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Abstract

     We study on the freedom in assigning Fock representations 

to each cosmic time for a canonically quantized free neutral 

scalar field in spatially homogeneous and isotropic universes. 

Two requirements are considered: the implementability of the 

Bogoliubov transformation between Fock representations at 

different times, and the finiteness of the energy generation 

rate per unit volume. We show that especially the second 

requirement completely determines the particle-defining modes 

corresponding to the Fock representations in the high frequency 

region for the minimal coupling case. We also show, with no 

assumption on the expansion law of the universes, that the 

scalar field should interact with the background geometry 

through conformal coupling in order that the Bogoliubov trans-

formation between the Hamiltonian diagonalizing Fock represen-

tations is implementable.
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1. Introduction 

     In the study of canonically quantized fields in expanding 

universes, we must construct Fock representations at each 

cosmic time in order to give meanings to the initial states of 

the quantum fields and interpret their subsequent time evolu-

tion.1)-7) These Fock representations enable us to interpret 

the states of the quantum fields by particle language, and may 

play important roles in various problems; the study of the 

interactions of quantum fields, the statistical problems, 

etc.. To find a satisfactory physical principle for the con-

struction of Fock representations in expanding universes, 

however, is a difficult problem and has not been solved yet.6)'7) 

     In this paper we study this problem from a rather mathe-

matical standpoint and try to derive constraints in assigning 

Fock representations to each cosmic time from some general 

requirements. We limit our argument to the case of a free 

neutral scalar field in spatially homogeneous and isotropic 

universes. In this case we can expand the field by the eigen-

functions of the three dimensional Laplacian and the field 

equation reduces to a decoupled system of second-order ordinary 

differential equations for functions of time, fk(t), where k 

denotes the eigenvalue of the Laplacian, corresponding to 

momentum in Minkowsky spacetime case.2) Each selection of a 

system of solutions, {fk(t)} , corresponds to one Fock
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representation. We specify the selection at each time t=`r, 

ifk('Y)(t)1, by giving the relation betweenfk and fk at t='C, 
as fk(T) (''C) _ (- 1 14k('Y )+Qk("( ))fk(T) (''C ), with two 
real quantities, Pk(t) and Yk(t)- 

     In order that two Fock representations can be physically 

related, they must be unitary equivalent, i.e., connected by 

the so-called Bogoliubov transformation.3) From this require-

ment we derive some constraints on the large-k asymptotic 

behavior of )A k(t) and 4/ k(t) by examining the asymptotic 

behavior of the Bogoliubov transformation coefficients. The 

main point in this study is the expression of the Bogoliubov 

transformation coefficients by the WKB-type expressions for 

the solutions, fk(t), supplemented by the estimation of the 

large-k asymptotic behavior of the correction factor to the 

WKB approximation. This requirement, however, yields rather 

weak constraints on ,u k(t). Thereupon, in order to obtain 

stronger constraints, we next consider the energy generation 

rate. Though the Hamiltonian for the quantum field in a finite 

volume is a divergent quantity, the difference of its vacuum 

expectation values at two differnt times, referred to as energy 

generation rate in this paper, should be finite.8)'9) This is 

the second requirement. From this requirement At k2(t) is 

determined up to the order of 0(1) in k for large k if the 

quantum field interacts with the background geometry through 

minimal coupling.
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      Perhaps the most natural choice of the Fock representa-

tions is the one that diagonalizes the Hamiltonian at each 

cosmic time.10),11) Some authors, however, asserted that this 

choice is not adequate by showing that the Bogoliubov transfor-

mation is not implementable for some special expansion law of 

the universe when the coupling is minimal.2),12)On the other 

hand it was pointed out that this trouble does not occur for a 

Friedmann-type universe if the coupling is conforma1.13) As a 

special application of our results, we clarify this point. 

Namely we show, with no assumption on the expansion law of the 

universes, that the coupling of the scalar field with the 

background geometry must be conformal in order that the Bogoliubov 

transformation between the Hamiltonian diagonalizing Fock 

representations is implementable, and for this choice the 

energy generation rate also remains finite.14) Fulling has 

also derived the same conclusion by a similar method to ours.17) 

     The program of this paper is as follows. In 4 2 we summarize 

some fundamental formulas on the canonically quantized free 

neutral scalar field and the Bogoliubov transformation, and 

present fundamental assumptions and notations used in this 

paper. In f3 we derive the expression for the Bogoliubov trans-

formation coefficients by the WKB-type solution of the wave 

equation. Then in f4 we examine the large-k asymptotic behavior 

of the correction factor to the WKB approximation and apply it 

to the study of the constraints imposed by the implementability 

condition of the Bogoliubov transformation. Next we study the
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energy generation rate in 4/ 5. § 6 is devoted to concluding 

remarks. 

