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Introduction

We are concerning with theoretical study of numerical
integration procedure for the initial-value problem of

ordinary dAifferential equaftion:
dy .

(E) ax - f(x.y),

(IV) ylx;) = yq-

Many numerical analysts have been investigating the discrete
variable methods for the problem. Consequently everyone can
enjoy to solve,ordinary differential equaiton in almost all
CRuamericalls

computing centers. It seems as if we got the numeriecgl
integrator through the use of the computer. But the study is
yet continued for "better” numerical procedure

Among the one-step methods, Runge-Kutta methods (RK
methodes, in short) are popular because of the high accuracy
and the feasibility of changing step-size. In general the
methods are expressed as follows The solution of (E)} at

x0+h is approximated by

¥y =¥ * b } HiKso

i=1
where
ky = x5, ¥4)
i-1
{(*) ki = fxy + ash, y, + hjzlﬁijkj)~ i= 2, P

h 1is the step-size and Y5 is the approximated value at



Xp - This type of the method is called (explicit) p-stage
Runge-Kutta algorithm. According to the choice of the stage

., H, wWe have many

number p and the parameters o., B. i

i i)

variations, among which the classical Runge-Kuttz method or
the Runge-Kutta-Fehlberg method is famous A distinguished
contribution for the study of the Runge-Kutta methods has
been made by J C, Butcher ([1] ~ [4]) He determined the
attainable order of the RK methods up to 10-stage formula.
On the other hand he introduced the semi-explicit {the
summation is up to i instead of i-1 in (*}) or implicit
{the summaticon is up to p in (*)) formula.

RK methods (and perhaps many other quadrature formulas
fer the initial-value preblem) are constructed on the principle
that the required function evaluation is only for f(x,¥),
i.e. the first derivative of the soluticn. It is quite natural
because we are acqualinted with the functicnal form of the
first derivative in the ordinary differential equation.
Recently, however, some propositions have been made to employ

the function evaluation of the second derivative of the solution.

Functicnal form of it is given by
glx,y) = £ 00y + £ (630,90,

¥. Urabe [15]) made a first attempt to employ gi{x,y) by
presenting an implicit one-step method with step-size contrel
3tratepgy Let Yo and Y. be approximations of y(x) at
Xq and xo—h, respectively His algorithm employs the
predictor given by

- 2
y, = “3ly_) + 32yq - h{lhf_l+16f0) + h (—Eg_l+#g0}
-2 -



and the corvector given by

. n
Yg = Yoy ¥ 2uO(lUlf‘_l + 128f0 + llfl}
h* .
+ _’__240(135-*1 - 'LIO'gO - E'gl}:

~

where f, = f(xo+ih,yi}, g f(x0+ih,yi}, £, = f(x0+h,yl]
and él = g(x0+h,§l) Succeeding his result, J, R, Cash

[5] has considered this type of formula more generally and
made some stability analysis On the other hand H. Shintani
[12]), [13] has proposed some formulas analogous to RK
formula employing one evaluation for f(x,y) and some for
g2(x,¥) He has given the values of the parameters appearing
in the formulas up teoc the order 7 His results, closely
related to the present work, will be mentioned afterward.

In this context another type of integration formula,
for the origination of whiech H. H. Reosenbrook [1ll] is given
credit, is now beling developed. It employs the partial
derivative fy(x,y) and 1s reported to have good stability
for stiff systems of ordinary differential equaticons ([7],
[31)

Here we shall examine an explieit (p,q)-stage Runge-
Kutta type formula including the second derivative. It
requires p times evaluations for the first derivative and
q times for the second derivative in a similar manner for
RK methods We are interested in the folleowing problems

(1) What is the attainable order of the (p,gl-stage
formula from the viewpoint of 1ts local accuracy?

(2) How are the parameters in the Cormuia determined?

{?) What formula ls good for practieszl use?

-



These problems wlll be solwved in the following sections
and the forthecoming paper by the author. The present paper

is especially devoted to investigate the (1l,g9)}-stage Fformulas

Pirst, we shall define explicit {(p.q)-stage formula.
Next, some algebraic computations are carried cut to
investigate (p,q)-stage formulas Here SAl software is used
as a powerful tocl. Then, the attailnabls order of (l,q)-stage

formula 1s determined up to qg=d

Remark. In the case of very complicated functional form
of f{x,y) in higher dimension, the calculation of the
second derivative g(x,y) reguires a laborious work. It 1is
the main reason why the methods employing g(x,y) have not
been consldered. But the recent development of the symbeoelic
and z2lgebraic manipulation (SAM) software brings the change
of the situation. SAM software, for example, REDUCE-Z2 or MAC3YMA,
iz now a helpful tool for mathematicsl sclences. 1In fact,
some SAM program may print expressions in a FORTRAN notation
s0 that one can carry out the calculation of the seccond derivative
from f{x,y¥) 1in an automatic way  Once after algebraic
computation we may call g(x,y) as a FUNCTION subprogram.
Moreover, SAM software 1s very useful for the theorefical
study of the RK and its analogous methods For example,
H. Tada [14] has considered 5=-stage RK limiting formula of
order 5. He hasg utilized MACSYMA essentizlly We shall also

attempt to apply SAM for ocur study
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§1.1 Explicit (p,ql}-3taes Formula

We shall discuss numericzl integration procedure for

the initial-value problem of cordinary differential egquation:
(1.1.1) g = f(x,y},

(1.1.2) ylx:) = yo.

Here f 1is sufficiently smooth with respect To x and ¥y

Let us define an explicit (p,q)=-stage Runge-Kutta type formula
ineluding the second derivative of the sclution. Let g

stand for the second derivative of y({x),

{2.1 3} g{x,y) = fx(x,y) + fy(x,y)f(x,y)

Explicit (p,gJ)-stage formula is given as foilows

2 .
(1.1 43 y =y +h E y.k. + h % v.K,, n=0,1,2. s
n+l h is1 171 121 11
where
kl = f(xn+alh, yn)s
(1.1.5) i=1 2i--l iep -
ky = f(x tah, y +h E 8ijkj+h Z Tinj), =2, 2P
J=1 J=1
Kl = g(xn-!-plh’ yn-l-hﬁllk.l),
{(1.1.6) -1 -
= N © K. H = +d
K, = glx +o;h, jn+hJZ 644K +h leriJ J] )



B..,¥.., P.

Remark 1. The parameters u., v., « )Y
i ij? i

i i?

and Tij are, of course, real numbers

Remark 2. In the case of simultanecus eguations in (1),
y and f are considered vectors of the same dimension.
Then fy(x,y), the Jacobian matrix of f, is given in the

matrix form. For example, assume that

£ (59,0 (a)-01¥,0y,
fix,y) = =
where a; and bi are eonstants, then
8370y, "bi¥y
fy(x,y} =
L 2,705y,
and
aay + {b,y,tb.y,-2a,-a.)b.y, ¥y
171 291 1Y 2 1 72771172
glx,y)

2
ay¥y + (byy 4 y,-a =2a,5)b,y ¥,

Similar to the RK formulas, the determining equations and

the parameters are possible to be slightly different between
the single differential equation and the systems of eguations.
For convenience sake we shall investigate the single case

The attainable order of the formula is not depend on whether

{1} is single or system.



§1.2 The Taylor Series Expansicn of the Solutiocn

To investigate Runge-Kutta type methods of higher order,
we are required to represent the sclution y(x0+h) for (E)
and (IV) in & 1 into the power series of the stepsize h.
For our quadrature formula it is preferable to represent the
solution into the power series utilizing the second derivative
£.

