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Abstract

A two-layer, quasi-geostrophic, low-order model 1is con-
structed to investigate the nonlinear interactions between the
zonal flow, topographically forced waves and free baroclinic
waves. In Part I free baroclinic waves are excluded to direct our
attention to the zonal flow-forced wave interactions.

In the conservative case, without external thermal forcing
and dissipation, equilibrium solutions are obtained and the reso-
nance condition in the present two-layer model 1is examined.
Multiple flow equilibria are also obtained 1in the non-
conservative case. However, unlike the barotropic model of
Charney and DeVore(1979), there do not exist two stable
equilibria. A multiplicity of the time-dependent solutions 1is
found in a certain range of the external parameters. There exist
two or more stable periodic(or aperiodic) solutions for the same
external conditions. The selection of a solution depends on the
initial condition.

As the external thermal forcing parameter increases or de-
creases by bits, the period of a stable periodic solution can be-
come doubled, quadrupled, and so on. Finally aperiodic solutions

appear through the period-doubling sequence phenomenon,



1. Introduction

The nonlinear interaction between the zonal flow and free
baroclinic waves was 1investigated in our previous paper
(Yoden, 1981; hereafter referred to as ¥Y8l) using a two-layer
quasi-geostrophic spectral model on a B-plane. In Y81 it was
shown that the zonal flow-baroclinic wave interaction is one of
the possible mechanisms for the quasi-periodic variation in the
atmosphere with time scales of two to three weeks.

However, it has been well known that planetary waves forced
by the large-scale topography and land-sea distributions play an
important role in the general circulation of the atmosphere as
well as free baroclinic waves. Especially, quasi-stationary
phenomena such as the atmospheric blocking are considered to be
strongly influenced by the forced planetary waves. Some numerical
experiments with a realistic lower boundary condition have shown
that the blocking is closely related to the topography and land-
sea distributions (Kikuchi, 1969, 1971; Bengtsson, 1981).

Recently Charney and DeVore(1979; hereafter referred to as
CD) studied the interaction between the 2zonal flow and
topographically forced waves in a barotropic model with vorticity
source and frictional dissipation. They treated the nonlinear
interaction explicitly by using highly-truncated spectral expan-
sions with an idealized topography of a single Fourier component.
In a certain range of the external forcing they found two stable
equilibrium states(i.e., steady and stationary states) for the
same external conditions. One of the stable equilibrium states is
a high-index circulation with a strong zonal flow and a small-
amplitude wave. The other is a low-index circulation(or a block-

ing state) with a weak zonal flow and a large-amplitude wave. The



concept of the multiple flow equilibria shown by CD is a new de-
parture for understanding the blocking mechanism.

Multiple equilibria in a baroclinic system were investigated
by Charney and Straus(1980; referred to as CS) and Roads(1980)
with a two-layer model. Both of them obtained multiple
equilibrium solutions associated with a single wave with the
gravest meridional mode. But only the low-index(blocking) state
is stable and there do not exist multiple stable equilibria as in
the barotropic model of CD. They also obtained some time-
dependent solutions by numerical integrations. CS had a periodic
solution which is characterized by a westward propagating wave
interacting with a fluctuating zonal flow. However, their
numerical experiments were not done very systematically and there
still remains uncertainty in the conditions for the appearance of
the steady solutions, periodic solutions and aperiodic solutions.

In this paper we study the nonlinear interactions between
the zonal flow, topographically forced waves and free baroclinic
waves, using the highly-truncated spectral model of Y81 with some
modifications.