2. Mode Expansion of a Canonically Quantized Free Neutral 

     Scalar Field and the Bogoliubov Transformation 

     The Lagrangian density of a free neutral scalar field j6 in 

a background geometry 3- L is given by 

  et _ --,', { 3.""a 56as + s c.) ~2 ] , (2.-I ) At

where m is the mass of the field, a is the Ricci scalar of 

the metric ;I", , and 0 and 1 for minimal and conformal 
coupling, respectively. The corresponding field equation is 

     a7 (42-j~LaL~m+ *ck)0  . (2-2) 

     In a spatially homogeneous and isotropic universe whose 

metric is expressed as 

ds2 = R(-02 (— dt 2 + da 2 )(2- 3 ) 

where d Q„2 denotes the time-independent metric of a homogeneous 

and isotropic three dimensional Riemannian space, we can expand 

the field 0 by the complete set of eigenfunctions 24k) of 
the three dimensional Laplacian A.3  associated with dc3 2; 

     4Nek)        k~~(k) 7 (2-4)
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where (k) denotes the set of indecies which labels the eigen-

functions belonging to the same eigenvalue k.2) We choose the 

phases of ''(k) so that 

         'L/*    ~'(2-s 
            d`ck).-Ck>> 

where the symbol -(k) denotes some set of indecies correspoding 

to the eigenvalue k, and normalize f2d(k) by the conditions 

J dr ' (k) V( lc') _' S(k)( ') , (2'6) 
where dv is the invariant volume on the homogeneous three 

space, and 8(k)(k,) denotes the product of Kronecker deltas 

and/or 5-functions with respect to indecies (k). Since we do 

not need the details of 1(k) in this paper, we do not write 

their explicit expressions.2)'15) With these eigenfunctions, 

a complete set of solutions of Eq.(2-2) is given by the func-

tions of form R-1  fk(t) 'tk ,where fk(t) satisfies the reduced 

field equation 

••2 

k+~.f k 0 ,(2-'7 ) 
where the dot denotes d/dt, and 

   cZ2. ••••1 k1 + m2R2' + t x +(s — L ) R''R , (2- g) 

where )(= 0,-1, and 1 for spatially flat, hyperbolic, and 

spherical universes, respectively.
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     The canonically quantized free neutral scalar field is 

expressed by annihilation and creation operators, a [(k)1 and 

a ((k)]1- , as follows:2 ) 

_ R.-1E         (kktk)] + 4-11 a<<k1),C2-1) 

            [ O [(k)] I Q[(k')]] ^ 0 , [ Q[(k)l , at( k')]+J _ s(k1(k'),(2.-to) 
where fk is a solution of Eq.(2-7) satisfying the condition, 

      ffk*—f*f           kk=i I (2—t1) 

                           and by integration is supposed for the continuous part of 
       (k) 

(k). For each choice of a set of solutions of Eq.(2-7) satisfy-

ing condition (2-11), referred to as particle-defining modes 

in this paper, the corresponding annihilation and creation 

operators define a Fock representation of 0 in the usual 

manner.3) Since in this paper we are interested in how freely 

we can choose Fock representations at each cosmic time, we 

must assign modes fk(' )(t) to each time t='Z. As mentioned 

in § 1, we do this by specifying fk(1)(t) by giving the rela-

tion between fk and fk at t='(, as 

             (ex ) ..—_—_. (— ifi 01)-1..Y(`L)1r (T) 

where )dk(t) and Ik(t) are real functions of t and k and 

IUk(t) is positive definite. From Eqs.(2-11) and (2-12) we 

obtain
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 Ifk('r) t2 2)1k (2-13) 

therefore condition (2-12) determines a solution of Eq.(2-7) 

up to constant phase. In the following sections we study the 

constraints imposed on the large-k behavior of Pk(t) and 

1°'k(t). A crucial assumption on these functions is that they 

depend on k monotonically for large k and the character of 

their asymptotic behavior is independent of t. Without this 

assumption we can derive no constraint on )A and Y. We regard 

this assumption as a stronger version of the locality in the 

definition of the particle-defining modes. 

