<table>
<thead>
<tr>
<th>タイトル</th>
<th>磁場のない無衝突プラズマにおける緩和現象 (プラズマ物理における最近の話題)</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>西川 勝治, 池上 英雄</td>
</tr>
<tr>
<td>雑誌</td>
<td>物性研究 (1968), 9(5): 356-370</td>
</tr>
<tr>
<td>発行日</td>
<td>1968-02-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/86154</td>
</tr>
<tr>
<td>タイプ</td>
<td>部門論文</td>
</tr>
</tbody>
</table>
Part I 磁場のない無衝突プラズマにおける緩和現象

西川 恭治（京大理）
池上 英雄（名大プラズマ研）

§ 1. 序
高温プラズマは、その名の示すとおり、原子が熱的にイオンと電子とに解離してできたプラズマである。このようにしてプラズマができるためには、
（電子の平均運動エネルギー） ≫ （電子・イオン間の平均クーロン相互作用）

必要である。このことから、高温プラズマを特徴づける一つの小さな展開パラメーターが作られる。通常

\[1/(n_e \lambda_e^3) \equiv \theta \ll 1 \] \hspace{1cm} (2)\]

で定義される\(\theta \)をプラズマ・パラメーターと呼んでいる。ここに \(n_e \) は電子の密度、\(\lambda_e \) は Debye の遮蔽距離（単にデバイ長と呼ぶ）で

\[\lambda_e = \left\{ k T_e / (4 \pi n_e e^2) \right\}^{1/2} \] \hspace{1cm} (3)\]

で与えられる。ただし \(k \) は Boltzmann 常数、\(T_e \) は電子温度、\(-e \) は電子の電荷である。2）は、イオンの作る Coulomb potential が波山の電子によって遮蔽されるという意味で、（1）の条件と同値である。実験室で作られる完全電離に近いプラズマの一例として、\(n_e = 10^9 \text{ cm}^{-3} \), \(T_e = 10^4 \text{ K} \) とおくと、\(\theta \ll 10^{-4} \) となるので、\(\theta \) についての展開は充分よい近似といえられる。

さて、デバイ長がクーロン相互作用の有効到達距離を与えることに注意すれば、（2）で定義される\(\theta \)は、いわゆる Weiss 近似からのズレの程度を表わすことが分る。従って、高温プラズマでは、Weiss 近似に対応する "Vlasov 近似" が充分よい近似になっている。磁場のない非相対論的プラズマでは、この近似での方程式（Vlasov 方程式）は

\[\left\{ \frac{\partial}{\partial t} + v \cdot \nabla + \frac{e}{m} \mu \cdot \mathbf{E}(x, t) \cdot \frac{\partial}{\partial v} \right\} f_\mu (v, x, t) = 0 \] \hspace{1cm} (4)\]
と書かれる。ここにμは電子（μ = e）とイオン（μ = i）とを区別し、\(\mathcal{F}(\mathbf{r}, \mathbf{L}, t) \) は一体分布関数、m · e は質量および電荷を表わす。E(\(\mathbf{r}, t \)) は電場で、外部電場 \(E_{\text{ext}}(\mathbf{L}, t) \) とまわりの粒子の作る Hartree field \(E_{\text{int}}(\mathbf{L}, t) \) とに分けて書くと

\[
E(\mathbf{r}, t) = E_{\text{ext}}(\mathbf{L}, t) + E_{\text{int}}(\mathbf{L}, t)
\]

\[
\frac{\partial}{\partial t} E_{\text{int}}(\mathbf{L}, t) = 4\pi \sum_{\mu} e_{\mu} \int d\gamma \mathcal{F}_{\mu}(\gamma, \mathbf{L}, t)
\]

以下の議論はすべて (4) ～ (6) をもとにして行う。

(4) ～ (6) は一体分布関数についての閉じた方程式であるから、与えられた初期条件と境界条件のもとで unique に解を求められる。ここで一つ注意しておくが、もしも (4) ～ (6) を

\[
\mathcal{F}_{\mu}(\gamma, \mathbf{L}, t = 0) = \sum_{j=1}^{N_{\mu}} \delta(\gamma - \gamma_{\mu j}) \delta(\mathbf{L} - \mathbf{L}_{\mu j})
\]

