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Abstract

The gravitational radiation reaction effects in the systems
described by the perturbations of given solutions of the Einstein
equations are considered. There are two kinds of perturbations to
be considered; one is the perturbation induced by no external source
and the other is the perturbation due to the presence of a source
particle. For the former case, we find that there exists a conserved
current constructed from a quadratic combination of the solutions to
the linearly perturbed equations, provided that the unperturbed
geometry admits a Killing vector. Thus, some effects of radiation
reaction are found to be included in the linear approximation. For
the latter case, it is found that the usual perturbation expansion
scheme fails but there is a possible approach analogous to the cone
in the Lorentz-Dirac theory of charged particles in order to include
the reactive effects. By this apprecach we find that a naive argument
on the energy conservation leads an additonal reactive term which
contributes to the energy eguation. However this term is found to

be negligibhle if the particle is under a guasi-periodic motion,



8I Introduction

Much work has been done on the theory of gravitatonal waves
Bince Einstein discovered the existence of wave solutions to his
equation. However, mainly bhecause of the non-localizability of the
energy of gravitational fields, we know almost nothing about how the
generation of gravitational waves affects a system which radiates.
One of systems in which the radiation reaction problems can be
treated fairly easily is the cne which can be described by pertur-
bations of a known sclution of the Einstein equations., In this
paper, we will present an analysis of the perturbed Einstein equations
up to second order in the perturbation amplitude, since the amplitude
of gravitational waves induced by the small perturbations is of this
order.

There are two kinds of perturbations to be considered. One of
them may be called homogeneous in the sense that the perturbation is
due to no external source, The other is the one due to external
sources, especially by the presence ¢of a particle, and therefore may
be called inhomogeneous.

A good example for the homogeneous case is the non-radial
pulsation of a spherical star. Thorne made an analysis of this
example to first order in the pulsation amplitude.l) He found that
radiation damping of the pulsation occurs and the associated energy
loss rate balances the radiation power of the emitted gravitational
waves. One might expect that his conclusion could ba generalized;

i.ae. the {effective) energy-momentum tensor induced by the first



order perturbations could be defined and would follow the covariant
congervation laws. Howeve;, in § II, we will show this is generally
not true. None the lesz, we find that if the unperturbed geometry
has a Killing vector, one can construct a conserved current out of
the quantities satisfying the equations of linear perturbations.

For inhomogeneous perturbations, the known linear approximation
scheme requires the source particle to follow a geodesic of the

2} Az a result no radiation reaction effect

unperturbed space-time.
can be included contrary to homogeneous perturbations, In § I1I, we
will consider the inhomogenecus perturbation of a vacuum space~-time.
We find that the simple perturbation expansion does not work in this
case, Then, we will present a natural approach in order to include
the radiation reaction effects. this approach is analogous to the
one in the Lorentz=-Dirac theory of charged particles, but in the
gravitational theory there are intrinsic difficulties such as non-
renormalizability of the self-fields or non-localizability of the
gravitational field energy- Then without any explicit calculations,
the perturbation of the Schwarzschild geometry will be discussed. We
find there that, for a particle under a gquasi-periodic motion, the
radiation reaction effect on the energy of the particle agrees with
a naive argument on the energy conservation.

In § IV, the cases considered in § IT and § IIT will be com-
pared, by restricting them to the perturbations of the Schwarzschild

geometry, in order to understand better the differences underlying

between these two casas.



In §V, discussion on the nature of inhomogeneous perturbations

will be given.

§II The conserved current of the linearized fields
Let us consider a one-parameter family of solutions ({g,a(€),
Clba{ € }) to the Einstein equationg™
G Rp @) = 3T T™( ()5 848(e))
{2-1a)
and the equations of matter
A (4 5 34) = 0 (2-1b)
where q>a e a matter field to be taken into account and the
capital Latin indices represent the tensor indices and/or species of
the matter field. We denote the £ =0 solution of this family by
‘ée@ ';A) and assume it to be a globally stable solution, i.e. for
any § << 1, tg“P( ). ‘-‘,’JB(% }} 1is everywhere close to {g'# ' qgn).
Also the solutions of this family are assumed to vary smoothly with
respect to & . Then, the perturbed Einstein and matter equations
are obtained by expanding Egs.(2-1) in terms of £ . Instead of
performing this procedure directly, however, we derive the perturbed
egquations by appealing to the action principle, since the properties

of perturbations can be studied more easily.