     The Bogoliubov transformation coefficients d k and (3k 

                                                                   between the two Fock representations at t=t0and t=t11),2),8) 

is defined by 

                                LL 

k ct, (t) = 6' k i k(t,d(+) -+ R kTk(t,i (t)) (2-14) 

                                                                 and from Eq. (2-11) they satisfy the condition 

10(0- t kt I •(2-IS) 

Let a1[ (k)'] and IT-) be the annihilation operators and the 

Fock vacuum corresponding to the modes fk(„r), respectively: 

a [(14 VVC) = 0 .(2-16)
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Then Eqs. (2-9) and (2-14) yield the relation 

Qt C(k)1 = O( atot(k))/31,ato[--(k)]t (2-17) 

and from this and Eqs.(2-15) and (2-16) the vacuum-to-vacuum 

transition amplitude is given by1),2) 

  I<7'ti'>~27~kll1flk12) • (—)             (k)(k) 

The implementability condition of the Bogoliubov transformation 

between the two Fock representations, i.e., the condition the 

two Fock representations are unitary equivalent, is expressed 

as1),2) 

0<1<rl`- 0>12<+ (2-0) 
By the well-known theorem on the absolute convergence of infinite 

products, from Eq.(2-18), condition (2-19) is equivalent to 

E lPkI  Z <  °° •(2-20) 
(k) 

     If we define the particle number NT by 

       N.~ = EQzt(ke Q,t(k)] , (2.-2.t) 
                do 

we obtain the relation1) 

               z 

E IPkI = <7 to I N.,l vo> (2.— 22) 
(k)
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The right-hand side of Eq.(2-22) represents the number of the 

particles generated at  t=t1 from the vacuum state at t=t0, 

therefore it is, if not zero, infinite for the open universes. 

This is a familiar trouble associated with the infinite spatial 

volume and not physically essential one. We avoid this difficul- 

ty in the usual manner1)by restricting the field in a large 

but finite volume, and imposing some appropriate boundary 

condition on it. Then, noting that the equations which determine 

g k, Eqs.(2-7),(2-12) and (2-14), are all independent of the 
structure of the spectrum of k, hence so is 1 k itself, and 

that the number density of modes with respect to k per unit 

volume is proportional to k2 for large k regardless of K , 

the implementabitity condition of the Bogoliubov transformation 

can by expressed instead of Eq.(2-20) as 

                           -r 

        J°°k I  k  I k 1  K -t- 00(2-Z3) 
Here we assumed that there occurs no infrared trouble since we 

are working in a finite volume.

3. Some Formulas for the Bogoliubov Transformation Coefficients.

     In this section we derive formulas which express the 

Bogoliubov transformation coefficients by the correction factor 

to the WKB approximation for a solution of Eq.(2-7). These 

formulas play important roles in the study of the large-k
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asymptotic behavior of 0/ k and i k , and the constraints imposed 

on A and Y in the following sections. 

     Let X(t) be the solution of Eq.(2-7) satisfying the condi-

tion 

where a() is the value of a at t=t0 . Then f (to(t) (j=0,1) 

are expressed by X(t) as 

S. (t = A.X + B} X* (3-2) 

From now on the subscript k for various quantities will be 

suppressed. From conditions (2-12) and (2-13), we can express 

Aj and Bj by X as 

             i9              er 
•  

 2o[X1-(i~l;—Y•)X]C 3-3)    Y~r" 

_ -------- [ X
~+(.p~—~'a.) Xd.1,( 3-4)            2,SZo 

where the subscript j for the quantities in the right-hand 

sides represents the values estimated at t=tj, and ej are 

arbitrary real numbers. From Eq.(2-14) cy and (9 are expressed 

by Aj and B, hence by X as 

        *i C6^—eo) 
  o(=2sz0CA°Ai—BBil= -----------(3—s)
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 R ((~~Aez(eo*s,~       2&°oS1Bo~'1I-- 

where 

-6 =- ('—t ipo _ yo) CXI* t Cip1—Y1)X1* 

CZ$Z6.. ipo— Yo ) C5(1 + Up, _Y1)XI ] , 

et = (—Zaa+ Z(j0Y ) [X1r + (2)A1-11)"*J 
            + ip0-- ) L X1 fi (tilt - YI) X1) . 

