報 告 番 号	乙 第	号		名	大 須 顀	䉆 弘
論文調查担当者		丸 加	和 有		岡	信三郎

（論 文 题 目）

Photochemical Reactions of Epoxyquinones
（エポキシキノン類の光化学反応に関する研究）

（論文内容の要旨）

エボキシキノン構造をもつ化合物はフレノリシン等の天然産化合物の中 にも見出されるあのであるが，その光化学反応については未だ殆んど未開拓の分野と云ってよい。申請者の論文は，エポキシキノンと種々の化合物 との間の光化学反応について研究したものである。

論文，その1）では，2，3－ジメチルー2，3ーエポキシー1，4ーナフト キノンをベンゼン中て各糐のアルデヒト゚の共存下に光を照射すると，1．3 ージオキソラン付加体のエンド体えエキソ体の二つの立体異性体の混合物 が生成するととを見出していす。脂肪族アルデヒドでは常にエンド体の方 が多く生成し，その比率はアルキル基が大きくなるにつれて瑊少し，他方，芳香族アルデヒドでは，エキソ体が多量に生成することを見出している。
立体的反挍の効果の方が大きく作用するととを示す事実である。さられ，

生成した付加体は，短波長の光によって光異性化反怣を行い，アルキリデ ンフタリドーE，及びー2へ変化することを見出している。光異珄化反応 の量子収率を求め，開烈が生じる結合の方向性から，Norrish Type1型 の開裂から，この光異性化加進むてとを推論している。また酸素と光光付加反応を行ないオゾニドが生成することを見出し，一重項酸素の開与する反応であることを指摘している。

論文その2）では，エボキシキノンのカルボニル基加ら見て「位に水素 を持コ 9 種のエポキシナフトキノンについて，その分子内水素引抜き反応 と，オキシラン塄開裂との間の競争反応を行なわせ，この様な環境下化あ っては，分子内水素引抜き反応が優先するととを見出した。とうして水素引抜き反応に始まり，䍗化，異性化が起とり，ベンソソ $3,3,0 〕 オ ク タ ン ~$ ジオン型の化合物が生成することを見出している。と同時にジヒドロベン ゾフラン型の化合物も生成する。とれは，2次的な転位反応の開始が光化学的なオキシラン環開裂によって始まり，生じたジラジカルのC—C転位，又は $\mathrm{C}-\mathrm{O}$ 転位に伴う安定化反応によって理解できることを示している。 ついで消光実験を行ない，この 2 次的な光異性化反応が最低励起三重項か ら起こるととを推定している。

参考論文は大部分が本稐文と関监したエポキシキノンの光化学反応と関連したものであって，申請論文の基啳となっている。

Photochemistry of Epoxyquinone 5．Photofnduced Cycloadditions of Epoxynaphthoquinone to Aldehydes，Ketones，and Oxygen ${ }^{1,2}$

Atsuhito OSUKA
Department of Chemistry，Faculty of Science，
Ehime University，Matsuyama 790，Japan

Abstract；Irradiation of a benzene solution of 2，3－dihydro－2，3－ dimethyl－2，3－epoxy－1，4－naphthoquinone（3a）in the presence of aldehydes gives the primary．1，3－dioxolane adducts in good yields．Upon further irradiation，the primary adducts undergo photorearrangement to give alkylidene phthalides．A similar photocycloaddition reaction of 3a with aliphatic ketones was realized by the use as the reaction medium．When irradiated in the presence of oxygen in benzene，3a was converted into 3－acety1－3－acetoxyphthalide and 3－acetoxy－3－methylisochroman－ 1，4－dione presumably via the reaction of singlet oxygen with a carbonyl ylide 4a．In contrast to 2，3－dialkyl epoxynaphtho－ quinones 3a－d，the photoinduced cycloaddition of 2，3－dihydro－ 2，3－dipheny1－1，4－naphthoquinone（3e）to carbonyl compounds did not occur．The photoinduced cycloadditions of epoxynaphtho－ quinones to carbonyl compounds are believed to be HOMO－controlled reactions on the basis of substituent effects at 2－and 3－positions of epoxynaphthoquinones and at para－position of the dipolarophiles， namely aromatic aldehydes．

Ring-opening reactions at C-C bonds of oxiranes have attracted considerable interest from both synthetic and mechanistic standpoints. ${ }^{3,4}$ Especially, 1,3-dipolar cycloaddition of carbonyl ylides to carbonyl compounds constitues among the most convenient methods for the synthesis of 1,3-dioxolane compounds. While several examples of 1,3-dipolar cycloaddition reactions of thermally generated carbonyl ylides with less volatile carbonyl compounds can be found in literature, ${ }^{5}$ relatively little is known about the cycloaddition of photogenerated carbonyl ylidếs to carbonyl compounds. In one system, Pete et al, have recently described the photocycloaddition reaction of the α, β-epoxy ketone 1 to acetone leading to the formation of the 1,3-dioxolane 2., ${ }^{6}$ Recently, we have reported that irradiation of several epoxynaphthoquinones give carbonyl ylides 4 or 1,3-diradical 5, which may be trapped by alkenes or dipolarophiles such as 2-norbornene and N-phenylmaleimide. ${ }^{7}$ When irradiated in a benzene solution (0.1 M) in the absence of 1,3 -dipolarophile, 2,3-dimethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (3a) is converted into dimers $\underline{6 a}$ and $\underline{6 b}$ in good yields via the cycloaddition of 4 a or 5 a to the carbonyl group of another molecule of 3 a. ${ }^{1}$ This result prompted to investigate the possibility of trapping of 4 or 5 with simple aldehydes and ketones. In this paper, the photolyses of epoxynaphthoquinones in the presence of various aldehydes and ketones were examined and the 1,3-dipolar cycloadditions of 4 or $\underline{5}$ to aldehydes and ketones as well as the photoinduced oxygenation of 3 a are reported.

Results and Discussion

Photoinduced Cycloaddition of 3a to Aldehydes
Irradiation of a benzene solution of 3 a (0.012 M) in the presence of acetaldehyde $7 \mathrm{aa}(0.15 \mathrm{M})$ with raddation of wavelength above 300 nm for 30 min afforded a $1.7: 1$ mixture of 1,3 -dioxolanes 8 and 9a in high yield (92% by ${ }^{1}{ }_{H-N M R}$). The products were separated by silica gel chromatography; 8 (49%) and 9a (22%), and characterized by their spectral data and elemental analyses (see experimental section). Similar reactions with aliphatic aldehydes $7 \underline{b}-7 h$ and aromatic aldehydes $71-7 \mathrm{~m}$ gave 1,3-dioxolanes $\underline{8}$ and $\underline{9}$ in moderate to high yields and the results are summarized in Table I and IT. The b-methyl protons of $91-9 \mathrm{~m}$ are characterized by a marked upfield shift ($\delta 1.12-1.14$) resulting from shielding by the aromatic ring. In the ${ }^{1}{ }_{H-N M R}$ spectra of $9 \underline{i n}-\underline{m}$, the chemical shifts observed for H^{c} protons were lower relative to those of $81-8 m$ without exception, probably due to the proximity of carbonyl group to the $H^{\mathbf{c}}$ proton. On the basis of these observations; $8 \mathrm{a}-8 \mathrm{~g}$ and $9 \mathrm{a}-9 \mathrm{~g}$ were assigned to be endo and exo structures, respectively, by the comparison of of the chemical shifts of H^{c} methine protons. Consistent with this assignment is the fact that b-methyl protons of 9a-9e were slightly shielded by the steric repulsion by the vicinal alkyl groups compared
 with those of 8a-8e. Further, the H^{d} protons of 8 d are considerably shielded at $\delta 1.50$ by the aromatic

(4)

rings, presumably because of restricted rotation of the isopropyl group (compare H^{d} of $\underline{9 d}$ at $\delta 1.96$). The ratios of $\underline{8}$ to $\underline{9}$ (endo/exo) formed in the reaction were readily determined by high-performance LC (HPLC) and are listed in Table I. In the case of aliphatic aldehydes, endo adducts $\underline{8}$ were formed preferentially, while exo adducts $\underline{9}$ were the predominant products in the reaction with aromatic aldehydes. It seems likely that endo approach is more hindered, since endo/exo ratios decreased with increasing bulkiness of alkyl group of aliphatic aldehydes from 7a to 7e. Therefore, preferential formation of endo adducts 8 in the reaction with aliphatic aldehydes implies two points that electronic interactions between the 1,3-dipole and alkyl groups of aliphatic aldehydes must be operative in the transition state and that the cycloaddition with aliphatic aldehydes appears to proceed in a concerted fashion, ${ }^{8}$ for if intermediate 10 or 11 intervened, free rotation around the $\mathrm{C}-0$ bond would be expected to take place prior to ring closure, probably resulting in the preferential formation of less hindered exo adducts 9 . On the other hand, preferential formation of exo adducts in the reaction with aromatic aldehydes may be ascribed to either critical steric encumbrance by buttressing phenyl groups or a stepwise mechanism in which the intermediate 10 would be better stabilized by the aromatic rings. ${ }^{5}$ Kobuke and Fueno have reported that a methyl group shows a greater tendency toward endo-orientation in Diels-Alder reaction with cyclopentadiene than most of electron-accepting polar groups, such as -CHO, -CN , and $-\mathrm{COOH} .{ }^{9}$ Intermolecular dispersion forces
were advanced to explain the origin of the endo-orientating ability of a methyl substituent, but a definitive explanation remains to be presented. It is reasonable to assume that electronic interactions between 4 a or 5a and the alkyl groups of aliphatic aldehydes are similar in magnitude. The interplay of steric factors and ill-defined electronic factors would determine the endolexo ratio.

The relative rates for the reaction of carbonyl ylide 4a or 1,3-diradical Sa with para-substituted benzaldehydes 7 i - -m were determined by using butyraldehyde 7 cc as a probe. A benzene solution of 3a, 7c, and aromatic aldehyde was irradiated for a short time that the relative ratio of two aldehyded did not change significantly from the initial ratio. Product yields were determined by HPLC. ${ }^{10}$ The results in Table III show clearly that aromatic aldehydes are more reactive than butyraldehyde 7 c and that electron-attracting substituents in the para-position of aromatic aldehydes accelerate the reaction. ${ }^{11}$

The primary 1,3-dioxolane adducts $\underline{8}$ and $\underline{9}$ proved photolabile and upon prolonged irradiation gave a mixture of alkylidene phthalides $\underline{12}$ and $\underline{13}$ in high yields. ${ }^{2 b}$

Photoinduced Cycloaddition of 3a to Ketones
Solutions of 3a in the neat ketones were employed in the photochemical studies of aliphatic series, since such ketones are much less reactive toward 4 a or 5a than the carbonyl group of 3a. Irradiation of an acetone solution of 3a (82.5 mM) gave the 1,3-dioxolane adduct 14 a in 23% yield, in addition to dimers $\underline{6 a}$ (26%) and 6 b (13%), indicating that acetone is only 3.6×10^{-3}
times as reactive as 3a, When irradiated in a dilute acetone solution, 3a was converted to 14 a in 85% yield. Similar 1,3~ dioxolanes 14 b -d were obtained upon frradiation of 3 a in solution in various other ketones (Table IV). In these photolyses, radiation of wavelength below 341 nm was almost absorbed by ketones used as the solvent. It seems likely that for the most part the excited ketones transfer energy to 3 a , but also undergo photochemical reactions such as α-cleavage which leads to products which contaminate the reaction mixture (run 3 and 4 in Table IV). In fact, 14 b was obtained in a higher yield (53\%) when the irradiation was conducted with radiation filtered through an acetone solution.

On the other hand, acetophenone $\underline{15}$ was found to be more reactive toward 4 a or 5a to the extent that irradiation of a benzene solution of 3 a (82.5 mM) and $\underline{15}$ (138 mM) gave the 1,3dioxolane 14 e in 26% yield and the dimers 6 a and 6 b in 40 and 25% yields, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of 14 e displays three methyl singlets at $\delta 1.08,1.48$, and 1.86 ppm , which indicates that configuration of the phenyl group in 14 e is exo. Predominant formation of the exo-phenyl adduct 14 e may be ascribed to the conjunction of endo-selectivity of the methyl substituent acting in concert with the steric bulkiness of the phenyl group. It is of interest to compare the relative reactivity of ketones toward 4a or 5a by using the dimerization of $\underline{3 a}$ as a probe. The results observed are listed in Table IV. Aromatic ketones 3a and 15 react 10^{2} times faster than aliphatic ketones and curiously cyclohexanone is 10 times as reactive as acetone,

3-pentanone, and cyclopentanone. Photoinduced Oxygenation of 3a
A dilute benzene solution of 3a (4 mM) was saturated with oxygen and irradiated through a Pyrex filter for 30 min while a stream of oxygen was passed through the solution. 3-Acetyl-3-acetoxyphthalide 16 (43\%) and 3-acetoxy-3-methylisochroman-1,4-dione 17 (13%) were isolated as major products upon chromatographing the products on a Florisil column. ${ }^{2 c}$ Irradiation of a degassed benzene solution of 3a under similar conditions gave no products identified as $\underline{16}$ and 17 . The effects of Rose Bengal and β-carotene suggest that siglet oxygen is involved in the photo-oxygenation of $3 \mathrm{a} . .^{2 c}$ A•tentative mechanism for the reaction is shown in Scheme II. Singlet oxygen adds to the carbonyl ylide 4a or 1,3-diradical 5a in a manner analogous to that observed for reactive dipolarophiles. The ozonide 18 thus formed undergoes a Baeyer-Villiger-type rearrangement to give the diketoanhydride 19 which finally undergoes isomerization to 16 and 17. Criegee et at. have found that closely related ozonides-20, which is known as one of the extremely stable ozonides, decomposes slowly to give 3-benzoyloxy-3-phenylphthalide $21 .{ }^{13}$ Ullman and Henderson have reported that 20 readily undergoes photorearrangement to 22 , and finally gives the 1 somerized product 21.

In recent years, reports have appeared in the literature that singlet oxygen will behave as a dipolarophile toward ylides, ${ }^{15}$ diazoalkanes, ${ }^{16}$ and nitrones, ${ }^{17}$ however, the oxygenation of carbonyl ylides has been limited to stable pyrylium oxides such as the diphenylbenzopyrylium oxide $\underline{23}^{14}$ and $2,4,6$-triphenyl-

(8)

pyrylium oxide 24. . 18 It is of interest to note that this photooxygenation proceeds via a photochemically generated transient carbonyl ylide.

Effects of Substituents at 2,3-Positions of Epoxynaphthoquinones.

The effect of substituents at 2,3-positions of epoxynaphthoquinones was investigated by irradiating epoxynaphthoquinones, 3b, 3c, 3d, and 3e in the presence of aldehydes and ketones. Irradiation of a benzene solution of 3 b (0.01 M) in the presence acetaldehyde (0.2 M) for 1 h gave 1,3 -dioxolane 25 (32\%) and 26 (24\%), together with 2-ethy1-3-hydroxy-1,4-naphthoquinone 27 (4\%). The latter product suggests that a Norrish type II photoprocess has accompoanied the generation of 4 b or $5 \mathrm{~b},{ }^{19}$ Irradiation of a benzene solution of 3 c and acetaldehyde gave four 1,3-dioxolanes, 28 (12%), 29 (9%), 30 (26%), and 31 (10%).

Irradiation of an acetone solution of $\mathbf{3 b}$ (0.01 M), however, produced a complex mixture from which a low yield (7\%) of 1,3 dioxolane 32 was isolated, in addition to 27 (3\%). Competitive Norrish type II photoreaction of 3 b and the low reactivity of acetone as a dipolarophile for carbonyl ylides or 1,3-diradicals might be responsible for the poor yield of 32 . When irradiated in acetone, epoxynaphthoquinone 3 c , which has no γ-hydrogen atom, was clearly converted into two 1,3-dioxolanes 33 (39\%) and 34 (41\%). Similarly, irradiation of an acetone solution of 3d gave the corresponding 1,3-dioxolanes 35 (23\%) and 36 (12\%).