*) In this paper, we use the units c¢=G=1 and use the metric

with signature (- + + +).



Let § bhe the action which gives the (Einstein and matter)

field equations. Then S is the sum of the gravitational action

SG and the matter action SM;

S8 = Saltel + Suldas )

{2-2)
where
JSEr [3{;] =ﬁLﬁgRﬁ dx and ,SHLq’A}ﬂ-qp] ’JLM@A,VAA Wi d'x
The Einstein and matter field equations are respectively obtained by

requiring that S Dbe stationary under variations of g , and CPA;

gsm E ] SH ; 3 I'- F F u

Now, in order to obtain the perturbed equations, we set (g, P,)=

o ]
[g,,,-l-;_{uv, CPA"'E SOA] in the action S and expand it in terms of £ ;

ST Y= 8T8, 8] veS, Tuesd 8]+ 5,000 §,4)+ 0683 | (29

where indices of the fields are suppressed for simplicity. &S and

1
§, are defined by
o @& S ol
Silh, e }31‘?] :jd’x(g‘g:vL‘l';"P +SL§15; g0 1 ) (2-5)
Salh, ¢, 3.¢]= Xd" 4"1'(2 gﬁgﬂ hap hu,
81; | : (2-5}
'+ M ‘P _ﬁé—
$3,5% oo vadd 25&%% E=¢% re ) .
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Since (g, ¢} 1is a solution to Egs.(2-3), S; vanishes and Eq.(2-4)
becomes
SCae]=S08,4) «e* S, lh9:8.8 ]+ 008 (2-7)
Then, noting that variations of g ,, is equivalent to those of
zh,,, we insert the expression (2-7) of ng,?] into Eg.{2-3a)
and obtain
a8 . 538 §58
= = £222 Lo(e) = O
33’““' ESk}“P‘ Eh,.u]., * (2-8)

Also, from the same argument on variations of q’:A, we obtain

S_S“-'S—-S—u‘ SSZ A
5t T esy T 3w TOGNE=O (2-9)

Thus, the perturbed field equations to the linear order in § <¢an

be derived from the action §, and are given by

-

I -] -
§Salheig o) _ 852lh. #38.4] (2-10)
3'\»\» 4 8.:"0“ - .
We note that, apart from an’'irrelevant total divergence, one may

introduce the Lagrangian L of the fields h ., and ?A' which is

integrated to give Sz, i.,e.,

Salh¥ 59, 4] *—'JL Chooh e, w54, o, ¢203d% | (2-11)

*
where covariant differentiation is denoted by /. } In the follow-

*) Through out this paper covariant differentiation is denoted by ;

¥

or ¢ interchangingly. Similarly, partial differentiation is

denoted by , or &



ing as well as in Eq.{2-11), a naught over an unperterbed gquantity
will be omitted; thus we regard (g, ¢ ) as an unperterbed solu-
tion, unless otherwise stated.

Now, as 52 contains all information about the properties of
the linear perturbations, in particular it contains information
about the exigtence or non-existence of conservation equations,
which must be a consequence of a certain invariace property of 844
Therefore let us conaider an infinitesimal transformation of the
coordinates x™ in the integral (2-11);

X =x"- o ¥ 3 & <) (2-12)
Because of the general covariance of L, 82 is invariant under this

transformation, and we obtain the identity

%2 g8 )

= = 4 | 222 + 85,

0= 8512 &fd-f- (s 3}.”5:3»“* 55 it mf;hmss—%:afﬁ) , (2-13)
where -fg is the Lie derivative operator with respect to E4.

For a field ?A' the general form of Qf_FCﬁA is written as

L3 = IPLAEEE R S«;p

where £, 8 js a function of <?h and g, . BEspecially for the

, (2-14)

metric g,,, one has
Eyd = Suw + 5 . (2-15)
If a pair (h,,, ‘f&] saitsfies the linearized equations (2-10),

the third and fourth terms in the integrand of Eg.{(2-13} vanish.