     Now we introduce the following WKB-type expression 

X(t) 

          ̀ fa: 4 6? Gett) 

where 
t 

(t) C8 Ct')  S~ (t') eft'                          t
o 

The correction factor dB (t) to the WKB approximation is 

solution of the differential equation 

  ci265t(A
.+l-03-4)C8 =o ;~(t°)=l,d~CJ=4, d4 

where 

                   t 

4 ; =4 51(t')dt' , 
                          to 

and 

1 lda2 1ldig?.=
4s~;~d;~r2si d2

(3-6)

(3-7)

(3-8) 

 for

(3-1)

(3-I0) 

the

(3-11)

(3-12)



- 13 -

         [(1 2,).I2 1 (Se)" 
    166s`} a4                                             (3-13) 

We can prove that the solution 65(t) of Eq.(3-11) exists in 

the whole range of 4 if 64)o ,thereforethe expression (3-9) 

is valid in the whole range of t. But since its proof is 

lengthy and of highly mathematical nature, and since Eq.(3-11) 

has been fully studied in the context of the WKB approxima-

tion by many authors16), we admit this fact without proof in 

this paper. By substituting the expression (3-9) into Eqs.(3-7) 

and (3-8) we obtain the final expressions: 

'6 =C811, t' I slat + 62. cos/1 + i (`Cs3 sin/, + 64 cos/ ,), (3-14) 
= a31a [zini  1. of COS §.1  Z Gt3 Sin~, 1.44c0311)], (3-IS) 

where B1 =05(t1), 'Q1 =,Q(t1), and gE1 =I(t1), and 

„Si -' }Lvyl) t)11 ga.•t2~oL8~(3-1c) 

 (4%.= 2( µ12Q- )10 a-z)(3-\'T) 

oat 3` 2 (5Lo341 4131 2^)Aof t ) + 2 Ve u2, }~0.~, tYL~c 
+ Yoy1 — CA1.0_  -r 2 io)(3-4) 

tt4.=- '20-2;—SZ, a5' 2+ 2CSigoY1 - Yo~1~i  —25a075711  (3-11)
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and the expressions for  6 (1=1.'4) are obtained by the re-

placement 1/0-1,-)A0 in those for ofl1 . 

4. Constraints Imposed by the Implementability Condition of 

      the Bogoliubov Transformation. 

     Now in this section we study the asymptotic behavior 

of QJ for large k and from this we derive constraints on 

j.4 and )1 imposed by the implementability condition of the 
Bogoliubov transformation. Since in the usual WKB approximation 

as ; 1, we change the variable from 413 to u =d9-1. Then Eq.(3-11) 

is written as 

     1 

  d+ 4 u = ( I + u) /~,. -- (A (u)(4-0 
where 

(U)._U1~3 U'-~-8ut6)(4-2) 
                  Ct+U)E 

and the initial condition is 

       LA(so=0           ducro=0(4-3) 
With the aid of the Green's function of the differential opera- 

tor d2/d 524 4, Eq.(4-1) can be transformed to the integral 

equation 

  UIC~)=—isin ;--1C') [(1+u()) AZ) t a(Lt('))1dt' 
                                               (4-4)
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Returning to the original time variable t, we obtain 

     t t 

  (J (t) =  -i1 sin (2 .,a Ct'~~dt'') [( ituct')ASV) t uct') %(uct")l,(t5dt 
      t.t 

(4-5) 
and 

  u(t) = - SZ(t)tCO3(2JtS~.ct•>dt") [(I-t u(t')) Act') -t- uct').(uct'))] 6? t')cft' 
                                    ~ t.     t'(4-6) 

     Now we will derive the estimations of u(t) and u (t) 

by A. (t) from Egs.(4-5) and (4-6). Let A (t) be the maximum 

value of lu(t')1 for to 6 t'i t ,and tx be the maximum value of t, 

such that 

          rt 

    .,Jt~(u(t')) 1 61(t')(it' < I(4-'7) 
and 

          t 

       it A(t') l a(t')dt' <-12-..(4-8) 
           to 

Then from Eq.(4-5), we obtain the inequality for to t S tip 

                    t 

I tut) I <i(1 + AM)).t.i  AW)ISZ(t') dt'-t- 4A().  (4—i) 
                               Since the right-hand side of Eq.(4-9) is a monotonically increas-

ing function of t, we can replace (u(t)I by A(t) in this 

equation. By solving it with respect to (t), we obtain for 

to 6 t s t,p, 
                 t 

     A(t)62J I A(t'012,(t') dt' .(4-10 
to

is
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Here suppose that  t* remained finite as lA(t)I a (t) and 