In contrast to 2,3-dialkyl substituted epoxynaphthoquinones,

(9)

no 1,3-dioxolanes are formed when 2,3-dipheny1-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (3e) is irradiated in acetone or in the presence of acetaldehyde ($0.2 \underline{M}$) in benzene. Irradiation of a benzene-methanol ($40: 1$) solution of 3e containing Rose Bengal and continuously saturated with oxygen affords no oxygenated products. In all cases, only a slow photoisomerization to alkylidene phthalides 37 and 38 takes place. ${ }^{20}$ Therefore, the carbonyl ylide 4 e or 1,3 -diradical $\underline{5 e}$ derived from 3 e does not react with electron-deficient 1,3-dipolarophiles such as aldehydes, ketones, and singlet oxygen, in contrast to alkenes such as 2-norbornene and N-phenylmaleimide, where clean cycloaddition reactions are observed. ${ }^{7}$

Recently, Houk el al. have suggested that the frontier orbital energies of 1,3 -dipoles are dominant factors in the reactivities toward various dipolarophiles, ${ }^{4 \mathrm{a}, \mathrm{b}}$ Based on the estimated frontier orbital energies, the parent carbonyl ylide 39 should be a typical HOMO-controlled dipole (the interaction of the dipole HOMO with the dipolarophile LUMO is greatest), 4a but the tetracyano compound 40 has considerably lowered frontier orbital energies and reacts most readily with electron-rich dipolarophiles ${ }^{3 a}$ (LUMO-controlled dipole; the interaction of the dipole LUMO with the dipolarophile $\mathrm{HOMO}^{\text {is }}$ greatest). The less electron-deficient carbonyl ylide 41 forwed from 2,3-dicyano-2,3-diphenyl oxirane is reactive with both electron-deficient and electron-rich dipolarophiles (HOMO, LUMO-controlled dipole). ${ }^{21}$

It seems likely that carbonyl ylides 4a-d or 1,3-diradicals

5a-d generated from 2,3-dialkyl substituted epoxynaphthoquinones are best classified as HOMO, LUMO-controlled dipoles, since 4a-d or 5a-d react with both electron-deficient and electron-rich dipolarophiles. On the other hand, HOMO orbiral of diphenyl compound 4 e or 5 e appears to have much lower energy and fails to interact significantly with the LUMO orbital of carbonyl compounds. In the present cycloaddition reaction of 4 a or 5a with carbonyl compounds, electron attracting substituents at the para-positions of aromatic aldehydes accelerate the rate of cycloaddition and aromatic carbonyl compounds are more reactive than the corresponding aliphatic carbonyl compounds; e.g., benzaldehyde reacts 30-40 times faster than acetaldehyde and acetophenone reacts 60-70 times faster than acetone. These results indicate that the cycloaddition reaction of 4 a or Sa with carbonyl compounds are HOMO-controlled,

In summary, irradiation of 2,3-dialkyl substituted epoxynaphthoquinones in the presence of aldehydes or ketones leads to the formation of a new class of tricyclic 1,3-dioxolanes, which, in turn, can be transformed into alkylidene phthalides in good yields. The cycloaddition of the carbonyl ylide 4 or 1,3-diradical 5 to aldehydes or ketones may be designated as a HOMO-controlled reaction, but the reaction fails to occur in the case of the diphenyl substituted analog 4 e or 5 e .

Experimental Section

General Methods. The instruments and procedures were as previuosly reported. ${ }^{1}$

Epoxynaphthoquinones 3a, 3b, and 3e were prepared by the method of Arakawa ${ }^{7}$ and $3 c$ and 3 d prepared by epoxidation of the corresponding 1,4-naphthoquinones with NaOCl/pyridine. The 1,4-naphthoquinones were synthesized by the method of Jacobsen. ${ }^{22}$

2-Methyl-3-(2,2-dimethy1)propyl-1,4-naphthoquinone 42; mp $93-94.5^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2910$. 1660, 1600 , and $1300 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 0.95(\mathrm{~s}, 9 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 2 \mathrm{H}), 7.6-7.7(\mathrm{~m}, 2 \mathrm{H})$, and $8.1-8.2(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 79.31 ; \mathrm{H}, 7.49 \%$. Found: C, 79.22; H, 7.53\%.

2,3-Dihydro-2,3-epoxy-2-methyl-3-(2,2-dimethyl)propyl1,4 -naphthoquinone 3 c ; mp $113-115^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2910,1695,1600$, 1310, 720 , and $710 \mathrm{~cm}^{-1}$; $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, 1.72 and $2.70(\mathrm{ABq}, \mathrm{J}=14 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 2 \mathrm{H})$, and $7.6-7.8(\mathrm{~m}, 2 \mathrm{H})$. Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} ; \mathrm{C}, 74.39 ; \mathrm{H}, 7.02 \%$. Found: $\mathrm{C}, 74.52$; H, 7.00%.

2-Methyl-3-(2-methyl-2-phenyl) propyl-1,4-naphthoquinone 43; mp $77-78^{\circ} \mathrm{C}$; IR(KBr) 2920, 1665, 1655, 1595, 1295, 730, and $700 \mathrm{~cm}^{-1}$; $1_{\mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)} 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H})$, 7.6-7.7(m, 2H), and 7.9-8.1 (m, 2H). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 82.86; H, 6.62\%. Found: C, 82.45; H, 6.71\%.

2,3-Dihydro-2,3-epoxy-2-methy1-3-(2-mehtyl-2-pheny1)propyl-1,4-naphthoquinone 3d; mp $113-114.5^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2950,1700,1690$, $1600,1500,1310,1290,940$, and $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 1.43$
$(\mathrm{s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.13$ and $2.93(\mathrm{ABq}, \mathrm{J}=14 \mathrm{~Hz}$, $2 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 5 \mathrm{H}), 7.6-7.8(\mathrm{~m}, 2 \mathrm{H})$, and $7.8-8.0(\mathrm{~m}, 2 \mathrm{H})$. AnaI. Clacd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{3}$: $\mathrm{C}, 78.72 ; \mathrm{H}, 6.29 \%$. Found: $\mathrm{C}, 78.66 ; \mathrm{H}, 6.32 \%$.

General Procedure for the Photochemical Reactions of Epoxynaphthoquinones 3 with Aldehydes. A solution of 3 (1 g) and aldehyde (10 equiv to $\underline{3}$ in the case of aliphatic aldehydes, and 5 equiv to 3 in the case of aromatic ones) in 500 mL of benzene in a Pyrex vessel was bubbled with N_{2} for 10 min and then irradiated under cooling with water. The progress of the reaction was followed by GC or HPLC. After 3 had been completely consumed, irradiation was ceased. In the reactions with aliphatic aldehydes, the solvent and excess aldehydes were removed under reduced pressure and the resulting oil was chromatographed over silica gel colum using 5% ether/hexane as the eluant. The first component was endo adduct $\underline{8}$ and the second was exo adduct 9 . In the reactions with aromatic aldehydes, after the solvent was removed under reduced pressure, the resulting mixture was treated with KMnO_{4} solution in acetone-water ($1: 1$) overnight at room temperature. Then, the mixture was extracted with chloroform, and the organic layer was washed successively with NaHSO_{3} and NaHCO_{3}, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The products were separated by chromatography on silica gel colum using 5% ether/hexane as the eluant. exo Adduct \underline{g} eluted first, then followed endo adduct 8 . Yields and physical properties of $\underline{8}$ and $\underline{9}$ were summarized in Table I, II, and V. Selected ${ }^{T 3} C$ iNR data are follows; 8a $\left(\mathrm{CDCl}_{3}\right) 202.2(\mathrm{C}=0), 195.1(\mathrm{C}=0), 134.3(\mathrm{~s}), 133.4$ (d), $133.2(\mathrm{~d}), 131.3(\mathrm{~s}), 130.6(\mathrm{~d}), 130.2(\mathrm{~d}), 106.8(\mathrm{~s}), 90.5(\mathrm{~s}), 80.8(\mathrm{~d})$, $20.8(\mathrm{q}), 20.0(\mathrm{q})$, and $14.5(\mathrm{q}) .9 \mathrm{a}\left(\mathrm{CDCl}_{3}\right) 205.8(\mathrm{C}=0), 198.0(\mathrm{C}=0)$,
134.1(s), 133.3(d), 133.2(d), 132.4(s), 129.7(d), 129.3(d), 107.3
(s), 89.9(s), 78.5(d), 22.3(q), 17.7(q), and 17.0(q).

General Procedure for the Photochemical Reaction of 3
with Ketones. Typically, that for the reaction of 3a with acetone was described. A solution of 3a (1 g) in 600 mL of acetone was irradiated for 30 min . After removal of the solvent in vacuo, the resulting semisolid material was trituated with hexane , giving colorless crystals of 14 a ($1.09 \mathrm{~g}, 85 \%$).

Detailed reaction conditions, product yields, and physical properties were sumarized in Table VI and $V .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) data of 14a; 203.3(C=0), 196.3(C=0), 134.2(s), 133.6(d), 133.2(d), 131.4 (s), 130.5(d), 130.3(d), 106.2(s), 92.4(s), 83.9(s), 25.4(q), 24.1(q), 22.2(q), and 19.4(q).

Photoinduced Oxygenation of 3a in Benzene. A solution of 3a (500 mg) in 600 mL of benzene was bubbled with O_{2} for 30 min at room temperature and then irradiated for 30 min under a slow stream of O_{2} bubbling. The solvent was removed in vacuo to leave a yellow oil, which was separated on a Florisil Column using ether/hexane as the eluant, giving 3-acetyl-3-acetoxyphthalide 16 ($249 \mathrm{mg}, 43 \%$) and 3-acetoxy-3-methylisochroman-1,4-dione 17 (75 mg, 13\%). ${ }^{2 c}$

16; mp 97-99 ${ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{5}$: C, 61.54; H, 4.30\%. Found: C, 61.23; H, 4.65\%. Mass m/e $218\left(\mathrm{M}^{+}-18,1\right)$ 192(30), 191(20), 176(5), 175(7), and 148(100).

17; mp $101-102^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{5}$: C, 61.54 ; H, 4.30\%. Found: $\mathrm{C}, 61.28$; H, 4.71\%. Mass m/e $218\left(\mathrm{M}^{+}-18,3\right), 191(25)$, and 148(100).

To a benzene solution of 3 a (500 mg , in 600 mL) was added a solution of Rose Bengal (30 mg) in 10 mL of methanol. The solution was bubbled with O_{2} for 30 min and then irradiated for 30 min under a slow stream of O_{2} bubbling. Separation of the products on a Florisil column gave $\underline{16}$ ($394 \mathrm{mg}, 68 \%$) and $\underline{17}$ (93 mg , 16\%).

A solution of $3 \mathrm{a}(500 \mathrm{mg}$) and β-carotene (30 mg) in 600 mL of benzene was similarly irradiated for 1 h . The starting epoxynaphthoquinone 3 3a was recovered (260 mg), and products were the dimers, $\underline{6 a}(60 \mathrm{mg}, 25 \%)$ and $\underline{6 \mathrm{~b}}(20 \mathrm{mg}, 8.3 \%)$.

Ackowledgement. The author is most grateful to Professor K. Maruyama for first attracting my interest to photochemistry of epoxynaphthoquinones, and regularly reinforcing that interest, and to Professor H. Suzuki for his discussions and valuable comments on the manuscript. This work was supported by Saneyoshi Scientific Foundation.

References and Notes

1) Part 4, Maruyama, K; Osuka, A. J. Org. Chem. 1980, 45, 1898.
2) For preliminary reports on some aspects of the present study, see: a) Maruyama, K.; Osuka, A. Chem. Lett. 1979, 77. b) Maruyama, K.; Osuka, A.; Suzuki, H. Chem. Lett. 1979, 1477. c) Maruyama, K.; Osuka, A.; Suzuki, H. J. Chem. Soc. Chem. Comm. 1980, 723.
3) a) Linn, W. J.; Benson, R. E. J. Am. Chem. Soc. 1965, 87, 3657. b) Ullman, E. F. ; Milks, J. E. ibid. 1962, 84, 315; 1964, 86, 3814. c) Petrellis, P.C.; Dietrich, H.; Meyer, E.; Griffin, G. W. fbid. 1967, 89, 1967. d) Do-Minh, T.; Trozzolo, A. M.: Griffin, G. W. ibid. 1970, 92, 1402. e) Huisgen, R.; Angew. Chem. Int. Ed. Engl. 1977, 16, 572, and references cited therein.
4) a) Houk, K.t.; Sims, J.; Duke, R. E., Jr.;Stroziew, R. W.; George, J. K. J. Am. Chem. Soc. 1973, 95, 7287. b) Houk, K.N.; Sims, J.; Watts, C. R.; Luskus, L.J. ibid. 1973, 95, 7301.
c) Bigot, B.; Sevin, A.; Devaquet, A. Ibid. 1979, 101, 1095 ; 1979, 101, 1101.
5) Robert, A.; Pommeret, J. J.; Foucaud, A. Tetrahedron 1972, 28, 2085.
6) Muzart, J.; Pete, J. P.,Tetrahedron Lett. 1977, 303.
7) Arakawa, S. J. Org. Chem. 1977, 42, 3800.
8) In the photo-induced cycloaddition of 3 a to trans- or cis-2butene, the stereochemistry of olefin was completely retained in the cycloadducts, suggesting that the addition proceeded $v i a$ a concerted $\pi^{4+} \pi^{2}$ addition.
9) a) Kobuke, Y.; Fueno, T.; Furukawa, J. J. Am. Chem. Soc. 1970, 92, 6548. b) Kobuke, Y.; Sugimoto, T.; Furukawa, J. ibid. 1972, 94, 3633.
10) In the HPLC chart, 1,3-dioxolanes 8 c and 9 c derived from the reaction of 3 a with butyraldehyde eluted at 2.00 and 2.30 min , respectively, 3a at $2,60 \mathrm{~min}$, and 1,3 -dioxolanes $81-\mathrm{m}$ and 9i-m at later than 4 min .
11) In ref, 5) Roberts et al. have also reported the order of decreasing relative reactivity, $\left.\left.Y ;-\mathrm{NO}_{2}\right\rangle-\mathrm{H}\right\rangle-\mathrm{MeO}$, in the thermal cycloaddition reactions of 1,1-dicyano-2-aryloxirane with para-substituted bezaldehydes.

12) Lewis, F. D.; Magyar, J. G. J. Org. Chem. 1972, 37, 2102.

L3) Criegee, R.; de Bruyn, P.; Lohaus, G. L.; Ann. 1953, 583, 19.
14) U11man, E. F.; Henderson, Wm. A., Jr. J. Am. Chem. Soc. 1967, 89, 4390.
15) a) Padwa, A.; Vega, E. J. Org. Chem. 1975, 40, 175.
b) Ando, W.; Kohmoto, S.; Nishizawa, K. J. Chem. Soc., Chem. Comm. 1978, 894, e) Bhat, V.; George, M. V. J. Org. Chem. 1977, 44, 3288.
16) Higley, D. P.; liurray, ․ N. J. An. Chem. Soc. 1974, 96, 3330.
17) Foote, C. S.; Ching, T.Y. Tetrahedron Lett. 1975, 2771.
18) Wasserman, H. H.; Pavia, D. L.; J. Chem. Soc., Chem. Comm. 1970, 1459.
19) Maruyama,K.; Osuka, A.; Suzuki, H. J. Chem. Soc., Chem. Comm. 1980, 323.
20) Kato, H.; Tezika, H.; Yamaguchi, K.; Nowada, K.; Nakamura, Y. J, Chem. Soc., Perkin Trans. I 1978, 1029.
21) Hamburger, H.; Huisgen, R. J. Chem. Soc., Chem. Comm. 1971, 1190.
22) Jacobsen, N; Torsell, K. Justus Liebigs Ann. Chem. 1972, 763, 135

Table I. Photo-induced Cycloaddition of 3a to Aldehydes

a, Isolated yields. b, Product ratios $\underline{8 / 9}$ were determined by HPLC.
c. ${ }^{1}$ H-NMR yield. d, Not determined.