（\(\mathbf{L}_{\mu j} \), \(\gamma_{\mu j} \) は第 \(\mu \) 番、第 \(j \) 番目の粒子の \(t = 0 \) における速度および位置座標）という初期条件のもとでとけば、その解は系の exact なふるまいを記述する Liouville 方程式の解と同値になる。しかし、こうして求められた解は、もはや \(\gamma \) および \(\mathbf{L} \) のなめらかな関数ではありえない。我々が通常 Vlasov 方程式という場合には、\(\mathcal{F}_{\mu}(\gamma, \mathbf{L}, t) \) としてなめらかな関数に限っている。それは、初期条件として、(7) を様々な \(\{ \gamma_{\mu j}, \mathbf{L}_{\mu j} \} \) のとり方について集団平均したものを選んだことに対応する。この近似のもとでは、粒子間相関や近距離衝突の効果は無視されてしまうので、Vlasov 近似のことを無衝突近似、また Vlasov 方程式で記述されるプラズマのことを無衝突プラズマと呼んでいる。

\[\text{（7）}
\]

（7） これに対して、（7）を初期条件とするような (4) ～ (6) 式のことを Klimontovich 方程式と呼ぶことがある。

（米） この呼び方は不正確で、正確には無相関近似、無相関プラズマと云うべきだが、ここでは慣例に従って無衝突と呼ぶことにする。
Part I. 磁場のない無衝突プラズマにおける振動現象

無衝突近似と云っても，Vlasov 方程式では，Hartree field による粒子間相互作用を考慮に入っている。E_{int}は粒子の分布の spatial fluctuation に依存しているので，Vlasov 方程式は spatial fluctuation に関して非線形である。この非線形性のゆえに，Vlasov 方程式の解のふるまいは複雑かつ多様となるのである。最近のプラズマ物理における一つの feature problem は，この非線形効果の研究にある。しかし，非線形効果を論ずる前に，まず線形近似の範囲の話の復習から始めよう。

§ 2. 線形 Vlasov 方程式

外場のない（$E_{\text{ext}} = 0$）巨視的に均一なプラズマ中に，空間的な乱れ (spatial fluctuation) が生じた場合を考えよう。

$$F_{\mu}(y, z, t) = F_{\mu}(y, t) + f_{\mu}(y, z, t) \quad \text{-----------------(8)}$$

と書いて，乱れの部分を $f_{\mu}(y, z, t)$ で表わすと，V を体積として

$$\frac{1}{V} \int dy \int dz F_{\mu}(y, z, t) = \int dy F_{\mu}(y, t) = n_{\mu} \quad \text{-----------------(9)}$$

$$\frac{1}{V} \int dy \int dz f_{\mu}(y, z, t) = 0 \quad \text{-----------------(10)}$$

$$\Sigma_{\mu} e_{\mu} n_{\mu} = 0 \quad \text{-----------------(11)}$$

（11）は電気的中性の条件である。 (8) を (4) - (6) に代入して $f_{\mu}(y, z, t)$ についての非線形項を無視すると，

$$\frac{\partial}{\partial t} F_{\mu}(y, t) = 0 \quad \text{-----------------(12)}$$

$$\left(\frac{\partial}{\partial t} + \gamma_{\mu} \frac{\partial}{\partial z} \right) f_{\mu}(y, z, t) + \frac{\varepsilon_{\mu}}{m_{\nu}} E_{z}(z, t) \cdot \frac{\partial}{\partial z} F_{\mu}(y, t) = 0 \quad \text{-----------------(13)}$$

$$\frac{\partial}{\partial z} E_{z}(z, t) = 4\pi \Sigma_{\mu} e_{\mu} \int dy f_{\mu}(y, z, t) \quad \text{-----------------(14)}$$

（12）－（14）を線形 Vlasov 方程式を呼ぶ。線形 Vlasov 方程式は，適当な Fourier-Laplace 変換によって簡単に解くことができる。
例えば、空間については Fourier 変換、時間については Laplace 変換

\[f(\mathbf{y}, \mathbf{k}, \omega) = \int_0^\infty \frac{1}{V} \int \exp[i(\omega t - \mathbf{k} \cdot \mathbf{y})] f(\mathbf{y}, \mathbf{x}, t) \, dt \, \text{d}x \quad \text{etc.} \]

