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                the Perturbed Einstein Equations 

                          Misao SASAKI 

      Department of Physics, Kyoto University, Kyoto 606 

                             Abstract 

     The gravitational radiation reaction effects in the systems 

described by the perturbations of given solutions of the Einstein 

equations are considered. There are two kinds of perturbations to 

be considered; one is the perturbation induced by no external source 

and the other is the perturbation due to the presence of a source 

particle. For the former case, we find that there exists a conserved 

current constructed from a quadratic combination of the solutions to 

the linearly perturbed equations, provided that the unperturbed 

geometry admits a Killing vector. Thus, some effects of radiation 

reaction are found to be included in the linear approximation. For 

the latter case, it is found that the usual perturbation expansion 

scheme fails but there is a possible approach analogous to the one 

in the Lorentz-Dirac theory of charged particles in order to include 

the reactive effects. By this approach we find that a naive argument 

on the energy conservation leads an additonal reactive term which 

contributes to the energy equation. However this term is found to 

be negligible if the particle is under a quasi-periodic motion.
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 S I Introduction 
     Much work has been done on the theory of gravitatonal waves 

since Einstein discovered the existence of wave solutions to his 

equation. However, mainly because of the non-localizability of the 

energy of gravitational fields, we know almost nothing about how the 

generation of gravitational waves affects a system which radiates. 

One of systems in which the radiation reaction problems can be 

treated fairly easily is the one which can be described by pertur-

bations of a known solution of the Einstein equations. In this 

paper, we will present an analysis of the perturbed Einstein equations 

up to second order in the perturbation amplitude, since the amplitude 

of gravitational waves induced by the small perturbations is of this 

order. 

     There are two kinds of perturbations to be considered. One of 

them may be called homogeneous in the sense that the perturbation is 

due to no external source. The other is the one due to external 

sources, especially by the presence of a particle, and therefore may 

be called inhomogeneous. 

     A good example for the homogeneous case is the non-radial 

pulsation of a spherical star. Thorne made an analysis of this 

example to first order in the pulsation amplitude.1) He found that 

radiation damping of the pulsation occurs and the associated energy 

loss rate balances the radiation power of the emitted gravitational 

waves. One might expect that his conclusion could be generalized; 

i.e. the (effective) energy-momentum tensor induced by the first
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order perturbations could be defined and would follow the covariant 

conservation laws. However, in  § II, we will show this is generally 

not true. None the less, we find that if the unperturbed geometry 

has a Killing vector, one can construct a conserved current out of 

the quantities satisfying the equations of linear perturbations. 

     For inhomogeneous perturbations, the known linear approximation 

scheme requires the source particle to follow a geodesic of the 

unperturbed space-time.2) As a result no radiation reaction effect 

can be included contrary to homogeneous perturbations. In § III, we 

will con:;ider the inhomogeneous perturbation of a vacuum space-time. 

We find that the simple perturbation expansion does not work in this 

case. Then, we will present a natural approach in order to include 

the radiation reaction effects. this approach is analogous to the 

one in the Lorentz-Dirac theory of charged particles, but in the 

gravitational theory there are intrinsic difficulties such as non-

renormalizability of the self-fields or non-localizability of the 

gravitational field energy. Then without any explicit calculations, 

the perturbation of the Schwarzschild geometry will be discussed. We 

find there that, for a particle under a quasi-periodic motion, the 

radiation reaction effect on the energy of the particle agrees with 

a naive argument on the energy conservation. 

     In § IV, the cases considered in § II and § III will be com-

pared, by restricting them to the perturbations of the Schwarzschild 

geometry, in order to understand better the differences underlying 

between these two cases.
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     In  §  V, discussion on the nature of inhomogeneous perturbations 

will be given. 

§II The conserved current of the linearized fields 
     Let us consider a one-parameter family of solutions (g, (£ ), 

~A (E )) to the Einstein equations'') 

•oos CE) ) _ $ 1L T M V ( 'i"A (E) ' .'d p (E) ) 
(2-la) 

and the equations of matter 

FA ((Pa(£) C£)) = O 
(2-lb) 

where Ais a matter field to be taken into account and the 

capital Latin indices represent the tensor indices and/or species of 

the matter field. We denote the E =0 solution of this family by 

O (go ,'A) and assume it to be a globally stable solution, i.e. for 

any , « 1, (g( ) , 41A(  )) is everywhere close to (g q, 4)A). 