Table II. $\quad \mathbf{1}_{\mathrm{H}-\mathrm{NMR}}$ Data of Primary Adducts $\underline{8}$ and $\underline{9}$

Compound	H^{B}	$\mathrm{H}^{\text {b }}$	$\mathrm{H}^{\text {c }}$	Compound	$\mathrm{H}^{\text {a }}$	$\mathrm{H}^{\text {b }}$	$\mathrm{H}^{\text {c }}$
8a	1.66	1.56	4.00 (q)	9a	1.66	1.48	4.32(q)
8 b	1.66	1.56	3.72 (dd)	9 b	1.66	1.48	4.00 (dd)
8c	1.65	1.56	3.85 (dd)	9 c	1.65	1.48	4.10 (dd)
8d	1.64	1.60	3.48 (d)	9d	1.64	1.55	3.62 (d)
8 e	1.64	1.62	3.78 (d)	9 e	1.62	1.53	3.96 (d)
8 f	1.70	1.58	4.18 (dd)	9f	1.82	1.62	4.50 (dd)
8g	1.76	1.19	4.82 (d)	9 g	1.70	1.24	5.24(d)
8h	1.62	1.52	4.10(dd)				
8i	1.87	1.80	5.08 (s)	91	1.92	1.14	5.28 (s)
81	1.85	1.74	5.00 (s)	$\underline{9}$	1.88	1.14	5.16(s)
8k	1.83	1.70	5.08(s)	9 k	1.88	1.12	5.20(s)
82	1.84	1.72	5.06(s)	92	1.89	1.12	5.20(s)
8픙	1.84	1.72	5.03 (s)	9m	1.89	1.14	5.22(s)

a, As to the data of $H^{\text {d }}$, see Table V.

Table VI. Photo-induced Cycloaddition of 3a to Ketones

Run	Ketone	Conc. (mM) ${ }^{\text {a }}$	Irradia Time	(h) Product Dis $14\left(\mathrm{mp}^{\circ}{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { tribution }{ }^{\mathrm{b}}(\%) \\ & \text { Dimers }^{\mathrm{c}} \end{aligned}$	Relative Reactivity to $3 a\left(x 10^{3}\right.$)
1	acetone	82.5	12	14a (86.5-87) ; 23	39	3.6
2	acetone	8.25	1	14a: 85	-	-
3	2-pentanone	40	1.5	14b (55-57); 12	12	4.2
4	2-pentanone	10	1	14b; 17	-	-
5	2-pentanone	10	$22^{\text {d }}$	14b; 53	-	-
6	cyclopentanone	82.5	12	14c(58-59) ; 19	51	2.7
7	cyclopentanone	8.25	1	14c; 69	18	2.8
8	cyclohexanone	82.5	12	14d(85) ; 57	21	23
9	cyclohexanone	8.25	1	14d; 78	-	-
10	acetophenone ${ }^{\text {e }}$	82.5	2.5	14e(123-125) ; 26	65	240

a, Concentration of 3a. b, Isolated yields based on the consumed amount of 3a. c, Sum of the yields of dimers, $6 \mathrm{a}+6 \mathrm{~b}, \mathrm{~d}$, Irradiation was carried out through an acetone filter, e, A benzene solution of acetophenone (133 mM) was irradiated.

Compound	Formula	Elemental Calcd(\%)	Analysis Found(\%)	$\begin{aligned} & \operatorname{IR}(\mathrm{KBr}) \\ & v_{\max }\left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \left.l_{H} \mathrm{NMR}^{(C D C 1}{ }_{3}\right) \\ & \delta(\mathrm{ppm}) \end{aligned}$
8e	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 70.81	70.94	1680, 1600, 1160	$0.77(t, j=6,3 H), 0.89(t, j=6,3 H), 1.2-1.6(\mathrm{~m}, 5 \mathrm{H})$,
		H, 6.99	6.87		7,6-8.2(m, 4H)
ge	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 70.81	70.97	1690, 1595, 1155	$0.90(t, J=6,3 H), 0.94(t, j=6,3 H), 1.2-1.7(\mathrm{~m}, 5 \mathrm{H}),$
		H, 6.99	7.03		7.7-8.2(m, 4H)
8 f	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 74.52	74.76	1705, 1680, 1595	$2.62(\mathrm{dd}, \mathrm{~J}=4,16, \mathrm{lH}), 2.96(\mathrm{dd}, \mathrm{~J}=8,16,1 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H}),$
		H, 5.63	5.68	1170	7,6-7.8(m, 2H), 8,0-8,2(m, 1 H)
9f	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 74.52	74.36	1690, 1590, 1165	$2.9(\mathrm{~m}, \mathrm{lH}), 2.98(\mathrm{~m}, \mathrm{lH}), 7.2(\mathrm{~m}, 5 \mathrm{H}), 7.6-8,0(\mathrm{~m}, 4 \mathrm{H})$
		H, 5.63	5.90		
89	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 78.37	78.40	1700, 1680, 1600	3,96(d, $\mathrm{Jm} 10,7 \mathrm{H}), 7,0-7.4(\mathrm{~m}, 1 \mathrm{H}), 7,6-7.8(\mathrm{~m}, 2 \mathrm{H})$,
		H, 5.57	5.52	1180	7,9-8,2(m, 2H)
99	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 78.37	78.45	1705, 1685, 1595	4,20(d, $\mathrm{j}=10,1 \mathrm{H}), 7.1-7.5(\mathrm{~m}, 10 \mathrm{H}), 7.6-8.0(\mathrm{~m}, 4 \mathrm{H})$
		H, 5.57	5.62	1290	
8h	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$	C, 74.57	74.27	2950, 1690, 1580	0.88(t, Jm, 3H), 1.0-1.5(m, 20H), 7.6-8,1(m, 4H)
		H, 8.87	9.15	1160	
8j	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}$	C, 70.99 H, 5.36	70.55 5.52	1680, 1600, 1360,	$\begin{aligned} & 3,70\left(-0 \mathrm{CH}_{3}\right), 6,70(\mathrm{~d}, \mathrm{~J}=7,2 \mathrm{H}), 6,96(\mathrm{~d}, \mathrm{~J}=7,2 \mathrm{H}), \\ & 7.9-8,3(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
9 j	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}$	C, 70.99	71.03	1685, 1590, 1340	$3.76\left(-0 \mathrm{CH}_{3}\right), 6.86(d, \mathrm{~J}=7,2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7,2 \mathrm{H}),$
		H, 5.36	5.34		7.6-8.0(mi, 4H)
8k	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 74.52	74.77	1680, 1595, 1350,	2.26(s, 3H), 6.92(d, J=7, 2 H$), 7.9-8.3(\mathrm{~m}, 4 \mathrm{H})$,
		H, 5.63	5.92		
9k	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 74.52	74.77	1685, 1600, 1370	2.34(s, 3H), 7.16(m, 4H), 7.6-8.0(m, 4H)
		H, 5.63	5.66		
82	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$	C, 74.01	74.33	1680, 1590, 1350	7.2(m, 5H), 7.9-8.2(m, 4H)
		H, 5.23	5.51		
92	$\mathrm{C}_{79} \mathrm{H}_{16} \mathrm{O}_{4}$	C, 74.01	74,22	1690, 1590, 1350	6.94(d, $\mathrm{J}=6,2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=6,2 \mathrm{H}), 7.9-8.2(\mathrm{~m}, 4 \mathrm{H})$
		H, 5.23	5.33		

Compound	Formula	Elemental Calcd(\%)	Analysis Found(\%)	$\begin{aligned} & I R(\mathrm{KBr}) \\ & u_{\max }\left(\mathrm{cm}^{-1}\right) \end{aligned}$
8m	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClO}_{4}$	C, 66.58	66.41	1680, 1600, 1350
		H, 4.41	4.37	
		C1, 10.34	10.22	
9m	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClO}_{4}$	c, 66.58	66.83	1685, 1595, 1340
		H, 4.41	4.22	
		C1, 10.34	10.30	
14a	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$	C, 69.21	69.20	2990, 1680, 1590
		H, 6.20	6.27	1150
14b	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$	C, 70.81	70.77	2990, 1685, 1595
		H, 6.99	6.85	1460, 1275, 1170
14 c	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 71.31	71.42	2980, 1690, 1595
		H, 6.34	6.29	1375, 1275, 1160
14d	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$	C. 71.98	72.00	2930, 1680, 1590
		H, 6.71	6.75	1445, 1375, 1270
14e	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 74.52	74.59	2990, 1680, 1600
		H, 5.63	5.65	1250
$\underline{25}$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$	C, 70.05	70.02	2990, 1690, 1600
		H, 6.61	6.72	1150
$\underline{26}$	${ }^{C} 16 \mathrm{H}_{18} \mathrm{O}_{4}$	C, 70.05	70.11	2990, 1695, 1600
		H, 6.61	6.62	1150
$\underline{28}$	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 71.50	71.72	2990, 1695, 1590
		H, 7.33	7.19	1140

$\mathrm{I}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{COCl}_{3}\right)}$ δ (ppm)

6.94(d, J=6, 2H), 7.16(d, J=6, 2H), 7.9-8.2 (m, 4H)
$7.26(\mathrm{~d}, \mathrm{~J}=6,2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=6,2 \mathrm{H}), 7.6-8.0$ ($\mathrm{m}, 4 \mathrm{H}$)
$1.18(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.70$ ($\mathrm{s}, 3 \mathrm{H}$), $7.6-7.8(\mathrm{~m}, 2 \mathrm{H}), 8.0-8.2(\mathrm{~m}, 2 \mathrm{H})$
$0.84(t, J=7,3 H), 1.00(t, J=7,3 H), 1.53(\mathrm{~s}, 3 \mathrm{H})$,
1.67(s, 3H), 1.26(q, J=7, 2H), 1.76(q, J=7, 2H), $7.5-7.7(\mathrm{~m}, 2 \mathrm{H}), 7.9-8.0(\mathrm{~m}, 2 \mathrm{H})$
1.52(s, 3H), 1.68(s, 3H), 1.2-1.9(m, 8H), 7.6-7.8(m, 2H), 7.9-8.2(m, 2H)
l.48(s, 3 H$), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.0-2.0(\mathrm{~m}, 10 \mathrm{H})$, 7.6-7.8(m, 2H), 8.0-8.2(m, 2H)
7.2-7.5(m, 5H), 7.6-7.7(m, 2H), 7.8-8.0(m, 2H)
0.93(t, J=6, 3H), 1,03(t, J=7, 3H), 1.22(d, J=7,3H), $1.6-2.4(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{q}, \mathrm{J}=7, \mathrm{H}), 7.6-8.1(\mathrm{~m}, 4 \mathrm{H})$
$0.93(t, J=6,3 H), 0.96(t, J=6,3 H), 1.30(d, J=7,3 H)$, $1.6-2.4(\mathrm{~m}, 4 \mathrm{H}), 4.33(\mathrm{q}, \mathrm{J}=7,3 \mathrm{H}), 7.7-8.0(\mathrm{~m}, 4 \mathrm{H})$ $0.92(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6,3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.73$ and $2.22(A B q, J=14,2 H), 4.00(q, J=6,1 H)$, $7.6-8.0(\mathrm{~m}, 4 \mathrm{H})$

Table V. (Continued)

Compound	Formula	Elemental Calcd(\%)	Analysis Found (\%)	$\begin{aligned} & I R(K B r) \\ & v_{\max }\left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \left.\mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)}\right) \\ & \delta(\mathrm{ppm}) \end{aligned}$
$\underline{29}$	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 71.50	71.52	2990, 1680, 1600	$0.97(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=7,3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63$ and 2.55
		H, 7,33	7.53	1150	($\mathrm{ABq}, \mathrm{J}=14,2 \mathrm{H}$), 4.20(q, J=7, 1 H), 7.7-8, $\mathrm{O}(\mathrm{m}, 4 \mathrm{H}$)
30	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 71.50	71.37	2990, 1680, 1595	$0.88(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=7,3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.73$ and 2.77
		H, 7.33	7.54	1150	($\mathrm{ABq}, \mathrm{J}=13,2 \mathrm{H}$), 4,07(q, $\mathrm{J}=7,1 \mathrm{H}$), 7.6-8.0(m, 4H)
31	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	C, 71.50	71.58	2980, 1695, 1600	0.86(s, 9H), 1.32(d, J=7, 3 H), 1.47(s, 3H), 1.80 and 2.66
		H, 7.33	7.47	1155	($A B q, j=12,2 H$), 4.22(q, $J=7,1 H$), 7.7-8.1(m, 4H)
32	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$	$\mathrm{C}, 70.81$	70.66	2990, 1685, 1600	0.95(t, J=6, 3H), 1.10(t, J=6, 3H), $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$,
		H, 6.99	7.05	1450	1.6-2.4(m, 4 H$), 7.6-8.0(\mathrm{~m}, 4 \mathrm{H})$
$\underline{33}$	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$	C, 72.12	71.82	2980, 1685, 1590	0.89(s, 9H), 1.18(s, 3H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.75$
		H, 7.65	7.76	1270, 920, 730	and $2.33(\mathrm{ABq}, \mathrm{J}=14,2 \mathrm{H}), 7.6-7.7(\mathrm{~m}, 2 \mathrm{H}), 7.8-7.9(\mathrm{~m}, 2 \mathrm{H})$
34	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$	C, 72.12	71.22	2990, 1680, 1590	0.95(s, 9H), 1.23(s, 3H), 1.39(s, 3H), 1.52(s, 3 H), , . 73
		H, 7.65	7.74	1270, 1150, 990	and $2.75(\mathrm{ABq}, \mathrm{J}=14,2 \mathrm{H}), 7.6-7.8(\mathrm{~m}, 2 \mathrm{H}), 7.8-7.9(\mathrm{~m}, 2 \mathrm{H})$
35	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4}$	C, 76.16	76.22	2990, 1700, 1590	1.13(s, 3H), 1.30(s, 3 H$), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), \mathrm{T} .56$
		H, 6.93	7.03	1275, 1150, 925	$\begin{aligned} & (\mathrm{s}, 3 \mathrm{H}), 2.13 \text { and } 2.80(\mathrm{ABq}, \mathrm{~J}=14,2 \mathrm{H}), 7.0-7.4(\mathrm{~m}, 5 \mathrm{H}) \text {, } \\ & 7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.0-8.1(\mathrm{~m}, \mathrm{H}) \end{aligned}$
$\underline{36}$	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4}$	C, 76.16	76.02	2990, 1690, 1600	1.13(s, 3H), 1.20(s, 3H), 1.23(s, 3H), 1.35(s, 3H),
		H, 6.93	6.88	1150	1.36(s, 3 H$), 2.20$ and $3,20(\mathrm{ABq}, 3 \times 14,2 \mathrm{H}), 7.0-7.5(\mathrm{~m}, 5 \mathrm{H})$,
					7.5-8.0(m, 4H)