Then, inserting Egs.(2-14} and (2-15) into Eg.{2-13), performing

integration by parts, and noting that " is arbitrary, we cbtain

eff =~ eft off
F w A .
(7= 344, Ny v TN =0 , (2-16)
where EFE” and f?l are defined by
ett 285
SNV RN ey 7T
T 8 § 3.0 , (2-17a)
%"’-*A -_ ! 8.
% 5% . (2-17b)

We shall call them the effective energy-momentum tensor and the
effective current, respectively, of the linear perturhation. The
reasen for the presence of the adjective, "effective™, will be
explained later.

From Eq.(2-16)}, ocne finds that no covariant conservation equa-
tion may exist in general. However, if the unperturbed fields g,
and fPA admit a Killing vector K", the Lie derivatives of =
and ‘?h with respect toe K™ vanish;

Lxdau = L = 0 (2-18)

In this case, the contraction of Eq.(2-16) with X" gives

eff eft
[KH(T’“’— T =0 (2-13)

Thus, the vector Pﬁ‘ defined by

H et
P = M(T”"—%‘“h ) (2-20)



is a conserved current constructed from the solution (h,,, Pt of
the linearized field equations. Therefore, we conclude that if the
unperturbed fields admit a Killing wector there exists a correspond-
ing conservation eguation involving the fields of a linearized
golution guadratically. This implies that some effects of radiation
reaction are included already in the linear approximation. As exanmples,
the application of the above discuasion to the electromagnetic field
and a perfect fluid cases as matter fields is considered in the
appendix,

Now we give the reason for calling qgjﬂy and q%:ﬁ

as

- -
"effective”; let us denote an unperturbed solution as (g, ¢)
temporarily as before, and a linearized solution as (ﬁ, %}. Once
-] Q
{9, ¢} and lfi, %b) are fixed, the field variables g ,, 6 and ¢A
are expressed as

by ]
g.ﬁﬁv: 3‘,..;; + & L_pp + E‘-LM],- ; (2-21la)

& L
Pp= §, 4 EP, + et Py , (2-21b)
and variations ¢f g ,, and ¢h are respectively equivalent to
those of Ezhﬁy and £2Efa. Then, repeating the same argument
which led to Egs.(2-8) and (2-9), and abandoning a naught over an
unperturbed field again, we obtain the second order perturbation

equations

$S:[h, %3 4) £8. [k,7;:%.4]
+ = 0 {2=22a)
8 hay § $mp !
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§S30h.9:34) |, §S2Li,%:3.4)
3% 3% =° (2-22b)

where we have made use of the definition of 32 (see Eq.{2-6}).

One finds that Egs.(2-22) have the same form as the linearized field

equations (2-10) except the presence of external sources, which are
E#Ay 'Hh ; . .

infact and J « Therefore, if we introduce a pair of

fields (&, $) defined by

(5.8) =(3+2*h , $+e*% )

(2-23}
Eqgs.(2-22a) and (2-22b} are respectively equivalent to
RS s DA E"'fﬁyt-n
&) =S LT E v e Tt i3] (2-24a)
d
an . A eff, o A
EAGH:3Ys 2T (h,¥28) (2-24b)

to the order of EZ. Thus, the pair (§, §) can be considered as
the "background®, on which the linearized fields propagate and which
iz due to the energy-momentum (and the current) of both the line-
arized fields and the unperturbed fields.

The gravitational radiation damping of the pulsation of a

static star studied by Thorne1JI

is a simple but good example of the
above result. In this case the static nature of the unperturbed
metric implies the existence of a time like Killing vector t4,
whose direction is parallel to the fluid 4-velocity u* of the
star. Therefore, by using Eq.(A-16) in the appendix, we obtain the

integrable energy conservation equation
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eft

T = &5 W (@B LTY =0 (2-25)
If one gives initial data such that there are no incoming gravita-
ticnal waves and perturbations are reasonably confined near and
inside the star, the non-radial pulzation modes eventually generate
the outgoing gravitational waves. Then, as a consequence of Eg.(2~25),
the sum of the properly defined pulsation energy and the gravita-
tional wave energy conserves and the radiation damping of the pulsa-
tion follows.

The argument given in this section applies alsc to the perturba-
tion of a vacuum space-time (e.g. black hole oscillations). Since
no matter field is present in this case, 5%5”” formally coinsides
with Isaacson's effective energy-momentum tensor of the gravitational
wave,3) and satisfies the covariant conservation eguations. Then,
Eg.(2-24a) becomes identical to BEg.(2.3b) of Ref.(3), except that,
in our case, the main part of the background curvature is given

eff

a priori and the contribution made by —TWMP to the curvature is

assumed to be always small.