                                                                      Also the solutions of this family are assumed to vary smoothly with 

respect to £ . Then, the perturbed Einstein and matter equations 

are obtained by expanding Egs.(2-1) in terms of E . Instead of 

performing this procedure directly, however, we derive the perturbed 

equations by appealing to the action principle, since the properties 

of perturbations can be studied more easily_

*) In this paper, we use the units c=G=1 and use the metric 

with signature (- + + +),
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     Let S be the action which gives the (Einstein and matter) 

field equations. Then S is the sum of the gravitational action 

SG and the matter action SM; 

 ,JC°1,+AJ ' 'SO-c(4  tiSM [tA ; ~~(2 -2 ) 

 where 
I          -D ]'16r~,JR~ A avid ao] )F3- , 

The Einstein and matter field equations are respectively obtained by 

requiring that S be stationary under variations of g 1, and '6A; 

  '(1)0 --'~~C~"vCrd~)—Brc.T"''C4a;5d0)]=0, 
                                                                  (2-3a) 

S S C1a00 S,Sn [ : 1                         -FA; 30) = 0 SS CPA(2-3b) 

Now, in order to obtain the perturbed equations, we set (g,q,, Old 
00 

(gMV + nry • cpA+ 2. TA) in the action S and expand it in terms of E. ; 

   d,e°0,       1VL 1l_$~~.~]+E,Si [k,~P;~,~]+ E2S2[k,y;~,~~+0(0) , (2-4) 
where indices of the fields are suppressed for simplicity. S1 and 

S2 are defined by 

     IS I D„ (61)] (ry  o rA E=o )(2-5) 

        .S 2 [ ,  , `~, ~ ~ = dzd X 2slS O~vF-oa@II                              d~ 

+ 
                     8-P-1111                       kiAv~q+z82'Sc-~Pq(f)(3(2-6)



                          6 

 O  O 

Since (g, lb) is a solution to Eqs.(2-3), S1 vanishes and Eq.(2-4) 

becomes 

. 

                                                                (2-7) 

Then, noting that variations of g is equivalent to those of 

E hi,4 , we insert the expression (2-7) of S [g, $] into Eq . (2-3a ) 

and obtain 

         OS _ s•S = _Sz +OCEa) = 0     3 
dry £ S t1441,& h(2-8) 

                                                                          Also, from the same argument on variations of 0A we obtain 

SS  ~S s2 
± OCZ2) = 0(2-9) s`~A 2.fA 59=4-

Thus, the perturbed field equations to the linear order in E can 

be derived from the action S2 and are given by 

o e o 

3kM-- OTA 

We note that, apart from an'irrelevant total divergence, one may 

introduce the Lagrangian L of the fields h r„ and 9'A, which is 

integrated to give S2, i.e., 

,SzEk,cP;a, =11-(k,7k `P,7( dp~~~-~ d4x (2-11) 
where covariant differentiation is denoted byV].*) In the follow-

*) Through out this paper 

or 0 interchangingly-

denoted by , or 3

 covariant 

Similarly,

differentiation is denoted by ; 

partial differentiation is



7

ing as well as in Eq.(2-11), a naught over an unperterbed quantity 

will be omitted; thus we regard (g, ) as an unperterbed solu-

tion, unless otherwise stated. 

     Now, as S2 contains all information about the properties of 

the linear perturbations, in particular it contains information 

about the existence or non-existence of conservation equations, 

which must be a consequence of a certain invariace property of S2. 

Therefore let us consider an infinitesimal transformation of the 

coordinates  x  M in the integral (2-11); 

X'M=Xu-  <<I                                                                 (2 -12) 

Because of the general covariance of L, S2 is invariant under this 

transformation, and we obtain the identity 

o= cra.                 fr0Z+C524- gS dAyr1             ~J~~~~A r SPA,(2-13) 
where is the Lie derivative operator with respect to 

For a field 4 A, the general form of i A is written as 

             `Yp (PA id~ A d,.(3(2-14) 

where fA ap is a function of 4 A and g),. Especially for the 

metric gy, one has 

  °c~s (2 -15) 

If a pair (hi,v, 5A) saitsfies the linearized equations (2-10), 

the third and fourth terms in the integrand of Eq.(2-13) vanish.
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Then, inserting  Eqs.(2-14) and (2-15) into Eq.(2-13), performing 

integration by parts, and noting that H is arbitrary, we obtain 

e-05. eff  effA 

whereTp,v and~fA are defined by 

~hv(2-17a) 

     TAS,S, cpR(2-17b) 

We shall call them the effective energy-momentum tensor and the 

effective current, respectively, of the linear perturbation. The 

reason for the presence of the adjective, "effective", will be 

explained later. 