3 $\stackrel{4}{\sim}$

$$
\begin{array}{ll}
\mathrm{a} ; \mathrm{R}^{\mathrm{l}=\mathrm{R}^{2}=\mathrm{Me},} & \text { d; } \mathrm{R}^{\mathrm{I}}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ph} \\
\mathrm{~b} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}, & \text { e; } \mathrm{R}^{\mathrm{I}}=\mathrm{R}^{2}=\mathrm{Ph} \\
\mathrm{c} ; \mathrm{R}^{\mathrm{l}}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) &
\end{array}
$$

10
$*=+$, or. $\quad 11$

14

$$
\begin{aligned}
& a ; R^{1}=R^{2}=\mathrm{Me}, \mathrm{~b} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}, \mathrm{c} ; \mathrm{R}^{1}-\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{4} \\
& \mathrm{~d} ; \mathrm{R}^{1}-\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{5}, \quad \mathrm{e} ; \mathrm{R}^{1} \cdots \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}
\end{aligned}
$$

Scheme I

Scheme ill

23
24

> 37
> 38

40

41

Photochemistry of Epoxyquinone 6 ！Norrish Type II Photo－ reaction of 2，3－Dihydro－2，3－epoxy－1，4－naphthoquinone．

Atsuhiro OSUKA
Department of Chemistry，Faculty of Science， Ehime University，Matsuyama 790，Japan

Photochemical reactions of 2，3－dialkyl substituted or 2－alky1 substituted 2，3－dihydro－2，3－epoxy－1，4－naphthoquinone in whfch carbonyl group has intramolecularly abstractable γ－ hydrogen atoms have been studied．On irradiation，epoxynaphtho－ quinones Ila－h inftially afforded cyclobutanols 12a－h and phthiocol 13a and 13b．The former are Norrish type II cycliza－ tion products，while the latter may be formed $v i \alpha$ an allene oxide intermediate which is a direct Norrish type II elimination product．The cyclobutanols $12 \mathrm{a}-\mathrm{h}$ underwent secondary photo－ rearrangement to β－diketones $14 \mathrm{a}-\mathrm{h}$ and β－alkoxy enones $15 \mathrm{a}-\mathrm{d}, \mathrm{g}$ but 14 g and 14 h were readily dehydrated on chromatographic separation over silica gel to give indenone derivatives 15 g and 15h．Preference for the Norrish type II photoreaction over the generation of the carbonyl ylide or l，3－diradical was discussed in terms of the rate constants for each process，A tentative mechanism for the novel photochemical reactions of the cyclobuta－ nols is proposed．

Considerable attention has been focused in recent years on the photochemistry of small－ring heterocyclic compounds．${ }^{2}$ Among these，investigations of a number of α, β－epoxy ketones $\underline{1}$
have demonstrated that these compounds are photochemically labile and most can be classified into two groups according to their reaction modes; a) $C_{\alpha}-0$ bond cleavage leading to the formation of a 1,3 -diradical $\underline{2}$ which would give a β-diketone $\underline{3}$ by 1,2 -alkyl migration of either R^{2} or R^{3} group, and b) $C_{\alpha}-C_{\beta}$ bond fission leading to the formation of a carbonyl ylide 4 a or 1,3 -diradical 4 b which would give a tetrahydrofuran 5 by 1,3-cycloaddition to olefin. Recently, photochemical generation of the carbonyl ylide $\underline{6}$ or 1,3 -diradical $\underline{7}$ from several epoxynaphthoquinones was reported. ${ }^{3}$ These reactive intermediates were successfully trapped by olefins, ${ }^{3 a}$ ketones, ${ }^{3 b}$ and aldehydes. ${ }^{3 b}$ However, irradiation of dimethylacrylophenone oxide (8a) and trans-dypnone oxide (8 b) were reported to give the unsaturated keto alcohol $9 \underline{a}$ and 9 b , respectively, as the major products. The absence of detectable amounts of β-diketo products in those cases is noteworthy. The authors postulated that the reaction proceeds by initial γ-hydrogen abstraction followed by homolytic scission of the oxirane ring. These results suggest the preference of γ-hydrogen abstraction oyer opening of the oxirane ring [path a) or path b) in Scheme I] in the reaction of triplet aryl ketones. In this paper, the photochemical reaction of 2,3-dialkyl or 2-alkyl substituted 2,3-dihydro-2,3-epoxy-1,4-. naphthoquinones in which the carbonyl group has intramolecularly abstractable γ-hydrogen atoms will be described. This paper will reyeal that the Norrish type II photoreaction is preferred to the generation of the carbonyl ylide 6 or I,3-diradical $7 .{ }^{5}$

Results and Discussion
Syntheses of Starting Epoxynaphthoquinones. The synthesis of 2,3-dialkyl-substituted epoxynaphthoquinones 11a-f was achieved by NaOCl/pyridine epoxidation of 2,3-dialkylsubstituted 1,4-naphthoquinones 10a-f, which, in turn, were prepared by the method of Jacobsen. ${ }^{6}$ 2-Alkyl-substituted epoxynaphthoquinones 11 g and 11 h were prepared by epoxidation of 2-alkyl-1,4-naphthoquinones 10 g and 10 h , respectively, with alkaline hydrogen peroxide. ${ }^{7}$

Photoproducts Analysis. Irradiation of a benzene solution of 2-methyl-3-(2-methyl)propyl-2,3-dihydro-2,3-epoxy-1,4naphthoquinone (lla) (0.02 M) with Pyrex-filtered light with up to 65% conversicn of reactant followed by separation over silica gel afforded the cyclobutanoi 12a (25%), the phthiocol 13a (17%), the $\beta-$ diketone 14 a (40%), and the β-alkoxy enone 15a (15\%). Structure assignments for these photoproducts were made on the basis of characteristic spectral data and elemental analyses. The IR spectrum of 12a showed characteristic bands at 3400 (hydroxy) and 1680 (a conjugated ketone) cm^{-1}; the ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum indicated the presence of three methyl groups at $\delta 0.84,1.42$, and $\mathbf{1 . 5 0}$ ppm and methylene hydrogens at $\delta 2.06$ and $2.84(\mathrm{ABq}, \mathrm{J}=10 \mathrm{~Hz})$ ppø. The ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 12 a revealed one ketone carbonyl at $\delta 191.9 \mathrm{ppm}$, four quaternary carbons at $\delta 78.1,66.1,59.4$, and 40.4 ppm , and one methylene carbon at $\delta 39.0 \mathrm{ppm}$, besides three methyl carbons and six aromatic carbons (Figure 1). 2-Hydroxy-3-methyl-1,4-naphthoquinone (13a)was identical with an authentic sample prepared by the treatment of 2 -methy1-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (22) with concentrated sul-
furic acid. ${ }^{8}$ The IR spectrum of 14 a showed characteristic bands at 3450 (hydroxy), 1750 (a five-membered ketone), and 1715 (a conjugated five-membered ketone) cm^{-1}; the ${ }^{1} \mathrm{H}_{\mathrm{H}}$ NR (CDCl_{3}) spectrum indicated the presence of three methyl groups at $\delta 1.06,1.20$, and 1.34 ppm and methylene hydrogens at $\delta 2.04$ and 2.28 (ABq, J=15 $\mathrm{Hz}) \mathrm{ppm}$. The ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCI}_{3}\right)$ spectrum of 14 a revealed the presence of two ketone carbons at $\delta 208.3$ and 198.8 ppn , three quaternary carbons at $\delta 87.0,69.7$, and 52.4 ppm , one methylene carbon at $\delta 42.2 \mathrm{ppm}$, besides three methyl carbons and six aromatic carbons. The stereochemistry of the ring junction of the β-diketone $14 a$ was assigned to be cis-fused on the basis of changes in the chemical shifts of its protons on addition of the shift reagent; tris (dipivalomethanato) europium (III) $\left[\mathrm{Eu}(\mathrm{DPM})_{3}\right]$ (Figure 2). ${ }^{9}$ This assignment was confirmed by the fact that 14 a did not isomerize at all on treatment with hydrochloric acid in chloroform even at elevated temperature, since the trans-isomer would isomerize readily on acid-treatment due to its highly strained structure. The IR spectrum of 15 a showed characteristic bands at 3320 (hydroxy) and 1650 and 1635 (a conjugated ketone) cm^{-1}; the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum indicated the presence of three methyl groups at $\delta 0.82,1.54,1.66 \mathrm{ppm}$ and methylene hydrogens adjacent to the oxygen at $\delta 3.96$ and 4.56 ($\mathrm{ABq}, \mathrm{J}=7 \mathrm{~Hz}$) ppm. The data of ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) spectrum of 15 a were consistent with the assigned structure; $\delta 186.4$ (s , a conjugated ketone), 176.6 (s, β-carbon of β-alkoxy enone), 109.1 (s, α-carbon of β-alkoxy enone), 83.2(t), 76.4(s), 45.2(s), besides three methy1 carbons and six aromatic carbons. The UV (EtOH) spectral properties of 15a also indicated α, β-unsaturated aryl ketone; $\lambda_{\text {max }} 315$ ($\varepsilon=$
5000) and 292 ($\varepsilon=6150$). Further, reductive acetylation (Zn / $\mathrm{Ac}_{2} \mathrm{O}$) of 15 a yielded naphthalene derivative 16 a in a yield of 75%. Controlled experiments revealed that the cyclobutanol 12a and the phthiocol $13 a$ were the primary photoproducts (12a/13a= 10) arising from a type II reaction and upon continued irradiation 12a was transformed into 13a, 14a, and 15a. High-pressure liquid chromatography (HPLC) ${ }^{\lambda}$ analysis of the irradiation of 12 a (0.015 M) in benzene revealed that the ratio of $13 \mathrm{a}: 14 \mathrm{a}: 15 \mathrm{a}$ was constant ($1: 6,5 ; 2.5$) during the irradiation, indicating that no interconversion of either 13a, 14a, or 15a was operative under the reaction conditions (Figure 3), The cyclobutanol 12a was obtained in a higher yield (63\%) by irradiating 1la for a suitable time in methanol, where the efficiency of type II reaction was greatly enhanced by biradical solvation but that of the secondary photoreaction of 12 a was not so influenced,

Further examples which would support the generality of the preference of the intramolecular γ-hydrogen abstraction over the generation of the carbonyl ylide or 1,3-diradical and succeeding photochemical rearrangement of the cyclobutanol 12 were sought. With this in mind, the photochemical behavior of a number of epoxynaphthoquinones which contain γ-hydrogen atoms was invesigated. In each case, cyclobutanol 12 and phthiocol 13 arising from intramolecular γ-hydrogen atom abstraction and rearranged products arising from cyclobutanol 12 were observed. Irradiation of 2-methyl-3-cyclohexylmethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11b) in benzene gave the cyclobutanol 12b (16\%), 13a (12%), the β-diketone 14b (40\%), and the β-alkoxy enone 15b (10\%). The latter two products were secondary photoproducts
derived from 12b. Similar irradiation of 2-methyl-3-propyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (lle)in benzene gave the epimeric cyclobutanols 12c-ex (29\%) and 12c-en (15\%), 13a (10%), the epimeric β-diketones $14 \mathrm{c}-\mathrm{ex}$ (14%) and 14c-en (9\%), and the epimeric B-alkoxy enones $15 \mathrm{c}-\mathrm{ex}$ (7\%) and 15 c -en (3\%). The stereochemistry at $\mathrm{C}-10$ position of 12 c was assigned on the basis of the chemical shifts of methyl protons at $\mathrm{C}-10$. The methyl protons of $12 \mathrm{c}-\mathrm{en}$ appeared at higher field ($\delta 0.80$) due to the shielding effects of benzene ring, compared with those of $12 c-e x$ appearing at $\delta 1.42$. A separate irradiation of the cyclobutanol 12c-ex in benzene gave only 14c-ex, 15c-ex, and 13a and similarly $12 c-e n$ gave only $14 c-e n, 15 c-e n$, and 13a, indicating that the photorearrangement of 12 c to 14 c and 15 c proceeds without epimerization of methyl group at C-10.

Irradiation of 2-ethy1-3-methyl-2,3-dihydro-2,3-epoxy-1,4naphthoquinone (11d)in benzene led only to poorer yields of type II photoproducts, accompanied by the formation of many unidentified products. On the other hand, the cyclobutanol 12d and the phthiocol 13a were obtained in 43 and 7% yields, respectively, by irradiating Ild in benzene- $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(1: 1)$. Again, the cyclobutanol 12d was found to undergo photochemical rearrangement to the β-diketone 14 d (52%) and the β-alkoxy enone 15 d (22\%) and the photoelimination to 13a (9\%). In the photochemistry of 11d, competitive generation of the carbonyl ylide or 1,3-diradical appeared to be responsible for the lower yields of type II photoproducts. In fact, irradiation of a benzene- $B u^{t} O H$ ($1: 1$) solution of 11d (0.05 M) and dimethyl fumarate (0.07 M) resulted in the formation of a $1: 1$ mixture of isomeric adducts 17 a and 17 b
(31\%) arising from 1, 3-cycloaddition of carbonyl ylide or 1,3diradical to dimethyl fumarate, along with type II photoproducts, 12d (24\%) and 13a (4\%).

When irradiation of 2-methyl-3-(2,2-diphenyl)ethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (Ile) was carried out in benzene up to 67% converison, the cyclobutanol 12 e (51%), 13a (15\%), 1,1-diphenylethylene (8%), and the β-diketone 14 e (22%) were obtained. The photochemistry of 12 e stands in contrast to those of $12 a-d$ in view of the facts that 12 e gave a significant amount of Ile along with 13a and 14e but no sign of the formation of 15 e could be detected (Figure 4). This can be interpreted as a direct evidence for competitive $C_{1}-C_{10}$ bond rupture leading to the formation of type II biradical, which will produce lle by reverse hydrogen tranfer (disproportionation).

Epoxidation of 2-methyl-3-(2-pheny1)propy1-1,4-naphthoquinone (10f) gave a 1:1 mixture of diastereoisomeric epoxynaphthoquinones which could be separated by repeated colum chromatography over silica ge1, giving llf (mp $76-78^{\circ} \mathrm{C}$) and 11f (mp $83.5-84.5^{\circ} \mathrm{C}$). Irradiation of either' llf or llf'resulted in the almost same product distribution; Ilf gave the epimeric cyclobutanol $12 \mathrm{f}-\mathrm{ex}$ (51%) and $12 \mathrm{f}-\mathrm{en}$ (8.5%), 13a (15%), and the epimeric B-diketones 14 f -ex (16%) and 14 f -en (7%), while $11 \mathrm{f}{ }^{\prime}$ gave $12 \mathrm{f}-\mathrm{ex}(61 \%)$, $12 \mathrm{f}-\mathrm{en}$ (0%), 13a (14%), $14 \mathrm{f}-\mathrm{ex}$ (12%), and 14f-en (6%). In each case, the corresponding β-alkoxy enone 15f was not detected in the crude photolysate but 2 -phenylpropene was detected by GC analysis in about 10%. The stereochemistry of $12 \mathrm{f}-\mathrm{ex}$ and 12 f -en was assigned on the basis of the chemical shifts of methyl protons at $\mathrm{C}-10$. The methyl protons of $12 \mathrm{f}-\mathrm{ex}$
appeared at $\delta 1.23$, while those of $12 f-e n$ appeared at $\delta 1.56$. In contrast to the photochemical behaviors of 12c-ex and 12c-en, a separate irradiation of 12f-ex in benzene gave rise to a 2:1 epimeric mixture of 14 f-ex and 14 f-en, along with small amounts of 11 f and 11f' and 13 a , suggesting competitive $\mathrm{C}_{1}-\mathrm{C}_{10}$ bond rupture in 12f.

