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 Introduction 

      We are concerning with theoretical study of numerical 

integration procedure for the initial-value problem of 

ordinary differential equation: 

(E) ddy            -C(x,A) 

(IV) y(xI) = yI. 

Many numerical analysts have been investigating the discrete 

variable methods for the problem. Consequently everyone can 

enjoy to solve.ordinary differential equaiton in almost all 
( n.umerL'ca£ .Qy, 

computing centers. It seems as if we got the numerical 

integrator through the use of the computer- But the study is 

yet continued for "better" numerical procedure 

      Among the one-step methods, Runge-Kutta methods (RK 

methods, in short) are popular because of the high accuracy 

and the feasibility of changing step-size. In general the 

methods are expressed as follows The solution of (E) at 

x0+h is approximated by 

p 
Y1 = YD + hYuiki, 

                      i=1 

where 

kl = f(x0,y0), 

i-1 
(*) k.1 f(x0+ aih,y0+ hQ.k;).i= 2, ,p, 

j=1 

h is the step-size and y0 is the approximated aalue at 
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x0This type of the method is called (explicit) p-stage 

Runge-Kutta algorithm. According to the choice of the stage 

 number  p  and  theparametersai'ij'uiwehave many 

variations, among which the classical Runge-Kutta method or 

the Runge-Kutta-Fehlberg method is famous A distinguished 

contribution for the study of the Runge-Kutta methods has 

been made by J C. Butcher ([1] ti [4]) He determined the 

attainable order of the RK methods up to 10-stage formula. 

On the other hand he introduced the semi-explicit (the 

summation is up to i instead of i-1 in (*)) or implicit 

(the summation is up to p in (*)) formula. 

     RK methods (and perhaps many other quadrature formulas 

for the initial-value problem) are constructed on the principle 

that the required function evaluation is only for f(x,y), 

i.e. the first derivative of the solution. It is quite natural 

because we are acquainted with the functional form of the 

first derivative in the ordinary differential equation. 

Recently, however, some propositions have been made to employ 

the function evaluation of the second derivative of the solution. 

Functional form of it is given by 

          g(x,y) = fx(x,y) + fy(x,y)f(x,y). 

     M. Urabe [15] made a first attempt to employ g(x,y) by 

presenting an implicit one-step method with step-size control 

strategy Let y0 and y be approximations of y(x) at 

x0and x0-h, respectively His algorithm employs the 

predictor given by 

yl = -3ly_i + 32y0 - h(14f_1+16f0) + h2(-2g-1+4g0) 

- 2 -



and the corrector given by 

 y0 = y-1 +7/7)(101f_, + 128f0 + llfl) 

                     + 

                  2-74-13g-1 ( - 40g0 - 3g1), 

where fi = f(x0+ih,yi),gi= f(x0+ih,y.),fl= f(x0+h,y1) 

and gl = g(x0+h,y1) Succeeding his result, J. R. Cash 

[5] has considered this type of formula more generally and 

made some stability analysis On the other hand H. Shintani 

[12], [13] has proposed some formulas analogous to RK 

formula employing one evaluation for f(x,y) and some for 

g(x,y) He has given the values of the parameters appearing 

in the formulas up to the order 7 His results, closely 

related to the present work, will be mentioned afterward. 

      In this context another type of integration formula, 

for the origination of which H. H. Rosenbrook [11] is given 

credit, is now being developed. It employs the partial 

derivative f(x,y) and is reported to have good stability 

for stiff systems of ordinary differential equations ([7], 

[9] ) 

     Here we shall examine an explicit (p,q)-stage Runge-

Kutta type formula including the second derivative. It 

requires p times evaluations for the first derivative and 

q times for the second derivative in a similar manner for 

RK methods We are interested in the following problems 

     (1) What is the attainable order of the (p,q)-stage 

formula from the viewpoint of its local accuracy? 

     (2) How are the parameters in the formula determined? 

(3) What formula is good for practical use? 
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     These problems will be solved in the following sections 

and the forthcoming paper by the author. The present paper 

is especially devoted to investigate the  (1,q)-stage formulas 

     First, we shall define explicit (p,q)-stage formula. 

Next, some algebraic computations are carried out to 

investigate (p,q)-stage formulas Here SAM software is used 

as a powerful tool. Then, the attainable order of (1,q)-stage 

formula is determined up to q=4 

     Remark. In the case of very complicated functional form 

of f(x,y) in higher dimension, the calculation of the 

second derivative g(x,y) requires a laborious work. It is 

the main reason why the methods employing g(x,y) have not 

been considered. But the recent development of the symbolic 

and algebraic manipulation (SAM) software brings the change 

of the situation. SAM software, for example, REDUCE-2 or MACSYMA, 

is now a helpful tool for mathematical sciences. In fact, 

some SAM program may print expressions in a FORTRAN notation 

so that one can carry out the calculation of the second derivative 

from f(x,y) in an automatic way Once after algebraic 

computation we may call g(x,y) as a FUNCTION subprogram. 

     Moreover, SAM software is very useful for the theoretical 

study of the RK and its analogous methods For example, 

H. Toda [14] has considered 5-stage RK limiting formula of 

order 5. He has utilized MACSYMA essentially We shall also 

attempt to apply SAM for our study 
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 §1.1 Explicit (p,q)-.stage Formula 

     We shall discuss numerical integration procedure for 

the initial-value problem of ordinary differential equation: 

(1.1.1) dx= f(x,y),dy   

(1.1.2)y(xi) = y1. 

Here f is sufficiently smooth with respect to x and y 

Let us define an explicit (p,q)-stage Runge-Kutta type formula 

including the second derivative of the solution. Let g 

stand for the second derivative of y(x), 

(1.1 3) g(x,y) = fx(x,y) + f(x,y)f(x,y) 

Explicit (p,q)-stage formula is given as follows 

                                   2 q (1
.1 4) y

n+1 yn + h p.ki + h v.K1, n=0,1,2, 1=1i=1 

where 

( kl = f(xn+alh, yn), 

(1.1.5)1-1 2i-1 
             k. = f(xn+aih,yn+hSijkj+hy..K.), i=2,..P~ 

j=1 j=1 

            K1 = g(xn+plh, yn+h611k1), 

(1.1.6) 

K. = g(xn+plh,yn+h°..kj+h` rijK.), i=2, ,q 
j=1j =1 
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       Remark 1. The parameters ui'vi'a.,Qij,y..,p. ,o.. 

and  Tij are, of course, real numbers 

      Remark 2. In the case of simultaneous equations in (1) , 

y and f are considered vectors of the same dimension. 

Then f
y(x,y), the Jacobian matrix of f, is given in the 

matrix form. For example, assume that 

f1(Y1,Y2) (a1-b1y2)y1 

f(x,y) _ _ 
f2(y1,Y2) (a2-b2y1)y2 

, where ai and bi are constants then 

                a1-b1y2 -b1y1 

     fy(x,Y) _ 

              -b
2y2 a2-b2y1 , 

and 

               a1y1+ (b2y1+b1y2-2a1-a2)b1y1y2 
g(x,y) 

a2y2 + (b2y1+b1y2-a1-2a2)b2y1y2 

Similar to the RK formulas, the determining equations and 

the parameters are possible to be slightly different between 

the single differential equation and the systems of equations. 

For convenience sake we shall i:vLstigate the single case 

The attainable order of the formula is not depend on whether 

(1) is single or system. 
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    §1.2 The Taylor Series Expansion of the Solution 

     To investigate Runge-Kutta type methods of higher order, 

we are required to represent the solution  y(x0+h) for (E) 

and (IV) in §1 1 into the power series of the stepsize h. 

For our quadrature formula it is preferable to represent the 

solution into the power series utilizing the second derivative 

g. 

     Twice integration after differentiation for the equation 

         dx f(x,y),x > x0 

implies the formula 

         Jxo+h{ftd2r(1.21)--------------Y2(x)-dx}dt jxo+hjt                                     {g(x,Y(x))dx}dt. 
      x0x0dxx0 x0 

The left-hand side of the above formula is equal to 

y(x0+h) - y(x0)- hf(x0,y(x0)) 

= y(x0+h) - y0- hf0_ 

Hereafter the subscript 0 stands for the evaluation at 

x = x0 and y = YO 

     The right-hand side of (1) becomes 

  (hrx0+(h        {Jg(x,y(x))dx}d=g(x0+c, Y(x0+c))dc}d0x_00 
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      Then, assume that for 0  <  < h y(x
0+c) can be 

expanded in the power series of S by 

                                                  K 
(1.2.2) y(x0+c) = y0 +0f0 +r,2cr +O(cm+1), 

r=2 

where K. (j=1,2, ••,m) is the coefficient to be determined 

later- Substitution (2) into the integrand implies 

                                      m
g(x0+c,y(x0+c)) = g(x0+c, y0+cf0+ yKr~2cr+O(cm+l)) 

r=0 

_y[(C aa+ (Cf0+Kr-2Cr)ay)Zg]0 +O(Cm+1) 
R=0r=0 

                 m A Kr-2 r-1a2m+1 
                Q, [(D+(r!c )ay) g]0+ o(c) 

Q=0r=2 

               m 2 2 m-1 K _ Q,{ (k)((r+1)!Cr)k 
Q=0 • k=0r=1 

x [Dyk(ay)kg] 1 + O(cm+1) 

Here D0is a differential operator defined by 

a a  
     D0=ax+ f0 ay. 