\((\operatorname{Im} \omega > 0)\) を行い、(12) - (14) を初期値問題として解くと

\[F_f(\mathbf{y}, t) = F_{\mu}(\mathbf{y}) = \text{indep. of time} \quad \text{(16)} \]

\[f_{\mu}(\mathbf{y}, \mathbf{k}, \omega) = \frac{1}{-i\omega + i\frac{\mathbf{k}}{\varepsilon(\mathbf{k}, \omega)}} \left\{ f_{\mu}(\mathbf{y}, \mathbf{k}, t=0) - \frac{\varepsilon_{\mu}}{m_{\mu}} \frac{\partial}{\partial y} F_{\mu}(\mathbf{y}) \right\} \quad \text{(17)} \]

\[\varepsilon(\mathbf{k}, \omega) = \frac{4\pi}{\varepsilon(\mathbf{k}, \omega)} \left(\frac{k}{i k^2 \mu} \right) \frac{1}{-i\omega + i\frac{k}{\varepsilon(\mathbf{k}, \omega)}} f_{\mu}(\mathbf{y}, \mathbf{k}, t=0) \quad \text{(18)} \]

ここに \(\varepsilon(\mathbf{k}, \omega)\) は

\[\varepsilon(\mathbf{k}, \omega) = 1 + \frac{4\pi}{i k^2 \mu} \frac{\varepsilon_{\mu}^2}{m_{\mu}} \frac{1}{-i\omega + i\frac{k}{\varepsilon(\mathbf{k}, \omega)}} \frac{\partial}{\partial y} F_{\mu}(\mathbf{y}) \quad \text{(19)} \]

で定義され、線形近似での誘電率を与える。

*）これも示すとは、初期分布が速度 \(\mathbf{v}_0\) の test particle を表す場合

\[f_{\mu}(\mathbf{y}, \mathbf{k}, t=0) = \delta(\mathbf{y} - \mathbf{v}_0) \]

を考えればよい。もしもこの粒子がまわりを分極しなければ

\[f_{\mu}(\mathbf{y}, \mathbf{k}, t) = \delta(\mathbf{y} - \mathbf{v}_0) \exp[i\mathbf{k} \cdot \mathbf{v}_0 t] \]

となり、その作る電場 \(E_{t, c, \mathbf{k}, \mathbf{v}_0}(\mathbf{y}, \mathbf{k}, \omega)\) は

\[E_{t, c, \mathbf{k}, \mathbf{v}_0}(\mathbf{y}, \mathbf{k}, \omega) = \frac{4\pi k}{i k^2 \mu - i\omega + i\frac{k}{\varepsilon(\mathbf{k}, \omega)}} \delta(\mathbf{y} - \mathbf{v}_0) \]

となる。しかし、実際には周囲を分極するために、電場は

\[E(\mathbf{k}, \omega) = E_{t, c, \mathbf{k}, \mathbf{v}_0}(\mathbf{k}, \omega)/\varepsilon(\mathbf{k}, \omega) \quad \text{(18') \quad \text{becoming}} \]

になるというのが (18) 式の意味である。 (18') は \(\varepsilon(\mathbf{k}, \omega)\) が誘電率を表すことを示している。
Part I 磁場のない無衝突プラズマにおける温和現象

全く同様にして、時間については Fourier 変換し、空間について Laplace 変換を行って、半無限プラズマに対する境界値問題として（12）－（14）をとくこともできる。その結果は（16）－（18）と本質的に同じで、ただ初期値が境界値でおき代るだけである。

いずれの場合にも、プラズマの性質を規定する重要な量は誘電率 $\varepsilon(\kappa, \omega)$ である。実際、プラズマ中の集団運動は電場を使って表わされるが、（18）の Laplace 逆変換を考えれば明らかのように、集団運動の分散関係は

$$\varepsilon(\kappa, \omega) = 0 \tag{20}$$

で与えられる。$F_\mu(\chi)$ として Maxwell 分布

$$F_\mu(\chi) = n_\mu \left(\frac{m_\mu}{2\pi k T_\mu} \right)^{1/2} \exp \left[- \frac{m_\mu v^2}{2k T_\mu} \right] \tag{21}$$