Q.III The perturbation of a vacuum metric induced by the presence
of a particle

Let the metric EKP represent a solution to the vacuum Einstein
equations;

G §p) = O
19) (2-1)
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We introduce a length scale L over which the characteristic compo-
nent of the metric ;*P changes. Thus the magnitude of the curva-
ture is of order lsz. We perturb this space~time by putting a
particle with small mass m and (almost spherical)} radius J} , such
that the relations m&«L and AL<« L hold. Then the equations
governing the perturbation are obtained by considering a family of
solutions (g,,kF {%), ':PAI £)) which satisfy
A

G CQap () = BT €TV ( by Ce) ;5 Gug(®) ) , (3-2)
where ¢ T*¥{ ﬂbh( €}; 9, (€)) is the energy-momentum tensor of the
particle and £=m/L. ?A{i } represents suitable variables which
describe a motion of the particle. Because of the contracted Bianchi

identities, Eq.(3-2) implies

VT ; §48)) =0 | (3-3)
which is the equation of motion ¢f the particle., Therefore no
congideration is needed particularly to the equations of matter; the
Einstein equations contain all the information that one needs.

The assumptions made in the above are: (a) if the particle 1is
nearly spherical in shape and sufficiently small in size, the pertur-
bation is independent of the particle'’s structure, and {b} the
particle's self-field can be separated out properly so that the
equation of motion is independent of it. Although, there exists no
rigorous proof (or disproof) of these assumptions at the moment, we

adopt them in order that no other parameter except & would appear

in Eqs.{3-2) and {3-3}.
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Now we apply the perturbation expansgion scheme given in
§ II to the present case, 1n order to see 1f it iz possible to
include radiation reaction effects in this scheme, The action for

the present system is given by

ST, ¢ ;e = Selsl+ eSpld g , (3-4)
where E;SP is the action for the particle, Note that 8§ has an
explicit ¢ dependence from the beginning., Although the stationary
action principle applied to Eg.{3-4) with a fixed § gives the
correct Einstein eguations (3-2), since one considers § as the

expansion parameter, one should set

(3‘).1;, d’a‘) = (8‘...;,-"'%1'\-.»1.-, ci;.q"';'[lpﬁ ) (3-5)

in Eq.{3-4). Then the derivative of § with respect to ¢ becomes

3 = | 88«
S |£=o 2 d tkﬂp fx + SP|*2.==D (3-6)
= ;SFlg=n

which is apparently non-vanishing. This contradicts with the usual
stationary action principle. One should be reminded that Eq.(3-3)
has a meaningful limit when §{ approaches zero;

o a o

VG_rMp(qh ;gif) =0 ) (3-7)
which is known as the test particle equation of motion. Thus we

have a motion described by Eg.(3-7) without the presence of a parti-



14

cle. This is precisely dus to the term Sp\E=0 left over in Eq.(3-6}.

Still, one might hope that radiation reaction effects could be
inecluded in this scheme by proceeding to a higher order, However,
one can show it is in vain: Since a test particle's trajectory is
fixed through Eq.(3-7), when the deviation from this trajectory
becomes large due to the reactive effects, the scheme fails. This
happens if the duration period of motion becomes comparable to L/£ .
On the other hand, since the gravitational radiation power is of
order 22. the radiation reaction is non-neglisible if T Sznfm,
where T is the duration period of motion, Then any scheme that
can include the reactive effects should be able to describe a motion
over the time period of order T-~m/ 22. But m/ 52=Lf§ . Thus one
must abandon the scheme given in § II.

It is clear that the failure of the above method owes to the
existence of the test particle equation of motion {3-7). Therefore
wa saeek far a method in which the particle variables CPA are not
expanded in terms of £ expliecitly. Thus, setting 9. [ g )= ;ﬁy+'

¢h, (&) only, Eg.{(3-2) becomes

Gh3 e Y= L T8 8 r e T Ch 059) +o] 5

where the tensors é“"th:E) and a”P(h;;} are respectively the
linear and quadratic¢ terms with respect to h,, in the expansion of
G””{; +¢h}, and &““(h,? ; ;l is the linear term with respect to h,,
in the expansion of T*“(%; g +ch).