The photochemical reactions of 2-alkyl-substituted epoxynaphthoquinones 1 lg and 1 lh have also been studied. Irradiation of 2-(2-methyI) propyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11g) in methanolnup to 63% conversion followed by the separation over silica gel afforded the cyclobutanol 12 g (52\%), 2-hydroxy- 7 1,4-naphthoquinone 13 b (2%), the β-alkoxy enone 15 g (10%), and the indenone derivative $18 \mathrm{~g}(26 \%)$. The last product seemed to arise from the dehydration of the expected β-diketone 14 g . In fact, ${ }^{l_{H}}$ NMR examination of the crude photolysate of 12 g in benzene showed no peaks due to 18 g but instead a set of two methyl singlets at $\delta 0.76$ and 1.33 and $A B$ quartet at $\delta 2.15$ and 2.68 ($\mathrm{J}=15 \mathrm{~Hz}$) and singlet at $\delta 3.44$, presumably due to 14 g . On treatment of this crude photolysate with silica gel in benzene at room temperature, one observed rapid appearance of ${ }^{1_{H}} N M R$ signals due to 18 g as well as rapid disappearance of the signals mentioned above. Consequently, the indenone derivative 18 g is not a direct photolysis product from 12 g but is formed from a precursor, maybe 14 g , which is readily dehydrated on treatment with silica gel. Similar irradiation of 2-(2,2-diphenyl)ethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11h) in benzene gave the cyclobutanol 12h (65\%), 13b (5\%), 1,1-diphenylethylene (4\%), and the B-alkoxy enone $14 \mathrm{~h}\left(30 \%\right.$, determined by $\left.{ }^{1} \mathrm{H} \cdot \mathrm{NR}\right)$. The last product,
which was only detected by ${ }^{1}{ }_{H} \mathbb{K} \mathbb{R}$ spectroscopy [at $\$ 2,68$ and 3.00 ($\mathrm{ABq}, \mathrm{J}=15 \mathrm{~Hz}$) and $3.40(\mathrm{~s}, 1 \mathrm{H})$], was isolated as the indenone derivative 18 h (28%) after chromatographic separation over silica gel. No sign of the formation of 15 h could be detected in this case as well as 11e, 11f, and 11f:

Reaction Mechanism. The formation of the cyclobutanols 12 and 2-hydroxy-1,4-naphthoquinones 13 can be readily accounted for in terms of a type II process. A biradical 19 is initially formed by γ-hydrogen atom abstraction. Cyclization of the biradical yields the cyclobutanol 12, while direct elimination probably results in the formation of the phthiocol 13. The preferential cyclization of $\underline{19}$ is consistent with previous reports for rigid systems, where elimination would produce highly strained bicyclic compounds with bridgehead double bonds, i.g., α-adamantylacetone ${ }^{10 a}$ and a-adamantylacetophenone. ${ }^{10 b}$ Mechanistic details of photoelimination to give 13 have not yet been understood but the formation of 13 should be correlated with intramolecular γ-hydrogen abstraction because none of 13a was detected in the photolysis of 2,3-dimethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11i) or 2-methyl-3-(2,2-dimethyl)propy1-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (1lj). Further, it may be said that elimination occurs prior to a possible epoxycarbinyl rearrangement, judged by the absence of products derived from a radical 20. It is proposed that direct elimination of $\underline{19}$ yields an allene oxide $\underline{21}$ as a transient intermediate, which undergoes isomerization to $\underline{13}$. The absence of $\underline{22}$ in the reaction mixture appears to imply that the keto-enol tautomerization is
of minor importance in 21. This observation is consistent with the suggestion that allene oxide undergoes facile isomerization to cyclopropanone via oxyally1 intermediate. ${ }^{11}$ In an expected oxyallyl zwitterion 23 arising from isomerization of 21 , intramolecular proton transfer could produce 13. There have been earlier reports in which type II photoelimination results in the formation of highly strained species involving oxygen-containing three-membered ring. Phenyloxirene 29 has been proposed as an intermediate in type II photoelimination of B, γ-epoxy ketone 28,12 although the intervention of oxirene in this process seems to be rather controversial. ${ }^{13}$ present results imply that type II photoelimination of spiro-a, β-epoxy ketone 30 might provide a transient allene oxide intermediate with hydroxy group. New studies toward such direction are currently in progress.

Quantum yields for disappearance of epoxynaphthoquinones 11a-h in benzene and benzene- $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$ (1:1) were determined by using valerophenone as the chemical actinometer. ${ }^{14}$ The results are shown in Table 2. The increase in quantum yield with added alcohol can be attributed to biradical solvation, which suppresses reversion of the biradical to ground state epoxynaphthoquinone. ${ }^{16}$ Rate constants for γ-hydrogen abstraction were determined by standard Stern-Volmer quenching experiments in degassed benzene solution using naphthalene as the triplet quencher. From the slopes of the linear Stern-Volmer plots (kAf) and the assumption
 lifetime (τ) are obtained. In view of the short triplet lifetime ($\tau<10^{-8} \mathrm{~s}$), it is unlikely that radiationless decay competes with γ-hydrogen abstraction. Thus, the triplet lifetime is determined
by the rate of γ-hydrogen abstraction ($1 / \tau=k_{\delta}$). Lewis' results for 2-propyl-1-tetralone 试 in benzene and $\mathrm{Pr}^{i} \mathrm{OH}$ are included in Table 2 for purposes of comparison. The reactivity of ($n \pi^{*}$) triplet of 11 toward γ-hydrogen abstraction is determined primarily by the $\gamma \mathrm{C}-\mathrm{H}$ bond strengh. Inductive effects ${ }^{16}$ by electron-withdrawing substituents such as o-acyl group and α-oxyranyl group and less conformational mobility ${ }^{10 \mathrm{~b}}$ imposed by the oxirane ring might enhance the triplet reactivity of 11 but the value of k_{δ} for 11 c was only 37% as much as that of 33 . These results might be simply accounted for in view of lower triplet energy of 11c, compared with that of 33. Type II photoreaction of 11 was quenched by naphthalene ($\mathrm{E}_{\mathrm{T}}=61 \mathrm{kcal} / \mathrm{mol}$) but only inefficiently by biphenyl ($\mathrm{E}_{\mathrm{T}}=66 \mathrm{kcal} / \mathrm{mol}$), indicating the triplet energies of $\underline{11}$ to be significantly lower than those of alkyl phenyl ketones ($\mathrm{E}_{\mathrm{T}}=72-73 \mathrm{kcal} / \mathrm{mol}$).

In contrast to type II photoreaction of lla-h, excitation of 11 i or 11 j gives exclusively rise to the generation of the carbonyl ylide or 1,3 -diradical, which can be trapped by suitable dipolarophiles. ${ }^{3}$ It is of mechanistic interest to compare the rate of the opening of the oxirane ring (k_{o}) with that of the γ-hydrogen abstraction (k_{δ}). In the case of 11d, the opening of the oxirane ring occurs competitively with type II process. Both processes were quenched by naphthalene with equal efficiency, indicating that they occurred from the same excited state, presumably ($n \pi$ *) triplet state. Since both the cyclobutanol 12 d and the 1,3 -dipolar cycloadducts $\underline{17 \mathrm{a}}$ and 17 b are photolabile under the reaction conditions, the chemical yields of 12 d and 17 a and 17 b do not accurately reflect the relative propensities for the type II
process and the opening of the oxirane ring. However, the relative product yields suggest the nearly same rate constants of two processes in triplet 11d. Degassed benzene solutions 0.015 M in 11 i or 11 j and 0.02 M in cyclohexene containing various concentrations of naphthalene were irradiated in parallel with valerophenone actinometer. ${ }^{17}$ Quantum yields for the formation of the cycloadducts $34 i$ and $34 j$ were 0.35 for 111 and 0.70 for $11 j$, respectively. Stern-Volmer plots were linear to $\Phi^{0} / \Phi=6$ for both epoxynaphthoquinones, with slopes (kqq) of $99 \mathrm{M}^{-1}$ for 11 i and $20 \mathrm{M}^{-1}$ for 11 j . With $\mathrm{kq}=5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}, 1 / \tau=$ $5.1 \times 10^{7} \mathrm{~s}^{-1}$ for triplet 11 i and $2.5 \times 10^{8} \mathrm{~s}^{-1}$ for triplet 11 j . If it is assumed that the triplet lifetime of 1li and 11 j is largely determined by the rate of the opening of the oxirane ring (k_{0}), the values of $1 / \frac{\gamma}{}$ can be regarded as k_{0}. The k_{o} for $11 j$ is a factor of 5 higher than that for lli. It thus appears that there are steric acceleration effects in the opening of the inner $\mathrm{C}-\mathrm{C}$ bond of the oxirane ring in epoxynaphthoquinones. Although how these effects might enhance k_{0} in 11a-h is not known, it can be said that values of k_{0} are much smaller than those of k_{δ} on the basis of the amounts of type II photoproducts which account for nearly all of the products.

The photorearrangement of the cyclobutanol $\underline{12}$ to the B diketone 14 and the β-alkoxy enone 15 can be best explained in terms of a initial $\mathrm{C}_{\alpha}-0$ bond cleavage to give a diradical $\underline{24}$, followed by migration of benzyl group to the α-carbon (C-migration) or migration of methylene group to the oxygen (0 -migration). To the best of our knowledge, 1,2-alkyl migration to oxygen atom is unprecedented in spite of its formal possibility, although
the photochemistry of α, β-epoxy ketones has been studied extensively. ${ }^{2}$ A possible explanation for the unprecedented 0-migration may be that the reaction proceeds in such a concerted manner that the methylene group have to be attached to the back side lobe of the bond to be cleaved, Thus, C-migration of the methylene group would be greatly disfavored by reason of steric factors. If such sort of concerted migration occur, C-migration of benzyl group would lead to trans-isomer of 14 . Unfortunately, because the ois stereochemistry of 14 may be the result of control by thermodynamic factors (the trans-isomer of 14 would be highly strained), no definitive conclusions relating to the timing of the $\underline{12}$ to $\underline{14}$ and $\underline{15}$ rearrangement can be drawn at this time.

As for the mechanism of photoelimination to 13 from 12 , one may envion a route involving $C_{1}-C_{10}$ bond rupture resulting in the formation of type II biradical 19, which could produce 13 by elimination. It is the case for the cyclobutanols 12e, 12f-ex, and 12f-en, which, on excitation, give epoxynaphthoquinones by disproportionation of 19 as well as produce 13a.

However, none of the epoxynaphthoquinones 1la-d could be detected in the irradiation of $12 \mathrm{a}-\mathrm{d}$ in benzene even at the early stage of the reaction. Further, in the case of $12 c-e x$ or $12 c-e n$, once $\quad C_{1}-C_{10}$ bond fission occurred, there should be brought about concomitant epimerization of the methyl group in 12c, 14c, and 15 c . Therefore, there seems to exist, besides $\mathrm{C}_{1}-\mathrm{C}_{10}$ bond fission, an alternative route to 13 a from $12 \mathrm{a}-\mathrm{d}$. Scheme 4 shows a possible route to 13a from L2a-d, which begins with heterolytic $C_{3}-0$ bond cleavage followed by proton tranfer to
to give an intermediate 36, which finally gives 13a. It is not unreasonable that the hydroxy group at ${ }_{\wedge} \mathrm{C-1}$ position of 12 will interact through hydrogen bonding with the oxirane oxygen, which will become slightly electron-rich on excitation. Thus, the cyclobutanol $12 a$ was esterified ($\mathrm{HClO}_{4} / \mathrm{Ac}_{2} \mathrm{O}$, at $-20^{\circ} \mathrm{C}$) and the photochemistry of the acetate 37 was examined. Irradiation of 37a in benzene afforded only β-diketone acetate 38 in 52% but neither 0-migration product nor elimination product was not observed. This result seems to suggest an unique role of the hydroxy group at $\mathrm{C}-1$ in the photochemistry of cyclobutanol. The strain arising from spiro-fused structure of $\underline{12}$ also appears to play an important role in its photochemistry; however, speculation regarding the detailed reaction mechanism is unwarranted at present.

In summary, type II photoprocess is prefered to generation of the carbonyl ylide or 1,3-diradical in the photochemistry of epoxynaphthoquinones which contain γ-hydrogen atoms. Type II cyclization gives highly strained cyclobutanol in a good yield, which is transformed into a novel class of polycondensed ring compounds, while type II elimination presumably gives allene oxide which undergoes factle isomerization to phthiocol.

Experimental

Melting points were measured on a Yanaginoto micro melting point apparatus and are uncorrected. Infrared spectra were recorded on a Hitachi Model 260-10. $\mathbf{1}_{H}$ NMR spectra were recorded on a JEOL PS-100 and chemical shifts are reported in parts per million on the δ scale from internal $\mathrm{Me}_{4} \mathrm{Si} . \quad{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL FX-100. Elemental analyses were performed at the Microanalytical Laboratory of Kyoto University. High pressure liquid chromatography (HPLC) analyses were performed on a JACSO Model FLC A-700, equipped with a UV detector (Model UVIDEC-100). The separations were made on a 500 x 2 mm stainless-steel column packed with JASCO-Pack SS-05 with a water saturated mixture of hexane and ether as the eluent. GC analyses were performed on a Hitachi Model 163, using a $\boldsymbol{\gamma} \phi \times 1 \mathrm{~m}$ stainless-steel column packed with 10% SE-30 on Celite 545 AW. Preparative separations were performed by colum chromatography over silica gel (Wakogel C-200). UV irradiations were carried out in a Pyrex vessel (Eikosha EHB-WF) under an argon atomosphere with an Eikosha 300-W high-pressure Hg lamp.

Preparation of Epoxynaphthoquinones. The epoxynaphthoquinones used were prepared by epoxidation of the corresponding naphthoquinone with NaOCl/Fyridine or alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$, , 3a The naphthoquinones were synthesized by the method of Jacobsen. Isolated yields and physical properties are summarized in Table 3 and 4.

Irradiation of 2-methy1-3-(2-methyl) propyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11a).

A solution of 11a (1.96
g) in 400 mL of benzene was irradiated for 3 h . Separarion of the products by column chromatography gave 11a(686 mg), 3,10, 10-trimethyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-o1-4-one (cyclobutanol) (12a) ($319 \mathrm{mg}, 25 \%$), 2-hydroxy-3-methy1-1,4-naphthoquinone (phthiocol) (13a) ($167 \mathrm{mg}, 8 \%$), 2,10,10-trimethyl-1,2-propanoindan-1-ol-3,8-dione (β-diketone) (14a) ($510 \mathrm{mg}, 40 \%$) and 3,3,9-trimethyl-2,3,3a, 8-tetrahydro-naphtho[1,2-b]furan-3a-ol-8-one (β-alkoxy enone) (15a) (191 mg, 15\%).

Reductive Acetylation of the β-alkoyx enome 15a. A solution of 15 a (70 mg) and anhydrous NaOAc (130 mg) and Zn dust (700 mg) in 5 mL of acetic anhydride was refluxed for 30 min . The reaction mixture was poured into 50 mL of saturated NaHCO_{3} solution and extracted with two portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the organic extracts were washed with water before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent afforded crude product, which was purified by short column , giving 16a ($58 \mathrm{mg}, 75 \%$).

8-Acetoxy-3,3,9-trimethyl-2,3-dihydro-naphthaleno[1,2-b]furan (16a); mp $96-98^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2940,1750$ (ester $\mathrm{C}=0$), 1360 , 1200, 1190, 1075, and $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{MMR}\left(\mathrm{CDCl}_{3}\right) \delta 1,58(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, and $7.2-8.0(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ o $10.0(\mathrm{q}), 20.5(\mathrm{q}), 27.2(\mathrm{q}), 43.8(\mathrm{~s}), 85.5(\mathrm{t}), 114.8(\mathrm{~s}), 121.9(\mathrm{~d})$, 122.2(d), 122.9(d), 123.2(s), 125.3(s), 125.9(d), 128.7(s), 144.8(s), $156.2(\mathrm{~s})$, and 168.4 (ester $\mathrm{C}=0$).