を選んだ場合、（20）の解は一般には無数に存在するが、そのうち最もよく知られたものをついておこう。一つは電子がイオンと out of phase に振動する電子プラズマ振動で、その振動数 ω_k は、$k \lambda_e \ll 1$ で

$$\omega_k = \omega_p \left\{ 1 + 3k^2 \lambda_e^2 / 2 \right\} \tag{22}$$

$$\omega_p^2 = 4\pi n_e e^2 / m_e \tag{23}$$

で与えられる。今一つはイオンと電子とが in phase に振動するイオン音波で、その振動数 Ω_k は、$T_e \gg T_i, k \lambda_e \ll 1$ では

$$\Omega_k = k c_s \tag{24}$$

$$c_s / \lambda = \sqrt{k T_e / m_i} \tag{25}$$

で与えられる。今、$n_e = 10^9 / cm^3, T_e = 10^4^0 K, m_i = 133 a.u.$（セリウム）、$k = 1 cm^{-1}$ と選ぶと、大体

$$\omega_p = 10^9 / sec$$

-360-

\[\Omega_k = 10^5 \text{sec}^{-1} \]

となる。これからも分ることだが、電子プラズマ振動では、その振動数が充分高くイオンはこれに関与していないとすれば、イオン音波ではイオンと電子とが一体となって振動し、局所的にもほぼ電気的中性を保っているとしてよい。

これらの振動はいずれも無衡突系での振動であるから、いわゆる零音波と同様のものである。よく知られているように、これらの振動はいわゆるランダウ減衰をうける。これは、振動を構成しているものがもともとランダムな熱運動をしている粒子であるために起こるもので、振動論的な言葉で表現すれば、波と粒子との相互作用によるものである。ランダウ減衰は無衡突プラズマの重要な性質であるから、別に章をもうけてくわしく論ずることにする。

最後に、線形 Vlasov 方程式は固有価問題としても解かれていることをつけ加えておく。しかし、固有関数は非の関数として singular であり、従ってそのままでは Vlasov 方程式の解としては不適当である。特徴的なことは、固有関数が成長も減衰もともとわからない振動を表わしていることであるが、これはむしろ Vlasov 方程式の非線形性より当然のことかもしれない。

§3. ランダウ減衰

まず、Landau の理論の復習から始めよう。初期分布 \(f(0, z, u, \mathbf{k}, t=0) \) を \(z \) の \(\mathbf{k} \) と垂直方向の成分について積分したものを \(g(0, z, \mathbf{k}) \) （ \(u \) は \(z \) の \(\mathbf{k} \) 方向の成分）と表わすと、(18) は

\[
\widetilde{E}(z, \omega) = \frac{4 \pi}{\varepsilon(z, \omega)} \int_{-\infty}^{\infty} \frac{d\mu}{ik^2} \frac{1}{-\omega + i|u|} \mathcal{M}(u, \mathbf{k}) \quad \text{---(26)}
\]

と書かれる。Landau は \(g(0, z, \mathbf{k}) \) を \(u \) の複素平面に解析接続した関数が無限遠を除いて正則（entire function）であると仮定する。するとその Cauchy 積分
Part I 磁場のない無電流プラズマにおける緩和現象

\[\int_{-\infty}^{\infty} \frac{1}{-i\omega + iku} g_{\mu}(u, k) \]

もまた \(\omega \) 階数として entire function となる。このことに注意して \(\mathbb{E}(k, \omega) \) の逆変換

\[\mathbb{E}(k, t) = \int_{-\infty}^{\infty} \frac{d\omega}{-\omega + i\beta} \exp \left[-i\omega t \right] \mathbb{E}(k, \omega) \]

（ \(\beta \) は \(\omega \) の積分路が \(\mathbb{E}(k, \omega) \) のすべての極を通りるように選ぶ）において、積分路を第1回のように充分下半面に移動させる。すると直線部分の積分に指数因子 \(\exp \left[-i\omega t \right] \) のために無視でき、残るのは \(\times \) 点で記した \(\mathbb{E}(k, \omega) \) の繊のまわりをまわる積分路の寄与、すなわち繊の留数だけになる。

\[\text{Im} \omega \]

\[\text{Re} \omega \]

第1回

仮定により (26) の極は

\[\varepsilon(k, \omega) = 0 \]

でしか存在しなければ、(20) の解を \(\omega = \omega(k) + i\tau(k) \) とすると

\[\mathbb{E}(k, t) \sim \exp \left[-i\omega(k) t + i\tau(k) t \right] \]

