<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>不規則系の統計物理学Ⅲ講義ノート</td>
</tr>
<tr>
<td>著者</td>
<td>松田 博嗣</td>
</tr>
<tr>
<td>論文誌</td>
<td>物性研究 通信化学研究 京都大学 光学研究科</td>
</tr>
<tr>
<td>年度</td>
<td>1968-03-20</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/86162">http://hdl.handle.net/2433/86162</a></td>
</tr>
<tr>
<td>材質</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
京都大学
KYOTO UNIVERSITY
講義ノート

不規則系の統計物理学（1）

京都大基研 松 田 博 嗣

§ 0. 序

固体理論は結晶のもつ構造の周期性を足掛りにして、めざましい発展を遂げてきた。しかし自然界には、合金、混合、無定形物質、乃至は生体高分子など、周期性よりの著しいずれをもつ重要な物質が多く存在する。これらの諸物性をミクロの立場から解明するためには、周期系よりのずれを単なる摺動と考えて取扱うだけでは不十分である。

このようなミクロとマクロの橋渡しは統計物理学に課せられた役割である。通常の統計力学においては与えられた一つの Hamiltonian で規定される系の種々の状態の集団を考える。上記のような不規則性乃至は非周期系においては更に種々の Hamiltonian で規定される系の集団を考え、その集団の性質を調べることになる。この意味で不規則系の統計物理学は通常のそれに新しい確率論的な見方が加えられている。ここでは通常の統計力学におけるように、時間平均を状態の集団平均でおきかえ得ると云うような一般的な法則、乃至は取扱法はまだ見出されていない。

ミクロとマクロの橋渡しとは、ミクロな構造とマクロな物性との論理的な関連を見出し、その特徴を捉えることである。しかし理論が十分発達していない現在にあっては、このプログラムを実行するには何等かの課題なさきには不可能である。かくて具体的な実験とのつながりに重点をおおく立場、論理的なつながりに重点をおおく立場とがあり得る。ここでは後者の立場に立って話を進めて行きたい。論理的なつながりを重視することは、たとえ初期の段階において具体的な実験を説明出来なくても、一歩一歩信頼し得る事実を積み上げて行くことは、具体的な系を見る上の着実な足場を築いて行くことになり、これは理論家に与えられた一つの重大な任務と信ずるからである。

われわれはミクロな不規則性をもつ簡単な Hamiltonian で代表される
松田博嗣

マクロな系の振舞を足掛りとして、周期系で確立された、例えばバンド構造、バンドギャップ、分散関係、有効質量、有効荷電、正孔、平均自由行程と云うような基礎的諸概念の通用限界を明らかにし、非周期性乃至は不規則性が物性におよぼす特徴的な効果、一般的な取扱法を探究して行こうとするものである。われわれのもつ確立された足場はまだ極く小さい。

以下これを少なく見て行こう。

§ 1. 完全格子に於ける Point Defect － 溶子グリーン函數法

まず、諧和振動をしている結晶格子を考えよう。系はN個の unit cellより成り、各 cell は7個の原子を含んでいるとする。
この系を記述する Hamiltonian は次式で与えられる。

\[ H = \sum_{\ell k} \left[ \frac{p^2(\ell k)}{2M_{\ell k}} \right] + \frac{1}{2} \sum_{\ell k} a^{\alpha\beta}(\ell k; \ell' k') u_\alpha(\ell k) u_\beta(\ell' k') \]  \hspace{1cm} (1.1)

ここで \( \ell, k \) は各々 unit cell 及び cell 内での原子の番号を示し、\( \alpha, \beta \) は各原子の変位の方向（x, y, z）を示している。 (1.1) の右边第2項に於ける \( \Phi_{\alpha\beta}(\ell k; \ell' k') \) は atomic force constant と呼ばれ、\( \Phi \)を結晶の potential とした場合、次式で定義される。

\[ \Phi_{\alpha\beta}(\ell k; \ell' k') = \frac{\partial^2 \Phi}{\partial u_\alpha(\ell k) \sigma u_\beta(\ell' k')} \]  \hspace{1cm} (1.2)

又、各原子の変位と運動量の成分、\( u_\alpha(\ell k), p_\beta(\ell' k') \) との間には次の交換関係が成立している。

\[ [u_\alpha(\ell k), p_\beta(\ell' k')] = i\hbar \delta_{\alpha\beta} \delta_{\ell \ell'} \delta_{kk'} \]  \hspace{1cm} (1.3a)

\[ [u_\alpha(\ell k), u_\beta(\ell' k')] = [p_\alpha(\ell k), p_\beta(\ell' k')] = 0 \]  \hspace{1cm} (1.3b)