Therefore we have the following equation: 

                    m+2 K 

(1.2 3) y0+hf0+r,r-                            Cr_ y0+hf0+ 
r=2 

    +~h(mQkm-1 Kr-1 r0,(Q-ka         (1~,{(k)((r+l)! C)[DO(ay)g]0 
     00Z=0 k=0r=1 
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which determines K. recurrently. 

     Twice differentiation for (3) with respect to h implies 

(1.2.4) 22h2= Q2{ (k)(m~l Kr-1hr)k 
 2g0•2=0•k=0 r=1~r+1) 

X LDo-k(ay)kgl01 

Then, we have the following important result. 

      Theorem 1. The coefficient K9
, • ,m) is 

determined by the following way: 

Ko = go. 

(1.2.5)2-1 m(2
,^) K2= LDOgl0+

sl{ tls!(2-s-t)! 

x B(KO K1 Ks-1)LD2-s-t()tgl }, 
                s,t( 3' 's+10ay0 

                                       for 2=1,2, ,m. 

Here B
s t(xl,x2, ,xs) is the multivariable polynomial of 

E. T Bell of the order (s,t) and 

m(2,^) = min(s,2-s) 

     Note. K. appeared in the summation of the right-hand 

side of (5) is for j less than or equal to 2-2 so that 

we can determine K2 recurrently by the formula. 

     Proof K0- g0is clear Let us introduce two 

                             - 10 -



functions G(h) and  A(h;.) as follows: 

(1.2.6) G(h) =m-1 Kr-1 hr, 
r=1 (r+l)! 

2 

(1.2.7) A(h;2) kL0(k){G(h)}k[DO-k(ay)kg]0,Q=0,1, ,m. 

Note that G(h) is of the order h and G(0) = 0 holds 

Then, the right-hand side of (4) is equal to A(h;s) hs 
s=0 

Hence , we have the equation 

(1.2.8) m KZ hk -A(h;s) hs 
        QOQ~s0s! 

For an integer Q such that 1 < k < m, k-times differentia-

tion to (8) with respect to h implies 

(1.2.9) KQ=                         Z-1 (1.2.9) 
s=0 

     By (7), the equation 

A(O;Q) _ [4g]0 

is clear_ For s > 1, we have from (7) 

    A(s)(h;Q-s) _ (2.-ss)(h)[DO-s-lgy]0+                      1

+ (Q                       2)ds{G(h)}2[DO-s-2gyy]0 +. .+ 
                        dh 

                  + (Rks)dJ-{G(h)}k[DOQ-s-k(3y}kg]0++ 
                         dh 

                         + 
                     d`; {G(h)}R-[3)Q-sg]

0 dhs 
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For higher derivatives of composite functions, the formula 

employing the Bell polynomial is known (J Riordan [10]). 

Hence, applying the formula, we have for  k=1,2„ 2-s 

ds kmin(s,k) k.(s) 
       s{G(h)}1(k-(k-01 Bs,t(G'(h),G"(h), • ,G(h))x dht 

x{G(h)}k-t 

which implies 

    dskk!Bs,k(G'(0),G„(0), •,G(s)(0)) for s>k,    [
s{G(h)}]h=0 dh 

     0for s<k. 

From (6), the equation 

    TKm-1K G(s)(h) _r! r-1  hr-s = r-1hr-s 
r=s (r-s)! (r+1)! r=s (r+1)!(r-s)! 

holds. Hence we have 

G(s)(0) =Ks-1'                               s=1,2, ,m-l. 
                     s,l 

     Then A(s)(0;2-s) is given by 

 (s)m(k's) X,-s(s)Q-s-k a k   A(0
,Q-s)= (k)k!Bs

,t(G'(0), • ,G(0))[DO (ay) g]0 k=1 

           _m(Y,^)                  (Q-s)KO K1KS-12-s-tat 

t1(Q-s-t)!Bs,t(2'3> >s+1 )[D0(ay)g]0 ' 

which implies from (9) 

                              - 12 -



 Z-1 m(Q,S)K KK 
 K = [DZgJ + (){Q—K !B?~1S x        00

s=1 t=1 (Q-s-t)!s't3s+1 

                            x [DO,-S-t(ay)tg]0} 

       [DQcf]+Q~l{m(~,^) Q! B (K0K1Ks-1,,x           Ob0
s=1 t=1S! (E—s—t) ! s,t 2' 3-' s+1' 

                        x [DO-s-t(y)tg1Ol 
This is the desired result.0 

     The multivariable polynomial B
S t(xl,x2'•,x) has 

a recurrence formula to calculate it conveniently by the 

application of any SAM software That is, 

     x1Bs
~t(x1,,xs)at+l+(xkaBS~t)at t=1t=1 k=1+l axk 

s+l                                t 

t=1Bs+l,t(xl'''xs+1)a 

Here, the both sidesof the formula is considered as a polynomial 

of a. The recurrence formula for B
S t will be employed 

during the calculations of Kz by REDUCE-2 

     Theorem 1 tells us a concrete method to determine the 

Taylor series expansion (2) employing the second derivative. 

For example, 

           K1 = [Do, 
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  K2  = [D0g]0+ 2!B1,1(2)gY,O= [D2gl0 + K0gy,0 

_ [D2g]
o+g0g 0                                                                  Y,, 

    KK K 
  K3=[Dog]0+ 3!81,1(2) [D0gy]0+2B2,1(2,1)g                                                            y,0 

_ [DOg]0+ 3K
0[Dpg to+ Klg0          YY~ 

       [D3g]0+ 3g0[D0
y00                        g]+ [Dg]0gy,0. 

We may also carry out the process by the SAM software up to 

the desired order The result by REDUCE-2 is shown in Table 1. 

     Note that because of Remark 2 in the preceding section 

we do not care the order of the higher partial derivatives. 

     Another important result from Theorem 1 is that any 

Kj is a summation of an integer multiple of some product of 

[DP(~)clg]CHence,we shall call any product of [DD(ay)gg]C 
an elementary differential of g. J C. Butcher [1] has used 

the terminology of elementary differential in a different 

sense However, our study of the expression of the coefficient 

of Taylor series in the elementary differentials is on the 

similar point of view_ 

     In fact, the way of the proof of Theorem 1 is applicable 

to the Taylor series expansion of y(x0+h) employing the 

first derivative. 

     Theorem 2 Assume that 
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 a
r  lhr 

+ p(hm+1), (1.2.10) y(x0+h) = y0 + 
r=1 

Then, the coefficient X (k=0,1,•• ,m-1) is determined by 

1(21 f0 

(1.2.11)k-1 m(k,^) 
     A =(D0f10+ {k!  

s=1 t=1 (k-s-t)!s! 

             Al A2 As 2,3, ,s+1)[D0( 
                                                 -s-tt 

x B
s,t(fl0}, 

k=1,2, ,m. 

     We shall call (10) the first type power series 

expansion in contrast with (2) which will be mentioned as 

the second type expansion. 

                           Table 1 
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 §1.3 Implicit (1,q)-Stage Formula. 

      For the study of the general (1,q)-stage formula, it is 

convenient to analyse the corresponding implicit (1,q)-stage 

formula, because we gain an insight into its algebraic relations 

by them. 

     Consider an implicit (1,q)-stage formula as follows: 

                             q 
(1 3.1) yn+1 = yn + Ulhkl +1 vih2Ki, n = 0, 1, 2,.., 

                                        1=1 

kl = f(xn+a1h, y0), 

(1.3.2) 
q 

            K.g(xn+pih, yn+a. hkl+ 1 T..h2K.),i = 1, • , q. 
j=1 

We need to analyse one-step integration by (1) and (2), so we 

may substitute n=0, i e. 

yl = y0 + pihkl + 3 vih2Ki, 
i=1 

(1.3.3) kl = f(x0 I- y0), 

Ki g(x0 + pih, y0 + ailhkl + 1Tijh2Kj), i = 1, • , q 

J 

     For kl, we have the following expansion: 

          kl= f0 + a1h fx0 + 2a1h2fxx0 + 0(h3) 
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On the other hand,  Ki has the expansion 

Ki = go+ 0(h) 

Hence, the equation 

(1.3 4) yl = y0 + ulhf0 + h2(ulalf
x0 + vig0) + 0(h3)                            ' 1 =1 

holds The solution y(x0+h) has the power series of h 

as follows: 

(1.3.5) y(x0+h) = y0 + hf0 +2h2go+ 0(h3) 

Comparison of the terms having the same power of h in (4) 

and (5) yields the following equations. 

          ul= 

                   q                              1 

         ulalfx ,0 + l~lvig0 = 2 g0. 

Thus,1_11=1, a1=0 and vi=2 must hold in the implicit 
1=1 

(1,q)-stage formula. 

      Next, since Ki has the expansion 

Ki = g0 + C(P1aX +ailf0a
y)g]0 h + 0(h2), 

the comparison of the third order term of yl and y(x0+h) 

implies the equation. 
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 q 

 2 [DOg]O =2(gx,0 + f0.gY,O)i1viC(pigx,0+ o.1f0gy,0)j 

From the viewpoint of homogenuity of differential operation, 

p.=ailmust hold for i=1,2, •,q  1

Hence, let us rewrite (3) by 

yl = y0 + hf0 + vih2ki, 
i=1 

(1.3.6) 

         {K.= g(x0+pih,yO+p.hf0+YTi.h2K.), i = 1,q 

j We shall assume the Taylor series expansion for Ki by 

(1.3.7) K. = ~IQ hQ + 0(hm+1), 
Q=0 

where KiQwill be determined by the similar manner for 

Theorem 1. 