In Part I free baroclinic waves are excluded to direct our
attention to the interaction between the zonal flow and planetary
waves influenced by a topcgraphy. The system used in Part I is
similar to that in CS, except for the values of the external par-
ameters. Equilibrium solutions are obtained in cases with and
without the external thermal forcing and dissipation in order to
discuss the resonance condition and the multiplicity of solu-
tions. Stability of the equilibrium solutions is also analyzed by
solving an eigenvalue problem of the linearized equations. In a

non—-conservative case with source and sink terms, numerical



integrations are performed to investigate the time-dependent be-
havior of the system such as its attraction to a steady state,
its periodicity and aperiodicity. The conditions for the appear-
ance of these equilibrium solution, periodic solution and ap-
eriodic solution are examined by varying the external parameters.

The interactions between the zonal flow, topographically
forced planetary waves and baroclinically unstable waves
(represented by higher harmonics of the forced wave) are

investigated in Part II.



2. Model description

A two-layer qgquasi-geostrophic model in a mid-latitude
B-channel was constructed in Y81, which was based on Lorenz's
model (1963) for the study of the mechanics of vacillation in the
rotating annulus experiments. Here we include an effect of the
surface topcgraphy in the model through a modification of the
lower boundary condition. The governing equations for the two-
layer model (Fig. 1) are as follows;

the vorticity equations,

FEV = - I, VR ) - I ) - agk 4 Sl

- k( V%y - V371 ) (2-1)
%EVZT =-J(y, V2t ) - J( 1, V2 ) - %% + %%wz - §§%wu

+ k( V2 - V27 ) - 2k'V2q (2-2)
the thermodynamic equation,
® o g( v, 8) + Jw, + H( 6% - 8 ) (2-3)
ot AP
the thermal wind equation,
VZe = AV?t (2-4)
and the lower boundary condition,
wy = - pygJ( Y-1, h ) (2-5)



Here the following notation is employed;

t time
J(a,b) horizontal Jacobian(= %a 3b _ 3a 3b )
szay gy oX
2 . . 3 )
=92 __+ &
\% horizontal Laplacian( 52 TR )

horizontal average
Y(xX,y,t) stream function for the bertically averaged wind
1(x,y,t) stream function for the vertical wind shear
w(x,y,t) vertical p-velocity

6(x,y,t) mean potential temperature

6*(x,Y) prescribed equilibrium potential temperature
h(x,y) topographic height
o horizontally averaged static stability
o} air density(p, = 1.225 kg/ma)
g gravitational acceleration(9.8 m/sz)
£, mean Coriolis parameter
B variation of Coriolis parameter with latitudinal length
2k frictional coefficient at the lower boundary
k! frictional coefficient at the interface
H heating coefficient for Newtonian heating
A a constant depending on the properties of fliud,
A= £l LR - Byt
where Cp is the specific heat at constant pressure and ¥k is the

ratio R/Cp (R is the gas constant for dry air.).

In (2-3) we assume 0 to be constant in time. This is re-
quired in order to avoid the third order nonlinearity and is
physically consistent with the fact that the static stability is
determined primarily by moist convection (see CS). An analysis of

energy budget shows that the sum of the potential and internal



energy is conserved when friction and heating are absent. There-
fore the total energy is not conserved in this model. 1In such a
case, however, the sum of the kinetic and available potential en-
ergy is conserved if the latter is defined by

_foPu_L _ A 22
APE= 9 = II (6 9 )° dx dy (2-6)

The vertical p-velocity at the surface is calculated in
(2-5) by use of the stream function in the lower layer. 1In this
formulation of w, the topography does not give a net contribution
to the time rate of change of kinetic energy(Yao, 1980).

We transform the equations (2-1)-(2-5) into a spectral form.

First we expand the field variables in orthogonal functions as

follows;
\
FO =1
= my
FAm = y/2 cosT
(2-7)
]
= aY ooshX
FK% 2 SlnI, cosL
- inY ojn DX
FL% 2 51nIJ 51nL
)

which satisfy the lateral boundary conditions at y = 0 and
y = mL. Substituting the spectral expansion into (2-1)-(2-5) and
eliminating T and w components, we finally obtain a set of ordi-
nary differential equations for the expansion coefficients, wi(t)

and ei(t). (Here subscript i is one of An, K3 or LA.)