(1.1) より運動方程式を作ると
不規則系の統計物理学

\[ M_{\ell k} u_\alpha(\ell k) = - \sum_{\ell' k'} \Phi_{\alpha\beta}(\ell k; \ell' k') u_\beta(\ell' k') \quad (1.4) \]

ここで変位 \( u_\alpha(\ell k) \) の時間依存性を次式で仮定しよう。

\[ u_\alpha(\ell k; t) = u_\alpha(\ell k) e^{-i\omega t} \quad (1.5) \]

これにより運動方程式 (1.4) は

\[ \sum_{\ell' k'} \left[ M_{\ell k} \omega^2 \delta_{\ell, \ell'} \delta_{k, k'} - \Phi_{\alpha\beta}(\ell k; \ell' k') \right] u_\beta(\ell' k') = 0 \]

これを行列形式で表わすと

\[ (\Phi - \omega^2) u = 0 \quad (1.6a) \]

変形して

\[ \sqrt{M}(\omega^2 I - D) \sqrt{M} u = 0 \quad (1.6b) \]

(1.6) の \( D \) は系の Dynamical matrix と呼ばれ

\[ D \equiv \sqrt{M}^{-1} \Phi \sqrt{M}^{-1} \quad (1.7) \]

である。

従って、系の固有振動を求める問題は Dynamical matrix の固有値問題に帰着される。この \( s \) 項目の固有値を \( \omega_s^2 \)、固有ベクトルを \( \mathbf{v}^{(s)} \) とすれば

\[ D \mathbf{v}^{(s)} = \omega_s^2 \mathbf{v}^{(s)} \]

又、matrix \( B \) で \( f \) 個の独立な \( N \) 固有ベクトルの組

\( \left( \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(f)} \right) \) (\( \equiv \Omega \)) を表わすとすれば

\[ D \Omega = B \Omega \]

ここに

\[ \Omega = \begin{pmatrix} \omega_1^2 & 0 & \cdots & 0 \\ -\omega_2^2 & \omega_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \omega_f^2 \end{pmatrix} \]

\[ = \begin{pmatrix} 400 \end{pmatrix} \]
かつ、\( \tilde{\mathbf{B}} \mathbf{B} = \mathbf{B} \tilde{\mathbf{B}} = \mathbf{1} \) が成立する。ただし \( \tilde{\mathbf{B}} \) は \( \mathbf{B} \) の転置行列である。

次に、変位 \( u_\alpha (\ell k) \)。運動量 \( p_\beta (\ell' k') \) を新しい演算子 \( b_\pm, b_\mp \) を導入することにより、次のように書き改める。

\[
  u_\alpha (\ell k) = \left( \frac{\hbar}{2M \ell_k} \right)^{1/2} \sum_s (\omega_s)^{-1/2} v_\alpha^{(s)} (\ell k) (b_s + b_s^+) \tag{1.8a}
\]

\[
  p_\beta (\ell' k') = \frac{1}{i} \left( \frac{\hbar \ell_{k'}'}{2} \right)^{1/2} \sum_s (\omega_s)^{-1/2} v_\beta^{(s)} (\ell' k') (b_s - b_s^+) \tag{1.8b}
\]

(1.3a b) の交換関係を用いると、\( b_\pm, b_\mp \) は次の交換関係を満たすことがわかる。

\[
  [b_s, b_s^+] = \delta_{ss'}, [b_s, b_s^+] = [b_s^+, b_s^+] = 0 \tag{1.9}
\]

(1.8) (1.9) を用いると Hamiltonian (1.1) は

\[
  H = \sum_s \hbar \omega_s (b_s^+ b_s + \frac{1}{2}) \tag{1.10}
\]

に書ける。

任意の演算子 0 の統計平均は次式で与えられる。

\[
  \langle 0 \rangle = \frac{T \{ \exp (-\beta H) 0 \}}{T \{ \exp (-\beta H) \}} \tag{1.11}
\]

これにより

\[
  \langle b_s \rangle = \langle b_s^+ \rangle = 0
\]

\[
  \langle b_s^+ b_s^+ \rangle = \delta_{ss'} n (\omega_s) \tag{1.12}
\]

\[
  n (\omega) = \left[ \exp (\beta \omega) - 1 \right]^{-1}
\]