       Theorem 3. For each i K. in (1.3.7) is determined 

by the following: 

Ki0 = g0, 

(1 3.8)      

IQ-1m(2,^) Q!  Q-s-t       ki Pi[DOg]0+{ s!(Q-s-t)! pi 
s=1 t=1 

q 
            xB

S t(j~TijKjO> 'sYTijKj,s-1) 
                    j=1 

            x[D0-S-t(5-)tT]O~~= 1, >, ,m. 
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 Note_ By the above formula, Kik can be determined in 

the ascending order of the second subscript, i.e., Ki2 (i=1,• ,q 

after K11,K13(i=1,• ,q) after Ki2, and so on. 

      Proof. Two-variable Taylor series expansion for Ki 

gives 

m 
  K. = Q![{pihax+ (p.hf0+~T1jh2Kj)aYyg]0+ 0(hm+l) 
          k=o 

m k =
QoQ,[{p.DO+(~TijhK.)ay}kg]0 + 0(hm+1) 

m hkm-1 q T..Kj
rr+lakm+l     _

Vii[{PiD0( (z,i)h)yy}g]0+p(h) k=or=0 j=1 

       m hk kkk -km-1 TijKjrr+lkk-kakm+l 
LQ~{L(k)pi((7r!)h)[DO(ay)g]0}+0(h) 

k=0 k=0r=0j 

Thus, putting Gi(h) as 

m-1 q T.K. 
(1.3.9)Gi(h) = (1yJr)hr+l 
                             r=0 j=1 

and noting that Gi(h) is of the order h and Gi(0)=0, we 

have the equation 

C Kik hk=hk{(Q)pk-k(G .(h))k[Dk-k(3y)akg]} 
k=0k=0k=0kz100 

which is similar to (1.2 4) Hence, following after the proof 

of Theorem 1, we have 
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K. =pQ1-Dk  1  +Q~l(Q) {m(( -s) ! 2-s-tBCO'(0),;s)CO))  1210 0 s=lt=l ( -s-t)!piGi 

    x[DO-s-t(ay)tg]0} 

From (9), for k=1,2, ,s 

          G(k)(h) =ml(r+l)! (V ijKjr)hr-k+l 
r=k-1(r-k+1)!] r! 

holds, which implies 

                                           T.•K•    GP() (0) = k!( (k-1)k-1) = kI Tlj Kj ,k-1 

      Thus we have the desired result. 

      By Theorem 3, Ki
Q is given as follows: 

Kil = pi[DOg]O, 

           C- Kit = pi[Dog]O + 2!B1,1(v4,TijKj0) gy,0 

   = p2[D
Og]0 + 2(1T1j)g0 gy,0 

K13 p1[DOg]0 + 3!p1 Bll(~T1.K.0)[DOg]03B21(:TiK'0, 2T1Ki) 
              JJTy~jJjJ~ 

4[Dgg]0 + 6p1(YT1j )gQ [DOgy]0 + 60JT1jpj)['DOg]0 gy,0 
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The result with the help of  REDUCE-2 is shown in Table 2 

Here we employ the notation 

            q       Tik = yp~Tij , i = 1, 2, q, k = 0, 1, 2, . 
j=1 

      From (6) and (7), the Taylor series expansion for y
l 

is given by 

               q m K. (
1.3.10) y1 = y0 + hf0 + vih2(

2,1-------h2,hQ) + 0(hm+3) i=1 Q=0 

              m q 01-2 m+3              = y
0 + hf0 + Y (viKiQ)9,,+ 0(h) 

R=0 i=1 

                             m                                                         r 
= y

0 + hf0 + ( viKir-2)(r 2)1+ O(hm+l) 
                      r=2 i=1' 

      On the other hand, from (1.2 2), the (second type) Taylor 

series expansion of the solution y(x0+h) is given by 

                                                 K (1.3.11) y(x0+h) = y0 + hf0 +rihr + 0(hm+1), 
r=2 

where KZ is represented by (1.2 5) The comparison of (10) 

and (11) brings the determining equation of the implicit 

(1,q)-stage formula, for which we have the following 

     Theorem 4 Each K. in (10) is constructed with the 

all elementary differentials included in the corresponding 

K2
, (11) Hence the determining equation of the implicit 
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(1,q)-stage formula is of the form such as 

 (an integer) x (a polynomial of vi,pi,T..) = (an integer).                                                   ij 

     Proof From (10) and (11),  KQ and Ki z must satisfy 

                               K Q!1L 1Kik (2+2)! ,Q, = 0.1, 2, ,m-2, 

which implies 

( Z+1) (2+2) v. K.= KQ 
1 

From (1.2 5) and (1.3.8) the conclusion follows ^ 

                           Table 2 
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 §l.4 Determining Equation for (1,q)-Stage Formula. 

      An algebraic computation according to Theorem 1 gives 

the number of elementary differentials including in each K. 

Let m be the number of elementary differentials in KQ 

and define the integer MQ by 

Q 
MQ = mj 

j=0 

Each mQ and are given in Table 3 up to Q = 8. 

      Thus, we have restrictions for the parameters vi, 

p of the formula. In the implicit (1,q)-stage formula 

the number of the parameters to be determined, say N(I), 

can be given as a simple function of q 

N(I) = q(q+2) 

It implies that the implicit (1,q)-stage formula can attain 

at least the order (I+2) where Q is the largest integer 

satisfying the inequality MQN(I) These relations are 

shown in Table 4 

      However, the above argument based on merely counting 

the number of the equations that must be satisfied, ignores 

the relationship between them. In fact, it may happen that 

MQ restrictions are satisfied with fewer than MQ variables. 

But, since we are interested in the explicit formula rather 

than implicit one, we shall not come into more investigation 
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for the attainable order of the implicit formula. 

     An explicit  (1,q)-stage formula, which is defined by 

the parameters v and Tij (Tij = 0 for j i) in 

(1.3.6), has N(E) parameters to be determined. Here N(E) 

is given by 

N(E) = q(q + 3) /2. 

Hence, similar consideration for the implicit case gives 

the largest integerQ* satisfying the inequality MNqE). 
Table 4 includes the relations between q, the number of 

stages, and Q* 

                         Table 3. 

                        rat 

01 

  112 

  224 

337 

  4613 

  5922 

   617 39 

   726 65 

   846 111 
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                                Table  Li. 

,
. 

            N(I)                                  N(E) qiz* 
qq----------------1 

13121 

28352 

315493 

4245144 

5355205 

6486275 

7636356 

88074146 

9997546 

10--- 1208657        
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      Shintani has given some explicit one-step methods 

utilizing the second derivative  [12], whose formulation coincides 

with our explicit (1,q)-stage formula. He has determined 

the parameters for q - 1, 2, 3, 4 and 5 which give the 

formula obtaining the order 3, 4, 5, 6 and 7 respectively 

His results attain the orders that we have argued as the 

least number Q* for each stage formula. Hence, it is a 

question whether Shintani's results can be improved. 

     We shall consider the determining equation for the 

explicit (1,q)-stage formula. Tables 1 and 2 give the 

equation as follows. We employ the notation for summation 

symbol such that the upper limit of summation can not exceed 

the variable of the preceding summation symbols, i.e. •••(1-.) 

 q i-11 J 
means 1 •••( .y ".) Moreover, the symbol.meansmeans 

i=1 j =1 

i-1 
Tlk = 0 and Tik - p.T.., i = 2,3, ,q. 

j =1 J 
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Determining equations. 

 Q  = 0: (E-0) Z vi = 1 

                          1 Q = 1: (E-1) 6Ivipi - 1 

1 R =2:(E-21)12~vp2- 1 

i 

        (E-22) 24qv.T. - 1 

1 t = 3: (E-31) 20vip. = 1 

1 

        (E-32) 120IviTi1 = 1 

1 

        (E-33) 120vip.T. = 3 
                 i 

1Z= 4: (E-41) 30vipi = 1 

                 i 

        (E-42) 360v.Ti= 1 
                     112 

       (E-43) 720gvip.Til= 4 

                 i 

       (E-44) 360gvip2Tio - 6 

                 i 

        (E-45) 720q y v.T..T~O= 1 
ij 

       (E-46) 360XviT2 = 3 

1 
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Q = 5: (E-51) 42vipi= 1 

                           1 

        (E-52) 840Yv.Ti3 = 1 

                   i 

        (E-53) 25201vipiTi2 = 5 

                            1 

       (E-54) 252*ip1Ti1 = 10 

                  i 

         (E-55)  5040Y,  yv.T..T. = 1 
ij 

       (E-56) 840vip3T. = 10 

                           1 

        (E-57) 5040 1 vi(pi+pj) T ..T . = 8 
ij 

        (E-58) 5040v iT. Til = 10                   i 

        (E-59) 2520Yv.piTi0 = 15 

                          1 R = 6: (E-601) 56vip6= 1 

       (E-602) 1680viTi4 = 1 
                  i 

       (E-603) 6720vipiT~3 = 6 
                   i

(E-604) 100801v1p2Ti215 

                 1 

        (E-605) 20160v.T..Tj2= 1                         1ij
ij 
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        (E-606) 67201vipiTil = 20 