Irradiation of 2-methyl-3-(2-cyclohexyl)ethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11b). A solution of 11 b (2.28 g) in 400 mL of benzene was irradiated for 3 h . Separation of the products by column chromatography gave $\underline{11 \mathrm{~b}}(1.32 \mathrm{~g})$, 3 -methyl

1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-o1-4-one-10-spirocyclohexane (cyclobutanol) (12b) ($153 \mathrm{mg}, 16 \%$), 13a (108 mg, 17\%), 2-methyl-1,2-propanoindan-1-ol-3,8-dione-10spirocyclohexane (β-diketone) (14 b) ($383 \mathrm{mg}, 40 \%$), and 9 -methyl-2,3,3a,8-tetrahydro-naphthọ[1,2-b]furan-3a-ol-8-one-spirocyclohexane (β-alkoxy enone) (15b) ($96 \mathrm{mg}, 10 \%$).

Irradiation of 2-methy1-3-propy1-2, 3-dihydro-2,3-epoxy1,4 -naphthoquinone (11c). A solution of 11 c (1.85 g) in 400 mL of benzene was irradiated for 3 h . Separation of the products by column chromatography gave 11 c (684 mg), 10ß-dimethyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-o1-4-one (cyclobutanol) (12c-ex) (338 mg, 29\%), 3,10 1 -dimethy1-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-o1-4-one (cyclobutanol) (12c-en), ($175 \mathrm{mg}, 15 \%$), 13a($96 \mathrm{mg}, 10 \%$), 2,108-dimethyl-1,2-propanoindan-1-ol- 3,8-dione (β-diketone) (14c-ex) (164 mg, 14%, 2,10 α-dimethy1-1,2-propanoindan-1-o1-3,8-dione (β-diketone) ($14 \mathrm{c}-\mathrm{en}$) ($105 \mathrm{mg}, 9 \%$), 3 8,9 -dimethy1-2,3,3a,8-tetrahydro-naphtho[1,2-b]furan-3a-ol-8-one (β-alkoxy enone) ($15 \mathrm{c}-\mathrm{ex}$) ($82 \mathrm{mg}, 7 \%$), and 3a,9-dimethyl-2,3,3a,8-tetrahydro-naphtho-[1,2-b]furan-3a-ol-8-one(β-alkoxy enone) ($15 \mathrm{c}-\mathrm{en}$) ($35 \mathrm{mg}, 3 \%$).

Irradiation of a solution of $12 \mathrm{c}-\mathrm{ex}$ (100 mg) in 25 mL of benzene gave 13a ($8 \mathrm{mg}, 10 \%$), $14 \mathrm{c}-\mathrm{ex}$ ($35 \mathrm{mg}, 35 \%$), and $15 \mathrm{c}-\mathrm{ex}$ ($17 \mathrm{mg}, 17 \%$). On the other hand, irradiation of a solution of $\underline{12 \mathrm{c}-e n}$ (100 mg) in 25 mL of benzene afforded 13a ($8 \mathrm{mg}, 10 \%$), 14c-en ($45 \mathrm{mg}, 45 \%$), and 15 c -en ($12 \mathrm{mg}, 12 \%$).

Irradiation of 2-ethyl-3- methyl-2,3-dihydro-2,3-epoxy-1,4naphthoquinone (11d). A solution of $11 \mathrm{~d}(1.735 \mathrm{~g})$ in 200 mL of benzene and 200 mL of $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$ was irradiated for 1 h .

Separation of the products by colum chromatography gave 11d (226 mg), 3-methyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-ol-4-one (cyclobutanol) (12d) ($649 \mathrm{mg}, 43 \%$), and 13a(92 mg, 7\%).

Irradiation of the cyclobutanol 12 d (300 mg) in 25 mL of benzene for 2 h followed by separation over silica gel gave 2-methyI-1,2-propanoindan-1-ol-3,8-dione (β-diketone) (14d) (156 mg, 52\%), 9-methy1-2,3,3a,8-tetrahydro-naphtho[1,2-b]-furan-3a-ol-8-one (β-alkoxy enone) (15d) ($66 \mathrm{mg}, 22 \%$), and 13a (34 mg, 13\%).

Irradiation of lld in the Presence of Dimethy1 Fumarate.

- A solution containing 11 d (270 mg) and dimethyl fumarate (250 mg) in benzene- $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(1: 1,25 \mathrm{~mL}$) was irradiated for 3 h . After removal of the solvent, resulting residue was chromatographed over silica ge1. Products were 12 d ($65 \mathrm{mg}, 24 \%$), 13a (11 mg, 4\%), 6-ethyl-9-methyl-7 $\alpha, 8 \beta$-dimethoxycarbonyl-6,7,8,9-tetrahydro-6a,9a-epoxy-benzocycloocten-5,10-dione 17a (68 mg, 15\%), and 6-ethyI-9-methyl-7 $\beta, 8 \alpha$-dimethoxycarbonyl-6,7,8,9-tetrahydro-6a,9a-epoxy-benzocycloocten-5,10-dione 17b (72 mg, 16\%). 17a; mp 98-99² C ; $\operatorname{IR}(\mathrm{KBr}) 1735,1695,1685,1590,1440$, $\mathrm{cm}^{-1} ; \mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)}$) $1.12(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~m}$, $2 \mathrm{H}), 3.54$ and $3.77(\mathrm{ABq}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 7.5-8.0 (m, 4H). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}: \mathrm{C}, 66.27 ; \mathrm{H}, 5.85 \%$. Found: $\mathrm{C}, 66.43 ; \mathrm{H}, 5.99 \%$. $17 \mathrm{~b} ; \mathrm{mp} 76-78^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 1740$, 1735, $1690,1680,1440 \mathrm{~cm}^{-1} ; \mathrm{l}_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ \& $1.22(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 3.45$ and $3.65(\mathrm{ABq}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.65$ ($\mathrm{s}, 3 \mathrm{H}$) , 3.88($\mathrm{s}, 3 \mathrm{H}$), and 7.5-8.0(m, 4H). Anal. Calcḍ. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}: \mathrm{C}, 66.27 ; \mathrm{H}, 5.85 \%$. Found: $\mathrm{C}, 66.09 ; \mathrm{H}, 5.77 \%$.

Irradiation of 2-methy1-3-(2,2-dipheny1)ethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11e): A solution of 11e (2.96 g) in 400 mL of benzene was irradiated for 3 h . Separation of the products by column chromatography gave 11 e (681 mg), 3-methyl-10,10-diphenyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethano-naphthalen-1-ol-4-one (cyclobutanol) (12e) (1.011 g, 51\%) , 13a (152 mg, 15\%), 2-methy1-10,10-diphenyl-1,2-propanoindan-1-ol-3,8-dione (β-diketone) (14e) (436 mg, 22\%).

Irradiation of 2-methyl-3-(2-phenyl)propy1-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (Ilf; mp $76-78^{\circ} \mathrm{C}$). A solution of $11 \mathrm{f}(2.46 \mathrm{~g})$ in 400 mL of benzene- $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}(1: 1)$ was irradiated for 1 h . Separation of the products by column chromatography gave $11 \mathrm{f}(867 \mathrm{mg}), 11 \mathrm{f}^{\prime}(133 \mathrm{mg}), 3,10 \alpha$-dimethyl-10ß-phenyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-ol-4-one(cyclobutano1) (12f-ex) (740 mg, 51\%), 3, 10 α-dimethyl-10B-phenyl-1,2,3,4-tetrahydro-naphthalen-1-o1-4-one (cyclobutanol) (I2f-en) (123 mg, 8.5%) , 13a(134mg, 15\%), 2,108-dimethyl-10a-phenyl-1,2-propano-indan-1-ol-3,8-dione (B-diketone) (14f-ex) (232 mg, 16\%), and 2,10 - dimethyl-10ß-phenyl-1,2-propanoindan-1-o1-3,8-dione (β-diketone) ($14 \mathrm{f}-\mathrm{en}$) ($102 \mathrm{ng}, 7 \%$).

Irradiation of 2-methyl-3-(2-phenyl) propy1-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone ($11 \mathrm{f}{ }^{\prime} ; \operatorname{mp} 83.5-84.5^{\circ} \mathrm{C}$).
A solution of lif' (2.42 g) in 400 mL of benzene- $\mathrm{Bu}^{t^{\mathrm{OH}}}$ ($1: 1$) was irradiated for 1 h . Separation of the products by colunn chromatography gave 11f (143 mg), 11f' (801 mg), 12f-ex (900 mg, 61%), 12f-en (118 mg, 8\%), 13a(127mg, 14\%), 14f-ex (177 mg, 12\%) and 14f-en (39 mg , 6\%).

Irradiation of a solution of 100 mg of $12 \mathrm{f}-\mathrm{ex}$ in 25 mL of
benzene for 1 h gave $11 \mathrm{f}\left(4 \mathrm{mg}, 4 \%\right.$), $11 \mathrm{f}^{\prime}(3 \mathrm{mg}, 3 \%$), 13 a (3 mg , 5%) , 14f-ex ($22 \mathrm{mg}, 22 \%$), and 14f-en ($43 \mathrm{mg}, 43 \%$). Irradiation of 2-(2-methyl)propyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11 g). A solution of $11 \mathrm{~g}(1.85 \mathrm{~g}$) in 400 mL of benzene was irradiated for 3 h . Separation of the products by column chromatography gave 11 g (961 mg), 10,10-dimethyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-1-ol-4-one (cyclobutanol) (12 g) ($107 \mathrm{mg}, 12 \%$), 2-hydroxy-1,4naphthoquinone (13 b) ($87 \mathrm{mg}, 12 \%$), 3,3-dimethyl-2,3,3a,8-tetra-hydro-naphtho [1,2-b]furan-3a-ol-8-one (β-diketone) (15g) ($124 \mathrm{mg}, 14 \%$), 8,8-dimethyl-2,3-propanoinden-1,10-dione (18 g) ($196 \mathrm{mg}, 24 \%$). On the other hand, irradiation of $1 l_{\mathrm{g}}$ in methanol gave 12 g ($606 \mathrm{mg}, 52 \%$), $13 \mathrm{~b}(19 \mathrm{mg}, 2 \%$), $15 \mathrm{~g}(117 \mathrm{mg}$, 10%), and 18 g ($279 \mathrm{mg}, 26 \%$).

Reductive acetylation of the β-alkoxy enone 15 g .
A solution of 15 g (70 mg) and anhydrous $\mathrm{NaOAc}(130 \mathrm{mg}$) and Zn dust (700 mg) in 5 mL of acetic anhydride was refluxed for 30 min. The reaction mixture was poured into 50 mL of saturated NaHCO_{3} solution and extracted with two portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), and the organic extracts were washed with water before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent afforded crude product, which was purified by short column, giving 16 g ($50 \mathrm{mg}, 68 \%$).

8-Acetoxy-3,3-dimethyl-2,3-dihydro-naphtho[1,2-b]furan (16g) ; colorless oil; $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) 2940,1760,1620,1360,1190,1135$, and $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}^{\left(\mathrm{CDCl}_{3}\right)} \delta 1.60(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.37$ (s, 2H), 6.91(s, 1H), 7.2-8.1(m, 4H). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 74.98 ; \mathrm{H}, 6.29 \%$. Found: $\mathrm{C}, 74.68 ; \mathrm{H}, 6.18 \%$.

Irradiation of 2-(2,2-diphenyl)ethyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone (11h). A solution of 11 h (2.85 g) in 400 mL of benzene was irradiated for 3 h . Separation of the products by colum chromatography gave 11 h (71.2 mg), 13 b (57 mg , 5%) , 10,10-dipheny1-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethano-naphthalen-1-o1-4-one (cyclobutanol) (12h) (1.39 g, 65\%), 8;8-diphenyl-2,3-propanoinden-1,10-dione (18h) (568 mg, 28\%).

Quantum Yield Determination. $\quad \gamma$-Valerophenone actinometry was used for quantum yield determination. The 313 nm Ine was isolated with a filter solution containing 0.002 M
$\mathrm{K}_{2} \mathrm{CrO}_{4}$ in a 1% aquous soltion of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The degree of the reaction was determined by GC analysis relative to known concentration of alkane internal standard.

General Procedure for Acetylation of the B-Diketones 14.
A solution of $14(100 \mathrm{mg})$ in 20 mL of acetic anhydride was cooled to $-20^{\circ} \mathrm{C}$, added three drops of HClO_{4} cautiously, and then immediately poured into 100 mI of ice-water. The reaction mixture was extracted with two portions of $\mathrm{CH}_{2} \mathrm{C1}_{2}$ and the organic extract was washed with water. Removal of the solvent afforded a yellow oil, which was separated by column chromatography over silica gel. Yields and physical properties are summarized in Table 8.

Acetylation of the Cyclobutanol 12a. A solution of 12a (480 mg) in 30 mL of acetic anhydride was cooled to $-20^{\circ} \mathrm{C}$, added three drops of HClO_{4} cautiously, and then immediately poured into 200 mL of ice-water. The reaction mixture was extracted with two portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic extracts was washed with water. After removal of the solvent, the resulting oil
was chromatographed over silica gel giving colorless crystals of 1-acetoxy-3,10,10-trimethyl-1,2,3,4-tetrahydro-2,3-epoxy-1,2-ethanonaphthalen-4-one (37a) (167 mg, 30\%). 37a; mp 114$115^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2960,1760$ (ester $\mathrm{C}=0$), 1700 (ketone $\mathrm{C}=0$), 1380, 1220 , and $1035 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.10$ and $2.86(\mathrm{ABq}, \mathrm{J}=12 \mathrm{~Hz}, 2 \mathrm{H})$, 7.0-7.6(m, 3H), and 8.0-8.2(m, 1H).

Irradiation of 37a in Benzene Solution. A benzene solution of 37 a (100 mg) was irradiated for 3 h . After removal of the solvent, the resulting residue was separated over silica gel. Major product was the β-diketone-acetate 38 a ($52 \mathrm{mg}, 52 \%$) and small amount (13 mg) of unidentied product was also obtained.

Acknowledgement. In this investigation the author is particularly indebted to Professor K. Marryama for his valuable suggestions and encouragement and to Professor H. Suzuki for his helpful discussions.

References and Notes

1. Part 5, Osuka, A, submitted to J, Org. Chem.
2. For reviews, see: a) Padwa, A. Org, Photchem. 1967, 1, 91;
b) Bertoniere, N. R.; Griffin, G, W.; Ibid. 1973, 3, 138;
c) Griffin, G. W.; Padwa, A. " Photchemistry of Three- and Four-Membered Heterocyclic Rings", in "Photochemistry of Heterocyclic Compounds"; Buchardt, O., Ed.; Wiley: New York, 1976; d) Nastasi, M.; Streith, J "Photochemical Rearrangements Involving Three-membered Rings", in "Rearrangements in Ground and Ecited States"; de Mayo, P., Ed.; Academic Press; New York, 1980; Vol III.
3. a) Arakawa, S. J. Org. Chem. 1977, 42, 3800. b) Maruyama, K.; Osuka, A. Chem. Lett. 1979, 77.
4. Zimmerman, H. E.; Cowley, B, R.; Tseng, C-Y.; Wilson, J.W.
J. Am. Chem. Soc. 1964, 86, 947.
5. For preliminary reports on some aspects on the present study, see: a) Maruyama, K.; Osuka, A.; Suzuki, H, J. Chem. Soc., Chem. Comm. 1980; 323. b) Jimentz, M.; Rodrriguez-Hahn, L.; Romo, J. Latinoam. Quim. 1974, 5, 184.
6. Jacobsen, N.; Torsell, K. Justus Liebigs Ann. Chem., 1972, 763, 135.
7. Marmor, S. J. Org. Chem. 1963, 28, 250.