Twice integration after differentiation for the equation

4y - F(x,¥), X >

dx g

implies the formula

x0+h t d2 (x) x0+h t
(1.2 1) [ {[ ———ig——dx}dt = [ {I glx,y(x))dxldet,
XO Xq dx Xq Xq

The left-hand side of the above formula is equal to

y{xg+h) - ylx )= helxg,y(x,))
= y(xo+h} - Vg - hy.
Herearter the subscript 0 stands for the evaluatlon at

x T Xg and y = Yo

The right-hand side of (1) becomes

h x0+g h (£
I {J glx,y(x))dx}dE = { {[ glxgtE, y(xD+CJ}d;}d£
0 X c 10



Then, assume that for 0 2 ¢ < h y(x0+;) ean be

expanded in the power series of ¢ by

{l.2.2) y(x0+;) = ¥g *tgfg t

where Kj (j=1,2, --,m} is the coefficient to be determined

later. J3ubstitution (2) into the integrand implies

il

m+1,)

m
glxo+r,¥(xp+0)) = g{Xg+T, yotif + I Stfs0(C

pld m+l
o +0(L )

1}
"n~19

O%Jug-+(cr }

r 1.9 .2

Jog) Blg * o(g™*)

n
1 =13
h#b

Therefore we have the following equation:

(1.2 3) y0+hf0+ ¥ T § - y0+h10+

'3 K
X r-1 r.ok. -k, 3
E {k)(PE Tr+D)7 & ) [DO (gg)gla}dﬁldg,



which determines Kj recurrently.

Twice differentiation for (3) with respect to h implies

B TEKF‘E' %Thi,fl E
{(1.2.4) — h" = {. 3¢ h )
QGDE! 20 ! k= k ir+li

Then, we have the following important result.

Theorem 1. The coefficient Kg {2=0,1, * ,m) is

determined by the following way:

Ko = &g-

k, = [D% 08l { ——

2 0 a=1 t=1 st{l-3-t)!
K K
0 1 Ks-1 E a-t
By (5 3 Iy TR ),
for &£=1,2, S M.
Here B (X, ;%4 ,%_) 1s the multivariable polynomial of
s, 7172 S

E. T Bell of the order (s,t} and

m{Ll,s) = min{s,t-s)

appeared in the summation of the right-hand

Note, Kj
s0 that

side of (5) is for j less than or equal to &-2

we can determine <g recurrently by the formula.

Proof kg - & is clear Let us introduce two

- 10 -



functicns G{(h) and A(h;2) as follows:

m=1 Knal
(1.2.6) G(h) = § —E=nT,
r=1 (r+l)!
(1.2.7) Al{hi L) % (“y{a(nyfipEk 2)ykg £=0,1
- T kfo K o 'ay’ Blge TR AR

Note that G(h}) 1s of the order h and G{0) = 0 holds
m .
Then, the right-hand side of (U4) is equal to ) _ﬁi%%El h®
s=0

Hence ., we have the eqguation

5!

m m N
(1.2.8) § -t nt = 3 A(h;s} s
= 5=0

For an integer £ such that 1 < 2 < m, 2#-times differentia-

tion to (8) with respect to h implies
L=1

(1.2.9) <, = 1 (5Hat050-s)
=0

By (7), the equation
A(032) = (Dig]
* 0='0
is clear. For & > 1, we have from (7)

A5 (hse-s) = (7% iy 05 g 1)

- s -g-p
+ (%) (6(n))°pf T %

] + - 4
4h ¥y 0
- =1 e 3k
r -Letemy g g el ¢
dh”

+ —E:[G(h}}ﬂ-szélll_oglu
dhE ¥

- 1] =



For higher derivatives of composite functieons, the formula
employing the Bell polynomial 1s known (J Riordan [10]).
Hence, applying the formula, we have for k=1,2, J -5

min{s,k) .,

4® raenyk - B. _(G'(h),G"(h), - ,a 3 (h))x
5 B {k-t)! “s,t ’ * )

dh t=1

x{a(n) 1%t
which implies

) " . nls)
< k1B i (G (C),e"(0), G (0N for s>k,

(£ (am)*, _, = ’
dh
0 for s<k,
From (6), the eguation
- -1 .
(s) me rl -1 pr-s _ " r-1 r-s
1 (h) y h E - n
r=s (r-s)! (r+1}! pig (pt1)T(P-8)!

holds. Hence we have

a{® o) =

Then A{s)(O;l-s) is given by
)

m{%,s) ,_ —5-
A 0,0ms)= 10 (RSB, @), - L6t R G el
k=1 '
m(2,s) Ko K K
N ¢ (L-5)! 0 "1 5=1, n2=5-t 3.t
= b Ts-ttits,t(7> 3> 5P (g5 &lo

which implies from (%)

- 12 -



-1 m{%,s) - K., K €. s
g = gglge § (o § Emslly 0 L e,
=1 t=1 {(&-5-0)! 7?7 =T
« (D5 " (550 8] )
-1 m(%,s K K
- ! 0 "1 s-1
- [Dog] *Ezl{ tzl s!(ﬂ.—s-t}!Bs,t(T’T‘ rrantiis
x 1057 " () el )

This is the desired result.U
The multivariable polynomial B {X,,%X,, *s% ) has
5,t"71*72 5
a recurrence formula to calculate it conveniently by the

applicaticn of any SAM software That is,

§ %.B {x X Jat+1 § { E X —E—i—)a
v ] >
£=1 17 s,t 71 3 €21 k=1 k+l
s5+1 "
= tz‘l Bs‘f‘l’t(xl’ -,X5+l]a

Here, the both sidesof the formula is considered as a polynomial

ctf a. The recurrence formula for Bs . will be employed
»

during the calculations aof by REDUCE-Z

Ky

Theorem 1 tells us a concrete methed to determine the
Taylor series expansion (2) employing the second derivative.

For example,

- 13 =



- 2 _ 2
2 = [Dggly + 21B) [ (zg, o = [Dgely + <48,
= [D7gl, + g,2
08'p 0%y 0
. = (02gl, + 3B, (Dypg 1. + s (0, 11y
3 08¢ 1,1V 2 oeBylo T 272,17 T8y 0
- p3
= [DOg]G + SKU[DGEyIO t KB g
- 3
= [Dgel, + 350[Dogy]0 + [Doglogyso.

We may also carry out the process by the SAM software up to
the desired order. The result by REDUCE-Z is shown in Table 1.
Note that because of Remark 2 in the preceding section

we do not care the order of the higher partial derivatives.
Another important result from Theorem 1 is that any
Kj is a summation of an integer multiple of some product of
[Dg(g%)qglo Hence, we shall call any product af [Dg(g%lqglu
an elementary differential of g. J €, Butcher [1] has used
the terminclogy of elementary differential in a different
sense However, our study of the expression of the coefficient
of Taylor series in the elementary differentials is on the
similar point of view.
In fact, the way of the proof of Thecrem 1 is applicable
to the Taylor series expansion of y(x;+h} employing the
first derivative.

Theorem 2 Assume that

- 14 -



o r-1.r +1
(1.2.10) ylxg+h} = y, + ¥ T=hT 4 o(n™ ),

Then, the coefficient ll (£=0,1,++ ,m-1} is determined by

) Q
(1.2.11) £-1 m(L&,s)
Ap = IDgrlg+ I O § 2 ‘
s=1 £=1 (2-5-t)!s!
A X X
1 2 s L=3-t,0 .t
X Bs,t(T’ 3> ,m][n {'g—y‘:' f]G}’

2=1,2, 2.