というふるまいを示すことになる。今、\(|\omega(k)| \gg |\tau(k)| \) として (19),

-362-
(20) より \(r(k) \) を計算すると,

\[
r(k) = \frac{\omega(k)}{2\theta(k)} \varepsilon''(k) \omega = \omega(k)
\]

\[
= \frac{2\pi^2 \omega(k)}{\theta(k)} \cdot \frac{1}{k^2} \sum_{\mu} \frac{e^2}{\mu} \int d\nu \delta(\omega(k) - \nu \cdot \mathbf{k}) \frac{\partial}{\partial \nu} F_{\mu}(\nu)
\]

がえられる。ここに

\[
\theta(k) = \frac{1}{2} \left\{ \omega \frac{\partial \varepsilon'(k, \omega)}{\partial \omega} \right\}_{\omega = \omega(k)} \quad \text{-----------------(31)}
\]

\[
= \begin{cases}
1 & \text{for } \omega(k) = \omega_k \quad \text{-----------------(31a)} \\
\frac{1}{k^2} \lambda_e^2 & \text{for } \omega(k) = \Omega_k \quad \text{-----------------(31b)}
\end{cases}
\]

(\(\varepsilon'(k, \omega), \varepsilon''(k, \omega) \) は \(\varepsilon(k, \omega) \) の実部および虚部)。/(30) は, \(F_{\mu}(\nu) \) が Maxwell 分布であれば常に負であるから, これを (29) に代入すれば, 電場は常に減衰するということになる。これがランダウ減衰である。

前起プラズマ振動およびイオン音波の場合について具体的に計算してみると,

\(k \lambda_e \ll 1 \) として,

\[
r(k) = \begin{cases}
-\omega_k \frac{\sum \frac{1}{\mathbf{k}^2} \lambda_e^2}{\lambda_e^2} \exp \left[-\frac{1}{2k^2 \lambda_e^2} - \frac{3}{2} \right] (\omega(k) = \omega_k) \\
-\Omega_k \frac{\sum \frac{1}{\mathbf{k}^2} \lambda_e^2}{\lambda_e^2} \exp \left[-\frac{T_e}{2m_i} \right] (\omega(k) = \Omega_k)
\end{cases}
\]

ただし (33) では \(T_e \gg T_i \) とした。/(33) で \{ \} 内の第一項は電子によるランダウ減衰 (30) で \(\mu = e \) の寄与を表わし, 第二項がイオンによる

\[
\text{（33）}\quad T_e = T_i \text{ では, (33) から明らかのように, } |r(k)| \sim \Omega_k \text{ となり, イオン音波は実質的に存在しなくなる。}
\]

\[\text{---363---}\]
Part I 磁場のない無衡突プラズマにおける緩和現象

ランダウ減衰を表わす。

以上は初期値問題としてみた場合のランダウ減衰だが，境界値問題としていても同じようにしてランダウ減衰がえられる。簡単のため一次元プラズマで考えると，与えられたωに対して

\[k = \frac{\omega^2 - \omega_p^2}{\omega_p^2} \frac{1}{K'} \]

は，電子プラズマ振動の場合，\(\omega - \omega_p \) << 1 として

\[K' = \frac{1}{\epsilon} \sqrt{\frac{\omega^2 - \omega_p^2}{\omega_p^2}} \]

\[K'' = K' \left(\frac{1}{3} \frac{\pi}{\omega_p^2} \left(\frac{1}{K'} \right)^{1/2} \right) \exp \left[- \frac{1}{2K'^2 \lambda_e^2} \right] \]

またイオン音波の場合，\(\omega \ll \omega_p, \omega_i \) \(= \sqrt{4\pi n_i e_i^2 / m_i} \)として

\[K' = \frac{\omega}{c_s} \]

\[K'' = K' \frac{1}{\Omega_k} \]

でそれぞれ与えられる。

ランダウ減衰を直観的に理解するには次のように考えればよい。まず (50) 式に含まれるδ-関数は，波の伝播方向の速度が位相速度に等しい粒子だけが減衰に寄与している事を意味している。これは波と粒子が相互作用するための共鳴条件に他ならない。このような粒子は，波のどの位相にあるかによって，あるいはは加速され，あるいは減速される。今，\(u = \omega(k) / c_s \) なるある速度に着目して，波による加速および減速による粒子数の変化（gain と loss）を考察してみよう。まず加速によるgainは \(F(u - \delta u) \) \((\delta u > 0) \) に比例し，lossは \(F(u) \) に比例する。一方減速によっては，gainは \(F(u + \delta u) \) にlossは \(F(u) \) に比例する。従って，もしMaxwell分布の場合のように

\[F(u - \delta u) > F(u) > F(u + \delta u) \]