 i 

        (E-607) 403201 1 vi(pi+pj) TijTjl =1.0 
                 ij 

        (E-608) 201601viTi1 - 10 

i 

        (E-609) 16801vip4Tio = 15 

        (E-610) 403201= = 18 
ij 

        (E-611) 201601 1vi(p.+p~)T..T. = 21 
ij 

       (E-612) 403201 1~viTij Tj kTkO= 1 
ij k 

        (E-613) 201601v.Ti0Ti2 = 15 

                  i 

        (E-614) 403201vipiTiOTil - 60 

                   i 

        (E-615) 100801vipiTiO- 45 

                  i 

       (E-616) 2016011v.Tij(T.O+2Ti0)T.O= 18 
                ij 

       (E-617) 67201v.TiO = 15 

= 7: (E-701) Gj721v1p7 = 1 

       (E-702) 30241viT~5 = 1 

i 
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(E-703) 151201vipiTi47 

 i (E-704) 30240vip2T~3 = 21 

 i (E-705) 60480 Y. v. T..Tj3= 1                   1ij
ij 

(E-706) 30240gvipiTi2 = 35 

i (E-707) 181440 v•1= 12 
ij 

(E-708) 151201vip1Til = 35 

i (E-709) 36288o vipip.T..T.,= 28 
ij 

(E-710) 1814401 vi(p.+p~)T..T. = 31 lj J1                     1ij 

(E-711) 362880 viIijTjkTkl = 1 
i j k 

(E-712) 181440gviTilTi2 = 35 

             i (E-713) 1814401vipiT2= 70 

i (E-714) 30242,vip5T. = 21 

             i (E-715) 181440qj.pip. (pi+pj )TijT.O = 105 

             i (E-716) 604801 1 vi(p3+p~) TijT . = 45                       a.ij JO 

                  — 30 —



       (E-717) 362880kvi(p.+p.+pk)T..T. TkO15                               ijljj 

      (E-718) 6o481viTi0Ti3 = 21 

       (E-719) 181440Xvip.Ti0Ti2 = 105 

                   i 

       (E-720) 181440Yvip2Ti0Ti1 = 210 

                   i 

        (E-722) 362880q 1 v.Tij(T. T..1+T.0T.1+T.OT. ) = 661ii 

      (E-723) 30240Xvip3T2O = 105 

 i 

 (E-724) 181440X l vi(2piTi0+p.T.0)T..T.O = 84 
iiJJJJ 

      (E-725) 1814401 X vi(piTj 0+2p.Ti0)T..T. = 120 
ij 

      (E-726) 18144ov.T20Til = 105 

i 

      (E-727) 6o480XvipiT30 = 105 

                   i R,= 8: (E-801)90vip8= 1 

i 

      (E-802) 5040YviTi6= 1 

                   1 

       (E-803) 30240vip.T.= 8 

      (E-804) 756001vip.Ti4= 28 

                   i 
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(E-805) 1512001 1 v.TijT.4= 1                   1
ij 

(E-806) 1008001v ip3Ti3 = 56 

             i (E-807) 60480011 vi(pi+pj)Ti.T.3= 14                             jj
ij 

(E-808) 756001vip4Ti2=  70 

              i (E-809) 18144001 1 vipip.T..T.= 40 
            ii 

(E-810) 90720011 vi(p.+p~)T..Tj2= 431ii 

(E-811) 18144001 1 kviTijTjkTk2= 1 

                 J (E-812) 4536001v.Ti2= 35 

              i (E-813) 302402,vip5Til= 56 

              i (E-814) 18144001 1 vip. pj(pi+p. )T..Tjl= 192 
ii 

(E-815) 6048001 1 vi(pi+pJ                           )TT= 76 
ij 

(E-816) 36288001 kvi(pi+pj+pk)TijTjkTkl= 18 

                J (E-817) 6048001v.Ti1T~3 = 56 

(E-818) 18144001v ipiTilTi2 = 280 

              i 
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(E-819) 907200~vip.T.= 280 
                                .1 

(E-820) 181440011 v.i..Tjl(2Til+Tjl) = 66 
 ij                   13

(E-821) 5040Lvip6TiO28 

             1 (E-822) 9072001vipipjTijTj=168 
1 3 

(E-823) 6048001 vipipj(pi+pj)TijT. = 248 
ij 

(E-824) 1512001 1vi(p.+p,7)T..T. = 85 ij 13 JO 

(E-825) 36288001 lvi(pipj+pjpk+pjpk)TijTjkTkO = 82 
i j k 

(E-826) 1814400vi(pi+pJ+pk)TijTjkTkO = 49 

k (E-827) 36288aq viTijTjkTki ,T ,O = 1 i j k k 

(E-828) 1512001v.Ti0Ti4 = 28 

(E-829) 604800lvipiTioT~3 = 168 

i (E-830) 907200Lvip2Ti0Ti2= 420 
            i 

(E-831) 181440011 v.Tij(Ti2Tj0+T10Tj2+TjOTj2) = 113                  1
ij 

(E-832) 6048001vip3TiOTil 560 

1 
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(E-833) 3628800q  XV.T..(p.T. T. +p.T. T. +p.T. T. ) = 360 
                ij1 1J j 10 J1.j11 1 JO J1 

(E-834) 3628800 V.Tij(p.T. T.1+piTilT.O+p.T.OT.1) = 508 
                ij 

(E-835) 1814400v.Ti0T2= 280 

            1 (E-836) 756001vip.T. = 2101
1 

(E-837) 90720011V. T . (p2Tj0+2pjTi0)Tj0= 252 1ijij 

(E-838) 181440011 vipip. Tij(2T. +T. )T. = 624 
ij 

(E-839) 90720011V.(p~Tj0+2piTi0)T.0= 465 
i' 

                   1ij

(E-840) 1814400XX
kviTij(2TjkTi0Tk0+2T.T,.TkO+T. T. TkO+T. Tko) -81            ijk 

 9072001viTi0Ti2= 210 

i (E-842) 18144oOlvipiT2Tit= 84o 

             1 (E-843) 3024001vip.T.= 420 

i (E-844) 1814400~Yv.T..TiOT2= 84 
ij 

(E-845) 6048001 1 viTij(3Ti0+T.0)T.0225 
ij 

(E-846) 1512OOv.T4 = 105                   1 lo 
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  §1.5 Attainable Order of (1,1)- and (1,2)-Stage Formulas 

     The explicit  (1,q)-stage formula is said to have the 

attainable order m if m is the largest integer for which 

           y(x+h) - yl = O(hm+1) 

among all combinations of the parameters of the formula, where 

y(x) is the analytical solution and yl is given by (1.3 6) 

The definition of the attainable order will be extended, if 

necessary, to general (p,q)-stage formula. 

     It is obvious that a (1,q)-stage formula has the attain-

able order m if and only if the determining equations cor-

responding up to 2 have at least one solution, but they 

have no solution up to 2,+1, where 2 = m-2. 

      Theorem 5. The attainable order of (1,1)-stage formula 

is 3 

     Proof The left-hand side of the equation (E-22) is 

equal to 

                24 vi(/T.-), 
1 j 

which vanishes for (1,1)-stage formula because IT.. = 0 
J 

This means that the parameters vl and p1 can satisfy 

merely the equations (E-0) and (E-1) ^ 
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      Theorem 6. The attainable order of (1,2)-stage formula 

is equal to 4. 

      Proof Assume that the formula attains order 5, that 

is, the parameters  vl, v2, pl, p2 and T21 satisfy the 

equations (E-0) % (E-33). 

(1.5.1) vl+ v22 

(1 5.2) v1p1 + v2p2 -b 

                  1  (1 5
.3) V2T21 24 

(1 5 4) vlp1 + v2p2 -12 

(1.5.5) v2p2T21 -110 

(1 5.6) v2p1T21 -120 

(1 5 7) v1p1+ v2p2 20 

The equations (1), (2) and (4) yield a matrix equation 

' 1 1 1/2 
v1 

p1 p2 1/6 v2 = 0, 

pl p2 1/12 -1 

which implies 
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      1 1 1/2 

(1.5.8)  p1 p2 1/6 = 0 

      2 2 
pl p2 1/12 

for the existence of nontrivial solution [v1, v2, -1]t 

On the other hand, (3), (5) and (6) give the values 

        1 _ 3 
P1 -5, P2 -5' 

which specify the determinant of (8) by 250-This contradic- 
tion implies the statement Cl 

Note- Shintani gives (1,1)-stage formula with parameters 

vl =1and p1 =3. He also gives (1,2)-stage formula with 
vl= (9+^b)/36,v2= (9-^x)/36,pl= (4-16)/10, p2 (4+,/6)/10, 

T21 = (9+JJ)/50. These parameters are not unique solution 

(1.5 1) •, (1.5 4) The solution of them is represented with 

one parameter p by the following: 

1 
P1 P (P # 3), 

     p2 = (2p-1)/2(3p-1), 

vl= 1/6(6p2+1), 

    v2= (9p2+1)/3(6p2+1), 

    T21(6p2+1)/8(9p2+1) 
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          §1 6 Attainable Order of (1,3)-Stage Formula. 