      From Eq.(2-16), one finds that no covariant conservation equa-

tion may exist in general. However, if the unperturbed fields gy,, 

and (P A admit a Killing vector KH, the Lie derivatives of gr,~ 

and OA with respect to Km vanish; 

K Q) ' = £K4,1s, = O •(2-18) 

In this case, the contraction of Eq.(2-16) with Km gives 

  [R-17-A~A")v=(2-19) 
                      J Thus, the vector Pk defined by 

        PK-Kv(TyN_f-q1N1          JAJ(2-20)
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is a conserved current constructed from the solution  (hMy, CfA) of 

the linearized field equations. Therefore, we conclude that if the 

unperturbed fields admit a Killing vector there exists a correspond-

ing conservation equation involving the fields of a linearized 

solution quadratically. This implies that some effects of radiation 

reaction are included already in the linear approximation. As examples, 

the application of the above discussion to the electromagnetic field 

and a perfect fluid cases as matter fields is considered in the 

appendix. 

     Now we give the reason for calling 
                                        effr^' andeTA as 

O O "effective"; let us denote an unperturbed solution as (g ,4) 
11 temporarily as before, and a linearized solution as (n,T). Once 

(g, 4) and (n,?) are fixed, the field variables g and ck A 
are expressed as 

      cyqe~ 
       dd. =k        Uryfa'L + v-                                                                  (2-21a) 

        e i 

CA  IA + `fA + ~Z CPA  (2-21b) 

and variations ofg Al, and <PA are respectively equivalent to 

those of 2h).,),and F2 'A. Then, repeating the same argument 

which led to Eqs.(2-8) and (2-9), and abandoning a naught over an 

unperturbed field again, we obtain the second order perturbation 

equations 

                                     0 (2-22a)
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   ~cPAS~A(2-22b) 

where we have made use of the definition of S2 (see Eq.(2-6)). 

One finds that  Eqs.(2-22) have the same form as the linearized field 

equations (2-10) except the presence of external sources, which are 

infact Ta,' and 7,1 . Therefore, if we introduce a pair of 
fields (g, TO defined by 

(~ . )  (a + cto )(2 -23) 

Eqs.(2-22a) and (2-22b) are respectively equivalent to 

Cr ( ) = 8r [T«;' ) + T ( h `P ; 5 ) ] (2-24a) 
and 

                        eff 

        FA(~;~)= EZTA(cto ;a )(2-24b) 
to the order of E2. Thus, the pair (g, TO can be considered as 

the "background", on which the linearized fields propagate and which 

is due to the energy-momentum (and the current) of both the line-

arized fields and the unperturbed fields. 

     The gravitational radiation damping of the pulsation of a 

static star studied by Thorne1) is a simple but good example of the 

above result. In this case the static nature of the unperturbed 

metric implies the existence of a time like Killing vector tM, 

whose direction is parallel to the fluid 4-velocity um of the 

star. Therefore, by using Eq.(A-16) in the appendix, we obtain the 

integrable energy conservation equation
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 effeff
(2-25) 

If one gives initial data such that there are no incoming gravita-

tional waves and perturbations are reasonably confined near and 

inside the star, the non-radial pulsation modes eventually generate 

the outgoing gravitational waves. Then, as a consequence of Eq.(2-25), 

the sum of the properly defined pulsation energy and the gravita-

tional wave energy conserves and the radiation damping of the pulsa-

tion follows. 

     The argument given in this section applies also to the perturba-

tion of a vacuum space-time (e.g. black hole oscillations). Since 

eff 
no matter field is present in this case,T formally coinsides 

with Isaacson's effective energy-momentum tensor of the gravitational 

wave,3) and satisfies the covariant conservation equations. Then, 

Eq.(2-24a) becomes identical to Eq.(2.3b) of Ref.(3), except that, 

in our case, the main part of the background curvature is given 

a priori and the contribution made bye-ffMVto the curvature is 

assumed to be always small. 