LA(t)1611(t)2 converge to zero locally uniformly. Then from 

Eq.(4-10) and the definition of g(u), the left-hand sides of 

Eqs. (4-7) and (4-8) both tend to zero even for t=t*, leading 

to the contradiction to the definition of t*. Therefore, for 

any t1 (>t0), Eq. (4-10) is valid in tOst‘ti if 1/A(t)1SZ(t) 

and l/Ut)l .(t)2 is sufficiently small uniformly in this 

range. Thus we obtain the estimate 

    IU(t)I < 2 Jt IAC-t')I 2(t') dt' , (4-11) 
to 

which is valid for any t()' t0) under the same condition. A 

similar estimate for u(t) can be obtained from this. Using 

conditions (4-7) and (4-8), and noting that lu(t)141 from 

Eq.(4-11) under these conditions, Eq.(4-6) yields the estimate 

                      t 

   Iuct)Is 42(t)j A (t') I SZ(t) cl t' . (4-12) 
to 

     If gi exists, we can obtain finer estimations. By partial 

integration Egs.(4-5) and (4-6) are written as 

t   uIt) =-4[/1c±)(it tut))+u(t)9(U(t))]---4-4tcos(2fSZ(t'dt') 
t ±cos2it2(elAt•),[n(l+u)+Ow]dt; 

' andt(4-13) 

                     u(t)_—2bZ(t) Act)sin(2 çtF)at/)
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    tt   -t'1s(to Jsin(zJ,S2,(t'')dt"), r.A(l+L&)+u ltu)~dt'.(4-14) 
 t,t 

Using  Eqs.(4-7), (4-8), (4-11) and (4-12), Eqs.(4-13) and 

(4-14) yield the estimates 

  RA(*) IzIA.(t)I -I-"TIAdo)( *zlt otln.(t'>Iit' 
    t(p+Q S.(tl)dt') [ 1tjA.tt')I 9ct'~dt-1Z,t, 

and 

(act)!!sz(~)I/~c~~(+ac-t)~*IA.(t')I dt' Zto 

   + 9,4) (S + "C StS~(t5dt')tlIltt')l~2.(t')d-t'11,(4- IC) 
t,t. 

where P,Q,S and T are some positive constants. 

     These estimates enable us to obtain the asymptotic behavior 

of ® for large k. From Egs.(2-8) and (3-13) we obtain 

0(k-4)locally uniformly w.r.t. t .(4- 17) 

Hence Egs.(4-11) and (4-12) yield the estimates 

143(t) -- c I 0 (k-3 ) ,(4^Ip) 

0(k 2) .(4— I) 
... 

If a exists, Eqs. (4-15) and (4-16) give finer estimates 

og(t) - I I --- 0 (k-4 ) ,(4-20) 

Owl - 0(k-3) .(4-al ) 

     Now we apply these estimations to the study of the imple-

mentability condition of the Bogoliubov transformation. From 

Eq.(3-6) the condition (2-23) is expressed as
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 I' be 

      

d--------------k
oksZ ^~12.(dxt4-221 

                            ''<~ftla 

  Recalling the assumption on the monotonic dependence of 

JtA and ' on k for large k, this conditon can be written as 

   rt.2 
Note that 62/St and (W are of order 0(k-2) from Eqs. (2-8) , 

(4-20) and (4-21). From this, if Y^- o(k-2), then 1.011 2/)A2 

...-0(k-2),  and ifYgrows faster than k-2 as k-..)oo,1JJ 112 /2 

   4 .2 . Hence the condition (4-23) for 1=1 requires 

         o ( k - I/2)(4 -24) 

Then from Eqs.(3-18) and (4-18) we obtain 

       cat3 . (SLR! -- Foy') + o(k-I) . (4-2s) 

First suppose that At.., 0(k). Then Eq.(4-25) yields 01D3 0(k2), 

hence12/1A2,_k42,which grows faster than k2. Next 

suppose that IA grows faster than k. Then 015r, -442. Hence 

11)312012,, 4/A2, which grows faster than k2. Therefore 
condition (4-23) for 1=3 requires that 1.1 =/11k +o(k) with 

some positive constant p,,. Then the condition for 2)3 can be
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written as 

 I°253  Io (k-4) .(4-16) 

By rewriting the first term in Eq.(4-25) as 

                                       a s 

and noting that the last term in this equation is of order 

0(1), we can easily see that condition (4-26) requires 

t 

      ill=,~_ 4o(k2)( 4— 2.7) 

With Eqs.(4-24) and (4-27), all the conditions (4-23) are 

satisfied, and these are the constraints we wanted to obtain. 

