KH₂ PO₄型結晶の強誘電転移 Ⅱ

小 林 謙 二 (東大理) (9月20日受理)

ここでは、前の論文⁽¹⁾ (物性研究 vol.8, No.5) "Dynamical Theory of Proton—Lattice Interactions in Hydrogen—Bonded Ferroelectrics" (以後(I)と記す) の補足的な事柄、すなわち、KDPの常電相での誘電分散と飽和自発分極を考察し、Slater 以来、いろいろと議論されてきた KDP の相転移に対する明確な picture を与えたいと思う。

§ 1. K D P の常電相での誘電分散

誘電分散を考えるときには,緩和の効果を考りょする必要があり,熟統計力学的な考察が必要となる。すなわち,密度行列を用いて議論するのが適当である。最近, Vaks, Galitsky and Larkin は, self — consistent field 法を用いて, 2 次の相転移点の近傍での collective excitation の一般理論を発展させ, double minimum potential の場合でも,その collective mode は tunneling が存在すると, k=0 , $T \to T_c$ で $\omega \to 0$ となることを示した。また,緩和効果がかなり大きい double minimum potential 型の強誘電体では誘電分散が Debye 型になることを示した。

ここでは、Vaks らと全く同様なやり方で、緩和効果を empirical に入れて KDP の誘電緩和を議論する。すなわち、彼等の結果を我々のモデル にやき直して考えてゆく。(彼等の論文は筆者によりその概要が邦訳されて いる $^{(3)}$)。

さて、(I)で示したように、 $[K-PO_4]$ complex は tunneling motion をしている proton と強く couple しており、しかも、強誘電 mode ω_{-} は、両方の系が in — phase に振動する proton tunneling like mode ()) である、すなわち、 $[K-PO_4]$ complex が proton tunneling motion に instantaneous に follow する mode であることがわかっているので、 interaction で少し modify された、 double

minimum potential 様の potential 内を運動する系を考察すればよい。 緩和を Mandel' stam - Leontovich 流に empirical に入れると,方程式は

ここで、 E_i は average macroscopic electric field で、 $U(r_i)$ は double minimum potential 様の potential であり、 $V(r_i,r_j)$ は ferroelectric transition をおこす dipole — dipole 相互作用である。波形は proton — lattice 相互作用を含んでいることを意味する。

この方程式は、系が local な equilibrium に近づくことを表わしている。

平衡状態の density matrix は

以後・簡単のために、 $V(r_i,r_j)$ が (r_i,r_j) $V_{R_{ij}}$ と表わされ、U(r) が中心対称をもつ場合を考えよう。今・電場 E_i が次のような依存性をもつとすると、

線形近似では,

となる。 P に対する方程式は (1) を線形化することによって、次のように得られる。

ここで、 $\widetilde{V}_k = \widetilde{\Sigma} \widetilde{V}_R \exp(ikR)$ であり、kが小さい所では、 $\widetilde{V}_k = \widetilde{V}_0$ (1- $k^2R_0^2/6$) と展開される(R_0 は相互作用半径)。

誘電関数 ϵ (k, ω) は次の式で定義される。

ここで、 Vc は unit cell の体積である。

(7) 式は、 $H_0 \psi_{\nu}(r) = \epsilon_{\nu} \psi_{\nu}(r)$ の方程式をみたす H_0 の固有関数を用いると簡単にとけて、 $\epsilon(\mathbf{k}, \omega)$ は、

$$\varepsilon (\mathbf{k}, \omega) = 1 + \frac{\lambda \pi (\omega)}{1 - V_{\mathbf{k}} \pi (\omega)} \qquad (9)$$

$$22 \, \text{c}, \quad \lambda = \frac{4\pi \, \text{e}^2}{\text{v}_{\text{C}}}$$

$$\pi (\omega,T) = \sum_{\mu,\nu} \frac{x_{\mu\nu}x_{\nu\mu}(n_{\mu}-n_{\nu})}{\omega_{\nu\mu}+\omega+\frac{i}{\tau}} + \beta \sum_{\mu} \frac{n_{\mu}x_{\mu\mu}^{2}}{1-i\omega\tau} \dots (10)$$

$$n_{\mu} = e^{-\beta^{\epsilon} \mu} / S_{p} e^{-\beta^{\epsilon} \mu}$$
, $\omega_{\nu \mu} = \epsilon_{\nu} - \epsilon_{\mu}$

double—well potential の quasiclassical な場合には、even state \ge odd state \ge on \ge odd state \ge of \ge odd state \ge of \ge odd state \ge of \ge odd state on \ge odd state on