Now, abandoning a naught over the unpurturbed metric, one can
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express G a

ek &gy = & 5. Sa(n. 9] |

vac (3-9)

with

Sglh. 8] = fd ( E‘g& b )
where the subscript "vac" is to remind us the vacuum nature of g,,..
Then, repeating the same argument which led to Eq.(2-16) in §II,

the invariance of Sg implies

|_§Sy | v
( - h ., =0 -
ra'saﬁv); Lac. l6m Er ¢ 3.)”" + (3-10)
which is actually the perturbed Bianchi identity- By using Eq.(3=-10),

the divergence of Eg.(3=8) becomes

T™4:8),, =-¢ [‘ll‘“‘"(:.,,q:;g‘)- gﬁé‘""{h;g)];;o(t‘) . (3-11
This can be interpreted as the equation of motion of the particle in
the external gravitational field g, .
From Egs.(3-8) and (3-11), it is suggested that one may consider
the equations,
1
G {h;3) =R T™(4:%) (3-12a)

and

T4:9);, = el T 09.3)- 7 & ,‘3)] ,  (3-12p)

as the set of basic equations to the order of ¢ . However at first

glance they seem to contradict with Eq.(3-10). Thus we must either
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abandon the idea of considering Egs.{3-12) as the basic¢ equations or

show that the tensor &’“Th; g) 4in Egq.{3-12a) can be regarded as

something different from the linearized part of the Einstein tensor.
Note that, from Eg.(3-8), one finds &Hy(h: g} is invariant

under a transformation of h,, given by

Mo = by + L T (3-13)
whera X¥™ is an arbitrary vector field. This is the well-known
gauge ambiguity that resides in h, . Thus one may specify a gauge
in which arguments can be made easily. Let us choose the so-called

Lorentz gauge;

YL =0 where Vol -1, k% . (3-14)

In this gauge &’w(h; g) 1is written as

Gy ¥, 2R, P vt ]

(3-15)

- | My
=3 L :aqﬁ'-ﬁ‘}"“‘P

Since this is explicitly hyperbolic, one can introduce Green func-
tions of the operator L”ytp, which satisfy
L™ 4 &)= SerBely §70x x)
(3-16)
where S(qllx,x'] is the invariant 4-dimensional delta function,
defined by

@) Yy 1T Y =
(8P e Fydix = 1 ) (3-17)
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Then, by using a Green function with appropriate boundary conditionsg,

we can rewrite Eq.{3-8) in the integral form

my o o’ re’ .
¥ C.=.J=|GTL5C-.: Cx, x Jgrgs [ c¢;3}+2§(4,4;3)4'0{2);“:'3,1*11 . (3-18)

where

F0ne 9 - "IF“"(L,¢:;3) - %E §n:8) . {3-19)

Then, to the order ¢ , Y is given by

t 1
Yoz (s TEE G20 [ T%:9)» s £ 04, 639 ] dx 7

’ (3-20)
where -q,'“" in the arguments of £°% 4g given by
® sy P . el 4 4
W )= |G x,x )?:rJT (?;3)%{‘1 . {3=21)
Note that, from Eg.(3-14), E'V*W satisfies
e
— S
YL, =ocer) . (3-22)

Now, operating L"“",[P on the both sides of Eq.(3-20), taking the

divergence, and noting Eq.(3-22), we obtain

TUCE);, re T (d,409),, = 0¢eY (3-23)
By neglecting the crders higher than £ , this equation with \F—""
given by {3-21) is identical to the set of Egs.(3-12), Thus, é’“’ in
Eg. (3-12a) should not be regarded as the linearized part of the
Einstein tensor but rather as a specific tensor derived by imposing