が成立している。

演算子 \( b_s, b_s^+ \) に対する運動方程式は (1.10) を用いて、

\[
  i \hbar \dot{b}_s = [b_s, H] = \hbar \omega_s b_s, \quad i \hbar \dot{b}_s^+ = [b_s^+, H] = -\hbar \omega_s b_s^+
\]

\[- 401 -\]
従って、Heisenberg 表示での演算子 $b_{s}(t)$, $b_{s}^{+}(t)$ を次式の様に得ることが出来る。

\begin{align}
  b_{s}(t) &= \exp(i t \frac{H}{\hbar}) b_{s}(0) \exp(-i t \frac{H}{\hbar}) = b_{s}(0) \exp(-i \omega_{s} t) \\
  b_{s}^{+}(t) &= \exp(i t \frac{H}{\hbar}) b_{s}^{+}(0) \exp(-i t \frac{H}{\hbar}) = b_{s}^{+}(0) \exp(i \omega_{s} t) \tag{1.14}
\end{align}

完全結晶でのグリーン関数は point defect を含む結晶の規準振動その他の dynamical な性質を決定する際に重要な役割を果している。そこで、次式で定義される原子グリーン関数（以下 LGF と略記）を導入しよう。

\[ U \equiv (M \omega^{2} - \Phi)^{-1} = \sqrt{M}^{-1} (\omega^{2} \mathbf{1} - \Omega)^{-1} \sqrt{M}^{-1} \tag{1.15} \]

ここで $D = B \bar{B}$ であるから

\[ (\omega^{2} \mathbf{1} - \Omega)^{-1} = (B (\omega^{2} \mathbf{1} - \Omega) \bar{B})^{-1} = B (\omega^{2} \mathbf{1} - \Omega)^{-1} \bar{B} \]

従って

\[ U = \sqrt{M}^{-1} B (\omega^{2} \mathbf{1} - \Omega)^{-1} \bar{B} \sqrt{M}^{-1} \tag{1.16} \]

(1.16) の行列要素をあらわに書くと,

\[ U_{\alpha \beta} (\ell_{k}, \ell'_{k'}; \omega^{2}) = (M \ell_{k} \ell'_{k'})^{-\frac{1}{2}} \sum_{s} \frac{\psi_{\alpha}^{(s)} (\ell_{k}) \psi_{\beta}^{(s)} (\ell'_{k'})}{\omega^{2} - \omega_{s}^{2}} \tag{1.17} \]

(1.16) (1.17) の LGF を用いて諸々の物理量を表わし得る。例えば変位の相関関数は,

\[ \langle \tilde{u}(t) \tilde{u}(0) \rangle = \left( \frac{\hbar}{2} \right) \sqrt{M}^{-1} B \Omega^{-\frac{1}{4}} \]

\[
  \times \langle (b(t) + b^{+}(t)) (b(0) + b^{+}(0)) \rangle \Omega^{-\frac{1}{4}} \bar{B} \sqrt{M}^{-1} \\
  = \left( \frac{\hbar}{2} \right) \sqrt{M}^{-1} B \Omega^{-\frac{1}{4}} \{ e^{-i \sqrt{\Omega} t (1+n)} + e^{i \sqrt{\Omega} t n} \} \Omega^{-\frac{1}{4}} \bar{B} \sqrt{M}^{-1}
\]

これこれを成分で表わすと。

-402-
松田博嗣

\[<u_\alpha(\ell k; t) u_\beta(\ell' k'; 0)>\]

\[= \frac{\pi}{2} (\frac{M_{\ell k} M_{\ell' k'}}{M_{\ell k} M_{\ell' k'}} - 1) \Sigma_s \frac{v_\alpha^{(s)}(\ell k) v_\beta^{(s)}(\ell' k')}{\omega_s} \]

\[\{ e^{-i \omega_s t} (1 + n_s) + e^{i \omega_s t} n_s \} \quad (1.18)\]

(1.18)を時間について、Fourier 変換すると

\[\int_{-\infty}^{\infty} dt e^{-i \omega t} <u_\alpha(\ell k; t) u_\beta(\ell' k'; 0)>\]

\[= \frac{2 \pi \pi}{\sqrt{M_{\ell k} M_{\ell' k'}}} \Sigma_s \frac{v_\alpha^{(s)}(\ell k) v_\beta^{(s)}(\ell' k')}{\omega_s} \left[ n_s \delta(\omega - \omega_s) + (1 + n_s) \delta(\omega + \omega_s) \right]\]

\[= \frac{2 \pi \pi}{\sqrt{M_{\ell k} M_{\ell' k'}}} n(\omega) \text{sgn} \omega \Sigma_s v_\alpha^{(s)}(\ell k) v_\beta^{(s)}(\ell' k') \delta(\omega^2 - \omega_s^2)\]

ここで最後の変形に際し n(−ω) = n(ω) + 1 を用いた。従って sgn ω の記号が表われたのである。

L G F の虚数部分を

\[U_{\alpha \beta}(\ell k; \ell' k'; \omega^2) = \lim_{\xi \to 0} \text{Im} \ U_{\alpha \beta}(\ell k; \ell' k'; \omega^2 - i \xi) \quad (1.19)\]