すると, (10) 式の最後の項は,

となる。ここで, $\chi_0(\nu)$ は,一つの well の領域について χ を平均した量である。

今,緩和がない場合($\tau=\infty$)を考えると,(10)式は

さて, π (ω ,T) と V_k を小さい量 ω^2 ,($T-T_c$), k でそれぞれ展開すること。

ここで,

$$\delta = \frac{R_0^2}{\delta} \frac{V_0^2}{\lambda}, \quad 1 = \widetilde{V}_0 \pi (o, T_c),$$

$$a = -\frac{V_0^2}{\lambda} \frac{\partial \pi}{\partial T} \Big|_{\substack{T = T_c \\ \omega = 0}} = \frac{\widetilde{V}_0^2}{\lambda} \frac{d}{dT} \sum_{\mu \neq \nu} \frac{(n_{\mu} - n_{\nu})}{\omega_{\mu\nu}} \chi_{\mu\nu}^2,$$

$$\omega_0^{-2} = \frac{V_0^2}{\lambda} \frac{\partial \pi}{\partial \omega^2} \Big|_{\substack{T = T_c \\ \omega = 0}} = \frac{2\widetilde{V}_0^2}{\lambda} \sum_{\nu} n_{\nu} \frac{\chi_0^2(\nu)}{\omega_{as}(\nu)}$$

この式は,丁度,(I)の(20)式に対応している。

さて,緩和の効果が noticeable な場合を考えよう。この場合, $\omega \ll \frac{1}{\tau}$ で, ω , $\frac{1}{\tau}$ は他の遷移周波数 $\omega_{\mu\nu}$ (ω as は除く) よりも遙かに小さいので, (10) 式は,

 $\omega_{\mu\nu} \gg \omega$, $\frac{1}{\tau}$ であるから,才 3 項と才 5 項は無視することができ, k=0 に対する誘電関数は,

となる。ここで、
$$A = 2 \sqrt[2]{\chi_{T_c}} \cdot C z_n \chi_0^2(\nu)$$

かくして、double minimum 様の potantial で緩和効果が大きい時には、その誘電関数は、Debye 型になることがわかった。これは、有名な Hill-Ichiki の実験データ $^{(4)}$ と一致する、(15)式からわかるように、 T_{C} に近づくと、分散は、低周波 $\omega \sim (\text{T}-\text{T}_{\text{C}})$ (τA) から始まる。 また、有効緩和時間 τ^* は次の形をもつ、

$$\tau^* = \frac{A}{(T - T_C)} \cdot \tau \tag{16}$$

従って, $T \to T_c$ の時,有効緩和時間は非常に大きくなり,緩和が非常にゆっくり起ることになる。これが,いわゆる Critical slowing down の現象である。

この種の依存性は、Landau — Khalatoniko $v^{(5)}$ によって理論的に導かれ、いくつかの実験 $v^{(4)}$ でも観測されている。

§ 2. 飽和自発分極

(I) で考察したモデルによると、C軸方向に沿った[K-PO₄]Complex

の格子振動の optical mode が, $T=T_c$ で不安定になる。しかしながら,その後,格子の変位は無限大まで成長するわけでなく,Cー軸方向の格子振動の anharmonic な項によってくいとめられることが期待される。

従って、K,Pイオンの変位の大きさは、結晶格子の θ lastic な性質と θ lectro — θ tatic な性質によって決定されると考えられる。 θ lastic な性質や ion は、ただ質量だけを変えるのみで、結晶格子の θ lastic な性質や θ lectrostatic な性質には殆んど影響を与えないと考えられるので、 θ lastic な性質や θ lastic なせ質や θ lastic な性質や θ lastic なけ質や θ lastic な性質や θ lastic なけ質や θ lastic なける θ lastic など影響を与えないと考えられるので、 θ lastic なける θ

§ 3. KDPの相転移の明確な picture.

よく知られているように、Slater-type の模型 $^{(9)}$ では、KやPイオンは動かずに、プロトンが $\begin{bmatrix} PO_4 \end{bmatrix}$ に集まるために、そこに dipole moment が現われ、強誘電転移が起るとしている。しかし、(I) でも述べたように、実際には、X線回折 $^{(10)}$ や、中性子回折 $^{(11)}$ によると、K、Pイオンは C 軸方向に動いており、E の変位の大きさに電荷をかけた量で、E 軸方向の E Spontaneous polarization の値は満足に説明されている。

我々のモデルは、2つの仮定から成り立つている。

- (1) 自発分極は、K,P,O イオンのC軸方向の変位によって生ずる。 この点で、我々のモデルは Slater - type model とは、はっきり と区別される。
- (2) proton tunneling collective mode が存在する。

水素結合内のプロトンが tunneling していることは、水素結合をもつ他のいろいろな物質で確立されており、また、Oshida et al による水素結合をもつ高分子:N-methyl acetoamide の NMR の測定によると、プロトンープロトンの dipole - dipole coupling は、5 bond 離れた所までも存在している。従って、KDPにだけ、この coupling がないと考えるのは、不自然であろう。実際、(I)でも述べたように、最近、Imryらは、proton tunneling collective mode を中性子回折で観測したと報告している。