(o] oo

b e Ly cand SHEEAR R AR
+ 0¥y -0 0h = (¥ -6 )h, )+ szl by by ]
- k(y, -6, ) (2-8)
(1+6—0‘_f‘-?)éi - ai'zljzl kOgjcijk{(ajz- a,’ -(-jl—o)wjek+ (aj2~ ak2+0—lo) 0.V,
= (b =8 )h + (¥ - 6 )Ry} + ejzlbijej ]
+ k(¥ -6, ) - 2k'e, - 5;227( 6.% - 0, ) (2-9)

Here V¥ is non-dimensionalized by L?f,; 6 and o by AL?f,; B by

fo/L; k, k' and H by £fo; and t by 1/£o. The coefficients a; ,b
1

ij
and C;yk are given by
L2V2F, = - a,’F, (2-10)
1 1 1
2r = ] b,.F b.. = LF,o_F, (2-11)
9xX j ic1 ij i ! ij iox j
o]
2 = = L? I F (2-12)
L J(Fj,Fk) izl cisxFi ¢ Cig - U FiJ(FJ, )

We truncate the expansion by retaining a few components of
the meridional mode m=1,2,..,M and the wavenumber
n=ngy,2no,..,Nny,. Then (2-8) and (2-9) constitute a set of
2Mx (2N+1) ordinary differential equations. In this paper we set
M=1 or 2 and N=1, 2 or 3. Hence we have a dynamical system with
28 degrees of freedom for least severely truncated case(M=2 and

N=3). Table 1 shows the interaction coefficient Cyix with non-

j



zero value. The systems for M=l can depict the wave-zonal flow
interactions, while those for M=2 can depict both the wave-zonal
flow and the wave-wave interactions. If we put M=2 and N=1, we
obtain the same spectral equations as in CS except for the values
of constant coefficients.

The parameter values used in the present model are given in
the remainder of this section. As in Y81 we adopt an infinite
channel on a B-plane with lateral boundaries at 20°N and 70°N.
Then the Coriolis parameter fo and B are given as values at 45°N:
£, = 1.03 x 1074571 (2-13)
B = 1.61 x 10 *nis7t

The wavenumber n is related to the zonal wavenumber n
in the latitude circle at 45°N by

h = a-n-cos45 /L (2-14)

where a is the radius of the earth. Hereafter fi will be used 1in
practice.
Unless otherwise mentioned, we use the same values of

frictional and heating coefficients as in Y81l. Then

2k = 0.02
k' = 0.005 - (non-dimensional) (2-15)
H = 0.01 ]

which correspond to e-decaying times of 5.63 days, 22.5 days and

11.3 days, respectively.



We restrict the prescribed potential temperature to 1its
first zonal component ezl. As a control external parameter, Gzl
will be varied from 0 to 0.2 . The corresponding temperature dif-
ference across the channel is from 0 K to 150 K at the radiative
equilibrium state. In this paper we do not discuss an effect of
the variation of diabatic heating in the longitudinal direction.

As for the static stability we set o, = 5.64 x 10_2, and in
dimensional form 2G/AP = 30 K/500 mb.

We describe the surface topography by a single component of
hxi, which 1is the lowest zonal wavenumber (n,) and the gravest
meridional mode. The amplitude of the topography is fixed at 1 km
(non-dimensionalized value hK§0= 6.01 x 10"2). (For the earth's
topography in middle latitudes, the amplitudes of the zonal wave-

numbers n = 1 and 2 are roughly 1 km, and that of n =3 is 600 m.

Amplitudes for n > 4 are much smaller.)