We shall call (10) the first type power series
expansion in contrast with (2} which will bhe mentioned as

the second type expansion.

Table 1

- 15 -



§1.3 Implicit {1,q)-Stage Formula,

For the study of the general (l,q)-stage formula, it is
convenient to analyse the corresponding impllcit (1,q)-stage
formula, because we gain an insight lnte 1ts algebraic relations

by them.

Consider an implicit (l,q)-stage formula as follows:

q
2
(1 3.1) y 4, =¥, ¥ uphkq + 1£1v1h 4o D =0,1, 2, ,
ky = flx +a h, y4),
(1.3.2)
3 2
Ky = glx *p,h, yn+°ilhk1+j£lTijh KJ), $ =1, « , Q.

We need to analyse one-step integration by (1) and (2}, so we

may substitute n=0, i e,

_— 2
¥y = ¥g + ulhkl + g uih Ki’

1=1
(1-3-3) kl = f(xo + ulh, :lro)s
2 - ]
K, = glxg + pyh, y5 + o, hk; * }Tijh KJ), i i, » Q
For kl, we have the following expansion:
_ 122 3
kg = Ty vy 5+ Foh™f, o + 07

- 16 =



On the other hand, Ki has the expansion

K, = g, t O{h)

i

Hence, the equation

g 3
I vyg5) + 0(h”)

- 2
(1.3 4) Y1 g t ulhfﬂ + h (ulalfx,o + L

holds The soluticn y(x0+h} has the power series of h

as follows:

(1.3.5) :,f(x0+h) = ¥y + hfy + %hzgo + o(h3)

Comparison of the terms having the same power of h in (4)

and (5) yields the following equations.

Lll— ,

q
Thus, py=l, a;=0 and ) v.=% must hold in the implicit
(l,g)-stage formula.

Next, since Ki has the expansion

= 3 P 2
Ki = go + [(F}i'é‘i{‘ +Uilf0'ﬁ)g'}0 h + O(h :ls

the comparison of the third order term of ¥q and y{x0+hJ

implies the egquation.

- 17 -



q
L 1
= = = + . = .
3 [Dgelg = 5 (&g o * fg'8y o) izluiE{Digx,U * 951058y, 07
From the viewpoint of homogenulty of differential operation,
Py=04, must hold for i=1,2, -.q

Hence, let us rewrite (3) by

0

2
¥ = ¥g t bfg ¥ izluih k; 5
(1.3.6)

- 2 _
Ky = elxyteyh, FU+Dith+}Tijh Ky =1, -+, a

We shall assume the Taylor series expansion for K1 by
m kK
(1.3.7) K, = § 22 nt + o™,
i 220 g1

where k.3 Wwill be decermined by the similar manner for
Thecorem 1.

Theorem 3. For each 1, k in {1.3.7) is determined

ig
by the following:

Ki0 T Bg»

(1 3.8)

! L-3-t
sT{Z<s-t)! P1

g-1,m(8,s)
Rt ) g !
<7 Py [Dp2 " {

s=1
xB { E Ta s Krms ,SET..K. )
5.t j=1 ij"jo 3 i Jss=-1

R-s-t, 3 .t -
“[Do (5;} LJO}, L =1, 2, , m.

- 18 -



Note. By the above formuls, Kio Can be determined in

the ascending order of the second subscript, i.e., Ko {i=1, -

after «y,, Kgq (i=i,+ ,q) after Kio» and so on.

Proof. Two-variable Taylor series expansion for Ki

glves
WY 5 2 3 +1
K, = EEOET[{pihEI + (pyhfy + J1;,0°K 0 gl + o™
= E E'[{pl ot (I1y hKJ};;} gl * o(n™*1y
m . 2 m-1
_ h ij jr r+l 34,2 m+1
= — o t L ( Je=1"gl, + O(h )
izogl PED jll : 9y’ =70
mopkk L bk "1355r) L ke 0k 3 ok m+1
= It I (e 1 <E—4l———)h 1 [Dy (5=) g lght O(R™ )
2=0°" k=0 r=0 j y
Thus, putting Gi(h} as
m=l 91 r+1
(1.3.9) g, (h) = § (] —ai—i—}h
p=g j=1 °*

and noting that Gi(hj is of the order h and Gi(0)=0, we

have the egquation

Il 3 2=

s I
ie 2 _ 2pt
i E Tt

Il -5

(e My R IDE T el b

L=0 k=0

which 1is similar to (1.2 4) Hence, following after the proof

of Theorem 1, we have

- 19 -
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B—1 m(g,s)

_ Aok % (2-8)! p-s-t ' {s)
h‘12'*":1[Dﬂlgjff’szl(s.){ tll Tims—5) 7T o1 DBg, (01000, . G770

2-s8-t, 3 .G

From (9}, for Kk=1,2, 48

(ic) md
G " (h) = 7§
r=k-1

(r+1)! T1i%3p,, r-k+1
CTINY (§ T

helds, which implies

(k) (0 = gt (g itdfd te1y _
Gy (0} = klfg-r%:%fT“) B k}TiJKJ,k—l

Thus we have the desired result. p

By Theorem 3, Kig iz glven as follows:

k11 = pqlDpelss

- .22

- 2rp2

= p;[Dgel, + 2(§Tij)go By g o

= ~3rp3 .

H

02 (D3z], + 6pi(§Tij>g0 (Dge, Jy + s(gTijpj)[DogJU 2, o

- 20 =



The result with the help of BEDUCE=2 1s shown in Table 2

Here we employ the notation
4 i
Tik = lepjTij » 1 =1, 2, s 1, k=0, 1, 2,-

From (6} and (7), the Taylor series expansion for ¥q

is given by

m K
(1.3.10) y, = y, + b, + iy vin®( § LEnty v om™3)
i=1 2=0
m q t+2
- h m+ 3
=¥yt hf, + ] (] vix, )= + O(h" 7)
0 I APEThe 5 2y

m+l)

i r
h
Yo * hfy + 7§ g VK, ) + 0(h
0 0 =2 121 i%i,r-2"{r=-27!
On the other hand, from (1.2 2), the (second type} Tayior
gseries expansion of the solution y(x0+h) is given by

m K
_ r-2 .r
(1.3.11) ylxg+th) =y, + bfy + I —==n

r=2

+ o(n™ly

where « is represented by (1.2 5) The comparison of (10)

L
and (11} brings the determining equation of the implicit

(l,g)~stage formula, for which we have the fellowing

Theorem 4 Each in {(10) is constructed with the

Kig
all elementary differentials included in the corresponding

<, in (11) Hence the determining equatlion of the implicit

- 21 -



(1,q)-stage formula 1ls of the form such as

{(an integer) x (a polynomial of Vis Py Tij} = {an integer).

Froof From (10) and (11), Ky and Ky g must satisfy
¥
K
1 2
t 1§1Ui“i£ = tor e r=001L 2, M2

which implies

(L+1)(e+2) fo iy, = Ky
i

From (1.2 5) and (1.3.8) the conclusion follows [

Table 2

- 22 -



§1.4 Determining Equation for (1,q)-Stage Formula.

An algebraic computation according to Theorem 1 gives

the number of elementary differentials including in each «

!'.
Let my be the number of elementary differentials in K,
and define the integer ME by
)
M, = m
[ j=0 J
Each mg and MF. are given inTable 3 up to L = 8.
Thus, we have Mg restrictions for the parameters e

) Tij of the formula. In the implicit {l,q)-stage formula
(1)

q >

i:
the number of the parameters to be determined, say N

¢can be given as a simple function of g
(I)
N = +2
1 qlq+2)

It implies that the implicit (l,g)}-stage formula can attain
at least the order (% +2) where & 1is the largest integer
satisfying the ineguality M, < NéI} These relations are
shown in Table 4

However, the above argument based on merely counting
the number of the egquations that must be satisfied, ignores
the relationship between them. In fact, it may happen that

M restrictions are satisfied with fewer than ME variables.