      In concluding this section we remark on a special case. 

Among various choices of the particle-defining modes, that 

which diagonalizes the Hamiltonian at each cosmic time is the 

most natural one. For this choice we can derive an interesting 

fact from the result obtained in this section. As will be 

shown in the next section, for the Hamiltonian diagonalizing 

modes, y=0.-1,R  R. Then condition (4-24) requires that 
       -1'-1' 

t =1 unless RO RD and R1 R1 are both zero. Therefore we can 

conclude that the coupling of a scalar field with the background 

geometry must be conformal in order that the Bogoliubov trans-

formation between two Fock representations at different times 

specified by the simultaneous Hamiltonian diagonalization 

condition is implementable.
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5. Constraints Imposed by the Energy Generation Rate 

     The constraints on p and  Y obtained in  1 4 from the 

implementability condition of the Bogoliubov transformation 

are rather weak ones in general. In this section we show that 

stronger constraints are obtained if we turn our attention to 

the energy generation rate. For the scalar field in a spatially 

homogeneous and isotropic universe we define the Hamiltonian 

by 

N ('t) = -- R4(1) S ay. t(5-1) 
t=T 

where T', are the mixed components of the energy-momentum 

tensor. Then the difference of the vacuum expectation values 

of H(t1)at t=t0and t1 , 

 A 6 -.. <ert, 1 H (-t 0 I 7- — <7;11H (t017-;,> , 
which is referred to as energy generation rate in this paper, 

should be finite if we restrict the field in a finite volume, 

though H itself is a divergent quantity.8)'9) This is the 

second requirement, which we consider in this section. 

    The energy-momentum tensor of a scalar field A in a 

background geometry go, is given by8) 

   T„,,,=--2Ji4xL
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    =  a/+^FS  aL _ 1 aju^i, 493 a°rsi - Z ,uy mxe 

• 1.- C G ,uL 91 a + a'pti, VIcr r(56 Z) -- Vag, (952) ](S. - 3) 

Where GA,, = ffitps, - 1/2 gf,,,,cR, is the Einstein tensor, and 

PI denotes the covariant differentiation with respect to the 

coordinates x 4. By substituting the expression(2-9) into 

Eq.(5-3) and using Eqs.(2-6), (2-12), and (2-13), Eq.(5-1) 

yields 

H ('t) = ziai         E  C' + (-11.A* Y + cg -1) R-' R )1]T4icciv all(k)14-(b) 
(k) 

+ ['.-- (41t t(I-1)R-'R)21rr f kn,c-c) artt(k)ata.t[-(k'at 
  + 'z'c_)[ ~Z-~ ys+ (Y-t «- ̂ ) R-1 k)=].~ (2 a-c[ckea.k)]+I)}, 

where c 5-4) 

W2 =  k2-* 1 X)(S-5) 

and the subscript ''t in the right-hand sides of the square 

brackets means that the values estimated at t=e( should be 

taken. By virtue of the equation X(t)X(t)-X1 t)X(t)=21al0 obtain-

ed from Eqs.(2-7) and (3-1), and Eqs.(3-2), (3-3), and (3-4), 

we can easily show that 

{Z(S-6)                     2/, 

From Egs.(2-10), (2-16), (2-17), (3-5), (3-6), and (5-6),
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 aG  is written as 

E =_- Ez(s-1) (to 32120 

  K= [ w,Z—,2 + (Y,-t- c ,-1)R;'R,)2 ] 0?„e. C-&,,B] 
    — (Y1+ (t—t) R;`Rt) drift L`e.90 