3. Multiple equilibria and their stability(M=1)

In Part I we set N=1 and investigate the interaction between
the zonal flow and topographically forced waves. In most highly
truncated case(M=1, N=1l), we obtain a dynamical system of six

equations as follows;

o 0

b, = h” (v, -6, ) - k(¥,-6,)

b = —al YU + 6,0 ) +BY -k (h,-6,)

Vp = al by, + 6,0, ) -hn(‘pA_eA) ~ B~ k(Y -0,)
(14796, = v%( y 6. - 6.y ) -0y -0, ) +ky. - 2%  +rOup*

A KL K7L L L LN A HO Y
(1+F“)eK = - (a+y“)¢AeL - (a—y“)eAwL +B'O, +ky, - zneK
(1+F“)éL = (a+y“)¢AeK + (a-y™) 0,V +h“(¢A—eA) - B'0, +ky, - z“eL

where the superscripts and subscripts of Aq, KT and L? are

omitted. The positive constants in (3-1)-(3-6) are given by

2
n

¢ T "7 1 Cakn
n

I = ———

8 n? + 1 B

. l ]

1 _

Fro= st iz v 1)

yi = - Flc . i=0o0rn
AKL
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T 717 + 1 CaxkL

25 =k + 2k' + Fliy

h = -
where c, .. 3.0,

a. Resonance in the conservative case

First we consider the conservative case by setting k, k' and
H equal to zero. If we put the time derivatives in (3-1)-(3-6) e-
qual to zero, we obtain two sets of equilibrium solutions.

One of them is given by

( '
Ya T B = %E (3-7)
{ v = 6 (3-8)

where K and L components can be determined arbitrarily. There is
no flow in the lower layer because every Yy component is equal to

the corresponding © component and ©; = T, due to the thermal wind

]

relation. 1In the upper layer the zonal flow(wAi-eA) is %; and
the wave component has arbitrary amplitude and phase. In this
equilibrium state, the Jacobian term is balanced with the beta
term and no topographic effect appears because there is no flow

in the lower layer. The zonal flow in the upper layer has the

value for which a Rossby wave with the same scale as that of the

- 11 -



topography becomes stationary- This value corresponds to the re-
sonant value for the barotropic case in CD. But the equilibrium
state in the present case is not a resonance because the wave 1in
the upper layer is independent of the topography. Note that the
resonance condition obtained in CS is incorrect, which is iden-
tical to (3-7) in the present notation.

The other set is

( _ n
Ve = hTCu, -6, ) {laryMy, - 8' + as,}/D (3-10)
_ n
Ok = = B 0¥, -6, V{ay, - 8" - (v"-w)6,}/D (3-11)
ﬁ
b =8, =0 (3-12)
\ D=(ay, - B ){(a+Yn)wA - B'} + a(yn—a)Q; (3-13)

where the zonal components wA and eA have arbitrary wvalues. 1In
this equilibrium state three terms in (3-3) and (3-6), i.e., the
Jacobian term, the topographic term and the beta term, are
balanced for any zonal wind. The wave components are purely in
phase or out of phase with the topography depending on their sign
of K components. When the numerator in (3-10) or (3-11) is not
zero and the denominator D tends to zero, the amplitudes of the
wave become positive or negative infinity. Therefore the condi-

tion for resonance is

D =0 and h® ¥ 0 (3-14)

and

except for the indefinite cases of ( wA, GA) = 25 ' 29

- 12 -



B' Bl

('Vﬁri?ﬁ)o The condition D=0 is an ellipse in y,- 6, plane for

A
a<y®™, This inequality is transformed to con?<1, and n<ll for the
parameters given in the previous section.

The magnitudes of Yg and 6, for n=3 are shown in Figs.2-(a)
and (b). The resonance curve (3-14) and some other characteristic
lines are also shown in Fig.2-(c). Positive Y, indicates the
westerly mean zonal wind and positive 6, means that the zonally-
averaged temperature decreases with latitude. Resonance occurs
only in the westerly mean zonal flow(wA>O) and the greater part
of resonance curve exists for the westerly flow in the lower
layer(wA—6A>0). If the zonal wavenumber n is increased, the reso-
nance curve shifts toward the origin and the resonant area de-
creases, because the value BY/o is decreased in proportion to
1/n2.