     The determining equation for the explicit (1,3)-stage 

formula are given as follows: 

(E-0) v1+  v2 + v3 =2 

(E-1) v1p1 + v2p2 + v3p3 = 1                                 

(E-21) v1P1+v2p2+ v3p3 12 

(E-22) v2T21 + v3(T31+T32) = 
1                             

(E-31)vlp3+ v2p2+ v3p3-o 

                                    __1  (E-32) v
2p2T21+ v3p3(T31+T32)40 

                                   1  (E-33) v2p
1T21+ v3(p1T31+p2T32)=120 

(E-41) v1pi+ v2p2+v3p3=301 

(E-42) v2p2T21 + v3p3(T31+T32) 60 

(E-43) vPPT+ vP(PT+pT)=1         2212133131232l 

        222)- 1  (E-44) v2P1T21+v3(p1T31+P"-)T321360 
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 (E-45) V2T21 + v3(T31+T32)2= fn-

                          _ (E-46) v3T21T32 720 

     It is remarkable that none of the factors on the left of 

(E-46) can vanish. 

     Assume that two of pl, p2, p3 are equal, say pi=pj. 

Then, from (E-0), (E-1), (E-21), (L;-31) and (E-41), we see that 

                      1        -1 1 
2- `vl+vJ 

                     1 
PI pK b vK = 0 , 

    2 2 1 
pI pK 12 -1 

         1 1S--pI(vl+v J)- 

                      1  pI pK 12 pKvK 0 

     2 2 1        P

IPKK 20-1 

    1 1 12                          1
pI(vl+vJ)_ 

         1 2 
pI pK 20 pKvK= 

    2 2 1 
     PI pK 30 -1 
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The condition that the above three equations have non-trivial 

solutions, implies the equations with respect to pI,p
Kas 

follows: 

      (pK-PI"-6-(pl+pK)+12} 0, 

       (pK pI){6plph-l2I+pK)+20}  =  0 

and 

       (0K-pI){12 pIPK 20(pI+pK).4_32} =0 

If pl pK, /DI and p
K must satisfy the equations 

2pIpK6()I+pK)+12 6PIPKl2(pI+PK)+20 l2pIPK 20(pI+pK)+30 0, 

which is impossible The case of pl=p2=p3 leads to a contra-

diction because of 

vI+v2+v3 = 1               

P1"1 + v2 + v3) =

1        pl(vI v2 + v3) 12 , 

induced by (E-0), (E-1), (E-21), respectively 

    Hence no two of pl, p2, p3 are equal. It is conven-

ient to define 
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 i-1  1 2 
   Ai= Ti.- 2 pi (i=1,2,3) 

j=1 

Since we consider the explicit formula, Al 2p1 holds. 

Then , we have simultaneous linear equations 

1 1 1 v1A1 

p1 p2 p3 v2A2 = 0 

    2 2 2 
p1 P2 p3 v3A3 

by (E-21), (E-22), (E-31), (E-32), (E-41) and (E-42) Since 

no two of p1,p2,p3 are equal, all of v1A1, v2A2' v3A3 

vanish. By virtue of the above mentioned remark, we distin-

guish the following four cases 

    Case 1. Al = A2 = A3 = 0 

1 2     Th e equations A1=0 and A2=0 imply p1=0 and T21 2p2. 

Then, (E-43) and (E-44) bring the equations v                                                                j'2'3-32-138-0 

                                    and v3p2T3~360, which give the identity p3 = 2p2 
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Thus (E-1), (E-21) and (E-31) imply the equation 

 - 1 - 
    p2 2p2v2 

   2 2 1 p
2 4p212v3_0' 

331 
-p38p320 --1- 

which yields a quadratic equation of p2 

    20p2 - 15p2 + 3 = 0 

because of p2 X 0. But the above quadratic equation has 

no real roots 

     Case 2. v1=0 andA2 = A3 = 0. 
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     In such case, we have the equations 

       = 1  2 T
212 p2 

and 

1 2 
T31 T32 = 2 p3 • 

Substitution of T212p2 and T31=2 p3-T32 into (E-44) implies 

    pl+24v3T3~()2- p1)=1 

                                 Employing the equation 

   2 1  (*) v3p2T32 = 360 

induced by (E-46), we obtain 

p1(l - 24v3T32) = 0 

Hence, the equation p1=0 or v3T32 24 holds. The case of 

p13   =0 is equivalent to Case 1. The equation vT32 2 

yields 

p1 + 24v3T32(p2 p1) p2 5 

2 1  b
y (E-33) The equation (*), however, implies p,,=15, 

which leads to a contradiction 
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    Case  3.  v2 =0 and Al = A3 = 0 

A1=0 impliesp1=0. Then, (E-1) and (E-21) bring the equations 

v3p3 = 1 

and 

        2 _ v
3p312 • 

Hence we see p3=2 and v3=. It contradicts the equation 

v3p3 p induced by (E-31) 

    Case 4. v1=0, v2=0 and A3=0. 

    The equations (E-0) and (E-1) yield v3=2 and p.~=3. 
1 Again, it contradicts the equation v3p3=0induced by (E-31). 

    Thus, we can conclude that the determining equations 

(E-0) •L (E-46) have no solutions. The proof of the following 

theorem is now accomplished. 

    Theorem 7 The explicit (1,3)-stage formula can not 

attain order 6 Its attainable order is 5. 

    Note. Shintani gives (1,3)-stage formula with parameters 

vl = 12, v2 = (5+15)/24, v3 = (5-15)/24, pl = 0, p2 = (5-/5)/10. 
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 T21 =  (3-l)/20, p3 = (5+1/5)/1,0, T31 = 0 and T32 = (3+1/5)/20 

These parameters are also not unique solution of (E-0)" (E-33) , 
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        51.7 Attainable Order of (1,4)-Stage Formula. 

     The determining equation for the explicit  (1,4)-stage 

formula are given by the following: 

(E-0) vl+v2+v3+v4 

                            1 (E-1) v
1p1+v2p2+v3p3+v4p4_ T 

         222(E-21) vlpl+v2p2+v3p3+v4p4= 12 

(E-22) V T+V(T+T)+V(T+T+T)= 1       2 2133132441424324- 

(E-31)vlpl+v2p2+v3p3+v4p4 20 

(E-32)Ni-2-2-21+VOCT+T-)+VP(T+T+T)=1            33313244•414243 

        +v(_)+v(p+p+p)= ------1 (E-33) v'P1T213p1T31+p2T~241T412T423T43120

4(E-41) v1p1+v2p2+v3p3+v4p4= 30 

                              2(E-42)v2p2T21+v3p3(T31+T32)+v4P4(T41+T42+T43) - 60 

_  1  (
E-43)            \) (E-43) 180 

          2+
v(P2T+p2T)+V(P2T+p2T+P2T)- 1  (E-44)'' 1T213131232141242343360 

(E-45) v3T21T32+V4(T21T42+T31T43+T32`43'= 720 
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 (E-46)v2T21+v3(T31+T32)2+~4(T41+T42+T43)2 120 

(E-51) vlpl+v2p2+v3p3+v4p_ 

 (E-52) v2P2T21+v3-3(T31+T32)+v4-4(T41+T42+T43)  77 

   2 1 (E-53) v2P2p1T21+v3P3(p1T31+P2T32)+v4P4(P1T41+P2T42+P3T43)=252 

(E-54)-2'2'1'21+v3P3(P1T31+p2T32)+v4'4—1'41+P2T42+P3T43)=504 

(E-55) v2p1T21+v3(p1T31+p2T32)+v4(p1T41+p2T42+p3T43) - 7-4-U 

(E-56) v3(p2+p3)T21T3~+v4(p2+p4)T21T42+v4(P3+'4)('31'43+'32'43)=630 

(E-57) VpTT+Vp(TT+TT)+VpTT-  1          3121324121423143423243 5040 

                       22(E-58) v2p1T21+v3(P1T31+P1T31T32+P2T31T32+P2T32)+v4(P1T41+P2T42+P3T43) 

+v4p1 (T41T42+T41T43)+v4p2(T41T42+T42T43)+v4p3(T31T43+T42T43) 

          1  

         504 

(E-59)v2p2T21+v3p3(T31+T32)2+v4p4(T41+T42+T43)2 - 1 

     The question is whether any parameters vi, pi and Tij 

exist to satisfy these 22 equations simultaneously It is 

helpful for investigation to introduce the following notations: 
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 i-1i-1 
              T.Ti.,T.= p.Ti.(

i=1,2,3,4)      10j=1Jj=1 3J 

(T10 and T11 mean zero.) 

1 21 3         A
i= Ti0-2p. B.= T. -dpi(i=1,2,3,4). 