'3
But, since we are interested Ln the expllicit formula rather

than implicit one, we shall not come into more investigation

- 23 -



for the attainable order of the implicit formula.

An expliecit (1,q)~stage formula, which is defined by
;2 Py and Tij (Tij =0 for j 2 i} in
(1.3.6), has NéE) parameters to be determined. Here N(E)

the parameters v
i1s given by

NC(IE) = qlg+3)/2.

Henee, similar consideration for the implicit case gives
the largest integer &* satisfying the inequalify Mi 3 NéE),
Table 4 includes the relations between g, the number of

stages, and 4*

Table 3.

I} Mg M|

0 1 1|
1 1 2
2 2 Y
b3 3 7
|4 & 13
5 9 22
6 17 39
;7 26 65
8 46 111

- 24



[
o

WO~ VW = W N -0

120

f

@~ ~1 OO U g i el

=
*

- 25 -
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Shintani has given some explicit one=-step methcds
utilizing the second derivative [12], whose foermulation coincides
with our explicit (l,ql-stage Tormula. He has determined
the parameters for q - 1, 2, 3, 4 and 5 which give the
formula chtaining the order 3, 4, 5, 6 and 7 respectively
His results attain the orders that we have argued as the
least number R* for each stage formula. Hence, it is a
question whether Shintani’s results can be improved.

We shall consider the determining equation for the
explicit (l,gl)-stage formula. Tables land 2 give the
equation as foellows. We employ the notation for summation
symbol such that the upper limit of summation can not exceed

the variable of the preceding summation symbols, i.e, Z“*[E"'}
J

. i
q i=-1
means E cae{ F ver) Moreover, the symbol T'k means
izl j=1 1
i-1 K
Ty =0 and T, - jglpiTii’ i=2,3, »d -
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Determining equations.

=
"

0:

(E-0)

(E-1}

(E-21)

(E-22)

(E-31)

(E=32)

(E-33)

(E-41)

(E-42)

(E-43)

(E=44)

(E-145)

(E-46)

i1

o -

3 _
ZOEvipi =1

l20£viT
1

il "~

lEGEviQiTiD = 3

h_
jogvipi = 1

360§viTi

TEUEviDiTil =

2
360§vipiT

?202 Evi
1)

2
360§uiTi

2

T

o~

1
L=

t
h

ig -~

15750 °
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- 2
(E-51) J-IE’jiEvipi =1

(E-52) BﬂOEul ThE

(E-53) ESEOZUlpl io %5

(E-54)  2520upiT. | = 10
1

(E-55) 50#022‘01 13 Jl =1
(E-56) 840Tv. p2T, . = 10
g 171710
(E-57) 50u0§§\J(p +p. )rlJ jo < 8
(E-58) 5040}v,T. T.. = 10
S 1071l

(E-585) 2520{0 iPiT5g = 15

(E-601) 562vipg =1

t
=

(E-602) lSBngiTiu =

1
[yl

{E~603) G?EUZ“ipiTij =
i

(E-604) lOOBOZv pl 15

i2

{E-605) 20160{ EUlTlJ j2 ° 1
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(E-506) 6720£u §P3T,, = 20

(E-607) 40320§§u (ps*e, }TlJ j1° 10
(E-608) 20160§uinl - 10

(E-609) 1680]v.p T, = 15

(E-610) 40520%% ViPiPiTs5 g = 18
(E-611) EOIGOEg:v (p +p$ }TlJ jo = 21
(E-612) MOBEGEEZEvlTlJ Jk o = L
(E-613) 2016014‘viTioTiE = 15

(E-614) u0520§v p;T;oTs, = 6O
{E-615) 10080£u f io = 45

(E-616) 20160} Ju 1, . (T, +2T. )T ., = 18
ij J J d

3 .
(E-617) 6720fv,T7, = 15
(E-701) ?VTEEvipE =1
1

(E-702) 302u5u iTig = 1
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(E-703)

(E-704)

(E-705)

{E-7086)

(E-70T)

(E-708)

(E-709)

(E-710)

{(E-T11)

(E-712)

(E-713}

(E-714)

(E-715)

{(E-716)

15120_Euipi'rilI - 7
1
2 _
302”0;“191T13 = 21
60”802 Ev.r-.T. =
ij 1715733

3 -
EUEMU%vipiTie = 35

lBlHHUE Eui(pi+pj)1

i)
4 -
lBlEOEuipiTil = 35
1
362880% EE ”ipiDjTijT

2 2
8144 {ps :
1 oggxﬁﬁpl+pJ)r

362880£1§EUiTiJTJKT

181440£uiTilT12 = 3

2
181uu0§vipiTil = 70

302H2uip?Tio 21
1
181440% E%Pipj(pi+p
ij

3.3
4 Ap+p?
60 SOEEZUl(pl+pJ}T

- 30 -

1

i5T52

= 28

Ji

1

kl

2

T

:iT50

=1

.. T.
J7 137340

= 12

..T. =
J 1l 31

= 105

45



(E-717) 362880§§§Eui(pi+pj+nklfijfjkag = 15

(E-718) GuuﬁoiuiTioTi3 = 21
i

{(E-T719) lBlHMOEv = 105
1

iPiTi0T52

2p. 7. = 210

(E=-720) 181#40§uip1 i0Ti1

{(E-722) 3628803};%Ui*rij(TiUTJ-]_*TjoTjJ_"TjDTil) = 66

(E=723) 302“02vipgT? = 105
1

i0
(E-724) lSlﬂHD%g:vi(EpiTiD+pjTjD)TijTjD = 84
(E-725) lBthO%E:vi(piT30+2pjTi0}TijTjD = 120
iOTil = 105

(E-726) 181uuo§uiT
1

-
(E-727) GﬂﬂﬂﬂguipiTiD = 105

8

(E-801) goguipi = 1
{E-802) 5040§viTi6 = 1
(E-803) 302u0§vipiTi5 = 8
(E-804) TSEUDEvipiTiu = 28
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(E-805)

(E~-806)

(E-807)

(E-808)

(E-809)

(E-810)

(E-811}

{E~812)

(E-813)

(E-814)

(E-815)

(E-816)

(E-817)

(E-318)

151200 } v, 7, 1
i3 ij JM
100800{v 13Ty 5 = 56
604B0OT J vy (p;+p ;) 14
is 1333
4 _
Sﬁﬂﬂgv PiTjp = 70
181uh003 EUlDlpJTlJTJ2 = 40
02)
907200 § v. {p = 43
£ J i Tj
181141400%}12:11” 5eTk2 <L

u53600£uiT§2 = 35
1

302uozu pl 51 = 56

lsluuooz Eulplp](p J)Tijle = 192

604800} § v (o3 +03}T13 ji ~ 76
1j

3628800}§:£v1 p-+pj+pk)1ijTJRTkl = 18

EOHBDDEviTilTi3 = 56

1814400 v, p T, Ty, = 280
1
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{E-819)

(E-820)

(E-821)

{E-822)

(E-823)

{E-824)

2 2

9072002u i1

lBlﬂﬂDUZZ*UiIijTJ
1)
50400354 -

9072002 ZuipepzT
1]

ivj1i°J0

GOHBUDEE‘U P3P

1512003 T v, (pa+

£ d

l(ET.