8, Fieser, L. F. J. Biol. Chem. 1940, 133, 391.
9, Although in the preliminary paper, ref. 5a), we erroneously assigned a trans-fused structure for β-diketone, it should be corrected to the cis-fused. In ref. 5a), the assignment was only based on the comparison of the chemical shift of methyl protons of 14 e (at $\delta \mathrm{l} .36$) with that of its acetate (at $\delta 1.36$).

However, acetylation of 14 e was carried out under acidic conditions ($\mathrm{HClO}_{4} / \mathrm{Ac}_{2} \mathrm{O}$), where trans-14e should isomerize to thermodynamically stable cis-14e. Further, the comparison of the chemical shifts of methyl protons of 14 with those of their acetates in the series appeared to provide support for the cis-fused structure (Figure 5).
10. a) Gagosian, R. B,; Dalton, J. C.; Turro, N. J. J. Am. Chem. Soc. 1970, 92, 4752. b) Lewis, F. D.; Johnson, R. W.; Kory, D. R. J. Am. Chem. Soc, 1974, 96, 6100.
11. Chan, J. H.; Ong, B. S. J. Org. Chem. 1978, 43, 2994.
12. Padwa, A.; Crumrine, D.; Hartman, R.; Layton, R. J. Am. Chem. Soc., 1967, 89, 4435.
13. Cormier, R. A. Tetrahedron Lett. 1980, 2021.
14. Wagner, P.J.; Kochevar, I. E. J. Am. Chem. Soc. 1972, 94, 7489.
15. Wagner, P.J.; Kochevar, I. E. J. Am. Chem. Soc. 1968, 90, 2232.

16, Wagner, P.J. Acc. Chem. Res. 1971, 4, 168.
17. The total amomts of 1,3 -dipolax cycloadducts 34 i and 34 j and their secondary photoproducts accounted for neary all of the products produced in the reaction of $11 i$ and 11 j with cyclohexene. Triplet states of $11 i$ and $11 j$ were slightly quenched by electron-rich olefins but 0.02 M of cyclohexene affected the triplet lifetimes of 11 i and $\underline{11 j}$ at most less than 2%. Osuka, A.; Suzuki, H.; Maruyama, K. Unpublished results.
Type II Photoreaction of Epoxynaphthoquinones

Run	Reactant	Solvent	Conv. (\%)	Product Distribution (\%) ${ }^{\text {a) }}$			
				12	13	14	15
1	11a	$\mathrm{C}_{6} \mathrm{H}_{6}$	20	73	$8^{\text {b }}$	12	5
2	11a	$\mathrm{C}_{6} \mathrm{H}_{6}$	65	25	17 ${ }^{\text {b) }}$	40	15
3	11a	MeOH	78	63	$6^{\text {b) }}$	15	7
4	110	$\mathrm{C}_{6} \mathrm{H}_{6}$	42	16	$12^{\text {b) }}$	40	10
5	11c	$\mathrm{C}_{6} \mathrm{H}_{6}$	63	$44^{\text {c) }}$	$10^{\text {b }}$	$25^{\text {d) }}$	$10^{\text {e) }}$
6	$\underline{11 d}$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}^{\mathrm{f}}$)	87	43	7)	g)	g)
7	11e	$\mathrm{C}_{6} \mathrm{H}_{6}$	67	51	15 ${ }^{\text {b }}$	22	h)
8	11f	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$	59	$59.5{ }^{\text {i) }}$	15 ${ }^{\text {b) }}$	$23^{\text {j) }}$	h)
9	11f'	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Bu}^{\text {t }} \mathrm{OH}$	61	69^{k})	$14^{\text {b) }}$	18 ${ }^{\text {I) }}$	h)
10	119	$\mathrm{C}_{6} \mathrm{H}_{6}$	48	12	$12^{\mathrm{m})}$	$24^{\text {n) }}$	14
11	11g	MeOH	63	52	$2^{\text {m) }}$	$26^{\text {n) }}$	10
12	11h	$\mathrm{C}_{6} \mathrm{H}_{6}$	75	65	$5^{\text {m) }}$	$28^{\text {n) }}$	h)

$14 \mathrm{c}-\mathrm{en}=1.56$. e), $15 \mathrm{c}-\mathrm{ex} / 15 \mathrm{c}-\mathrm{en}=2.33$. f), $\left.\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{Bu}^{\mathrm{t}} \mathrm{OH}=1 . \mathrm{g}\right)$, Not determined, h), Not detected.
i), 12f-ex/12f-en=0.17.j), 14f-ex/14f-en=0.44.k), 12f-ex/12f-en=0.13.1), 14f-ex/14f-en=0.5.
m), $13 \mathrm{~b} . \mathrm{n})$, Isolated yields as the indenone derivatives $\underline{18}$.

Table 2. Quantum Yields and Kinetic Data for the Type II Photoreaction of Epoxynaphthoquinones.

Epoxynaphthoquinones ${ }^{\text {a }}$	$\mathrm{C}_{6} \mathrm{H}_{6} \quad{ }_{\text {¢ }}{ }^{\text {b) }} \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Bu}^{\text {t }} \mathrm{OH}$		$\operatorname{kq\tau }\left(M^{-1}, c\right)$	$10^{-8} 1 / \mathrm{T}\left(\mathrm{s}^{-1}\right)$
11a	0.082	0.49	13	3.7
11b	0.085		5.4	9.1
11c	0.11		23	2.2
11d	0.27		58	0.86
11e	0.18	0.32	3.8	13
11f	0.23	0.60	7.5	6.7
11f'	0.25		7.2	7.1
11g	0.067		10	5.0
I1h	0.36	0.54	2.8	18
$33^{\text {d) }}$	0.12	$0.39{ }^{\text {e }}$)	$8.5{ }^{\text {f) }}$	5.9
a) Concentration of epoxynaphthoquinone, ea. 0.015M. b) Quantum yields for the disappearance of epoxynaphthoquinones, $\pm 10 \%$. c) Least-squares slope of linear Stern-Volmer plots in benzene solution using naphthalene quencher, $\pm 10 \%$. d) From ref, 10b. e) Quantum yield in $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$. f) Using trans-1,3-pentadiene as triplet quencher.				

Compound	Yield(\%) ${ }^{\text {a }}$	${ }^{\text {a }} \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Elemental Calcd. (b)	Analysis Found (\%)	IR(KBr)	$\mathrm{l}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCJ}_{3}\right)$
10a	66	$0 i 1$	$\begin{aligned} & \mathrm{C}, 78.92 \\ & \mathrm{H}, \quad 7.06 \end{aligned}$	$\begin{array}{r} 78.99 \\ 9.98 \end{array}$	$\begin{aligned} & 2940,1660,1600, \\ & 1290,710 \end{aligned}$	$\begin{aligned} & 0.96(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 6 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), \\ & 2.54(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}) . \\ & 7.9-8.0(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
10b	41	68-69.5	$\begin{aligned} & \mathrm{C}, 80.56 \\ & \mathrm{H}, \quad 7.51 \end{aligned}$	$\begin{array}{r} 80.72 \\ 7.77 \end{array}$	$\begin{aligned} & 2910,1660,1650, \\ & 1600,1300,710 \end{aligned}$	$\begin{aligned} & 0.9-1.9(\mathrm{~m}, 1 \mathrm{H}), 2.2(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, \\ & 2 \mathrm{H}), 7.6-7.8(\mathrm{~m}, 2 \mathrm{H}), 8.0-8.2(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
10 c	62	60-61	$\begin{aligned} & C, 78.48 \\ & H, \quad 6.59 \end{aligned}$	$\begin{array}{r} 78.63 \\ 6.72 \end{array}$	$\begin{aligned} & 2960,1670,1630, \\ & 1600,1300,730, \end{aligned}$	$\begin{aligned} & 1.02(t, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 2.08 \\ & (\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.6-7.7 \\ & (\mathrm{~m}, 2 \mathrm{H}), 7.9-8.1(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
10d	43	67-68	$\begin{aligned} & \text { C, } 77.98 \\ & H, \quad 6.04 \end{aligned}$	$\begin{array}{r} 78.04 \\ 6.11 \end{array}$	$\begin{aligned} & 2960,1660,1620, \\ & 1600,1300,710 \end{aligned}$	$\begin{aligned} & 1.10(\mathrm{t}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.63 \\ & (\mathrm{q}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.6-7.7(\mathrm{~m}, 2 \mathrm{H}), \\ & 7.9 .8 .1(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
10e	62	114-115	$\begin{aligned} & \text { C, } 85.20 \\ & \text { H, } 5.72 \end{aligned}$	$\begin{array}{r} 85.35 \\ 5.98 \end{array}$	$\begin{aligned} & 1660,1600,1300, \\ & 700, \end{aligned}$	$\begin{aligned} & 1.74(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.27 \\ & (\mathrm{t}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 10 \mathrm{H}), 7.6-7.7 \\ & (\mathrm{~m}, 2 \mathrm{H}), 8.0-8.1(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$
$\underline{30 f}$	52	72-74	$\begin{aligned} & \text { C, } 82.73 \\ & \text { H, } \quad 6.25 \end{aligned}$	$\begin{array}{r} 92.99 \\ 6.33 \end{array}$	$\begin{aligned} & 2960,1660,1600, \\ & 1310,710 \end{aligned}$	$\begin{aligned} & 1.35(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.7-3.1(\mathrm{~m}, \\ & 3 \mathrm{H}), 7.7-7.2(\mathrm{~m}, 5 \mathrm{H}), 7.6-8.1(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
109	61	$0 i 1$	$\begin{array}{r} \mathrm{C}, 78.48 \\ 6.59 \end{array}$	$\begin{array}{r} 78.33 \\ 6.41 \end{array}$	$\begin{aligned} & 2960^{\circ}, 1670,1600 \\ & 1300,1270,780, \end{aligned}$	$\begin{aligned} & 0.98(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 6 \mathrm{H}), 1.95(\mathrm{~m}, \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}= \\ & 6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 7.6-8.2(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
10h	53	97.5-98	$\begin{aligned} & \mathrm{C}, 85.18 \\ & \mathrm{H}, \quad 5.36 \end{aligned}$	$\begin{array}{r} 85.03 \\ 5.25 \end{array}$	$\begin{aligned} & 1660,1600,1300, \\ & 720 \end{aligned}$	$\begin{aligned} & 3.22(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.0-7.2(\mathrm{~m}, 10 \mathrm{H}), 7.4-8.0(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$

Physical Properties of Epoxynaphthoquinones 11

Table 5.
Physical ${ }_{\text {k }}$ properties of Cyclobutanols 12

Compound	$m p\left({ }^{\circ} \mathrm{C}\right)$	Elemental Calcd. (\%)	Analysis Found (\%)	$\mathrm{IR}(\mathrm{KBr})$	$\mathrm{I}_{\mathrm{H} \operatorname{MMR}\left(\mathrm{CDCl}_{3}\right)}$
12a	143-144	$\begin{aligned} & \mathrm{C}, 73.75 \\ & \mathrm{H}, \\ & 6.60 \end{aligned}$	$\begin{array}{r} 73.57 \\ 6.64 \end{array}$	$\begin{aligned} & 3480,2980,1680, \\ & 1600,1305,770 \end{aligned}$	$\begin{aligned} & 0.84(\mathrm{~s}, 3 \mathrm{H}), \mathrm{J} .42(\mathrm{~s}, 3 \mathrm{H}), 7.50(\mathrm{~s}, 3 \mathrm{H}), 2.06 \text { and } 2.84(\mathrm{ABq}, \mathrm{~J}=10 \mathrm{~Hz} \text {, } \\ & 2 \mathrm{H}), 7.1-7.5(\mathrm{~m}, 3 \mathrm{H}), 7.9(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
12b	159-161	$\begin{array}{ll} \text { C, } & 76.03 \\ \mathrm{H}, & 7.09 \end{array}$	$\begin{array}{r} 76.22 \\ 7.21 \end{array}$	$\begin{aligned} & 3500,2940,1675, \\ & 1600,750 \end{aligned}$	$\begin{aligned} & 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.9-2.0(\mathrm{~m}, 10 \mathrm{H}), 2.21 \text { and } 2.62(\mathrm{ABq}, \mathrm{~J}=11 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 7.3-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.0(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
12c-ex	62-65	$\begin{aligned} & \mathrm{C}, 73.02 \\ & \mathrm{H}, \\ & \hline \end{aligned}$	$\begin{array}{r} 73.23 \\ 6.07 \end{array}$	$\begin{aligned} & 3500,2950,1680 \\ & 1600,760 \end{aligned}$	$\begin{aligned} & 1.39(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.3-2.5(\mathrm{~m}, 3 \mathrm{H}) \text {, } \\ & 7.2-7.6(\mathrm{~m}, 3 \mathrm{H}), 8.0(\mathrm{~m}, \mathrm{H}) \end{aligned}$
12c-en	98-101	$\begin{aligned} & \text { C, } 73.02 \\ & \text { H, } 6.13 \end{aligned}$	$\begin{array}{r} 73.18 \\ 6.08 \end{array}$	$\begin{aligned} & 3480,2970,1685, \\ & 1595,750, \end{aligned}$	$\begin{aligned} & 0.81(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, \mathrm{H}), \\ & 3.23(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.6(\mathrm{~m}, 3 \mathrm{H}), 8.1(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
12d	107-108.5	$\begin{aligned} & \mathrm{C}, 72.21 \\ & \mathrm{H}, \quad 5.59 \end{aligned}$	$\begin{array}{r} 72.26 \\ 5.65 \end{array}$	$\begin{aligned} & 3480,3000,2950, \\ & 1675,1600,1200 \end{aligned}$	1.51(s, 3 H$), 2.0-3.3(\mathrm{~m}, 4 \mathrm{H}), 7.3-7.6(\mathrm{~m}, 3 \mathrm{H}), 8.1(\mathrm{~m}, 1 \mathrm{H})$
12e	198	$\begin{array}{lr} \text { C, } & 81.50 \\ \text { H, } & 5.47 \end{array}$	$\begin{array}{r} 81.06 \\ 5.82 \end{array}$	$\begin{aligned} & 3460,2950,1670, \\ & 1595,740,690 \end{aligned}$	$\begin{aligned} & 1.53(\mathrm{~s}, 3 \mathrm{H}), 3.42 \text { and } 3.88(\mathrm{ABq}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 6.9(\mathrm{~m}, 10 \mathrm{H}), 7.2-7.8 \\ & (\mathrm{~m}, 3 \mathrm{H}), 7.9(\mathrm{~m}, \mathrm{H}) \end{aligned}$
12f-ex	185-187	$\begin{array}{rr} \mathrm{C}, & 78.41 \\ \mathrm{H}, & 5.92 \end{array}$	$\begin{array}{r} 78.36 \\ 5.96 \end{array}$	$\begin{aligned} & 3460,2950,1680, \\ & 1600,1450,740 \end{aligned}$	$\begin{aligned} & 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.33 \text { and } 3: 66(\mathrm{ABq}, \mathrm{~J}=13 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 7.2-7.6(\mathrm{~m}, 8 \mathrm{H}), 8.0-8.2(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
12f-en	142-743	$\begin{aligned} & \mathrm{C}, 78.41 \\ & \mathrm{H}, \quad 5.92 \end{aligned}$	$\begin{array}{r} 78.44 \\ 5.87 \end{array}$	$\begin{aligned} & 3460,2940,1695, \\ & 1600,740 \end{aligned}$	$\begin{aligned} & 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 3.00 \text { and } 3.20(\mathrm{ABq}, \mathrm{~J}=12 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 6.8-7.1(\mathrm{~m}, 5 \mathrm{H}), 7.2-7.8(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
12 g	121-117.5	$\begin{aligned} & \mathrm{C}, 73.02 \\ & \mathrm{H}, \quad 6.13 \end{aligned}$	$\begin{array}{r} 72.88 \\ 6.03 \end{array}$	$\begin{aligned} & 3450,1670,1600, \\ & 1295,760 \end{aligned}$	$\begin{aligned} & 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 2.16 \text { and } 3.00(\mathrm{ABq}, \mathrm{~J}=12 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 7.2-7.8(\mathrm{~m}, 3 \mathrm{H}), 8.0(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
12h	155-157	$\begin{array}{r} \mathrm{C}, 81.34 \\ \mathrm{H}, \\ \hline \end{array}$	$\begin{array}{r} 81.58 \\ 5.08 \end{array}$	$\begin{aligned} & 3450,1680,1605, \\ & 1295,750,700 \end{aligned}$	$3.64(\mathrm{~s}, \mathrm{lH}), 3.52$ and $3.95(\mathrm{ABq}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 6.9-8.0(\mathrm{~m}, 14 \mathrm{H})$