     Then, from (E-21), (E-22), (E-31), (E-32), (E-33), (E-41), 

(E-42), (E-43), (E-51), (E-52) and (E-53), we easily see that 

(1.7.1) v. Ai= lvip.A. =~vip2Ai= Ivip3Ai= 0 
  1iii 

and 

                              2 
(1.7 2) Iv.B. = IvipiB. =~vip2Bi= 0-1 

  1i1 

The equations (1) means 

    111 1v 1A1 

     p1 P2P3 P4`u2A2 
= 0 

   22 22 
     p1 P2P3 P4v3A3 

333 3 P
1p2p3p4~v4A4 1 

     We now distinguish two cases according as two of 

pl, p2, P3, P11 are equal or otherwise 

     Case 1. Two of pl, p2, p3, p4 are equal 
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      Assume that two of them are equal, say  PI = p
J 

Equations (E-0), (E-1), (E-21), (E-31), (E-41) and (E-51) 

 give three simultaneous linear equations as follows: 

    1 1 1                                    1vl+vJ 

1 
P pK P T vK 

= 0, 
    2 2 2 1 

     pIpKpL12vL 

    3331      p
I pK pL 20 -1 

    1 1 1                                    1 pI(vl+vK)' 

                               1 
P pK P 12 pKvK = 0 

     222 1  

P pK P 20 pLvK 

333 1  PP
1{ 30 , . -1 

        1 1 1 12' •p2(vl+vJ) 

            1 2 
0I pK P 20 pKvK 

= 0 

    2 2 2 1 2 
pI pKPL 30 pLvL 

    33 3 1      p
IpKPL-4-1 

, l 

The condition that these equations have non-trivial solutions, 

implies the determinants of matrices to be vanishing. Hence, 

we see that the equations 
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 1 
 (PI-PK)(PK-PL)(pL-pi){-30pipe  L+10(PIP7+PKpL+pLP1) 

-5(P
I+PK+pL)+31 0, 

   60(pI-pK)(PK-pL)(PL-PI){-10p1pKpL+5(PIpK+PKpL+PLPT) 

-3(p
I+pK +pL)+2} = 

and 

   +X0     2(PI-PK)(PK-PL)(PL-PI){-35PIPKPL +21(PIPK +PKpL+PLPT) 

-14(p
i+pK+pL)+l0} = 0 

hold. We can distinguish three cases. 

(i ) At least three of pi are equal. 

(ii) pI = pJ and pK = pL 

pT, pk, PL are distinct, and the above equations hold. 

But, the case (i) can not hold by the similar 

reason mentioned at the first part of §1.6. In the case (ii), 

(E-0), (E-1), (E-21), (E-31) and (E-41) imply the equations 

     1 1 2 ' , vl+v J 

     PIPK                 1vK+UL= 0, 

   2 21 -1    p
IPK 12   
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    1 11  ,  pI(VI+vJ) 

pI pK 12 PK(vK+vL) = 0, 

    2 2 1 
PI pK 20 , l -1 , 

1 1 112(pI(vl+vJ) 

                            I pI pK 20 PK(vK+vL) - 0 

   2 2 1 -1 PI p
K 30 ' • 

Thus, by the same reason as for case (1),these 

equations lead to a contradiction. 

      In the case (Thi), we easily see the equations 

_ 9 P
I + PK + PL - 7' 

                               _ 3          P
IPK + PKPL + PLPT - 7 

and 

                _1  PIPKPL35' 

which imply that pI, pK, are distinct roots of the cubic 

equation 

(1.7 3) x -7x`~+7x -35=0 

     The cubic equaton is irreducible and has three distinct 

real roots given as follows: 

                            - 50 -



     Let  6 be an angle such that 

(1.7  4) cos 3e =---------1(0 < 3e < 2). 
5/2 

Then, the roots are 

R0 =7(3+2^2 cose), 

(1.7 5) R1 =7(3-^2 cose + sine), 

R_1=7(3-^2 cose - ^b sine) 

     Some algebraic properties on the equation (3) are the 

followings: 

     Lemma 1 7.1. The roots R0, R1, R _1 are equal to 

none of 0, 1 1 

     Proof Substitution of 0,7and3 into the cubic 
polynomial of (3) gives-35, 1765and985,respectively E 

     Lemma 1 7.2 The equation (3) has no common roots with 

the cubic equation 

(1 7 6) x3-$x2-1 x +I = 0 

     Proof Put 

                            - 51 -



       f1(x) = x3-9x2+7x -  35 

and 

 f2(x) = x3- $3x2-ix +3. 

The Sylvester's determinant D(fl, f2) is equal to 

-3437/32768000 . ^ 

      Lemma 1.7.3. The equation (3) has no roots, one of 

which is the triple of another. 

     Proof Assume that one of roots is equal to the triple 

of another, then the root satisfy another cubic equation 

       27x3-7 x2+9x -35= 0. 

That is, 

33 2 11         x -7x +
21x-945= 0 

Put 

        f1(x) = x3-9x2+7x - 35 

and 

2 f2(x) = x3-7x +lx - 945 
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The Sylvester's determinant  D(fl, f2) is equal to 

80384/41351522625 ^ 

Case 1 1. p1 p2. 

1      From (E-45) and (E-57), the assumption gives P1__p27' 

Due to Lemma 1.7.1, we lead to a contradiction. 

Case 1.2. p1 - p3 

     We may assume that pl, p2, p4 are distinct. From 

(E-0), (E-1) and (E-21), we have the equation 

                                                                                                                                                          • 

     1 1 1 v1+v32 

(1.7 9)P1 P2 P4 v2 = 1            

2 2 21 p
l p2 p4 , v4‘ 12 

The solution of (9) is given by 

       vl+v31 11,-121 

                                           1 
      v2p1 p2p4 b 

       2 22 1 
v4pl p2p4, 12 ' 
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                  - 6p
2p4+2(p2+p4)-1 

12(pl-p2)(p4-p1) 

-6p4p
1+2(p4+p1)-1 

12(p1-p2)(p2-p4) 

-6p
1p2+2(pl+p2)-1 

12(p2-p4)(p4-pl) 

Note that v1+v3, v2, v can not vanish. The reason is 

as follows: For example, assume that -6p2p4+2(p2+p4)-1 - 0 

Then, 

2p2 - 1 

4 6p2 - 2 

Holds Substituting this into the cubic equation 

        39 2+31. 0       P
47p4 7p4 35 ' 

we see that 

644 - 24p. - 12p2 + 3 
--------------------------------------- = 0 

               35(6p2-2)3 

But, by Lemma 1.7.2, there is no common roots for the cubic 

equations 

3_9 2+3 1 p
27P2 7P2 35 - 0 

and 

         3 -3 2_3+3= p
2$p2 16P2-6 
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     Then, from the equations (1) and (2) we have 

 v1A1 +  v3A3 = v2A2 = v4A4 = 0 

and 

v1B1 + v3B3 = v2B2 = v4B4 = 0. 

Since v2 0, A2=B2=0 holds This means the equations 

T21 2p2 and p1T21 Tp2, which imply 3p1 = p2 Hence, 

we lead to a contradiction by virture of Lemma 1.7 3 

     Case 1.3. pl p4 

      This is equivalent to Case 1.2 

     Case 1.4 p2 = p3 

      We can assume that pl, p2, p4 are distinct. From 

(E-0), (E-1), (E-21), we have the solution 

              -6p
2p4 + 2(p2+p4)-1 

vl 12(
pl-p2)(p4-p1) 

-6p
4p1 + 2(p4+p1)-1 

v2+v3 12(p
1---------------------------p2)(p2-p4) 

              -6p
1p2 + 2(pl+p2)-1 

v4 12(p
2-p4)(p4-p1) 

Note that each numerator on the right can not vanish by the 

same reason as in Case 1.2 Then, (1) implies v1A1 = 

v2A2 + v3A3 = v4A4 = 0 Since vl � 0, we see Al = 0, 

which means pl - 0. Thus, we lead to a contradiction. 
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      Case 1.5. p2  = p4 

and 

     Case 1.6. p3 p4 

      Both of them are equivalent to Case 1.4. 

      Case 2. No two of pl, p2, p3, p4 are equal. 

     The equation (1) implies v1A1 = v2A2 = v3A3 = v4A4 = 0 

Thus, we distinguish cases according as vi or Ai vanishes. 

We have, however, the following results. 

     Lemma 1.7.4 The case of vJ = vK - vL = 0 can not 

occur 

     Proof In this case, vi =2 by (E-0). Then, (E-1) 
implies()I =3 But, they do not satisfy (E-21). ̂  

     Lemma 1 7 5 The case for vK = vL = 0 leads to a 

contradiction. 

     Proof The equation vK - vi
, = 0 yields a linear system 

                      1 
vI + vJ= 2, 

                         1 
            plvl + pJ_vJb 

by (E-0), (E-1) Since pl / pJ, this system has the 

olution 
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         1 -  3pJ1 - 3p
1 v

I 6(pi-pJ) 'vJ6(p
J-pl) 

Substitution of this into (E-21) and (E-31) implies 

111 
~(PI+PJ) 2PIPJ 12; 

         T(PI+PIPJ+PJ)2PIPJ(PI+PJ) = 20' 

Put X= pl + pJ, Y PIPJ'we have 

      2X - 6 Y = 1, 

10(X2-Y) - 30XY = 3. 

Thus, we easily see that X =5, Y =10.That is,(DI and 
pJ are equal to the roots of the quadratic equation 

(1.7.10) x2-5x+0 = 0, 

which has real distinct roots On the other hand, we see 

that 

    the left on (E-41) = vIpI + vJp4 

                   b(pl+pJ)(pl+PJ)-2pIpJ(pI+PIPJ+pJ) 

                        19  
                       600 

which is a contradiction. ^ 
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      Due to the above Lemmas, we distinguish five cases. 

     Case 2.1. vl= 0 and A2  = A3=A4 = 0 By a similar 

consideration as in Case 1, we see that p2, p3, p4 satisfy 

_ 9 P
2 + P3 + P4 - 7, 

P2P3+P3P4+P4P27, 

               _1  P 
2P 3P 435 

Hence, they are equal to the distinct roots of the cubic 

equation (3) Note that, contrary to Case 1, pl is equal to 

none of them. 