28

(pz

T

Du}T

= 280

il

?JT

-.T.
1] J

+le

T

)

= 168

ij ja

0

:85

66

= 24

8

(E-825) 36288005% Eul(p Pytosppte, pk)rlJ jk T o

(E-826) 18144007 } i Vs (p +p

(E-827)

(E-828)

(E-829)

(E-E830)

(E-831)

(E-832)

1)k

)

T-

ij Jk kQ

36238ODEE YYver..t., 1,,T
fski 171 jk ke 20

1071

1512003v, T, T., = 28
i

EUHBGGLv IS OO

2
907200§uipiTioTi2

it

168

420

lBluunazE v 745 (T oT5 04T

lJ

S

GDHBOOIU ;03T 0T

_33_

560

i0T;2

1

:!{9

+T. . T,
d

0 32)

= 82

= 113



(E-833)

(E-8314)

(E-835)

{E-83b6)

(E-837)

(E-838)

(E-839)

(E-840)

(E-881)

(E-842)

2md .
(E-843) 302uao§uipiTiU = 420

(E-B84Y)

(E-845)

(E-546)

36288007 Jw
ij*

36288007 § v
i

18144007 v, T
i

TSGOUZvip
i

2
907200% w1, . (psT.
ij&.lJ 1730

T *

iT

io

y
iTio

1

ij

{(p.T..T

3156P3 40

2

Til = 28

2 = 210

iv5 iy

1710 j1+p

T.

0

2

2p;T
+ p;I

181&&005 Zu.p.p.T. (2'1'io
1]

90720022%.
1}

1314 MOOZZEvitij (QTJ.k sotko

ijk

QDTEUDEUiT
i

lBlHHDDEuip
i

1814400} J v
ij

2
60&800;% viTij{3TiO+Tj0

151200]v. T

Ts
1

2
id

iT

« T

1°1j°i07j0

Y
io

2
r .TI
i3T50

T..T

2

T, = 210
2 _
10Ty = 840

LT T2

= 105

- 34 -

Jl+p

i

+T,

+2piTi

iT11T50%05 50 51

0)Tg = 252

JO)TJG = 624
T, = UES

ik 0 k0 ik 0 kO

= 84

2

)T

Jo

225

) = 508

2
Jk kO

+21, T..T +1,. T, T 41, T

5T11T50%P5T5Ty,) = 360

)

- 81



§1.5 Attainable Order of (1,1)- and (1,2)-3tage Formulas

The explicit (1,q)-stage formula is said to have the
attainable order m if m 1s the largest integer for which

y{x+h) - ¥y ° O(hm+l)

among all combinatiens of the parameters of the formula, whers
y{x) 1is the gnalytical zoclution and ¥y is given by ?1.3 6)
The definition of the attainable order will be extended, if
necessary, Lo general (p,q)-stage formula.

It is obvious that a (l,q)-stage formula has the attain-
able order m if and only if the determining equations cor-

responding up to £ have aft least one solution, but they

have no solution up to &+1, where 2 = m-2,

Theorem 5. The attainable order of (l,l)-stage formula

is 3

Proof  The leit-hand side of the equation (E-22) is

equal to

which vanishes for (1,1)-stage formula because {rij = 0
Thiz means that the parameters vy and PL can satisfy

merely the equations (E-9) and (E-1) U
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Theorem 6, The attainable order of (1,2)-stage formula

is equal to 4.

BProof Assume that the formula attains order 5, that
is, the parameters Vys Vo Pys o and Toy satisfy the

equations (E-0) ~ (E-33).

_ 1
(1.5.1:‘ Ul + '\)2 = "ET
_ 1
(1 5.2] ViR t VoPs T §
_ 1
(15.3) VaTpy * AR
(1 5 4) v1p§ + vgpg = f?
(1.5.5) VaPaTaq = 1
e 2221 Lo
(1 5.6) Vap T = =
) 27121 120
(157 ”1“% * “2”3 = 55

The equations (1), (2) and (#) yield a matrix eguation

1 1 1/2 [ v

1
Py Py 1/6 Vs = Q,
2 2
N Py 1/12 -1

which implies

- 36 -



1 1 1/2

{1.5.8) oy Py 1/6 = 0
z2 2
Py fo 1/12

for the existence of nontrivial sclution [vl, Vas —l]t

On the other hand, (3), (5) and (6) give the values

which gpecify the determinant of (8) by §%ﬁf This contradic-

tion implies the statement [l

Note. Shintani gives {(l,l)-stage formula with parameters

vy T % and Py = %. He also gives (1,2)-stage formula with
vy = (9+/8)/36, v, = (5-/6)/36, o) = (4-v8)/10, p,  (U+/B)/10,
Tgy = (9+/6)/50. These parameters are not unique solution

(1.5 1} ~ (1,5 4) The sclution of them is represented with

one parameter p by the following:

Py ~ P (p#%h
oy = (2p=1}/2(3p-1),
vy = 1/6(6p%41),

vy = (9p7+1)/3(60°41),
Toy (6p2+1)f8(9a2+1)
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§1 6 Attainable Order of (1,3})-3tage Formula.

The determining equation for the explieclt (1,3)-stage

formula are glven as follows:

(E-0)

T

(E-1) vipy * vapp * ovapg =

2 2 2 1
(E-21)  wypy * vppy * V303 =75

_ 1
(3-22) '\-’2121 + U3(T31+T32) - é"&'

(E-31) w0} + vpp3 + v3o3 = 3y

(E—EE) \-’2p2T21 + \'3.03(‘[31'!"{32) = ]_I-:I-fo'_

1
(E-33) Vo Top + valp taytp,155) = 157

4 4 4 _ 1
(E-41)  vipy * vaep * V33 T g

2 2 1
(E-H2) vaPaToy + v3e3{Tgy*T3e) = 2

_ i
(E-U3)  vppapyTpy + v3e3ley T3y * 927320 = 180

2 2 2 ]
(E-44) V5P Tay + valeyTay *+ p5T33) = 375



2 2 _ 1
(E-45) VoToy v3(T31+t32) = 139

1
¥3To1T32 T 720

{E-45)
It ig remarkable that none of the factors on the left of
(E-46) e¢an vanish.
Assume that two of p1s Po» 03 are egqual, say pIsz.

Then, from (E-0}, (E-1), (E-21}, (£-31) and (E-21), we see that

1
1 1l 5 vI+uJ
1 .0
Pr Pk & ¥k ’
2 1
LTS v-) |
[ 17 ]
l l B- DI('\JI-I'UJ}
L -0
I:'I F:"K 12 ph\-’h = »
2 1
T Pk ozl b
r 17T 2 b
1 1 1T QIf\JI+\JJ)
i 3 = -D
PT Py 20 Py
2 1
P1 PK o b ]
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The condition that the above three equations have non-trivial

solutions, implies the equatlons with respect to P1s pK as

follows:

1 1 1.

1 1 L, _
Co-eg) {grrok- iglerteg) + 55t = O

and
1 1 1. _
(px-er) {17 p1ex= 25lertex) * 31 = 0
If pr#pg- pp and py Wust satisfy the equatilons

11 11 1.1 1 1
2PrPxglertegd¥iT = FPreyTalerte M t3g T ToPreczalerte 3 < O

which is impossible The case of P1=02703 leads to a contra-

diction pbecause of

Dl(vl t v, + u3) = % s

2 1
pl(""l + Vo + vj:l 17 »

induced by (E-0)}, (E-1), (E-21}, respectively
Hence no two of P1sy Pos P are egual., It is conven-

lent to define

- b0 -



(1=1,2,3)

Since we consider the expliclt formulsz, A1=—%p§ holds.