III The perturbation of a vacuum metric induced by the presence 

of a particle 

0 

     Let the metricg°43 represent a solution to the vacuum Einstein 

equations; 

0 

         G""( Lc0= 0 
                                                                 (3-1)
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We introduce a length scale L over which the characteristic  compo- 

                                     O nent of the metricgqchanges. Thus the magnitude of the curva- 

ture is of order 1/L2. We perturb this space-time by putting a 

particle with small mass m and (almost spherical) radius ,Q , such 

that the relations m <<L and ,Q L hold. Then the equations 

governing the perturbation are obtained by considering a family of 

solutions (gq) ,7A(E )) which satisfy 

G-AAvcao( (£)) = sr crvc cpA Ct);aa(£) 
(3-2) 

                                                                        whereTM'( 4A( E) ; g`,, (£ )) is the energy-momentum tensor of the 

particle and E=m/L. ci)A(S )represents suitable variables which 

describe a motion of the particle. Because of the contracted Bianchi 

identities, Eq.(3-2) implies 

ZIT"( ci'Ac£) , a~ (£) J = 0(3-3) 

which is the equation of motion of the particle. Therefore no 

consideration is needed particularly to the equations of matter; the 

Einstein equations contain all the information that one needs. 

     The assumptions made in the above are: (a) if the particle is 

nearly spherical in shape and sufficiently small in size, the pertur-

bation is independent of the particle's structure, and (b) the 

particle's self-field can be separated out properly so that the 

equation of motion is independent of it. Although, there exists no 

rigorous proof (or disproof) of these assumptions at the moment, we 

adopt them in order that no other parameter except S would appear 

in Eqs.(3-2) and (3-3).
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     Now we apply the perturbation expansion scheme given in 

 § II to the present case, in order to see if it is possible to 

include radiation reaction effects in this scheme. The action for 

the present system is given by 

 3[LcP;El _ Z-[,3* £,SPtct);W3(3 -4) 

where ES
Pis the action for the particle. Note that S has an 

explicit i dependence from the beginning. Although the stationary 

action principle applied to Eq.(3-4) with a fixed E gives the 

correct Einstein equations (3-2), since one considers E as the 

expansion parameter, one should set 

 r•v Ci5q 1 - L+L. , `1'A1 + C- (PA )(3-5) 
in Eq.(3-4). Then the derivative of S with respect to 2 becomes 

aiS2 ..,_0-s—~My d`'x + Sp L=d( 3-6) 

                = sP12._o 
which is apparently non-vanishing. This contradicts with the usual 

stationary action principle. One should be reminded that Eq.(3-3) 

has a meaningful limit when E approaches zero; 

00 

V .UV( cl'A ; cc ) = 0(3-7) 

which is known as the test particle equation of motion. Thus we 

have a motion described by Eq.(3-7) without the presence of a parti-
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cle. This is precisely due to the term Sleft over in Eq.(3-6).                                 pI=0 
     Still, one might hope that radiation reaction effects could be 

included in this scheme by proceeding to a higher order. However, 

one can show it is in vain: Since a test particle's trajectory is 

fixed through Eq.(3-7), when the deviation from this trajectory 

becomes large due to the reactive effects, the scheme fails. This 

happens if the duration period of motion becomes comparable to  L/£ . 

On the other hand, since the gravitational radiation power is of 

order c2, the radiation reaction is non-neglisible if T 2~-m, 

where T is the duration period of motion. Then any scheme that 

can include the reactive effects should be able to describe a motion 

over the time period of order T -,m/ £ . But m/ E 2=L/ E . Thus one 

must abandon the scheme given in § II. 

     It is clear that the failure of the above method owes to the 

existence of the test particle equation of motion (3-7). Therefore 

we seek for a method in which the particle variables 0 are not 

O expanded in terms of E explicitly. Thus, setting gr~( )= g,+ 

 i h),y(~) only, Eq. (3-2) becomes 

     Ck ck • ) + 0( e-)] 
       2(3-8) 

where the tensors~'""(h;g) and G-'(h;g) are respectively the 

linear and quadratic terms with respect toh,~,in the expansion of 

G~v(g +£h), andt"(h, 4 ; g) is the linear term with respect to h1,,,, 

in the expansion of T'(q ; g +E h) . 

     Now, abandoning a naught over the unpurturbed metric, one can
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express as 

       —t 6i~,=a~~wvCll.;  a ,SEk ''53 L 
                                                 ac 

 (3-9) 

with 

Ck. 5] _ Eol4z ~sS~ 
JAY Ja y, 

where the subscript "vac" is to remind us the vacuum nature of g ,NV. 

