \frac{1}{D(i_2)} g(i_2i) \cdots \] \hspace{1cm} (8)

\[D(i_1) = 1 - V g(ii_2) - V^2 \sum_{i_2(\neq i_1i)} g(ii_2) \frac{1}{D(i_2)} g(i_2i) - V^3 \sum_{i_2(\neq i_1i)} \]

\[\sum_{i_3(\neq i_2i_1i)} g(i_1i_2) \frac{1}{D(i_2)} g(i_2i_3) \frac{1}{D(i_3)} g(i_3i) \cdots \] \hspace{1cm} (8)
武野正三

Dに対する表式は逐次的に得られている。leading term D(i)の数学的な意味は、方程式

\[D(i) = 0 \]

の根は方程式

\[D = \det | \triangle (ij) - V g(ij) | = 0 \]

に於て

\[\lim \quad 1 - V g(ij) = 0 \quad \text{all } j \neq i \]

\[g(ij) \rightarrow 0 \]

となる根に等しいと云うことである。

(6)に於てすべてのDを等しいと云う近似をおき、ランダムな不純物の分布を仮定すれば、不純物の濃度が小さい時（もっと正確には Yonezawa, Matsubara の方法を適用しなければならない）(6)は次の如くなる。

\[G(nn') \equiv G(nn', \Sigma) = g(nn', \Sigma - \Sigma) \]

但し

\[\Sigma = \frac{cV}{D} \]

Gは不純物の濃度である、(8)よりΣの逐次近似は

\[\Sigma^{(0)} = cV \]

\[\Sigma^{(1)} = \frac{cV}{1 - V g(ii)} \quad (g(ii) \text{は } i \text{より } \nu) \]

\[\Sigma^{(2)} = \frac{cV}{1 - V g(ii) - V^2 \sum_{i_1(\neq i)} \frac{g(i_1i)g(i_1i)}{1 - V g(i_1i_1)}} \]

\[\vdots \]

\[-F59- \]
Note on Green's Function Method in Many-impurity Problems in Solids

(131) は virtual crystal 近似、(131) は one-impurity problem を正確に解いた解、(131) は two impurity problem を正確に解いた解……となっている。以下 three impurity, four impurity…… を正確に解いた自己エネルギーの式が逐次近似的に容易に得られる。さて、この方法の終局は D に元の行列式を取った形のものであろう。然しながら 6) の計算に consistent な D の求める方をすれば、自己エネルギーとして

\[
\Sigma = \frac{c V}{1 - V g(i, E - \Sigma)}
\]

が当然得られる。これ一つの self-consistent な解となっている。6) は Davies-Langer 5) の結果に等同である。6) は 8) から容易に分るように可能微し解になっている。このような解からは例えばスペクトルに見られる fine structure 6) は出て来ない。これは想像であるが、6) をもっと正解に解いて、始めて fine structure が得られるとある。然しながら、物理量を観測する場合、装置の分極能等に限度があるから、解 6) は普通の観測に付しては良い近似になっているものと思われる。

以上得られた方法とグラフ法との対応は容易であるが、話は一切省略する。尚、この方法を分子結晶内の Frenkel exciton に適用するのが主な目的であったが、数値計算が未完成のため、結果の紹介は省略する。

References
4) E. Feenberg, Phys. Rev. 74, 206 (1948).

尚、他に引用すべき文献は多数あるが、省略する。