とすると、最終的には変位の相関関数の Fourier 変換として

\[\int_{-\infty}^{\infty} dt e^{-i \omega t} <u_\alpha(\ell k; t) u_\beta(\ell' k'; 0)>\]

\[= 2 \pi n(\omega) \text{sgn} \omega U_{\alpha \beta}(\ell k; \ell' k'; \omega^2) \quad (1.20)\]

が求まる。

又、振動数スペクトルは

\[\nu(\omega^2) \equiv \frac{1}{N} \Sigma_s \delta(\omega^2 - \omega_s^2)\]

\[= \frac{1}{M \pi} \Sigma_s M_{\ell k} U_{\alpha \alpha}(\ell k; \ell k; \omega^2) \quad (1.21)\]
のように表わせる。

ここで完全格子（periodic lattice）のLGFを求めておく。（完全格子に対する値は原点（0）を入れて表わすことにする。）

まず、periodic lattice であることにより

\[ \Phi^{(0)}_{\alpha\beta}(\ell k;\ell' k') = \Phi^{(0)}_{\alpha\beta}(\ell - \ell'; k; 0, k) \]

及び

\[ D^{(0)}_{\alpha\beta}(\ell k;\ell' k') = D^{(0)}_{\alpha\beta}(\ell - \ell'; k; 0, k) \]

g が成立する。

原子の平衡の位置ベクトルを \( \mathbf{X}(\ell k) \) とすれば

\[
\frac{1}{N} \sum_{\ell \ell'} \exp(-i\mathbf{k} \cdot \mathbf{X}(\ell k)) D^{(0)}_{\alpha\beta}(\ell k;\ell' k') \exp(i\mathbf{k}' \cdot \mathbf{X}(0' k')) = \delta^{\mathbf{k}, \mathbf{k}'} D^{(0)}_{\alpha\beta}(k,k') \quad (1.22)
\]

このように \( \mathbf{k} \) 表示に移った Dynamical Matrix \( D^{(0)}_{\alpha\beta} \) を対角化することを考えよう。このための変換行列を \( S \) とすると。完全格子を扱っているのだから \( S \) の行列要素を \( S(\ell k; \mathbf{k}) \equiv N^{-1} \exp(i\mathbf{k} \cdot \mathbf{X}(\ell k)) \) としてよい。

これにより

\[
(S^+ D^{(0)} S)(k,k') = \omega(k) \delta_{k,k'} \quad (1.23)
\]

\( D(k) \) の固有ベクトルを \( w^{(j)}(k) \) とおくと

\[
D(k) w^{(j)}(k) = \omega^{(j)}(k) w^{(j)}(k) \quad (1.24a)
\]

\[
\sum_{j} w^{(j)}(k) w^{(j)}(k) = \delta_{jj'} \quad (1.24b)
\]

\[
\sum_{j} w^{(j)}(k) w^{(j)}(k) = 1 \quad (1.24c)
\]

が成立する。ただし+はエルミート共役を示す。従って固有ベクトルより作られる行列 \( B \) は \( B = S ( \cdots w^{(j)}(k) \cdots ) \) となる。
松田博嗣

又，完全格子に対する LGF の行列要素は

\[
\chi_{\alpha\beta}^{(0)} (\ell_k, \ell'_k; \omega^2) = (\xi_k \xi_k')^{-1} \equiv \frac{1}{N} \sum_{\mathbf{k} j} \frac{\exp \left[ i \mathbf{k} \cdot (\xi (\ell_k) - \xi (\ell'_k)) \right]}{\omega^2 - \omega_{j(k)}^2} \omega_{\alpha k}^2 (\xi) \omega_{\beta k'}^2 (\xi) \tag{1.25}
\]

今までの結果を用いて、系が完全格子からずれた場合を考察する。完全格子（周期系）に impurity atom を入れたことより生ずるずれを \( \delta L \) で表わすと、(1.6a) は

\[
\omega^2 - \Phi = L^{(0)} - \delta L \tag{1.26}
\]

のように書ける。

行列 \( \delta L \) は impurity atom が相互作用する領域に於てのみ non-zero の行列要素をもつから、一般に

\[
\delta L = \begin{pmatrix} \delta L & 0 \\ 0 & 0 \end{pmatrix}
\]

Impurity がある場合の LGF \( U \) は従って

\[
U = (M \omega^2 - \Phi)^{-1} = (L^{(0)} - \delta L)^{-1}
\]

\[
= U^{(0)} \delta L U + U^{(0)} \tag{1.27}
\]