*)

a prescribed gauge condition on h .
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EqQ.{(3-23) iz the equation of motion which includes the lowest
order effects of radiation reaction, and one can calculate the
amount of emitted gravitational waves from 'iﬁv. We note that this
procedure of deriving the eguation of motion is equivalent to the
one in classical electrOmagnetism,4) but the resulting equation of
motion (if ane could obtain it) would have a very different structure.
In electromagnetism, the notion of a point particle is accepted; the
electromagnetic self-energy of a charged particle can be renormalized
into the physical mass of the particle, and one obtains the Dirac's
{locally defined) radiation reaction term. In gravity, however, the
regularization problem of the self-field is a great obstacle. More-
over, even if one ignores it, one can never obtain any local force
term for the radiation reaction. This can be made clear from a sim-
ple dimensional analysis: Since the 4-acceleration vector %Eu“ has
dimension of (length}-l, the only possible local form the equation

of motion may have is

*) We remark that when the field egquations are written in a prescribed
gauge, the fulfillment of the gauge condition by the fields implies
that of the egquations of motion., then, if only approximate eguations
of motion are needed, the gauge condition can be correspondingly
loosened, Conversely; if the gauge condition is slightly violated,
the Bianchi identities (i.e. the equations of motion) written in

this gauge need not be exactly satisfied.
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M Brs o
ﬂn%u”:m‘{ ! R pré

prs

s (3-24)

where the tensor f* " is non-dimensional and must be constructed

only from the 4-velocity uM and the metric g,,. The factor n?
in the r. h. s. of Eq.(3=-24) arises from the fact that the radiation
reaction force should be of order Ez {see Eq.{3-12b))}. Then, it
is easy to see that any term of this form vanishes because of the
aymmetry of Riemann tensor as well as ths vacuum nature of the (un-
perturbed) geometry. Thus, the radiation reaction term should nec-
essarily be non-local.

Even though we are unabhle to obtain the equation of motion in
an explicit form, we may still deduce an implication of Eq.(312b);
the point is that it is in the form of divergence, For simplicity,
let g, be a Schwarzschild metriec. We dencte the Killing vector

5)

which is timelike outside the horizon as K* , Then the contrac-

tion of Eg.(312b) with K* givaes

(Ko (T4 2 £ 5% ),u = Q . (3-25)
Adopting the Schwarzscild coordinates (t, r, 8 , ¥ ), we integrate
Eg.{3-25) over a 3-dimensional compact region U(t) surrounded by
the spheres r=r, and r=r, lru‘irlj, which includes the spatial

velume V(t) occupied by the particle. Then

Bh

d { . o ey et ' - £y
Eﬁkﬁ'})("ﬂ*f{-,}rdrdn =~ [jgfﬁv:-m{c larldn| | (3-26)

If one places the boundary spheres r=r, and r=r; close enough
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(but not eqgual) to the horizon r=2M and to the infinity y=+0, re-
apectively, the r. h., s. of Eq.{3-26) becomes the gravitational
energy flux out of the region U{(t). This is so becauge in vacuum
the tensor £™ is equal to the effective energy-momentum tensor of
gravitational waves -ﬁ%fé”“,3) which is actually at high frequency
limit near the horizon cor the infinity.

Now, we introduce the "energy" of the particle at time t with
respect to infinity defined by

E&) - QL_CC;T;)"‘&!‘AQ. ’ (32271

which is the conserved energy in the test particle limit. By using
the definition of E(t), Egq.(3-26) is rewritten as

d “lg—’ g > -g* ngwir“dr

(2-28)
where E?#V--E%Ea‘“” and £2P ls the energy flux out of the region
U{t). EQ.(3-28) shows that the energy change of the particle is not
solely due to the radiation. Thus the energy conservation law in

the naive sense seems to be violated, However one must be aware
that, although the radiation power EZP is gauge invariant, the
coordinates of the particle's trajectory on the unperturbed geometry
crucially depends on a gauge chosen. Therefore the “energy" E(t)

of the particle is not gauge invariant. 1In order to give a physical
meaning to it, one generally averages Eq, (3-28) over several frequen-

cy periods of the generated gravitational wave. But 1t is possible

only if the particle's motion is gquasi-periedic. If it is so, the
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second term in the 1, h., 5. of Eq.(3-28) becomes negligible, and
the definition of E(t) becomes meaningful.

The above argument may well be applied to more general cases.
It has been belleved that the use of gquadrupole formula must yield
the energy loss of a weakly gravitating system correctly. But re-
cently, the validity of the formula has been questioned by several
authors.sj'?) Cne of the problems to be answered is how to define,
if possible, the energy of the system. The above result suggests
that, only for systems under quasi-periodic motion, this can be
solved and the use of quadrupole formula may be justified.

Finally we note that the approximation scheme developed here is
analogous to Newtonian expansion, since the parameter E{=%} serves
as the coupling constant between the particle and the {external}

gravitational field.