であれば，共鳴粒子は全体として加速される傾向をもつ。そのエネルギーは当
然波から与えられるのだから、波からみれば減衰をうけることになる。今少し厳密に、電場による粒子の軌道の変化を調べて波と粒子の間のエネルギーのやりとりを考察することも行われているが、それはここでは省略して先へ進もう。

さて、ランダウ減衰が理論的に予想されたのは 1946 年であるが、それが実験で直接に検証されたのは、イオン音波について 1962 年、プラズマ振動では 1964 年である。より正確には、Landau が論じたと同じ波（Landau wave と呼ぶ）においてランダウ減衰が確認されたのは 1966 年なのである。

この間 10 数年の遅れがあった原因の一つは、ランダウ減衰の実験に適した素材としてのプラズマが無かったことがあげられる。イオン音波の場合もプラズマ振動の場合も、最初の検証は電離層プラズマを利用してのものであった。もう一つの原因は、多分現象自体の理解がなされていたのではないか。理論から予想される現象の理解が、理論家には十分に捉えられていなかった。理論式に出てくるランダウ減衰は実際のプラズマには存在しないと主張する人さえいた。ランダウ減衰に関する理論が、その解釈の仕方ということで、ごく最近まで論文として通用していたことが、それを物語っている。

さて、イオン音波でのランダウ減衰は、電離層からの電波の散乱実験においてはじめて観測された。すなわち、散乱波の周波数スペクトルを観測し、そのスペクトル線の巾をランダウ減衰によって説明するという間接的なものであった。よく知られているように、波数

\[k \] 振動数 \(\omega \) の transfer ををもつなら電磁波の散乱断面積は、電子の密度のゆらぎ \(< |n_e(k, \omega)|^2 > \) に比例するが、後者は

\[< |n_e(k, \omega)|^2 > \propto \Im \left(\frac{1}{\varepsilon(k, \omega)} \right) = \frac{\varepsilon''(k, \omega)}{\varepsilon'(k, \omega)^2 + \varepsilon''(k, \omega)^2} \quad \text{--- (39)} \]

という比例関係を満たす。これは \(\omega = \pm \Omega_k \) で最大となり、その巾は、(30) からも分るように、ランダウ減衰率に比例する。電離層プラズマにおいてこれを計算したものは、実測値と定量的に一致する値を与えた。

このようにしてイオン音波のランダウ減衰が観測にかかって来ると、1961 年に Fried and Gould はイオン音波を表わす無限個の分極式があること
Part I 磁場のない無端突プラズマにおける浪変現象

を示し、$T_e \approx T_i$ の場合、そのうらの dominant mode は

$$\omega_e = \theta_i (1.45 - 0.6 i) \quad \text{(40)}$$

であることを示した。ここに θ_e は熱速度

$$\theta_e = \sqrt{\frac{2e_i T_e}{m_i}} \quad \text{(41)}$$

である。$T_e \approx T_i$ とおいたのは理由がある。それは、この項になってようやく電流形式によらないプラズマの発生法として、セシウムを用いた接触電離プラズマを実用化の段階に入ったのである。そして 1962 年、セシウムプラズマにおいてイオン音波のランダウ減衰が直接測定された。Wong, D'Angelo and Motley はセシウムプラズマ中に挿入されたグリッドに交流電場を加え、プラズマに密度変調を加えた。セシウムプラズマにはゆるやかな流れがあるので、グリッドはその流れをせき止めたり放したりする役割をする。このようにしてできたプラズマの変密度のうち、散乱関係を満足する (ω, κ) をもったものが波として伝播する。彼らはその波の振幅をもう一つの可動グリッドによって、励起グリッドからの距離の関数として測定した。振幅の減少率から空間的ランダウ減衰率が分る。