ここで Projector \( P \) を

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
\]

で定義し、\( U = \begin{pmatrix} \bar{U} & 0 \\ 0 & 0 \end{pmatrix} \) とすれば (1.27) は

\[
\bar{U} = (1 - U^{(0)} \delta L)^{-1} U^{(0)} \tag{1.28}
\]

のように変形出来る。 (1.27) に \( P \) を演算して、

\[
UP = U^{(0)} \delta L (PUP) + U^{(0)} P
\]

又

- 405 -
不規則系の統計物理学

\[ P \dot{U} = (PUP) \delta L U^{(0)} + P \dot{U}^{(0)} \quad (\because \dot{U} = \ddot{U}, \delta \dot{L} = \delta \ddot{L} \text{より}) \]

これを (1.27) に用いて計算すると

\[
\ddot{U} = U^{(0)} + U^{(0)} \delta L \left\{ (PUP) \delta L U^{(0)} + \ddot{U}^{(0)} \right\} = U^{(0)} + U^{(0)} \delta L \left[ 1 - (PUP) \delta L \right]^{-1} \ddot{U}^{(0)} \quad (1.29)
\]

\( U \) を singular にするものが固有振動数であるから \( U^{(0)} \) に対応する周期系のバンドの外では (1.29) により \( \det \{1 - U^{(0)} \delta L\} = 0 \) を満たす \( \omega \) が系の固有振動数となる。これを変形して \( \det \{ \omega^2 1 - U^{(0)} \delta L \omega^2 \} = 0 \) とした場合の \( \ddot{U}^{(0)} \delta L \omega^2 \) は effective dynamical matrix とも見なされ、全結晶の自由度の次元から不純物で乱された空間の次元の問題に帰着させられたことになる。このような方法で少数個の不純物の問題は原理的には解けたことになる。具体的な計算も実行されて実験との比較が行われている。けれども密度有限の不純物を含む場合には依然非常に高い次元を扱わねばならぬことになり、原理的にもまだ解けたことにはならない。

§2. 一電子系と振動子系との関係

この節では、一電子系と振動子系との間の対応関係の調べることにより、例えば振動子系での解がわかればそれによって、一電子系での知識を得る事が出来る事を示そう。

Potential \( V(x) \) を受けて運動している電子に対する Schrödinger 方程式は

\[ -\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi \quad (2.1) \]

(2.1) で \( \psi(x) \) が結晶格子の格子点（例えば Simple cubic）上でのみ値をもつとする。この近似により微分演算 \( V^2 \) は差分となり、(2.1) は次のような差分方程式に変形できる。

\[ -\frac{\hbar^2}{2me^2} \sum_{\alpha} \left\{ \psi(x+a_\alpha) + \psi(x-a_\alpha) - 2 \psi(x) \right\} + V(x) \psi(x) = E \psi(x) \quad (2.2) \]
ここで $a$ は格子常数, $\alpha$ は $x, y, z$ 方向を示している。(2・2) のように変形すると, これは振動子系の問題に似ていることがわかる。

次に振動子系での Rosenstock-Newell Model を考えよう。これは, 格子点 $x$ に $m(x)$ の質量があり, かつ異った方向の振動は couple しない model である。この系に対する運動方程式は格子点 $x$ での微小変位の $\alpha$ 成分を $u_{\alpha}(x)$ とすれば

$$m(x)u_{\alpha}(x) = \sum_{\beta=1}^{3} K_{\alpha\beta} \{ u_{\alpha}(x+a_{\beta}) + u_{\alpha}(x-a_{\beta}) - 2u_{\alpha}(x) \}$$

$$- k(x) u_{\alpha}(x)$$

(2・3)

(2・3) 式での右辺第 2 項は固定点 $x$ にあるパネによるもので $k(x)$ はパネ常数である。（図 2・1）

![図 2・1]

$u_{\alpha}(x)$ の時間依存性を $\exp(i\omega t)$ とすれば (2・3) は

$$- \omega^2 m(x) u_{\alpha}(x) = \sum_{\beta=1}^{3} K_{\alpha\beta} \{ u_{\alpha}(x+a_{\beta}) + u_{\alpha}(x-a_{\beta}) - 2u_{\alpha}(x) \}$$

$$- k(x) u_{\alpha}(x)$$

(2・3')

(2・3') と (2・2) を比較すれば次の対応があることがわかる。

$$m(x) \omega^2 \quad \rightarrow \quad E$$

$$k(x) \quad \rightarrow \quad V(x)$$

$$K_{\alpha\beta} \quad \rightarrow \quad \frac{1}{2m a^2}$$

$$u_{\alpha} \quad \rightarrow \quad \phi$$

- 407 -
これより明らかのように，一電子系と振動子系との間には明白な対応関係（2.4）があり，一方がわかればそれにより他方に関する情報を得ることが出来る。ここでは例として一次元の chain の問題を考えてみよう。