Then, repeating the same argument which led to Eq.(2-16) in e§ II, 
the invariance of Sg implies 

CS,S=              jvac— 16ttCk;~-)_(3-10) 
                                                      which is actually the perturbed Bianchi identity-By using Eq.(3-10), 

the divergence of Eq.(3-8) becomes 

                                     4.-""(11;)11_+0(z1)                                                                     • (3-11) 

This can be interpreted as the equation of motion of the particle in 

the external gravitational field gMV. 

     From Eqs.(3-8) and (3-11), it is suggested that one may consider 

the equations, 

          G"(k = % rL T"'''0 -j 
(3-12a) 

                                                                       and 

–riC4;5).--EET'Ci,~,5)—$IicC-- (k ,~)]~LJ(3-12b) 
as the set of basic equations to the order of . However at first 

glance they seem to contradict with Eq.(3-10). Thus we must either
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abandon the idea of considering  Eqs.(3-12) as the basic equations or 

show that the tensor Mv(h; g) in Eq.(3-12a) can be regarded as 

something different from the linearized part of the Einstein tensor. 

     Note that, from Eq.(3-8), one finds cf (h; g) is invariant 

under a transformation of h„„„ given by 

       IrI        t-h .~y -E 'S~; v -E 'S v; i-^(3-13) 

whereM is an arbitrary vector field. This is the well-known 

gauge ambiguity that resides in h,,,,,,. Thus one may specify a gauge 

in which arguments can be made easily. Let us choose the so-called 

Lorentz gauge; 

        "\1'~v ;~,= 0 where NL=.tt+i.z~MV Y1-a(3-14) 
In this gauge G' (h; g)is written as 

       CTML(k; ) -5.[d — 2 R)aL~'a?i 
                                                               (3-15) 

I ML 

Since this is explicitly hyperbolic, one can introduce Green func-

tions of the operator 1)141'9, which satisfy 

     Lc~p_µL(4)           .""'o(~Gcx.,xi)P6, _gc:,c6,) g~Y, x.- 
                                                               (3-16) 

where(4)   (x,x') is the invariant 4-dimensional delta function, 

defined by 

          s4) ( x,x.')~"=~A4x= 1  J(3 -17)
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Then, by using a Green function with appropriate boundary conditions, 

we can rewrite Eq.(3-8) in the integral form 

  ML(r'1l          Cx)=I6ZJC~'Cx,x')o-~~~~;~)+FJpµ,$:5)+0(Et,advx/  (3-18) 
where 

Y"Z ,1 ; n = T k,,04; a) _ $Tt, 4.)4't L;,3-19 
Then, to the order , '4,44' is given by 

          Cx)=(6TJ  Cx,x0PI.,C1-Pd-Ccfr;1)-- fe/a- ,(13 $)]F-11ex  (3-20) 

where )[,my in the arguments of fell" is given by 

)AC
x) =16T 

J HCx.x')P,tr.'TP/(5Cit' ;a),p,a4Y(3-21) 

Note that, from Eq.(3-14), 4,41/ satisfies 

   •'. =OCEz)(3-22) 

Now, operating L'`41',(p on the both sides of Eq.(3-20), taking the 

divergence, and noting Eq.(3-22), we obtain 

     - 

                    ~,~;~~;1, -0(~Z)(3-23) 

O By neglecting the orders higher thanE , this equation with .•{' ' 

given by (3-21) is identical to the set of Eqs.(3-12). Thus, G'`"" in 

Eq.(3-12a) should not be regarded as the linearized part of the 

Einstein tensor but rather as a specific tensor derived by imposing 

                                                          * a prescribed gauge condition on hr,y.)
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     Eq.(3-23) is the equation of motion which includes the lowest 

order effects of radiation reaction, and one can calculate the 

amount of emitted gravitational waves from  -4,  . We note that this 

procedure of deriving the equation of motion is equivalent to the 

one in classical electromagnetism,4) but the resulting equation of 

motion (if one could obtain it) would have a very different structure. 