Then, we have simultanecus linear equations

1 1 L | [vihy
M P2 P3| |vaka| = C
Py Pa ”% v3hs

vy (E-21), (E-22), (E-31}, (E-32), (E-41) and (E-42) Since
no two of PPy Pg are equal, all of vlﬂl, “2A2= u3ﬂ3
vanish. By virtue of the above mentioned remark, we distin-

guish the following four cases

Case 1. ﬂl = HE = AS =0

2 PR

P
RN 8]

The equations Al=0 and A2=U Imply p1=0 and T 1=

o

1
Then, (E-43) and (E-U48) bring the equations VaPaP3T35°T8F

2 1
and V3P T357387 » which glve the identity p, = 29

3 2
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Thus (E-1), (E-21} and (E-31) imply the equation

_ 1 4, -

Py 2Py IRE
2 > 1 ~

5:'2 upg 17 \13 - G:
3 3 1 1.

P3 Bpz  Zgd Lo

whilch yields a quadratlic equation of Py
20p2 - 15p, + 3 = 0
2 Pa

because of Py # 0. But the above quadratic equation has

no real roots

Case 2., wv,=0 =and A, = &, = 0.
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In such case, we have the eguations

= 1 2
To1 5 3 Pp
and
+ =.;.|'_ 2
T30 7 T32 7 7 P3
Substitution of 1 =12 and T =12 into (E-44) implies
2 2P2 31°2F37T32 p
2 2 2. 1
o] * 2hv3tyaley - 0)) = 73

Employing the equation

2 _ 1
(*) \)3p2T32 = m-

induced by (E-46), we obtain
pl(l - 2}'IU3T32) = 0

Hence, the equation p1=0 or v3132=§%- helds. The case of

= : o - _1
pl-D is equivalent to Case 1. The equaticn V3T35=3]
yilelds

P + IJ,-I‘U T ( - :I = = l
1 T eV3T3ptee T Py P2 T §
’ : 2_ 1
by (E-33) The equation (¥}, however, implies PH=1E>

which leads to a contradiction
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Case 3. Vo =0 and A, = A, = 0

Al=0 implies pl=0. Then, (E-1) and (E-21) bring the equations

I

ot

and

2 _ 1
V3iP3 T 12 .

Hence we see p3=% and v3=%. It contradicts the equation

v3p§=£5 induced by (E-31)

Cage 4. v;=0, vy=0 and A3=0.

The equations (E-0) and (BE-1) yileld u3=%- and bqﬁ%-

Apaln, it contradicets the equation u3p%=f% induced by (E-31}.
Thus, we can conclude that the determining eguations
(E-0) v (E-46) have no solutions. The prcof of the following

theorem 1s now accomplished.

Theorem T The expliecit {1,3)-stage formula can not

attain order 6 Its attainable order is 5.

Note. Shintani gives (1,3)=stage formulz with parameters

= L

V] T 73 Yy T (5+/5; /24, vy = (5-/5) /28, pp = a, Py = {5-/5)/10,
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L = (3-B)/20, oy = (5+/5)/10, 1,0 = 0 and 1

3 31 » = (3+/5)/20

T2 3

These parameters are also not unique solution of (E-0)~ {E-33)

-4y -



§1.7 Attainable Order of (1,4)-Stage Formula.

The determining equation for the explieit (1,4)-stage

formula are given by the following:

(E-0)

(E-1)

(E-21)

(E~22)

(E-31)

(E-32)

(E=33)

(E-41)

(E-42)

{E=43)

{E-4k)

{E-&5)

= 1
Ul+U2+U3+Uu - 2

1

ViR HtvapstVaptvyry = F
2 2 7 > 1
VPP tVap Py T T3

”2T21+u5(T31+T32}+“M(Tu1+Tu2+TH3} = %ﬁ

V107034503 HY = 3

_ 1
92p2121+v}D3(T31+T32)+Uun(qu+Tﬂ2+Tq3) " TIg

e

“201121+”3{91T31+°2T32)*“u(°1Tu1+pzfa2*°3ru3} ® 120

4 b a8 1
VP VLR tYP Y0y = 35

2 2 1
U2Q§T21+0393(T31+T32)+qun(Tq1+T42+Tu3) * 6

!
“2”291121*“393(91T31+°2T32)+”uﬂu(°1Tu1*92Tu2+p3Tu3) 180

2 2 2 2 2 2 _ 1
“2”1T21+”3(91T31+92T32)+“u(p1Tu1*°2Tu2+°3Tu3) 360

I !
V3T21T32+Uu(T21Tu2+T31Tu3+T-—52nh'-_’-’i = TEO
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_ 2 2 2 _ 1
{E-46) 02121+v3(131+r32) +vu{1ul+ru2+t43} = T35

(B-52) v,057 51 #v3p3 (151 +T5,) 09,07 (1,147 41 3) = gy

_ > 2 2 1
(E-53) VaPoP T a1 V3P 5 P Ty PR oT o )ty PR Ty +P Ty 5 4P 5T 2 ) oty

_ 2 2 2 2 2 2 1
(E-5U4) UEDEDIT21+U393(D1T31+92132}+Uupu(pqu1+pzTu2+p3tq3]:§6H

_ 3 3 3 3 3 3 1
(E-55) “291T2l+“3(plT31+°2T32)+“u(DlTul*pzTu2+°3T43) T

1
630

(E-56) u3(p2+p3)121132+vu(92+pq)Tngu2+uu(p3+pu)(TalTu3+1521u3)
_ !
(E-57) VEP Ty Taa¥ VP {Tog Ty T Tyg 24V P o357y 3= w57g
o 2 >
(E-58) w1 V5 (R T 5170 151 T30%05T 5) Tt 051 50 0y by 10T pro5Gy)

tuypy (T411u2+1u1Tu3}+“u“2(Tu1T42+T42Tu3’*“up3(T31T43+Tu2Tu3)

_ 1
T 50%

2 2 2 1
(E-59) U2D2T21+v393(T31+T32} +vupu(1ul+ru2+Tu3] * 16E

The question 1s whether any parameters Vis Py and Tij
exlst to satisfy these 22 equations simulftaneocusly It is

helpful for investigation to introduce the following notations:
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i=1 1-1

T., = § p.t,. {(i=1,2,3,4)

T.. = 21:..3
io i1 1j il j=1 4 ij

(T and T1l mean zero.)