まず振動子系での一次元 Rosenstock - Newell Model は

\[-\omega^2 m(x) u(x) = K \{ u(x+a) + u(x-a) - 2u(x) \} \tag{2.5} \]

これを次のような行列形式に書くことが出来る。

\[
\begin{pmatrix}
  u(x+a) \\
  u(x)
\end{pmatrix} =
\begin{pmatrix}
  -m(x) \omega^2 + k(x) + 2 & -1 \\
  1 & 0
\end{pmatrix}
\begin{pmatrix}
  u(x) \\
  u(x-a)
\end{pmatrix} \tag{2.6}
\]

(2.6) 右辺の行列は unimodular. つまり \( \det(\cdot) = 1 \) である。\( (2.6) \)をくり返し用いれば任意の \( y > x \) に対して

\[
\begin{pmatrix}
  u(y+a) \\
  u(y)
\end{pmatrix} = T \begin{pmatrix}
  u(x+a) \\
  u(x)
\end{pmatrix} \tag{2.7}
\]

と書ける。ここで \( T \) は transfer matrix の呼ばれ，やはり unimodular である。

一電子系の問題を次に考えると，これは

\[
\begin{pmatrix}
  \phi(x) \\
  \phi'(x)
\end{pmatrix} = \lim_{a \to 0} \begin{pmatrix}
  \phi(x) \\
  \frac{1}{a} (\phi(x) - \phi(x-a))
\end{pmatrix}
\]

としよ。つまり，この表示により

\[
\begin{pmatrix}
  u(x) \\
  \frac{1}{a} (u(x)-u(x-a))
\end{pmatrix} = U \begin{pmatrix}
  u(x) \\
  u(x-a)
\end{pmatrix}
\]

transfer matrix により

\[-408-\]
松田博嗣

\[
U \begin{pmatrix} u(y) \\ u(y-a) \end{pmatrix} = U T U^{-1} \begin{pmatrix} u(y) \\ \frac{1}{a} (u(y) - u(y-a)) \end{pmatrix}
\]

従って、

\[
\begin{pmatrix} \psi(x) \\ \psi'(x) \end{pmatrix} = T \begin{pmatrix} \psi(y) \\ \psi'(y) \end{pmatrix}
\]

dから、一電子系の問題に於ても unimodular matrix で表示できる。

このようにして、一電子系の問題と振動子系の問題との間に対応がつけられた。以後、従って振動子系に重心を置いて話を進めることにする。

§3. Random Linear Chain に於る Dyson の方法

Random lattice での格子振動スペクトルの厳密な計算を最初に試みたのは Dyson (Phys. Rev. 22 (1953), 1331) である。彼の取扱いは、数的に複雑であるが、後の発展の一つの原機となったので、その内容をこの節で解説しよう。現在でも trivial でない不規則系の振動スペクトル全体の厳密解はこれだけである。

Model は一次元 linear chain を取り上げている。model に対する運動方程式は次式で与えられる。

\[
m_j \ u_j = k_j^+ (u_{j+1} - u_j) + k_j^- (u_{j-1} - u_j)
\]

\[(j = 1, 2, \ldots, N)\]  

(3.1) で \(k_j^\pm\) に randomness がある。

(3.1) に対して、次式できめられる新しい変数を導入する。

\[
y_j = \sqrt{m_j} u_j, \quad \lambda_{2j-1} = k_j^+ / m_j, \quad \lambda_{2j} = k_j^- / m_{j+1}
\]

これにより運動方程式 (3.1) は

\[
y_j = (\lambda_{2j-1} \lambda_{2j}) \frac{1}{2} y_{j+1} + (\lambda_{2j-3} \lambda_{2j-2}) \frac{1}{2} y_{j-1}
\]

\[-(\lambda_{2j-1} + \lambda_{2j-2}) y_j \]

(3.3)
次に変数 \( z_1, z_2, \cdots, z_N \) を次式で定義する。

\[
z_j = \lambda \frac{1}{2} y_{j+1} - \lambda \frac{1}{2} y_j
\]  \hspace{1cm} (3.4)

これにより (3.3) は

\[
y_j = \lambda \frac{1}{2} z_j - \lambda \frac{1}{2} z_{j-2}
\]  \hspace{1cm} (3.5)

ここで \( x_1, x_2, \cdots, x_{2N-1} \) を

\[
x_{2j-1} = y_j, \quad x_{2j} = z_j
\]  \hspace{1cm} (3.6)