In electromagnetism, the notion of a point particle is accepted; the 

electromagnetic self-energy of a charged particle can be renormalized 

into the physical mass of the particle, and one obtains the Dirac's 

(locally defined) radiation reaction term. In gravity, however, the 

regularization problem of the self-field is a great obstacle. More-

over, even if one ignores it, one can never obtain any local force 

term for the radiation reaction. This can be made clear from a sim-

ple dimensional analysis: Since the 4-acceleration vector Dmhas 

dimension of (length)-1, the only possible local form the equation 

of motion may have is

*) We remark that when 

gauge, the fulfillment 

that of the equations 

of motion are needed, 

loosened. Conversely; 

the Bianchi identities 

this gauge need not be

 the field equations are written in a prescribed 

 of the gauge condition by the fields implies 

of motion. then, if only approximate equations 

the gauge condition can be correspondingly 

 if the gauge condition is slightly violated, 

 (i.e. the equations of motion) written in 

 exactly satisfied.
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 r,D--.u'A _'T1"3ha  d
Sar~ (1rS(3-24) 

where the tensor f~ a"'S is non-dimensional and must be constructed 

only from the 4-velocity u~ and the metric gMy. The factor m2 

in the r. h. s. of Eq.(3-24) arises from the fact that the radiation 

reaction force should be of order E2(see Eq.(3-12b)). Then, it 

is easy to see that any term of this form vanishes because of the 

symmetry of Riemann tensor as well as the vacuum nature of the (un-

perturbed) geometry. Thus, the radiation reaction term should nec-

essarily be non-local. 

     Even though we are unable to obtain the equation of motion in 

an explicit form, we may still deduce an implication of Eq.(312b); 

the point is that it is in the form of divergence. For simplicity, 

let g,,,,,, be a Schwarzschild metric. We denote the Killing vector 

which is timelike outside the horizon as KA .5) Then the contrac-

tion of Eq.(312b) with K'" gives 

( R, (T'"v+ £ i- K^) 11%. ), = O .(3-25) 

Adopting the Schwarzscild coordinates (t, r, 6 , (p ), we integrate 

Eq.(3-25) over a 3-dimensional compact region U(t) surrounded by 

the spheres r=r0 and r=r1 (r0 <r1), which includes the spatial 

volume V(t) occupied by the particle. Then 

qlr0(-1)(T:i£) r-drd.R,——E2[lrfor2)df,+11(;rfor2) dD,1_ (3-26) 
            tTCt)                                                      J 

If one places the boundary spheres r=r0 and r=r1 close enough
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(but not equal) to the horizon r=2M and to the infinity  r=+00, re-

spectively, the r. h. s. of Eq.(3-26) becomes the gravitational 

energy flux out of the region U(t). This is so because in vacuum 

the tensor fM is equaltothe effective energy-momentum tensor of 

gravitational waves87c ,-G'"v,3) which is actually at high frequency 

limit near the horizon or the infinity. 

     Now, we introduce the "energy" of the particle at time t with 

respect to infinity defined by 

E Ct) _ c_(-T0) r'drefa 
                                                             (3-27) 

which is the conserved energy in the test particle limit. By using 

the definition of E(t), Eq.(3-26) is rewritten as 

                                                           E,w 

       dtE.Ct)+c_Z1(-fo) rZdran, =-2qtt7.2drd.s2,4- r]3-28 
      1122Irtt0vct~Pc,() where~M'-8~"`'and C.2P is the energy flux out of the region 

U(t). Eq.(3-28) shows that the energy change of the particle is not 

solely due to the radiation. Thus the energy conservation law in 

the naive sense seems to be violated. However one must be aware 

that, although the radiation power 2P is gauge invariant, the 

coordinates of the particle's trajectory on the unperturbed geometry 

crucially depends on a gauge chosen. Therefore the "energy'' E(t) 

of the particle is not gauge invariant. In order to give a physical 

meaning to it, one generally averages Eq.(3-28) over several frequen-

cy periods of the generated gravitational wave. But it is possible 

only if the particle's motion is quasi-periodic. If it is so, the
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second term in the 1. h. s. of Eq.(3-28) becomes negligible, and 

the definition of E(t) becomes meaningful. 

     The above argument may well be applied to more general cases. 

It has been believed that the use of quadrupole formula must yield 

the energy loss of a weakly gravitating system correctly. But re-

cently, the validity of the formula has been questioned by several 

 authors.6)'7) One of the problems to be answered is how to define, 

if possible, the energy of the system. The above result suggests 

that, only for systems under quasi-periodic motion, this can be 

solved and the use of quadrupole formula may be justified. 

     Finally we note that the approximation scheme developed here is 

analogous to Newtonian expansion, since the parameter E(=L) serves 
as the coupling constant between the particle and the (external) 

gravitational field. 