10

A. =T, - éﬂ? B, = T, - %pz (i=1,2,3,4).

Then, from (E-21), (E-22), (E-31), (E-32), (E-33), (E-41),

(E-42), (E-43), (E-51), (E-52) and (E-53), we easily see that

2 3
(1.7.1) vy A, = Yv.p:A. =Yv.pTA, = Jv,piA, = O
g i 7i RS R DS A b SR A R A
and
2 -
(1.7 2)  JvyB; = IvipsBs = JuipiBs = 0.
1 i i
The equations (1) means
1l 1 L 1 Ulﬂl
Py o P3 oy Vol
=0
p 2
Py fs Py Py v3A3
3 3 3 3
.. F1 Pa P3 Py | \luAu ;

We now distinguish two cases according as two of

P15 Pps Pxs Py are equal or otherwise

Case 1. Two of Prs P5. Pzs Py are equal

-7 -



Assume that two ¢of them are equal, say Pr = P;

Equatiens (E-0), (E=1), {E-21), (E-31}, (E=4#1) and (E-51)

give three simultanecus linear equations as follows:

P1

2
PT

7

Px

2
Py

3
Py

1
1 5 vI+vJ
1
PL, 3 Yk
= D,
2 1
oL 12 Vi,
3 1
l .
1 '6' QI(‘UI‘I'VK)
1
PL, 12 PyVK )
= O,
2 31
Pr, 20 PrVk
3 1
DL 3_0" -1
1
1 15 pI(UI+UJ]
1 2
Py, o0 PrVK
= 0
2 1 2,
P, 10 PV,
3 1 .
L 2 1

The condition that these equations have non-trivial solutions,

implies the determinants of matrices to be vanishing. Hence,

we see that the equations
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l -
goiPr DK)(pK'pL}(”L"pz){"°°I°K°L*l°(”I”K+9KDL+”LQI’

-5(p1+pK+pL}+5} = 0,

1
Eﬁ(OI'ﬂK)(QK'DL}(DL‘QI){‘lODIDKﬂL+5(QIQK+DKﬂL+ﬂLQIJ
-3(p1+pK +pL}+2} = 0

and
1
Hiﬁ(ﬂI-QK}{pK_DL](DL_DI}{_55919KQL +2l(pIDK +pKaL+prI)

—lﬂ(pI+pK+pL]+10} =0

hold., We can distinguish three cases.

(1) 4t least threes of py are equal.

(ii) pI = pJ and DK = pL

(i) Prs Pp. P are distinct, and the above equations hold,
But, the case (1) can not hold by the similar
reason mentioned at the first part of §1.6. In the case (i1},

(E-0), (E-1}, (E-21), (E-31) and {(E-41) imply the equations

r l r 3
1 1 5 ) VItV
1 -
GI DK Y UK+vL = 0,
K X 1 .
I K 17
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1 i
1 1 z pI(“"IH".I)
1 \
Pr Pk 1z Py (vgrvp)
2 2 1
[ P1 Pk 30 -1
[ 1 i ¢ 2
+ . 17 privytvs)
1 2
61 Pg 30 Pxlvg*vy?
2 2 1 1
v PT Pk 30 J U\ -

Thus, by the same reason as for case (i),

eguations lead to a contradiction.

these

In the case (i), we easily see the equations

and

. L
pIprL - 351

which imply that Pr> Pgs Py are distinct

equation

L

55 - 0

) 3 -
(1.7 3) X ?x + T,,Jac

roats of the

cubic

The cubic equaton is irreducible and has three distinct

real roots given as follows:

- 50 -



Let 8

(1.7 &)

cos 39 =

5v2

Then, the roots are

(1.7 5) {

be an angle such that

(0 <30 ¢ 3.

%{3+2¢§ cosb),
%(3-(5 cosd + /& sing),

= %(3—%? cosd - /B sind)

Some algebraic properties on the equation (3) are the

followings:

Lemma 1 7.1. The roots
I 1
none of 0, 73

Substitution of

polynomial of (3) gives -%%;

Procf

Lemma 1 7.2

the cubic equation

(176 x° - g

HU’ Rl, R_l are equal to

1 1 . .
0, 7 and 3 into the cubic
28 and 8-. respectively O
1715 945>

The equation (3) has no common rcoots with
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=y 2.2 301
fl(x} = x 7x + ?x <5
and
fz(x) = x3 - -g-xa - %x + ES-’-T

The Sylvester's determinant D(f f2) is equal to

l!
-3437/32768000.

Lemma 1.7.3. The eqguation (3) has no roots, one of

which is the triple of another.

Proof Assume that one of roots is equal to the triple

of ancther, then the root zatisfy another cuble equation

2?x3 - %}xa + %x - é% = 0.

That is,

x> - %xz + é%x - §%§ = 0
Put

£0x) = x° - %xz + %x - f%
and
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The Sylvester's determinant D(fl, f2} is equal te
80384/41351522625 [

Case 1 1. Py Pse
From (E-45) and (E-57), the assumption gives 5. =

Due to Lemma 1.7.1, we lead to a ccntradiction.

Case 1.2. Py p3
We may assume that pl, pE, pu are distinet. From

(E-0), {E-1) and (E-21), we have the equation

r l 1
1 1l 1 U1+V3 §
(1.7 9} o P p v -1 1
: 1 2 4 2 B
2 1
Py P> Py 1 L Yy 12/

The solution of (9} is given by

~1 r 1 4
vl+u3 1 1 1 5
1
Vo 2 Po Py 4
2 2 1
L Yy Py Pa Py. 17 |



[ =6p,p+2(p %0, )-1 )
12(p -p,)(oy-p;)

—ﬁpupl+2{pq+pl]-l
12(0,-0,)(0,=p,)

‘6D102+2(Dl+92)-l
12(02‘94)(ﬂu'51)

Note that Vitvgs vy, vy Can not vanish, The reason is

as follows: For example, assume that —6p2pu+2{pz+pu)-l -

Then,
2p2 -~ 1
4 - 692 - 2

Holds Substituting this into the cubic equation

7oy * 7o = 35 7 O

N

we see that

64ps - 24p5 - 120, + 3

7 =0
35(6p,=2)
But, by Lemmz 1.7.2, there is no common rcocts for the
equations
3_92 3 1 _
Pp " 7Pt 7Pz T35 = 0
and

cubic



Then, from the equations (1) and (2) we have

v1A1 + u3A3 = v2A2 = vﬁAﬂ

It
=

and

It
o

vBy 4 vaBy = voBy = w8,

Since Vo £ 0, A2=BE=D holds This means the eguations

_ 1.2 13 . . )
Tay = 3P and P1Toy 7 FP5s which Imply 391 = Py Hence |

we lead to a contradiction by virture of Lemma 1.7 3

Case 1.3. Py = Py

This is equivalent to Case 1.2

Case 1.4 6y = P3
We can assume that P1s Pos Py are distinct. From

(E-0), (E-1), (E-21), we have the solution

] _:6a2pq + 2(92+a4)-l
1 12(91'92}(ph-p1}

—6pqpl + 2(ou+p1)-l
lE(ﬂl‘HEJ(QE‘Qu)

UE+V3 =

o —6p1p2 + 2(p1+02)-1

Note that each numerator on the right can not vanish by the

same reason as in Case 1.2  Then, (1} implies VA =

u2A2 + v3A3 = UHAM = 0 Since vy £ 0, we see Al = 0,

which means - 0. Thus, we lead to a contradiction.

P1
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Case 1.5.
and

Case 1.6. Py Py

Both of them are equivalent to Case 1.4.

Case 2. Neg two of P1s Pps P35 Py are equal,

The eguation (1} implies lel = v2A2 z u3A3 = vMAM = 0
Thus, we distinguish cases accerding as v; or Ai vanishes.

We have, however, the fcllowing results,

Lemma 1.7.4 The case of Vg T vy - vy T 0 e¢an not

occur

Proof In this case, vy = % by (E-0)}. Then, (E-1)
1

implies pg = 3  But, they do not satisfy (E~21). 0
Lemma 1 7 5 The case for Vg TV T 0 leads to a
contradiction.
Proof The equation v Tovp T 0 yields a linear system
SRR ?