§IV Comparison between the perturbations considered in §‘II
and § III

We have aseen that the homeogeneous perturbations considered in
RII (hereafter we call it type A) have a nice feature that already
in the linear order approximation some effects of the radiation re-
action are included, provided the unperturbed geometry admit at
least one Killing vector. On the other hand, the inhomocgeneous ones
considered in § III {type B) require a different approximation scheme
if one wants to take into account the effects of radiation reaction,

In this section, we compare these two types in the case of per-
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turbations of the Schwarzschild geometry, in order to understand the
difference hetween them better.

The linearized Einstein equations are known to be expanded in
terms of tensor spherical harmonics,a] because of the spherical
symmetry of the Schwarzschild geometry. The metrie perturbations
are accordingly characterized by the angular indices (¢, m) and
parity {-1}l or (-1]£+1. It is known that the J =0 perturbation
corresponds to that of the Schwarzschild mass and the # =1 pertur-
bations to small translation and stationary rotation.z) Therefore,
the ( =0 and f =1 perturbations are non-radiative.

Noting the facts mentioned in the above paragraph, we diacuss
about the energy conservation for those two types of perturbations.
For this purpose, we tentatively consider the Einstein equations
{G"V=8% T*") and the contracted Bianchi identities (G*";, =0) as
though they were independent of each cther.

First consider the Einstein eguations: In case of type A
perturbations, we can exclude the [=0 and (=1 components of
the linear perturbations, since we are interested only in radiative

cases. Then, the stability of the Schwarzschild geometrygl

enables
us to proceed to the second order, and we again obtain the linear
equations with respect to the second order variation of the metriec
(see Egs.(2=21la) and (2-22a))., The [{=0 components then appear in
this order, which are due to the effective energy-momentum tensor of

the linearized field ﬁﬁv. Thus, the lowest order change in the

energy (mass) of the system is determined by ﬁnu: and one expects
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that there may be a certain conservation law associated with ﬁ .
In case of type B perturbations, however, there exist the £ =0
components already in the linear order, which account for the mass
of the particle. Then, according to the general rules of perturba-
tion theories, we expect the energy conservation to hold only to
this order and the radiation reaction not to be included.

Next consider the contracted Bianchi identities: For type &,
the £=0 components of the identities give triwvial 0=0 relations
in the linear order, but the law of the (spherically averaged)
evergy conservation in the second order. This conservation law
might be regarded as an additiocnal restriction on the behaviour of
the sclution %ﬁy. However, as seen in §II, it holds if and only
if ﬁ,M satisfieg the linearized Einstein eguations. Thus, this
regtriction is just a restatement of the trivial consistency between
the Einstein equations and the contracted Bianchl identities. For
type B, the situation is very different; the f =0 components of
the contracted Bianchi identities give non-trivial restrictions on
the motion of the source particle in the first order, and if one
tries to proceed to the second order, one fails to obtain any mean-
ingful eguations because of the reason given in § III.

Thus, the consistency between the Einstein equations and the
contracted Bianchi identities forbids us to use the usual perturbation
expansion scheme for the type B case, while it leads to the coserva-
tion of the perturbed energy and consequently gives radiation reac-

tion effects for the type A case.
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In order to include radiation reaction effects for the type B
case, one therefore has to abandon thisg consistency up to a certain
degree. The method developed in §III is a natural way to 4o so and
one eventually obtains a set of egquations as Egs.(3-12).

To conclude this section, we also mention the difference in the
character of the initial value problem between each type of perturba-
tions. For type A, we can set up initial data in the usual manner.
However for type B, we can only give asymptotic (past) initial data,
since what we are interested in is the perturbation caused by the
presence of a particle. This fact leads to the well-known difficulty

when one desires to consider a bounded orbital motion of the particle.

£V Discussion

We have intentionally avoided to discuss on several difficulties
associated with the inhomogeneous perturbations caused by a source
particle. First of all, there is the self-energy problem of the
particle., This cannot be left unsolved if one wants to perform
actual calculations, There seems to be two ways to approach this
problem; One is to consider a particle of finite size with a certain
structure. Then one takes a suitable limit t¢ separate out the
self-field and possibly to get rid of the structure dependence at
the same time. The other is to consider a point particle from the
beginning. Then, one gives a reasonable regularization procedure to
extract out the infinity associated with the self-field,

However, even 1f one succeeds to agolve the above problem, one
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may not be able to obtain the equation of motion in a closed form;

the particle's motion may depend on the global structure of space-time
as well as on the history of the particle. For example, consider the
perturbation of a black hole induced by the presence of a particle.