§IV Comparison between the perturbations considered in § II 
and § III 

     We have seen that the homogeneous perturbations considered in 

II (hereafter we call it type A) have a nice feature that already 

in the linear order approximation some effects of the radiation re-

action are included, provided the unperturbed geometry admit at 

least one Killing vector. On the other hand, the inhomogeneous ones 

considered in § III (type B) require a different approximation scheme 

if one wants to take into account the effects of radiation reaction. 

     In this section, we compare these two types in the case of per-
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turbations of the Schwarzschild geometry, in order to understand the 

difference between them better. 

     The linearized Einstein equations are known to be expanded in 

terms of tensor spherical  harmonics,8) because of the spherical 

symmetry of the Schwarzschild geometry. The metric perturbations 

are accordingly characterized by the angular indices (/ , m) and 

parity (-1)1 or (-1)1Z+1. It is known that the k =0 perturbation 

corresponds to that of the Schwarzschild mass and the Q =1 pertur-

bations to small translation and stationary rotation.2) Therefore, 

the Q =0 and .2 =1 perturbations are non-radiative. 

     Noting the facts mentioned in the above paragraph, we discuss 

about the energy conservation for those two types of perturbations. 

For this purpose, we tentatively consider the Einstein equations 

(G µv=8 L T)4v) and the contracted Bianchi identities (Gn v =0) as 

though they were independent of each other. 

     First consider the Einstein equations: In case of type A 

perturbations, we can exclude the £=0 and /=1 components of 

the linear perturbations, since we are interested only in radiative 

cases. Then, the stability of the Schwarzschild geometry9) enables 

us to proceed to the second order, and we again obtain the linear 

equations with respect to the second order variation of the metric 

(see Eqs.(2-21a) and (2-22a)). The Q=0 components then appear in 

this order, which are due to the effective energy-momentum tensor of 

the linearized field IL. Thus, the lowest order change in the 
energy (mass) of the system is determined by A,v, and one expects
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that there may be a certain conservation law associated with  A,v. 

In case of type B perturbations, however, there exist  the  ,Q=0 

components already in the linear order, which account for the mass 

of the particle. Then, according to the general rules of perturba-

tion theories, we expect the energy conservation to hold only to 

this order and the radiation reaction not to be included. 

     Next consider the contracted Bianchi identities: For type A, 

the Q=0 components of the identities give trivial 0=0 relations 

in the linear order, but the law of the (spherically averaged) 

evergy conservation in the second order. This conservation law 

might be regarded as an additional restriction on the behaviour of 

the solution Ar,. However, as seen in §II, it holds if and only 

if A.A., satisfies the linearized Einstein equations. Thus, this 

restriction is just a restatement of the trivial consistency between 

the Einstein equations and the contracted Bianchi identities. For 

type B, the situation is very different; the Q =0 components of 

the contracted Bianchi identities give non-trivial restrictions on 

the motion of the source particle in the first order, and if one 

tries to proceed to the second order, one fails to obtain any mean-

ingful equations because of the reason given in § III. 

     Thus, the consistency between the Einstein equations and the 

contracted Bianchi identities forbids us to use the usual perturbation 

expansion scheme for the type B case, while it leads to the coserva-

tion of the perturbed energy and consequently gives radiation reac-

tion effects for the type A case.
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     In order to include radiation reaction effects for the type B 

case, one therefore has to abandon this consistency up to a certain 

degree. The method developed in  §  III is a natural way to do so and 

one eventually obtains a set of equations as Eqs.(3-12). 

     To conclude this section, we also mention the difference in the 

character of the initial value problem between each type of perturba-

tions. For type A, we can set up initial data in the usual manner. 

However for type B, we can only give asymptotic (past) initial data, 

since what we are interested in is the perturbation caused by the 

presence of a particle. This fact leads to the well-known difficulty 

when one desires to consider a bounded orbital motion of the particle. 

V Discussion 

     We have intentionally avoided to discuss on several difficulties 

associated with the inhomogeneous perturbations caused by a source 

particle. First of all, there is the self-energy problem of the 

particle. This cannot be left unsolved if one wants to perform 

actual calculations. There seems to be two ways to approach this 

problem: One is to consider a particle of finite size with a certain 

structure. Then one takes a suitable limit to separate out the 

self-field and possibly to get rid of the structure dependence at 

the same time. The other is to consider a point particle from the 

beginning. Then, one gives a reasonable regularization procedure to 

extract out the infinity associated with the self-field. 