Table $6 \quad$ PhysicalkProperties of B-0jketones 14 and Indenones 18

Compound	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Elemental Calcd. (\%)	Analysis Found(\%)	IR(KBr)	$\mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{CaCl}_{3}\right)}$
14a	196	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \hline \end{aligned} \mathbf{6 . 6 0} 9$	$\begin{array}{r} 73.49 \\ 6.82 \end{array}$	$\begin{aligned} & 3450,1750,1715, \\ & 1200,1070 \end{aligned}$	$\begin{aligned} & 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.40(\text { broad, } \mathrm{H}), \\ & 2.04 \text { and } 2.28(\mathrm{ABq}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.3-7.8(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
14b	147-149	$\begin{aligned} & \mathrm{C}, 76.03 \\ & \mathrm{H}, 7.07 \end{aligned}$	$\begin{array}{r} 76.22 \\ 7.01 \end{array}$	$\begin{aligned} & 3420,2910,1740, \\ & 1685,1600,1250 \end{aligned}$	$\begin{aligned} & 1.36(\mathrm{~s}, 3 \mathrm{H}), 2.08 \text { and } 2.63(\mathrm{ABq}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\text { broad, } \mathrm{IH}), \\ & 1.0-2.0(\mathrm{~m}, 10 \mathrm{H}), 7.5-7.9(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
14c-ex	138-139.5	$\begin{aligned} & \text { C, } 73.02 \\ & H, \quad 6.13 \end{aligned}$	$\begin{array}{r} 73.14 \\ 6.16 \end{array}$	$\begin{aligned} & 3340,2960,1755, \\ & 1710,1055,780 \end{aligned}$	$\begin{aligned} & 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{~J}=4,17 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{~J}=8,17 \mathrm{~Hz}, 1 \mathrm{H}), 7.5-7.9(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
14c-en	122-125	$\begin{array}{ll} \mathrm{C}, & 73.02 \\ \mathrm{H}, & 6.13 \end{array}$	$\begin{array}{r} 73.31 \\ 6.00 \end{array}$	$\begin{aligned} & 3500,2960,1760, \\ & 1695,1080,770 \end{aligned}$	$\begin{aligned} & 1.20(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 2.65(\mathrm{~m}, 3 \mathrm{H}), 7.6-7.9(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
14d	133-134	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \mathrm{H}, \\ & \hline \end{aligned}$	$\begin{array}{r} 72.16 \\ 5.57 \end{array}$	$\begin{aligned} & 3450,1750,1700, \\ & 1050,760 \end{aligned}$	1.27(s, 3H), 1.9-2.8(m, 4H), 7.4-7.9(m, 4H)
14e	220-222	$\begin{array}{lr} \mathrm{C}, & 81.50 \\ \mathrm{H}, & 5.47 \end{array}$	$\begin{array}{r} 81.46 \\ 5.52 \end{array}$	$\begin{aligned} & 3400,1745,1705, \\ & 1100 \end{aligned}$	1.36(s, 3 H$), 3.08(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 7.1-7.9(\mathrm{~m}, 13 \mathrm{H})$
14f-ex	177-178	$\begin{aligned} & \mathrm{C}, 78.41 \\ & \mathrm{H}, \\ & \hline \end{aligned}$	$\begin{array}{r} 78.47 \\ 5.96 \end{array}$	$\begin{aligned} & 3450,1750,1690, \\ & 1285,755 \end{aligned}$	$\begin{aligned} & 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.41 \text { and } 3.43(\mathrm{ABq}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 7.4-7.9(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$
14f-en	197-198	$\begin{aligned} & \text { C, } 78.41 \\ & \text { H, } 5.92 \end{aligned}$	$\begin{array}{r} 78.79 \\ 5.91 \end{array}$	$\begin{aligned} & 3510,1750,1690, \\ & 1260, \end{aligned}$	$\begin{aligned} & 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.61(5,3 \mathrm{H}), 2.28 \text { and } 2.75(\mathrm{ABq}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 6.13(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.7(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
$\underline{189}$	186-187	$\begin{array}{lr} \mathrm{C}, & 79.22 \\ \mathrm{H}, & 5.70 \end{array}$	$\begin{array}{r} 79.24 \\ 5.73 \end{array}$	$\begin{aligned} & 2990,1740,1680, \\ & 1375,730 \end{aligned}$	1.56(s, 6 H) , 2.86(s, 2 H$), 7.4-7.8(\mathrm{~m}, 4 \mathrm{H})$
18h	228-229	$\begin{aligned} & \mathrm{C}, 85.69 \\ & H, \quad 4.79 \end{aligned}$	$\begin{array}{r} 85.60 \\ 4.74 \end{array}$	$\begin{aligned} & 1740,1690,1370, \\ & 770,700 \end{aligned}$	$3.63(\mathrm{~s}, 2 \mathrm{H}), 7.0(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 12 \mathrm{H}), 7.7(\mathrm{~m}, 1 \mathrm{H})$

Table 7
Physical Properties of B-Alkoxy Enone 15

Compound	d $m p\left({ }^{\circ} \mathrm{C}\right)$	Elementar Calcd. (\%)	Analysis Found(\%)	$I R(X B r)$	${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$
15a	155-156	$\begin{aligned} & \mathrm{C}, 73.75 \\ & \mathrm{H}, \\ & 6.60 \end{aligned}$	$\begin{array}{r} 73.49 \\ 6.55 \end{array}$	$\begin{aligned} & 3320,2960,1650, \\ & 1635,1590,1170, \end{aligned}$	$\begin{aligned} & 0.82(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 3.96 \text { and } 4.56 \\ & (\mathrm{ABq}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.3-8.0(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
15b.	$178{ }^{\text {a }}$	$\begin{aligned} & \text { C, } 76.03 \\ & \mathrm{H}, \quad 7.09 \end{aligned}$	$\begin{array}{r} 76.22 \\ 7.18 \end{array}$	$\begin{aligned} & 3340,2920,1660, \\ & 1625,1590,960 \end{aligned}$	$\begin{aligned} & 1.56(\mathrm{~s}, 3 \mathrm{H}), 0.9-2.2(\mathrm{~m}, 10 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), \\ & 7.2-7.8(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
15c-ex	$170^{\text {a }}$	$\begin{aligned} & \mathrm{C}, 73.02 \\ & \mathrm{H}, \quad 6.13 \end{aligned}$	$\begin{array}{r} 73.14 \\ 6.09 \end{array}$	$\begin{aligned} & 3260,2950,1660, \\ & 1620,1595,955 \end{aligned}$	
35c-en		$\begin{aligned} & \mathrm{C}, 73.02 \\ & \mathrm{H}, \quad 6.13 \end{aligned}$	$\begin{array}{r} 72.91 \\ 6.15 \end{array}$	$\begin{aligned} & 3360,2960,1665, \\ & 1625,1595,1215 \end{aligned}$	$0.76(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 4.16$ (d, $J=8 \mathrm{~Hz}, \mathrm{lH}), 5.00(\mathrm{dd}, \mathrm{J}=4,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.8(\mathrm{~m}, 4 \mathrm{H})$
15d	177-178	$\begin{array}{rr} \text { C, } & 72.21 \\ \text { H, } \quad 5.59 \end{array}$	$\begin{array}{r} 72.26 \\ 5.57 \end{array}$	$\begin{aligned} & 3350,1660,1620, \\ & 1595,1570,1390 \end{aligned}$	$\begin{aligned} & 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, \mathrm{~J}=8,13 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{~J}=5,13 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 4.3-5.0(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.8(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
159	202.5-203	$\begin{aligned} & \text { C, } 73.02 \\ & \text { H, } 6.13 \end{aligned}$	$\begin{array}{r} 73.11 \\ 6.22 \end{array}$	$\begin{aligned} & 3260,1640,1630, \\ & 1590,1170,1160 \end{aligned}$	$\begin{aligned} & 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 4.04 \text { and } 4.63(\mathrm{ABq}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 5.61(\mathrm{~s}, 1 \mathrm{H}), 7.3-8.0(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$

a, Sublimed.

Yields and Physical Properties of 绍

Compound		Yield(\%)	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Elemental Calcd. (\%)	Analysịs Found (\%)	IR(KBr)	$\mathrm{I}_{\mathrm{H} \operatorname{MNR}\left(\mathrm{COCl}_{3}\right)^{a}}$
-88a 35	78		134-135	$\begin{aligned} & C, 71.31 \\ & H, \\ & \hline .34 \end{aligned}$	$\begin{array}{r} 71,59 \\ 6.61 \end{array}$	$\begin{aligned} & 2960,1750,1740 \\ & 1710,1235 \end{aligned}$	2.12(s, 2H), 7.6-7.8(m, 4H)
386	73		185-186	$\begin{aligned} & C, 73,60 \\ & H, \quad 6.79 \end{aligned}$	$\begin{array}{r} 73.43 \\ 7.84 \end{array}$	$\begin{aligned} & 2920,1755,1740 \\ & 1715,1240 \end{aligned}$	$\begin{aligned} & 1.0-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J} \times 16 \mathrm{~Hz}, 1 \mathrm{H}) \\ & 7.4-7.8(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
38t-ex	79		162-162.5	$\begin{aligned} & C, \\ & H, \\ & H, \end{aligned}$	$\begin{array}{r} 70.80 \\ 5.77 \end{array}$	$\begin{aligned} & 1760,1735,1715 \\ & 1245 \end{aligned}$	$\begin{aligned} & 1.9(\mathrm{~m}, 1 \mathrm{H}), 2.3(\mathrm{~m}, \mathrm{H}), 2.6(\mathrm{~m}, \mathrm{H}), \\ & 7.5-7.9(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
38 c -en	84		143-144	$\begin{aligned} & \text { C, } 70,57 \\ & \text { H, } \quad 5,92 \end{aligned}$	$\begin{array}{r} 70.67 \\ 6.02 \end{array}$	$\begin{aligned} & 1750,1735,1705 \\ & 1240 \end{aligned}$	$\begin{aligned} & 2.0-2.2(\mathrm{~m}, 2 \mathrm{H}), 3.3(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.5-8.0(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$
386	63		109-111	$\begin{aligned} & \mathrm{C}, \\ & \mathrm{H}, \\ & \hline 9.75 \end{aligned}$	$\begin{array}{r} 69.55 \\ 5.47 \end{array}$	$\begin{aligned} & 1760,1730,1710 \\ & 1240 \end{aligned}$	1.7-2.2(m, 4H), 7.3-7.9(m, 4H)
38e	85		255-257	$\begin{aligned} & \mathrm{C}, 79.00 \\ & \mathrm{H}, \quad 5.40 \end{aligned}$	$\begin{array}{r} 78.97 \\ 5.56 \end{array}$	$\begin{aligned} & 1760,1745,1720 \\ & 1235 \end{aligned}$	$\begin{aligned} & 2.96 \text { and } 3.23(\mathrm{ABq}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 7.2-7.8(\mathrm{~m}, 14 \mathrm{H}) \end{aligned}$
38f-ex	68		179-180	$\begin{aligned} & \mathrm{C}, 75.84 \\ & \mathrm{H}, \quad 5.79 \end{aligned}$	$\begin{array}{r} 75.66 \\ 5.76 \end{array}$	$\begin{aligned} & 1760,1750,1715 \\ & 1240 \end{aligned}$	$\begin{aligned} & 2.35 \text { and } 3.22(\mathrm{ABq}, \mathrm{~J}-17 \mathrm{~Hz}, 2 \mathrm{H}) \text {, } \\ & 7.2-7.8(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$
-38f-en	72		$\cdot 214-215$	$\begin{aligned} & \text { C, } 75.84 \\ & \text { H, } \quad 5.79 \end{aligned}$	$\begin{array}{r} 75.95 \\ 5.87 \end{array}$	$\begin{aligned} & 1760,1745,1715 \\ & 1240 \end{aligned}$	$\begin{aligned} & 2.27 \text { and } 3.67(\mathrm{ABq}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}) \\ & 5.9(\mathrm{~m}, \mathrm{H}), 7.0-7.8(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

a, Data of methyl protons are shown in Figure 5.

Scheme 1

Scheme 2

Figure 5. Comparison of the Chemical Shifts of Methyl Groups of 14 ($\mathrm{R}=\mathrm{H}$) with Those of 38 ($\mathrm{R}=\mathrm{Ac}$) given in Parentheses.

1.13(7.14)

1.61(1.65)

15

18
b, $R^{1}=M e, \quad R^{2}=R^{3}=M e$
c-ex, $R^{1}=R^{2}=M e, \quad R^{3}=H$
c-en, $R^{1}=R^{3}=M e, \quad R^{2}=H$
d, $R^{1}=M e, \quad R^{2}=R^{3}=H$
f-ex, $R^{1}=R^{3}=M e, \quad R^{2}=P h$
f-en, $R^{1}=R^{2}=M e, \quad R^{3}=P h$
g, $R^{1}=H, \quad R^{2}=R^{3}=M e$
$h, R^{1}=H, \quad R^{2}=R^{3}=P h$
e, $\mathrm{R}^{1}=\mathrm{Me}, \quad \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Ph}$

33

28

29

Scheme 4

Figure 1. ${ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right)$ Data of Selected Photoproducts.
(δ, ppm)

14a

a, 186.4
b, 109.1
c, 176.6
d, 74.6
e, 83.3
f, 45.2
15a

12e
a, 197.4
b, 66.1
c, 59.8
d, 82.1
e, 38.5
f, 59.1
a, 198.0
b, 58.3
c, 89.4
d, 206.5
e, 49.9
f. 71.1
$14 e$

18 g
a, 195.9
a, 198.6

b, 70.0
c. 87.3
d, 207.4
e, 48.1
f, 40.9
14f-en
a, 197.7
b, 69.3
c. 86.9
d, 208.9
e, 51.0
f, 49.3
14f-ex
-

Figure 2. The ${ }^{1} H$ NMR Assignments for 14 with $\operatorname{Eu}(\mathrm{DPM})_{3}$ Induced Shifts ${ }^{\text {a) }}$ given in Parentheses.

1.20(1.96)

a) Detexmined from the plots of shifts (in ppm) ps.molar ratio of $\mathrm{Eu}(\mathrm{DPM})_{3}: 14$ by least-squares method; concentrations

Figure 3. Photochemical reaction of the cyclobutanol 12a in benzene. Filled symbol shows the amount of 12a, while open symbols O, \square, and \triangle represent the amount of $14 \mathrm{a}, 15 \mathrm{a}$, and 13a.

Figure 4. Photochemical reaction of the cyclobutanol 12e in benzene. Filled symbol shows the amount of l2e. while open symbols \square, \bigcirc, and \triangle represent the amount of $11 e$, 14 e , and 13 a .