It is known that the guasi-normal modes are enhanced and their contri-
bution to the gravitational radiation is non-negligible in the case

of the teat particle approximation.loj'lll Since the existence of
guasi-normal modes and their (complex) frequency values are intrinsic
to the black hole geometry,lz) it is plausible that the radiation
reaction depends very much on the global structure of space-time.

Apparently, much more work should be done on the inhomogeneous

perturbations,
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Appendix

In thia appendix, we take the electromagnetic field and a per-
fect fluid as example fields, and give corresponding expressions of
Eq.(2-16) and the conserved current Pé‘{see Eq.(2=-20}}.

{a) The electromagnetic field

The Lagrangian is taken to be

| "
LH - ]?TE F)-w Fﬂ@ 8 dgvp (A-1)

?

where F,,=A, -2 is the field strength. The field to be varied

FM— My

is the (vector) potential A,. Then, the action %, 1is expressed as

ijl_(f,h,vh;l-‘-,&)i'——ad*x , (A-2)

where indices are supressed and £, =a is the perturbed

Pm-aﬁw
field strength, Note that S, Ppreserves gauges invariance of the
unperturbed electromagnetic field by itself.

Now, the Lie derivative of A, with respect to a vector g4

is given by

ol
f'SAM = Aﬂsd‘sd*" SQ;MA , {A=3)
and Eg.(2-16) is written as
off =~ e .
(T TA%),, + TPAL = 0 : (A-4)
where
E«H-D 1§58,
J b ~§ 3A,

Because of the inwvariance of S, under gauge transformation of LY
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the conservation of %%fu ig identically satisfied;
eft
v
:I ‘v‘-‘:o

i . {(a=3)

Thus, Eg.{A-4) can be rewritten in a more comprehensive form

et eff
A A
T, +F }v = 0 (A-6)

The conserved current associated with a Killing vector K* is

et eff

A
- »
R =Kk, (T -a"T*) (A-7)
{b) A perfect fluid
The Lagrangian of a perfect fluid is given by
= - | =+
Ly e Ci+ &) (2-8)
where ¢ and e are the density and the internal energy per unit
mass, respectively. It is assumed that e is a function of §£
alone, and the particle number conservation holds;
e=28(f) , (A-9)
(PU);u =0 | (A-10)

# is the fluid 4-velocity which satisfies the condition

where 1

W' = - (A-11)

The action is a functional of the flow lines of £fluid elements which

are to be varied. The variations of £ and u* are determined by
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the conditions that Egs.(A-10) and (A-11) are kept satisfied.

We represent the flow lines by a set of 4 functions fz”(s,yi)}
whose values are the coordinates of the trajectory of a fluid element,
The argument s and yi are, resepctively, the proper time interval
from a given spacelike hypersurface and the labels attached to a
fluid element on this surface. If one denotes the varied flow lines

by i Zhla.yi: A l}. they are related to the unvaried flow lines by

. A . .
z‘(s.‘a‘:afj %i:z"cs.w;xm’ v+ 2Y0s, 8% e

Thus, the vector E [%—]

4 {5.%)
mental role in the perturbed equations. Specifically, the expression

. {(a-12)

is the variable which plays the funda-

corresponding to Eg.(2-21b) is given by

E'M"_" ‘SA'F iqu , [A—lS}

where %”, together with ﬁnv, compose a solution to the linearized

field equations, and the action Sa is expressed as

s =JL(S,?§,L?I~. P PLvPu,vu )R dix {(A-14)

Then, Eg.{(2-16) beccmes

eff off  off off . eH
[T)"‘P y}*d{ va__jd J + 3— P.u“_ P J‘p uv,.“= O , (A=15)
E'ﬂ- EH M M »
where J --\rﬁ 2892 . :]" SET:"- and {*¥V=g" s uv,

If the unperturbed fields admlt a killing vector K¥, the

conserved current 1s given by

" off ef . off
Pk [ T -y (T E - Ty )

(A=-16)
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