     -t-[U,?1+            +)1,-(Y~-t-(;-t)R;R,)2] I IL, (5-8) 

where the subscript 0 and 1 denote the values estimated at 

t=t0 and t1 , respectively, as in the previous sections, and 

and J,,mean to take the real and the imaginary part of the 

subsequent quantity, respectively. By the same reason as in 

the argument on the implementability condition of the Bogoliubov 

transformation, the finiteness condition for LE can be written 

as 

    Jak ----------~&(5-9)                 po µ‘o 

     With the aid of Eqs.(2-8), (4-20), (4-21), (4-24), and 

(4-27), and the estimates, p1,~0+/u0n1 = 2,~,02+ o(k1/2) 

and `Q0a1 + )(lop] . 26202 + o(k1/2), we obtain, from Eqs. 
(3-16)--,(3-19) and the corresponding equations for /51, 

t , = z ('oµ, — o (k-') ,0.- t 0) 

                            ritz  -i- o (kvz)(s—tt)
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 6  3 = 2 ut p2 + C (k'_)(s- 11) 

64 = 2 (Ro?l - 6 Y.) * 0 (k"%) ,(s-o) 

 and 

et, a 2 (roy,+ Yip 0) + pia igto+y,SZ, IA,+ O(k=),(5-14) 

.is = 2 (Slept -atilt)*  0 ( k-2) ,(s-1s) 

Zs= 2. (2094- Pop') -I. 0 (k-u) ,(s-i 6) 

1: 2(2°11-1°60+ a•RAT'-u2iSao'sto+o(k-') , (s-r1) 

Substituting Egs.(5-10)^•"(5-17) into Eq.(5-8) and noting that 

-161
O02 = 1'+ O(k-2) from Eq.(2-8) and (4-20), we obtain

hC ;4SZ Calla—pill.  (1-t)R-aR11) 1 p,-a% 
  + (u2.o -)1 ) cos 21, + 2. YD SZo sin 2 II 

-- s p, ao (U, + U-- t) R; ' R,) { 2 sza, -+- k• sa; ' h i 
    yy[[~~('''   — (Zs<'pOp + ~117Lp1~71-0~cos2 L + `~0-#01) Sin 2 L, 

 + 2SL, [4(Yo -t'/Il)SZo -t' (yo -SZc)Z +9.1j'-62. )_ 

t 2 { —4Y0X1 6 + (ba: —po)()A _ s?.) 3 cos 2 L 

 + 45Z6 si,(SZD-po) 4 mil -sZ?) } sin2 1 I1 
+ 0 (k2) .(s- a)
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Since from  Eqs.(2-8) and (4-20) 1E1 has the asymptotic behavior 

            t, 

     t03(t)-2. (-0 dt^04c-'),(5-17) 
             to 

recalling the assumption on the monotonic behavior of )A and 

   for large k, terms of the form o(k3)X sin 2 !i1 (or cos 

2 1 ) in Eq.(5-8) make finite contributions in the integral 

in Eq.(5-9). Therefore, discarding the terms which make finite 

contributions in the integral, we obtain 

   K 4 SIo C1~,Z-SZ~'){w,t-P,Z -t. (t—U R 
                            t.--8 2:11 , U—t) R^'R,2SZoif, -t5.0a,'R., 

2 Yo SZ,o cos 2 , + C SZoa-,o) sin 2 11 } 

            2.12.01 { 4 CV--)'12) Roz+ (p L-0 )2- 

-~. (P i25~ .,2 )z(5-20) 

     Now let us examine what constraints are imposed on 

J(i( and 0 by condition (5-9). First we will consider the case 

  =0, i.e., the minimal coupling case. Since in this case all 

the terms other than -16(V -1) R1 R1`c.0 )1'1 in Eq. (5-20 ) 

are of order o(k3), condition (5-9) requires 6203P1 Y 1 o(k3)I 

hence
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 Y  o  (k-')(5-21) 

Furthermore in order that the contribution from the oscillatory 

terms is finite, it should be that 5102 JlL 1( g02 JA 02) .., 0(k3). 

                                                                        hence 

Ra2 -F o ( )C5-22) 

Under the conditions (5-21) and (5-22), condition (5-9) is 

equivalent to the condition Et02 Ai1(20.0y1+sl 0`Q1-1`21) 

o(k2), hence 

          = -!SC'S? , -+o(k-2).CS -2-3) 

                2 Next we consider the case 1=1, i.e., the conformal coupling 

case. In this case, Eq.(5-20) reduces to 

  K 2 wo { (µo -- w 01)1  - (y?- w17-)2. -t 41742(g  (5-24) 
Therefore condition (5-9) is equivalent to the condition 