     However, even if one succeeds to solve the above problem, one
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may not be able to obtain the equation of motion in a closed form; 

the particle's motion may depend on the global structure of space-time 

as well as on the history of the particle. For example, consider the 

perturbation of a black hole induced by the presence of a particle. 

It is known that the quasi-normal modes are enhanced and their contri-

bution to the gravitational radiation is non-negligible in the case 

of the test particle approximation.10),11)Since the existence of 

quasi-normal modes and their (complex) frequency values are intrinsic 

to the black hole  geometry,12) it is plausible that the radiation 

reaction depends very much on the global structure of space-time. 

      Apparently, much more work should be done on the inhomogeneous 

perturbations.
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Appendix 

     In this appendix, we take the electromagnetic field and a per-

fect fluid as example fields, and give corresponding expressions of 

Eq.(2-16) and the conserved current  Pk (see Eq.(2-20)). 
(a) The electromagnetic field 

     The Lagrangian is taken to be 

     LM-(6r _FiNVrcqaC(A-1) 

where F, =Ay
~H-Am; L is the field strength. The field to be varied 

is the (vector) potential Al,. Then, the action S2 is expressed as 

T—a),Fi cActx(A-2) 

where indices are supressed and f „,,1,=av;-a/4 ; Lis the perturbed 

field strength. Note that S2 preserves gauges invariance of the 

unperturbed electromagnetic field by itself. 

     Now, the Lie derivative of Ah with respect to a vector V” 

is given by 

            /31.m=A,,d°` 4 a , N A (A-3) 

and Eq.(2-16) is written as 

     ef~ effeff 
          TLA"),,,+1vA~." = o(A-4) 

where 

sAy 

Because of the invariance of S2 under gauge transformation of AM,
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the conservation of  e-ffi is identically satisfied; 

        eii-
        1 )=0 

.(A-5) 

Thus, Eq.(A-4) can be rewritten in a more comprehensive form 

e ,4v,4vef~    T;L+F7 L - 0(A-6) 

. The conserved current associated with a Killing vector K H is 

                        e 

     PkK2,Cf~T" - Avf'" )(A -7) 

, (b) A perfect fluid 

     The Lagrangian of a perfect fluid is given by 

LM =— e CI- e) 
                                                                   (A-8) 

where e and e are the density and the internal energy per unit 

mass, respectively. It is assumed that e is a function of P 

alone, and the particle number conservation holds; 

   e = e (r) ,(A-9) 

(P U~);M = O(A-10) 

where uM is the fluid 4-velocity which satisfies the condition 

    5~, ,,~MUv--(A-11) 

The action is a functional of the flow lines of fluid elements which 

are to be varied. The variations of P and 11/4  are determined by
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the conditions that  Eqs.(A-10) and (A-11) are kept satisfied. 

    We represent the flow lines by a set of 4 functions i e(s,yi)} 
whose values are the coordinates of the trajectory of a fluid element 

The argument s and yi are, resepctively, the proper time interval 

from a given spacelike hypersurface and the labels attached to a 

fluid element on this surface. If one denotes the varied flow lines 

by { ZL(s,yi; X )), they are related to the unvaried flow lines by 

               (~a Z                                                                                                       -            ''(s .`~` ; a) =J
o~~,7y(s,`~'; k' ) d V/ + z'"C s,`; o ) (A-12) 

                                                                       Thus, the vectorais the variable which plays the funda-

mental role in the perturbed equations. Specifically, the expression 

corresponding to Eq.(2-21b) is given by 

" = iM { m M 

       111(A-13) where-", together withH~,,,,, compose a solution to the linearized 
field equations, and the action S2 is expressed as 

S2= ILC ,o ,k,ok ,P, tie ,u,vU,a-).F`id4x . (A-14) 
Then, Eq.(2-16) becomes 

      eff
de4effefS eff 

                   L 

         T'"—P~'i"(TY-7duv)],+TP'"-PT,,uv,"=o,A-15 
where 3 

    eff =CSsJ= -and ~ML=gµ~+uruy. 
                         PJ-1 WI 

     If the unperturbed fields admit a killing vector K ", the 

conserved current is given by 

                               eff 

PK yky[TP"- P~,yc4(TCc(-J,tU")1   1(A -16)
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