とおけば前の 2 式は

\[
x_j = \lambda \frac{1}{2} x_{j+1} - \lambda \frac{1}{2} x_{j-1}
\]  \hspace{1cm} (3.7)

のようにまとめて表示できる。これを Dyson representation という。

従って chain の固有振動は次のような行列要素をもつ \((2N-1) \times (2N-1)\) の行列 \( \Lambda \) の固有値を求めることに帰着する。

\[
\Lambda_{j+1, j} = - \Lambda_{j, j+1} = i \lambda \frac{1}{2}
\]  \hspace{1cm} (3.8)

他の行列要素は全て zero である。

行列 \( \Lambda \) は明らかに \( \omega = 0 \) の固有値をもつ。従って残りの固有値は \( \pm \omega_j \) の \( (N-1) \) 対である。

次に函数 \( M(\mu) \) で、\( \omega_j^2 \leq \mu \) であるような固有値の fraction を表わすことにしよう。従って \( M(\infty) = 1 \) のように規格化してあるものとする。系の固有振動のスペクトルは \( M(\mu) \) により与えられ、かつ、その密度は

\[
D(\mu) = \frac{dM}{d\mu}
\]  \hspace{1cm} (3.9)

で定義されている。（ここでは \( M \) は微分可能と仮定しておく。）

ここで、次式で与えられる特性函数を考えよう。

\[
\Omega(x) = \lim_{N \to \infty} (2N-1)^{-1} \sum_j \log (1 + x \omega_j^2)
\]  \hspace{1cm} (3.10)
松田博嗣

chain の ensemble を考えて、(3.10) で ensemble average すると

\[ \langle \Omega(x) \rangle = \lim_{N \to \infty} \left( 2N - 1 \right)^{-1} \sum_{j} \log (1 + x \omega_j^2) \]

\[ = \int_{0}^{\infty} \log (1 + x\mu) \, D(\mu) \, d\mu \quad (3.11) \]

\[ \log (1 + x\mu) \] は real positive x で real である branch をとること

にすると。\( \Omega(x) \) は negative real axis を除いては analytic であり、
解析接続により imaginary axis に近づくとする。（図 3.1）

故に

\[ \lim_{x \to -z + i0} \left[ \log (1 + x\mu) \right] = \begin{cases} 0, & \mu < 1 \\ \pi, & \mu > 1 \end{cases} \quad (3.12) \]

これにより

\[ \Re \left\{ (i\pi)^{-1} \lim_{\varepsilon \to 0^+} \Omega(-z + i\varepsilon) \right\} = \int_{0}^{\infty} D(\mu) \, d\mu = 1 - M \left( \frac{1}{z} \right) \quad (3.13) \]

(3.13) により \( \Omega(x) \) がわかりれば \( M(\mu) \) がわかり、従って系の振動スペクトラルが求まることになる。

Dyson は \( \Omega(x) \) として次式を得た

\[ \Omega(x) = \lim_{N \to \infty} \left( 2N - 1 \right)^{-1} \sum_{p=1}^{\infty} \log \left[ 1 + \xi(p) \right] \quad (3.14a) \]

\[ \xi(p) = \frac{x\lambda_p}{1 + \frac{x\lambda_{p+1}}{1 + \frac{x\lambda_{p+2}}{1 + \cdots}}} \quad (3.14b) \]

Dyson の導出した結果の式 (3.8) を用いると、問題は次の Hermite 行列の固有根 \( \{ \omega_n \} \) の分布を求めるために還元される。 (\( \mu_j = \sqrt{\lambda_j} \))

\[
H_N = \begin{pmatrix}
0 & i\mu_1 & 0 & 0 & \cdots \\
-i\mu_1 & 0 & i\mu_2 & 0 & \cdots \\
0 & -i\mu_2 & 0 & i\mu_3 & \cdots \\
& & & & \\
-i\mu_{N-2} & 0 & i\mu_{N-1} & \\
& & & & \\
-i\mu_{N-1} & 0 & &
\end{pmatrix}
\] (3.15)

ここで、次の Jacob 行列式を考える。

\[
H_N(\lambda) = \begin{pmatrix}
\lambda & i\mu_1 & 0 & 0 & \cdots \\
-i\mu_1 & \lambda & i\mu_2 & 0 & \cdots \\
0 & -i\mu_2 & \lambda & i\mu_3 & \cdots \\
& & & & \\
-i\mu_{N-2} & \lambda & i\mu_{N-1} & \\
& & & & \\
-i\mu_{N-1} & \lambda &
\end{pmatrix}
\]

\[
= H_N(\lambda; \mu_1, \mu_2, \ldots, \mu_{N-1})
\] (3.16)