      ..616 [ )), ) 4 crol xi] 
where 21 means to take the difference of the values estimated 

at two different times. In summary, for the minimal coupling 

case, the requirement that the energy generation rate is finite 

yields very strong constraints on At and y and they are com-

pletely determined by in large-k region in essence. In 

contrast, for the conformal coupling case, only a rather weak 

constraint (5-25) is imposed.
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     Finally we will remark on the special case in which the 

particle-defining modes are specified by the simultaneous 

Hamiltonian diagonalization condition. From Eq.(5-3) this 

case is characterized by 

       N 

    )A -- cY=(I-s) IV‘ R  .  (5-2C) 

In this case, as was shown in §4, the implementability condi-

tion of the Bogoliubov transformation requires that g =1. 

Therefore condition (5-25) is satisfied. Since for the Hamil-

tonian diagonalizing modes, the normal-ordered Hamiltonian 

with respect to these modes at each time is always finite and 

positive definite, Q f can be said to mean the energy genera-

tion rate on its proper sense. Hence we can say that for the 

Hamiltonian diagonalizing Fock representations and the conformal 

coupling, the energy generation rate remains finite as well as 

the Bogoliubov transformation is implementable.

6. Concluding Remarks 

                                          • 

     In this paper we studied on the freedom in assigning Fock 

representations to each cosmic time for a free neutral scalar 

field in spatialy homogeneous and isotropic universes. We made 

this assignment by specifying the particle-defining modes at 

each time with the aid of two functions, pk(t) and Yk(t). In
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order to obtain constrains on  Pk(t) and Yk(t), we considered 

two requirements. The first of them, the implementability 

condition of the Bogoliubov transformation imposed rather weak 

constraints, but the second requirement that the energy genera-

tion rate per unit volume should be finite yielded strong 

constraints on the large-k asymptotic behavior of , k(t) and 

'Y
k(t. Especially for the minimal coupling case, /4 k(t) 

and Yk(t) were, in essence, completely determined by the mode 

frequency SZ(t) in the large-k region. 

     Here we comment on the work of Fulling.17) He examined 

whether the unitarity condition (2-23) is satisfied or not 

for modes suggested by the first-order WKB approximation for 

the field equation in the generalized Kasner universe. When 

restricted to the isotropic case, the modes he examined in 

detail correspond to those given by =52, and Y= 0 in our 

notation. Of course he also dealt with some more general 

cases in connection with the canonical Hamiltonian diagonalizing 

modes, but in these cases his consideration remained rather 

rough one. By using our results his conclusion on these cases 

can be also justified exactly. Next we refer to technical 

aspects. Since his argument was based on the estimation of 

the direct difference of the WKB approximation from the exact 

solution, it was difficult to obtain the information on the 

phase of the error. In contrast, in our method, since we 

confined the correction for the WKB approximation to a single
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real  function  G5, we could explicitly distinguish the correction 

to the amplitude from that to the phase, which enabled us to 

obtain the delicate constraints on A and Y 

     In general our consideration does not give informations 

on the small-k behavior of ,t4k(t) and Yk(t). In order to 

determine AU k(t) and Yk(t) in the full range of k, more deeper 

physical considerations should be needed. But in the cases 

where the particle defining modes are determined by other 

physical grounds, our results give an important criterion on 

their acceptability. In fact, especially for the simultaneous 

Hamiltonian diagonalizing modes, we showed that the coupling 

of a free neutral scalar field with the background geometry 

should be conformal in order that the Bogoliubov transformation 

between Fock representations at different times is implementable. 

Since, for the high frequency modes, the assumption on the 

locality of the definition of the particle-defining modes 

might be reasonable, and the positive definiteness of the 

Hamiltonian might be also required, physically acceptable Fock 

representations will diagonalize the Hamiltonian in the large-k 

region. Therefore, the fact stated above seem to suggest that 

scalar fields should interact with the background geometry 

through conformal coupling. 

     Finally we remark on the extent to which our consideration 

is valid. Our consideration crucially depend on the quasi-

adiabatic nature of the definition of particle modes and the
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validity of the WKB-type expression (3-9). Especially near 

the cosmic singlarity these assumptions may break down. In 

such a region non-local characterization of field states may be 

 necessary_ Assumption on the isotropy of universes also seems 

to have played an important role. In fact Fulling has shown 

that anisotropy brings in a new serious difficulty to the 

consideration of the unitatity condition.17) These problems 

remain to be solved in the future. 
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