     On the other hand, the equation (2) yields v2B2 

v3B3 v4B4 = 0 Taking Lemma 1.7 5 into account, we are 

sufficient to consider the case B2 = B3 = B4 = 0. 

     A2 = B2 = 0 implies the equations T21 2P2 and 

p1T21 V2'which give p1 =3p2 A3 = B3 = 0 implies a 
linear system 

1 2 
          T31+ T32 =2p3, 

1 3 
P1131 +1)2132= bP3~ 

which has the solution 

  22 
              p3(3P2-p3)P3(P3-P2) 

(1.7 11) T31 =4P
2,T32- ------4p--------- 2 

Since p,, p3, p4 are distinct, (E-0), (E-1), (E-21) give 
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the solution for  v2. v3, v4 as 

-6p
3p4+2(p3+p4)-1 v

2 12(
p2-p3)(P4-p2) 

-6p4p
2+2(p4+p2)-1 (1

.7 12)v312(p
2-P3)(P3-P4) 

--6p
2p3+2(p2+p3)-1 v

4 12(p3-p4)(p4-p2) 

(E-44) gives the equation 

')2
360-v2P1T21-v3(P1T31+P2T32) 

                            360 18v2P2-v3P2(9T31+1-                                          32) 

                            360 18v2P21av3P2°3(4P3-3P2) 

by (9) Hence, we may represent the left on (E-54) as the 

polynomial of p2 and p3 By (9) and (10), 

  v2-2p1T21+v3p3(P1T31+P2T32)+v4P4(P1T41+P2T42+P3T43) 504 

                             P 

    9~v2P2+8v3P2P3(4P3-3p2)+3601$v2P2P418v3p2p3p4(4P3-3P2)-504 

         1
37800(p2-p3)(525P2P3-360p2p3-420p2p3-5P2+260p2p3+105p3-60p3+3) 

Let us denote the numerator of the above by T(p2, p3) 
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The question is whether  cp(p
2, p3) vanishes for any pair 

(p2, p3) We have known the values R0, R1, R _1 which p2 

and p3 are possible to be equal to. Calculation shows 

the following: 

y(Ro,R1) = 343(-42ocos2e-760^3sine•cose-630^2cose+6o^6-sine 

+189+42^3), 

cp(Ro,R_1) = 343(-420cos2(9+76o /sine•cose-63o /cose-6of6sine 

+189-42^3), 

T(R1,R0) = 343(135ocos2e-170^3cose•sine+405/7cose-285^bsine 
-696-42^3) , 

  cp(RR -1343) = 4 (-930cos2e+590^3sine•cose+225vcose-345^bsine 

                +444+42^3), 

y(R_1,R0) = 343(1350cos2e+170v3sin&cose+405/7cose+285^bsine 

-696+42/3) , 

  y(R_1,R1) = 344              3( 

+444-42/3) 

    Computation by interval arithmetic shows the following: 
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 p(R0, R1)E [-11.6391, -11.63901, 

     p(R0,R-1)E[-4.70784, -4 70783], 

(p(R1, R0)E [3.20479, 3.20480], 

c(R1, R-1)E [0 821791, 0.821792], 

W(R_1, R0)E [12.1750, 12.1751], 

cQ(R-1, R1)E [-0 956777, -0.956776] 

(On the interval arithmetic, see [8] Above calculation is 

carried out by the program made by K. Ichida on HITAC VOS3 

at the Educational Center for Information Processing, Kyoto 

Univ ) None of them vanishes under the condition (4) 

because every interval given above is away from zero Thus, 

we have a contradiction. 

     Case 2 2. v2 = 0 and A1=A3=A4=0 Al= 0 implies 

p1=0 Then, p2, p p4 can not vanish. From (E-1), (E-21), 

we have 

1-2p41-2p3 
v3 - 12

p3(p3-p4) ' v4 - 12p4(p4-p3) • 

Substituting these into (E-31), (E-41), we see that 

P3+P4 - 2P3P4=5 , 

                                              2 

           (p3+p4)2 - 2p3p4(p3+p4)-p3p4=. 
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Put X =  p3+p4, Y = p3p4, then we have X = 1, Y =5.The 
left on (E-51) is equal to 

   12(-'p3p4-'p3p4--'p3p4+o3+p3p4+p3p4+p4) 

         12{X3-2(X2-Y)Y-2(X+Y)Y} = 100 ' 

which is a contradiction. 

     Case 2 3 v = 0 and A1=A2=A4=0. Equivalent to Case 2.2 

     Case 2.4 v4 = 0 and A1=A2=A3=0 Equivalent to Case 2.2 . 

      Case 2.5. A1=A2=A3=A4=0. A1=0 implies p1=0, which 

means B1=0. Then, the equations v.B, = IvipiBi = ~vipiBi 
= 0 yield v

2B7 = v3B3 = v4B4 = 0 Since v2, v3,  vare 4 

assumed to be non-zero, we have B2 = B3 = B4 = 0 B2 = 

1 3 
p1T21 op2 = 0 implies p2 = 0 because pi _ = 0. This 

contradicts the 1                   assumptionthatnotwo ofp,are equal. 

                                                   Now we have accomplished to investigate the whole cases. 

In conclusion, we have 

     Theorem 8 The explicit (1,4)-stage formula can not 

attain order 7 Its attainable order is 6. 
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     Note. Shintani gives  (1,4)-stage formula with parameters 

vl20,v2 - 7(7+x)/360, v3 = 8/45,v4 = 7(7-/71)/360, 
p1 = 0, p2 = (7-/71)/14, T21 = (5-x)/28, p3=2,T31 
(3-x)/192, T32 = (21+x)/192, p4 = (7+x)/14, T41 = 

(21+5)/294, T42=(/71-3)/84, T43 = (21+x)/147 These 

parameters are also not unique solution of (E-0) ^- (E-46). 
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                               Table 1. 

K0g0 

K1 =  [DOg]O 

K2 = [D2g]0+ g0 g 
y,o 

K3 = [DOgj0 + [Doge() gy,o + 3g0 [DOgy]0 

K4 = [DogJO + [Dogj0 gy,0 + 4[Dog]0 [DOgY]0 + 6g0 [DOgY]o+ go gy,0 

     + 3g20g
yy.0 

K5 = [Dog]0 + [Dog]0 gy,0 + 5[Dogj0 [DOgy]o + 10[DOg]O [DOgy]0 

    + lOgo [D03g
y]0 + [DOg]o g2 0 + 8go•gy,0 [DOgy]0 + lOg0 [DOg]0'gYY,0 

    + 15g2[DO
YY              g]0 

K6 = [D6og]0 + [Dig]0 gy,0 + 6[qgJO [DOgy]0 + 15[4g]o [DOgy]0 

    + 20[D0g]0[D3gy]0+ 15g0[D4gy]0+ [D2g]0g2~0+ 18g0[DOgy]~ 

    + 10[D0g]0g
y.0[D0gy]0+ 21g0gy,0[D2gy]0+ 10[D0g]0 gYY,0 

    + 15g0 [Dog]O g
yy 0 + 60g0 [Dog]0 [DOgYY]0 + 45g0 [DOgYY]0 

                           — T .l 1 —



 323       + g
0•gy,0+ 18g0gy,0.gyy,0  +  15g0.gyyy,0 

K7  - [Dog]o + [Dog]•gy,0 + 7[Dog]0 [D0gy]0 + 21[qg]o 4g y]0 

    + [Dog]0'gy,0 + 35[Dog]o [Dogy]o + 12[Dog]0 gy,0 [D0gy]0 

     + 35[Dog]0 [Dog
y]o + 28[D0g]o [Dogy]o + 31[D0g]0.gy,0 [Dogy]0 

     + [Dog]0 4 .0 + 35[D0g]0 [Dpg]o gyy,0 + 70[Dog]0 [D0 yy]0 

     + 21g0 [Dogy]0 + 105g0 [Dogy]o [Dogy]0 + 45g0•gy,0 [Dogy]0 

     + 15g0 gy,0 [D0gy]0 + 21g0 [Dog]o gyy,0 + 105g0 [Dog]0 [D0gyy]0 

    + 210g0 [D0g]0 [Dogyy]0 + 66g0 [Dog]0 gy,0 gyy,0 +105g0•[Dogyy]0 

    + 84g0[Dogy]0gyy,0 + 120gogy,0 [D0gyy]0+105g~'[D0g]0gYYY,0 

     + 105g3-[D0g]        0
yyy0 

K8 = [Dog]o + [Dog]0•gy,0 + 8[Dog]0 [D0gy]0 + 28[Dog]0 [Dogy]0 

    + [DOg]Ogy,O + 56[Dog]0 [Dogy]0 + 14[Dog]0 gy,0 [D0gy]0 

    + 70[D2g]0[D4gy]0+ 40[D0']0•[Dogy]0+ 43[Dog]0 gy.0 [Dogy]0 

    + [Dog] gy,o + 35[Dog]o.gyy,0 + 56[D0g]o [Dogy]0 

                         - T .1 2 -



+  192[D0g]0 [D0gy]0 [DOgy]0 + 76[D0g]0 gy.0.[DOgy]0 

+ 18[D0g]0.g20[D0gY]0 + 56[D0g]0 [Dog4.gYY,0 

+ 280[D0g]0 [D
og]0 [DOgyy]0 + 280[DOg]0 [DOgyy]0 

+ 66[D0g]o.gy,0 gyy,0 + 28g0 [Dogy]0 + 168g0•[DOgy]0 

+ 248g0 [D0gy]0•[DOgy]0 + 85g0 gy,0 [Dogy]0 + 82g0 gy,0 [D0gy]0 

+ 49g0 gy,0 [DOgy]0 + g0,gy,0 + 28g0 [Dog]0 gYY,0 

+ 168g0 [Dgg]0 [D0gyy]0 + 420g0 [Dog]0 [DOgyy]0 

+ 113g0 [Dog]0 gy,0 gYY,0 + 560g0 [D0g]o [DOgyy]0 

+ 360g0 [Dog]0 [D0g
y]0 gyy.0 + 508g0 [Dog]0 gy,0 [D0gYY]0 

+ 280g0 [Dog]0 gYYY90 + 210g0.[DOgYY]0 

+ 252go[D6gY]0gYY,O+ 624g0 [D0gy]0 [D0gyy]0 

+ 465go-gy,0 [DOgyy]0 + 81gog2,0 gyy,0 + 21080[DOgio 8yyY,0 

                                                2 + 840go[Dog]0 [D0gYYY]0 + 420g0.[DOgyy]0 + 84g0-gYY,0 

3 + 225go g
y,0 gYYY,0 + 105,4gYYYY

,O 
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                                  Table 2. 