電子プラズマ振動におけるランダウ減衰も、最初の実験的検出は電離層プラズマにおいて行われた。イオン音波の場合と同じく、地上から送られた電波の散乱波のスペクトルを観測したものである。ランダウ減衰の直接測定は水素ガスを用いた電離プラズマで Wharton and Malmborg (1964) が行なった。しかしながら彼らの観測した波は Landau wave そのものというよりはそれの表面波であった。無線観測中の平波波として Landau wave を検証したのは Derfier (1966) と Van Hoven (1966) である。

Derfier は熱電流によるナトリウムプラズマを用いたが、この実験の準備に 5 年の歳月を費した。彼はもともと理論家であり、ランダウ減衰への理解の深さが実験の推進力となった。彼の励起の方法はセシウムプラズマにおけるイ

* 過度の電離プラズマでは $T_e \gg T_i$ だが、セシウムプラズマでは $T_e \approx T_i$ となっている。

- 366 -
オン波励起の場合とは異なる。プラズマ中にアンテナを挿入し、それに交流電圧を加える。電子の速度分布関数は変形を受け空間電荷波を生するようになる。アンテナに加えられた電圧の一部は直接に受信側の可動アンテナと結合するが、これは干渉系を作って消すことができる。Landau の方程式を厳密にとって空間的なランダウ減衰の解を求めると、イオン音波の場合と同様、無限個の分散式がえられる。問題はそれらの可能な波のなかで、人工的に励起されるものはどれかということである。\(K'' \) が最大（\(K''_{\text{max}} \）の波は最も強く励起され易い波であるが、しかし最も早く減衰する。\(K'' \) が最少（\(K''_{\text{min}} \）の波はその逆である。彼らの測定点は、分散式（\(k, \omega \）の図表の上で \(K''_{\text{min}} \）の厳密解と \(K''_{\text{max}} \）に対応する（35）との二つの曲線には含まれて取らばった。

Landau wave および Landau 減衰の実験において特に注意したいのは、\(\omega \sim \omega_p \）近くの波が励起され、それの空間的減衰が観測されたからといって、Landau の理論を完全に確認したことにはならないということである。もとと Landau の理論は誘電率の虚数部分を無視した Vlasov の理論に対置して提起されたものである。後者では分散式に

\[
\left(\frac{k \theta_e}{\omega_p} \right)^2 = -2 \Phi \left(1, \frac{1}{2}, -\left(\frac{\omega}{k \theta_e} \right)^2 \right)
\]

となるが、Landau の理論では

\[
\left(\frac{k \theta_e}{\omega_p} \right)^2 = -2 \Phi \left(1, \frac{1}{2}, -\left(\frac{\omega}{k \theta_e} \right)^2 \right)
- i 2 \left[\frac{\omega}{k \theta_e} \exp \left[-\left(\frac{\omega}{k \theta_e} \right)^2 \right] \right]
\]

となる。\(\Phi (a, b, c) \) は Kummer の confluent hypergeometric function である。この二つの分散式を（\(\omega, k \）図表に表わすと第 2 図のようになる。従って \(\omega \sim \omega_p \）で波が励起されたとしても、図の (1), (2) のどちらに分岐するかを確認しなければランダウの理論との比較には耐えられない。

Derfler と Van Hoven の実験は (43) 式の分散関係を満足する波の存在と、それにともなうランダウ減衰を確認している。

-367-
Part I 磁場のない無衡突プラズマにおける混合現象

第2図 (I) (42) 式の解

(II) (43) 式の解

最後に、ランダウ減衰の非可逆性の問題について二点注意しておく。

すなわち、電場のスペクトルエネルギー $U_\kappa(t) = |E(\kappa,t)|^2 / 8\pi$ は、Landau の理論に従えば

$$\frac{\partial}{\partial t} U_\kappa(t) = 2 r(\kappa) U_\kappa(t) \quad \text{------------------------ (44)}$$

となり、これは明らかに時間反転に関して不変ではない。一方 Vlasov 方程式は時間反転に関して不変である。言い換えれば、もしランダウ減衰を行うような解が Vlasov 方程式の解として存在したとすれば、同時にその逆過程を表わすような解も存在するといえる。Landau の理論でそのような解が現われなかった原因は、実は初期条件として $\varphi(\nu,\xi)$ が entire function の場合に限ったためである。例えば

$$\varphi(\nu,\xi) \sim \exp\{iku \tau_0\} / (\nu - \xi) \quad (k,\tau_0 > 0, \text{Im} \xi > 0 \text{) \quad \text{------------------------ (45)}}$$