以上の2つの可成り plausible な仮定を認めると、次のような相転移の picture が得られる。

proton の tunneling mode は、C軸方向の $[K-PO_4]$ イオンの格子振動と非常に強く couple し、2つの coupled mode のうちの一つの mode、すなわち、両方の system が in - phase に動く、 ω_- mode ($\frac{1}{2}$) が強誘電転移をひきおこすことになる。つまり、プロトン系が、それ自身のキュリー点に近づくと、この ω_- mode が不安定になって、凍結され、C軸方向に大きな自発分極を作る。これが、我々の理論で与えられる KH_2 PO_4 型結晶の強誘電転移の mechanism である。 ($\frac{1}{2}$ 1 図からわかるように、プロトンの分極は打ち消し合う。)

これらの結果から、KH₂ PO₄ 型結晶は "混合型" (mixed type)の触 誘電体であると新しく呼びたいと思う。すなわち、水素結合内のプロトンは Order — disorder 型の転移をし、C軸方向の K, P ion は displacive 型の転移をしていると結論したい。この結論は、最近の Blinc らの 論文の — 番最後に書かれている文 "The transition (in KH₂ PO₄ — type crystals) may well be an order — disorder one for hydrogen bonds and a displacive one for the K ions" と完全に符合して とにかく、(I) で考察した ferroelectric な collective mode が強誘電性の出現に何らかの関係をもっているに違いない。最後に一言だけ、注意しておきたい。

我々の理論で示されたように、KDP型結晶での強誘電性の出現には、proton の ordering が vital な改割を果しているので、transition entropy や比熱などの方向性のない量には、order — disorder の feature が manifest されることが十分期待される。しかし、KDPは "純粋"な order — disorder 型の強誘電体ではないのである。今まで、KDPは order — disorder 型の典型的な物質であると見なされてきたが、もしも、この理論が establish されれば、KDPは "混合型"の強誘電体と呼ばれるようになるであろう。筆者は、その日が一日も早く来ることを願っている。ともかくも、 KH_2PO_4 は $B_aT_1O_3$ と並んで、強誘電体では、重要な位置をしめており、一方の $B_aT_1O_3$ は 1960年に Cochran が格子振動の不安

定性の理論を提唱し、その後実験的にも確立されたが、KDPは1941年に Slater (9) がプロトンの order – disorder 模型を提唱して以来, いろいろともめ続けてきた。

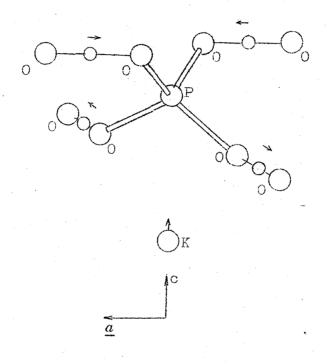
この論文が、この30年来の問題に対する一つの definite な解答となる ことを祈って筆をおく。

諸賢の御批判を仰ぎたい。

References

- (1) K. Kobayashi Bussei Kenkyu 8 (1967) 287, tobe published
- (2) V.G. Vaks, V.M. Galitsky and A.I. Larkin, Soviet physics JETP 51 (1967) 1592
- 3) 物性 8, No.3 (1967) P.209. "最近のソ連の物性研究から"
- (4) R.M. Hill and S.K. Ichiki, phys. Rev. 130 (1962) 150
- (5) L.D.Landau and I.M.Khalatonikov, Soviet Physics Doklady 96 (1954) 469
- (6) H.Akao and T.Sasaki, J.Chem. phys. 23 (1955) 2210
- (7) W.Bantle; Helv phys. Acta 15 (1942) 373
- (8) R.J.Mayer and J.L.Bjcrkstam, J.phys. chem. Solids. 23 (1962) 619
- (9) J.C.Slater, J.chem. phys. 9 (1941) 16
- (10) B. C. Frazer and R. Pepinsky, Acta Cryst. 6 (1953) 273
- (11) G.E.Bacon and R.S.Pease, Proc. Roy. Soc. <u>A220</u> (1953) 397
- (12) C. Haas and D. F. Hornig, J. ch m. phys. 32 (1959) 1763
- (13) T. Nishina, M. Yoshida, Y. Uematsu, K. Suzuki and I. Oshida, NMR国際会議 preprint (1965)
- (14) Y.Imry, I.Pelah, E.Wiener and H.Zafrir, Solid State Commun. 5 (1967) 41
- (15) R.Blinc, P.Cevc and M.Shara, phys. Rev. <u>159</u> (1967) 411
- (16) W. Cochran, Advances in Physics (1960) vol. 9, p. 387

才 1 図



強誘電 mode (ω_)