 Ki0  g0 

Kil Pi[D0g]0 

Ki2 = pi[Dog]0 + 2 Ti0•g0 gy,0 

K~3 = pi[Dog]0 + 6 T + 6 pi li0•g0 [D0gy]0 

Ki4 = pi[D0g]0 + 12 Ti2[Dog]0 gy,0 + 24p.Ti1[D0g]0[D0gy]0 

      + 12piTi0 g0 [Dogy]0 + 24(ITijTjo)g0 gy,0 + 12 Ti0 g0•gy,0 

K15 = pi[Dog]0 + 20Ti3-[Dog]0 gy,0 + 60PiTi2 [DOgJ0[D0gy]0 

     + 60pi1i1[D0g]0[D2gy]0+ 120(jT,.T.,) [Dog]0 gy,0 

     + 20p3Ti0`0[DOgy]0+ 120{~(Pi+pj)TijTjO}g0gy,0 [D0gy]0 

     + 120Ti0T.1 g0 [Dog]0 g
yy,0 + 60p1 i0 g0 [DOgyy]0 

Ki6 = p6[DOg]0+30Ti4[DOg]0 gy,0 + 120p.T.[D3g].[D0gy]0 

     + 180piTi2[D2g]0[D2gy]0+ 360(TijTj2)[Dog]0 gy,0 

     + 120p3Til[D0C]0[D3gy]0+ 720{](p1+p.)T,.T.,}[D0g]0 gy,0[D0gy]0 

                           - T .2 1 —



     + 360Ti1[D0g4 gyy,0 + 304Ti0  g0 [DOgy]0 

     + 720(p. p.T. .Tj0)g0[D0gy]~+ 360{j(pi+pJ)TiJTJO}g0•gy,0[D0gy]0 

     + 720( ..T. T).3+60TTg[Do   Tg]g 
        jk1JJkk0g0gy,03i0i2000yy,0 

      + 720pi 
i0Tii g0 [Dog]0 [Dogyy]0 + 180piTi0g0 [Dogyy]0 

     + 360{~Tij(T~0+2Ti0T.) }goo•gg,0gYY,0+ 120Ti0•go-gYYY~0 

j K~7 = pi [D7g]0 + 42T~5[D(g]0 gy,0 + 210piTi4[D~g]0•[D0gy]0 

     + 420p1TiAg]0 [Dogy]0 + 840(TijTJ3)[Dog]0'gy,o 

     + 420pTi2[D2g]0•[D3gy]0+ 2520((pi+pj)TijTJ2)[Do2g]0•gy,0•[DogY]0 

j 

     + 210piTi1[Dog]
0 [D0gy]0 + 5040(pipJT1JTJl)[D0g]0 [D0gy]0 

J 

    + 2520(~(pi+p~)T1JTJl)[D0g]0 gy,0 [Dogy]0 

J 

    + 5040(~kTiJTJkTkl)[Dog]0•g3,O +2520TiiT12[Dog]0 [ Dog]0•gyY,0 

    + 2520piT
i1[D0g]o[D0gYY]0 + 42piTi0g0 [Dogy]0 

    + 2520(X pip. (pi+pj) T. .T.0)g0 [D0gY]0 [Dogy]0 

+ 840((4+pl )TijTjo)g0'gY,0 [DOgY]0 

J 
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     + 5040(Y(pi+pj+pk)Ti.TjkTk0)g0.g
y,0[DOgy]0 

           jk 

 + 840Ti0Ti3g0[D3g]0•g
yy,0+  2520piTi0Ti2g0 [Dog]0[DOgyy]0 

     + 2520p2Ti0T. g0[D0g]0[DOgyy]0+ 5040(jTij(TioTjl+TTOTj1+TjOTi1))g0• 

[Dog]0 gy
ro gyy,0 + 420pi Ti0g0 [DOgyy]0 

     + 2520( (2piTiO+p.Tio)TijTjO)go-[DOgy]0gyY,0 

j 

     + 2520((piTj0+2pjTi0)TiiTj0)g0'gy,0[DOgYY]0 

j 

     + 2520Ti0Tilg0 [D0g]0-gyyy,0 + 840piTi0g0 [DOgyyy]0 

Ki8 = p8[DOg]0 + 56Ti6•[D6g]0•gy,0+ 336p.Ti5[D5g]0[DOgy]0 

     + 840piTi4[D0g]0 [Dogy]0 + 1680(TijTj4)CDog]p'gy,0 

     + 1120piTi3[D3g]0[D3gy]O+ 6720((pi+pj)Ti.Tj3)[DOg]0E,0[D0gy]0 

     +840piTi2[D0g]Cr[DOgy]0+ 20160(jpip.T..T.)[Dog]0 [DOgy]0 

     +10080(~(pi+P)TijTj2)CDOg]0'gy,0[DOgy]0 

j 

    + 20160(~kTijTjkTk2)[DOg]0gy,0+ 5040Ti2CD~g]pgYy,O 

    + 336p5.Ti1[DOg]OCDOgy]0+20160(~pipi(pi+pi)TijTjl)CDOg]0•CDOgy]0•[Dogy] 

j 

                            — T.2 3 —



+ 6720(1(pi+p~)T,.Tjl)[D0g]O.gY,O[DOgY]0 

 J + 40320(
k(pi+pj+pk)TijTjkTkl)[DOg]0 gy,0[D0gy]0 

+ 6720T. 
      11Ti3[DOg]0[DOg]0gyy,0+ 20160piTi1Ti2[D0g]0 

[D2g]0[DOgYY]0+ 10080p2Til[DOg]0[DOgyy]0 

+ 20160(JTij Tjl(2Til+T. ))[D0g]0'gY,0 gYY,0 

+ 56piTi0g0 [DOgy]0 + 10080(pip~TijTjO)g0-[DOgy]0 

+ 67200pip.(pi+pJ)TijTjO)g0[DOgy]0 [D0gy]0 

+ 1680(7L(pi+p~)TijTj0)g0 gy,0 [DOgy]0 

j + 40320Ti(pipj+pjpk+pipk)TijTjkTk0)g0 gy
,0 [DOgy]0 

Jk 

+ 20i60()~(pi+p~+p)TijTjkTkO)g0 gy,0[DOgy]0 
jk 

+ 40320qKTijTjkTkR ,T20)g0 gy,0 + 1680Ti0Ti4g0 [D0g]0•gYY,0 

+ 6720p.Ti0Ti3g0 [Dog]0 [DOgyy]0 

+ 10080piTi0Ti2g0[D2g]0[D2gyy]0 

+ 20160('Tij(Ti2TjO+TiOTj2+TjOTj2))g0 [D00g]0 gy ,0 gyy,0 
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+  6720p.T.T. gO•[DOg]0CDOg
yy]0 

+ 40320( .T..(p.TiOTjl+p.T11TjO+p1TjOTjl))g0'[O0g]0•[00g]EYy,O 

+ 40320( yT . j(piTiOT. +piTilTio+pjTiOTjl) )g0' [DOg]0'g
y,0[DOgyY]0 

+ 20160T. T2g0[D0g]0•g
yyy,0+ 840piTi0g0[DOgyy]0 

+ 10080(jTij(p2Tj0+2p.Ti0)T.0)g0[DOgy]0 gyy,0 

+ 20160(
Jp,p.i..(2Ti0+Tj0)T.)g0 [DOgy]0.[DOgyy]0 

+ 10080ftTij(pjTj0+2piTi0)Tj0)g0g
Y,O[DOgyy]0 

+ 20160(ft[..(2T. T.Tk0+2TjkTjOTkO+TikTj0Tk0+TjkTk0))g0'g
y,0gyy,0 

      jk 

+ 10080T10Ti2g0[D0g]0-g
yyy,O+ 20160piTi0Tilg0-[DOg]0[DOgyyy]0 

                                            2 + 3360piTi0g0[D0gyy]0+ 20160(YTijT10TJ0)g0•gyY,0 

+ 6720(YTij(3Ti0+Tj0)Tj0)g0g
y,0gyYY,O 

+ 1680T4g4g 
       10 0yyyy,0 
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