※）簡単のためただ一つの挙動だけがある場合を考える。
という初期条件を選んでみよう。これは明らかに entire function ではない。これを (26) より (28) に代入すると

\[\mathbb{E}(k, t) \sim \int \frac{d\omega}{2\pi} \frac{\exp[-i\omega t]}{\epsilon(k, \omega)} \int du \frac{1}{-i\omega + iu} \frac{\exp[i\omega t]}{(u - \zeta)} \quad (46) \]

となる。今 \(k t_0 > 0 \) であるから、\(u \) の積分路を上半面に閉じると、積分路の中に \(u = \zeta \) および \(u = \omega/k \) の極が存在する。このうち \(u = \omega/k \) の寄与は

\[\int \frac{d\omega}{2\pi} \frac{\exp[-i\omega(t - t_0)]}{\epsilon(k, \omega)} \frac{1}{\omega/k - \zeta} \quad (47) \]

という形になる。\(\omega \) の積分は、\(t \geq t_0 \) では下半面に、\(t < t_0 \) では上半面に閉じなければならない。問題は \(t < t_0 \) の場合で、この時には \(\omega = k \zeta \) の寄与が現われる

\[\mathbb{E}(k, t) \sim \frac{1}{\epsilon(k, k \zeta)} \exp[-i k \zeta(t - t_0)] \quad (48) \]

となる。\(\text{Im} \, \zeta > 0 \) であるから、これは電場が \(0 < t < t_0 \) の間 \(\text{Im} \, (k \zeta) \) の割合で時間的に成長する事を表わす。この結果は形式的には速度分布 \(F_\mu(\nu) \) の形にはよらないことを強調しておく。これから明らかのように、ランダウ減衰は spatial fluctuation に対する特定の初期条件のもとでのみみられる現象である。問題は自然がそのような初期条件を選択しているかどうかである。次章に示すように、プラズマ中にグリッドで人工的に波を励起した場合には、その励起の仕方に応じて、ランダウ減衰をする波も、またその逆に成長する波も作ることは分かれる。

次に、ランダウ減衰は \(\zeta \to \pm \infty \) で電場が消えてしまうことを意味しているが、このことはプラズマが初期状態の記憶をすっかり忘れ去ってしまうこと（散逸性）を意味するわけではない。実験、分布関数 \(f_\mu(\nu, k, t) \) を (17) の逆変換を行って計算すると、\(t \gg [\tau(k, \zeta)]^{-1} \) では

\[f_\mu(\nu, k, t) \sim \exp[-i k \zeta \nu t] \{ f_\mu(\nu, k, t = 0) - \frac{\partial}{\partial \zeta} F_\mu(\nu) \} \quad (49) \]
Part I 磁場のない無衝突プラズマにおける漸和現象

となり、ランダウ減衰をした後でも立派にその記憶をとどめていることが分かる。電場が $t \gg [-t (k)]^{-1}$ で零になるのは、(49) を γ について積分したものが phase mixing で消えてしまうためである。

次章では、今注意した二つの点、すなわち、時間的に成長するような (45)の形の初期条件が実際に作されること、および分布関数がランダウ減衰によってその記憶を失わないこと、を示す具体例として、plasma wave echo について論ずることにする。

§1～§3 の文献

2) N.G. Van Kampen. Physica 21 (1955) 949
3) 例えば、T.H. Stix. The Theory of Plasma Waves (McGraw
 Hill, 1962) §7-2 をみよ。
4) A.Y. Wong. N.D’Angelo and R.W. Motley. P.R. Letters 9
 (1962) 415; P.R. 133 (1964) A436
 184; P.R. Letters 17 (1966) 175
6) H. Derfler and F.C. Simonen. P.R. Letters 17 (1966) 172
7) O. Van Hoven. P.R. Letters 17 (1966) 169
 G. Ecker and J. Holling Phys. Fluids 6 (1963) 70
9) K.L. Bowles, P.R. Letters 1 (1958) 453
 (1961) 79
12) P.W. Perkins, E.E. Salpeter and K.O. Yngvesson,
 P.R. Letters 14 (1965) 579
14) E.T. Whittaker and G.N. Watson. A Course of Modern
 Analysis (Cambridge, 1935) Chapter XVI