これを第一行について展開すると,

\[
H_N(\lambda) = \lambda H_{N-1}(\lambda; \mu_2, \mu_3, \ldots, \mu_{N-1}) - \mu_1^2 H_{N-2}(\lambda; \mu_3, \mu_4, \ldots, \mu_{N-1})
\]

\[
(N \geq 3)
\] (3.17a)

\[
H_1(\lambda) = \lambda
\] (3.17b)

\[
H_2(\lambda) = \lambda^2 - \mu_1^2
\] (3.17c)

(3.17a) より

\[ -412 - \]
松田博嗣

\[
\frac{H_N(\lambda ; \mu_1 \mu_2 \ldots \mu_{N-1})}{H_{N-1}(\lambda ; \mu_2 \ldots \mu_{N-1})} = \lambda - \mu_1^2 / (H_{N-1} / H_{N-2}) \quad (3 \cdot 18a)
\]

くり返して

\[
= \lambda - \frac{\mu_1^2}{\lambda - \frac{\mu_2^2}{\lambda - \cdots}} \quad (3 \cdot 18b)
\]

一方

\[
H_N = \frac{H_N}{H_{N-1}} \times \frac{H_{N-1}}{H_{N-2}} \times \cdots \times \frac{H_2}{H_1} \times \lambda \text{の両辺の対数をとり。右辺の}
\]

\[
\frac{H_N}{H_{N-1}} \text{に (3 \cdot 18b) を用いれば}
\]

\[
\lim_{N \to \infty} \frac{1}{N} \log H_N(\lambda ; \mu_1 \ldots \mu_{N-1})
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log (\omega_n + \lambda)
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \log \left( \lambda + \omega_n(\lambda) \right) \quad (3 \cdot 19a)
\]

ここで

\[
z_n(\lambda) = -\frac{\mu_n^2}{(\lambda - \mu_n^2)} / (\lambda - \cdots) \quad (3 \cdot 19b)
\]

一方、Dyson の定義式によれば

\[
\Omega(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{\omega_j \geq 0} \log (1 + x \omega_j^2)
\]

\[
\lambda^2 = -\frac{1}{x} \text{とおいて}
\]

\[
= \lim_{N \to \infty} \frac{1}{2N} \sum_{n=1}^{N-1} \log (1 + \frac{1}{\lambda} \omega_n) \quad (3 \cdot 20b)
\]
$$\lim \frac{1}{2N} \sum \log \left( 1 + \frac{1}{\lambda} z_n(\lambda) \right)$$

\begin{equation}
(3 \cdot 20c)
\end{equation}

ここで
$$\xi(n) = \frac{z_n(\lambda)}{\lambda}$$

とおけば
$$\xi(n) = \frac{x\lambda_n}{1 + \xi(n+1)}$$

従ってこれは Dyson の求めた式 (3・14) に一致する。

具体的な Disordered chain の例として Dyson は次の 2 つの例について考察を行った。

Type 1

$2N$ 個の parameter $\lambda_j$ を独立な Random Variable とし、その確率
密度函数を $G(\lambda)$ とする model。つまり、質量とパネ常数とが複雑にから
みあってる model である。

$\xi(n)$ の分布密度函数を $P_n(\xi')$ とする。充分に長い chain を考えると
$P_n(\xi)$ は $n$ に無関係になるであろうから、これにより $F(\xi)$ に対して次の
積分方程式を得る。

$$F(\xi) = \int \int G(\lambda) F(\xi') \delta(\xi - \frac{x\lambda}{1 + \xi'}) \, d\xi' \, d\lambda$$

\begin{equation}
(3 \cdot 21)
\end{equation}

ここに、
$$\int_0^\infty F(\xi) \, d\xi = 1$$

$F(\xi)$ が知られると、$\Omega(x)$ は

$$\Omega(x) = 2 \int_0^\infty F(\xi) \log (1 + \xi) \, d\xi$$

と求められる。

Dyson は $G$ として $G_n(\lambda) = \frac{\lambda^{n-1}}{(n-1)!} \exp(-n\lambda) \quad (n=1, 2, \ldots)$ を

$-414-$
用いて、Ω(x)をanalyticに求めた。（図3・1）

Type II
isotropic impurityであってλ_{2j−1} = λ_{2j−2} = Km_{j}−1この場合の方が物理的ではあるが残念ながら解析的な解のみならず具体的な結果も得られていない。

図3・1 自乗基準振動数の積分スペクトル。
UU：一様な鎖
RR：λがexp(−λ)なる分布関数をもつ不規則鎖