W + pove = 1
PIVI J%7 °®

by (E-0), (E-1) Since P1 # Pys this system has the

solution
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1 - 3oy 1 - S0

u - W =
6{ - :-| ¥ EE - |
1 Pr pJ J DJ l:'I
Substitution of this into (E-21) and (E-31) implies

1 1 1
glertes) - 3p1e5 = 135

1, 2 2 1 .1
E‘(pI'I'QIDJ'l'ﬂJ] - EDIDJ(QI‘*GJ) = E'

Put X = pr * 1> Y = PPy, We have
2X - 6 Y =1,
2
10(X"-Y) - 30XY = 3,
Yy 1

Thus, we easily see that X = 5 Y = 15 That 1is, Pr and

are equal to the roots of the gquadratic equation

Py
2 4 1
(1.7.10) X —E-X "'E-- 0,

which has real distinct roots On the other hand, we see

that

4
the left on (E-41) vipp * vyog

1 2, 2y_1 2 2
glepreglleptey)-ge e (optorogte;)

19
T BOD

which 1s a contradiction. [
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Due to the above Lemmas, we distinguish five cases.

Case 2.1, “1 = 0 and Aa 3

consideration as in Case 1, we see that Pss 03, Py satisfy

= Az = Ay =0 By a similar

voy =3,

SPLEY + p3ﬂu Y Py, %:

DEDBPH = ':51—5

Hence . they are equal to the distinet roots of the cubic
equation (3) Note that, contrary to Case 1, Pq is equal to
none of them.

On the other hand, the equation (2) yields voB, =
v3E3 = UHBH = 0 Taking Lemma 1.7 5 into account, we are
sufficient to consider the case B2 = B3 = BH = 0.

A, = B, = 0 implies the egquations 1 - 1,2

2 2 21 P2
_ 103 . . _ 1 ] N . .
PiTsy = BP3e which glve Py = 392 AB B3 0 1implies a

and

ho

linear system

which has the solution

2
i 03(p3-p2)

2
32 e, '

= 3 T

(1.7 11) “DE

T}l

Since p,, Pz, 0y are distinet, (E-0), (E-1), (E-21) give

=
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the solution for Vs UB’ vy, @as

—Gp3pu+2(p3+nu}—l
W =
2 12(02'933(Du"92)
=bp o t2(p, *p,}=1
_ =2 4tz
(1.7.12) 4 vy = T20o,-p5)(5Py)
_ “6D2D3+2(QE+Q3}_1
Uu - 12(p3'bu)(ﬂu-p2}

(E-44) gives the equation

2 2 2 ) } )
Vi e Ty #PoTyatPaTys) = 35 vaP1To1 V3 (P T +PoT o)

by (9} Herce, we may represent the left on (E-54) as the

polynomial of o5 ang By (9) and (10),

Py

) 2 2 2 2 2 1
“292°1T21+“393(91T31+92T32}*“upu{91‘u1+921u2+93Tu3] 504

1 1 Py 1 4 1 2 _ 1
z Igv2p3+fgu39252(“p3-392)+ggﬁ-13vzpzpu-Tgv3p3p3pu{“93 3p,) 505

1 2 2 2 2 2 2 40
- 3?800(92—93)(525ﬁ2ﬁ3'36ﬂﬂzp3 u20p203 592+26UD2Q3+10593 6 p3+})

Let us denute the numerator of the above by ¢[02, p3)
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The gquestion is whether y(pe, 93) vanishes for any pair

Py 93) We have known the values Ry»> By» B which p,

and ps are possible to bhe equal to. Calculabtion shows

the following:

?(RO,RI) = gﬁg[-HEUcosze—Tﬁﬂf?sine-cosﬂ—é}ﬁfﬁcose+60JEsin8

+189+42/3),

P(Ry.R_y) = 3%3(-u2000526+?60#Tsin9-cosB—EBUJ?oosB-SOJEsinB

+189-42/3),

?(Rl,HO] = ggj(IBEDccszﬂ—lTﬂffcose»sin@+ﬂ05f§cosﬁ—285#€sin8

-696—ﬂ2¥?),

¢(R1,H_l} = E%g(—93000528+590J331n9vcose+225/?cosﬁ—}ﬂSJEsinB

+hl4442 /%)

¢(R_I,RU) = 3&3(13500052B+l?03351n9cosB+H05J?coss+285J35in8

-696+u2/3)’

P(R_;,R;) 3;§(-930c0829—590J351n8*cosﬂ+225J?cosﬁ+3ﬂ5f€sine

+al4-42 /%)

Computation by interval arithmetic shows the following:
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?(RO, Rl]E [-11.6391, -11.6390],

@Ry, R_;) € [-4.70784, -4 707831,

q::(Rl, Ho) € [3.20479, 3.20480],

qKRl, R_l)e [0 821791, 0.821792],

w(R_l, RO)E [12.1750C, 12.1751]),

¢(R_1, Rl)E [-0 956777, -0.956776]
{On the interval arithmetic, see [8] Above caleculation is
carried out by the program made by K. Ichida on HITAC VO0OS3
at the Educational Center for Information Processing, Kyoto
Univ ) Nene of them vanishes under the condition (1)

because every interval given above is away from zero Thus,

we have a contradiction.

2 = = =p, = = i i
Case 2 2. Vg 0 and Al A5 ﬁ“ 0 Al 0 implies

p1=0 Then, Pps Pz. Py C&N not vanish. From (E-1), {(E-21),
we have
_ l—.’:‘;:a:_L , oy 2 1—2p3
3 12p3(pj—pu] 12pu(p4—p5}

Substituting these into (E-31), {(E-41), we see that

_ _ 3
Py + Py 29304 =€

A

(p3+|:}“}2 - QDBDH(G}'*{)!;} - I:"jpu =

- b1 -



Put X = p3+pu, Y = pjpu, then we have X = 1, ¥ = The

% |

left on (E-51) is eqgual %o

fﬁ(-EDgou-Qp393—2ﬂ§cﬁ+o§+pgpq+ﬂ3a§+pﬁ)

D P S = L
= HXP 207D Y-2 ()Y = s,

which is a contradiction.

Case 2 3 Q0 and A =A2=Aq=0- Equivalent to Case 2.2

"..'3 1

0 and A1=A2=A3=O Equivalent to Case 2.2.

Case 2,4 vy

Case 2.5. A1=A2=A =A)=0. Al=o implies pl=ﬂ, which

3
- ; - _ P
means B,=0. Then, the equations ZviBi = IvipiBi = IuipiBi

-

=0 yield uzB9 = u335 = quu = 0 3ince Vo u3, vy are
assumed to be non-zero, we have 82 = 53 = Bu =0 B2 =

L3 N ) .
P1Tz17gP> = 0 implies p, = 0 because p, = O. This
contradists the assumption that no twoe of pi are =2gqual.

Now, we have accomplished to investigate the whole cases.

In conclusion, we have

Theorem 8  The explicit {1,4)-stage formula can not

attain order 7 Its attainable order is 6,
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Note. Shintani gives {(1,4)-stage formula with parameters

vy = gk, vy = T(7+/Z1)/360, vy = B/45, v, = T(7-/2T)/360,
- - = - 24 -

By = 0, Py = (7-/21)/14, Ty = (5-/211/28, Ps = F» Txy ©

(3-v21)/192, Toy = {(21+¥21) /192, oy = (7+/21)/14, Ty ©

(21+5V2T) /294, 1), = (/2ZI-3)/84, 1,5 = (214V2Z1)/147  These

parameters are 2l1so not unique solution of (E-0) ~ (E-46).
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2 2
glg + [Dgely 8, o *+ 40Dgely [Dyg 1y + 62y [Dpe 1+ & &
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+ 32, gyy‘o

! 3 2 2
[Dg gly + [Dpely 8, o + 5[Dggly [Dys, )5 + 10(Dgel, [Dge, ]y

+ 10g, [Dggy]o + [Dyely gl

y,0 * 880 8y o [DoBylg + 108, [Dozly 8y o

+ ngS-EDDg JO

vy
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