Next we analyze the linear stability of the equilibrium
solutions. Equations (3-1)-(3-6) are linearized for small per-
turbations from the equilibrium state. Compared with the con-
ventional baroclinic instability analysis, the present system has
three differences: (l) a perturbation of zonal components, (2) a
basic state with wave components, and (3) an inclusion of
topographic term. Letting the perturbation be proportional to

ot .
e , we obtain the growth rate o, as a real part of the complex

eigenvalues of the 6x6 coefficient matrix. If the eigenvalued is
real and positive, the perturbation grows without propagation.
This instability was termed orographic form-drag instability by
CS(Hereafter the term 'topographic instability' is used in place
of 'orographic form~-drag instability'.). If o is a complex number

with positive real part, such an instability is a

topographically-modified, baroclinic instability(We use the term

- 13 -



'modified baroclinic instability' instead of 'topographically-
modified, baroclinic instability' for simplicity.).

Fig.2-(d) shows the growth rate for the most unstable mode.
Dotted area 1is the region of the topographic instability,
oblique-lined area the region of the modified baroclinic
instability and the rest of the domain is a neutral region. The
equilibrium solutions are topographically unstable outside the
resonance curve and neutral inside it with some exceptions near
the origin. 1In the topographically unstable region the growth
rate becomes large either as the zonal components wA and eA_ ap-
proach the resonance condition, or as the zonal flow in the lower
layer(lwA— GAb becomes large in the off-resonant area. The mod-
ified baroclinic instability surpasses the topographic

instability in the region of large GA and small IwA—GA

. In other
words, the zonal flow profile with large vertical shear and weak
flow in the lower layer is preferred by that mode. The growth
rate of the modified baroclinic disturbance becomes large as the
zonal flow in the lower layer becomes weak.

These stability properties of the equilibrium solutions re-
main similar in cases of other zonal wavenumbers. But the area
where the modified baroclinic instability surpasses the

topographic instability increases as the 2zonal wavenumber 1is

increased.

b. Non-conservative case

If we take account of the effects of heating and friction

described in section 2, the system has energy sources and sinks

- 14 -



due to the zonally symmetric Newtonian heating, the frictional
dissipation and the eddy components of the diabatic heating. For
such a non-conservative case we can obtain all equilibrium solu-
tions of equations (3-1)-(3-6) using the same method as that in
CS.

Presented in Fig.3 are all the equilibrium solutions within
the range of OépﬁéeA* for 0<6Aﬁ§0.é. The zonal wavenumber is a-
gain n=3. For 0<6,*%<0.09 there exists only the Hadley solution
with no wave components. 1In the same way as in CS, the Hadley
solution is given by

r

- - % —
Ya = 8 = 3x75, v 1 °a (3-15)

wK = 8 = q}L = eL = 0 (3—16)

L

There is no topographic effect for this solution because there is
no flow in the lower layer.

When the parameter of differential heating GA* exceeds the
critical value((eA*)c=0.09), there appear two wavy equilibrium
solutions indicated by Wl and W2. As the heating parameter GA*
increases, the amplitudes of the wave components become large,
while those of the zonal components change a little. The zonal
components of the equilibrium solutions are plotted 1in wA—eA
plane of Fig.2-(c). Both wavy solutions are bifurcated from the
Hadley solution at a point close to (wA,eA)=( 7&, %é). The W1l
solutions are located inside the resonance curve in the conserva-
tive case while the W2 solutions outside it.

As the zonal wavenumber increases, the magnitude of the zon-

al components at the bifurcation point decreases: wA=6A=0.084 for

- 15 -



n=3, 0.048 for n=4 and 0.031 for fi=5. These values are also close
to B'/2a for each wavenumber. For n=4 and fn=5 there exist four
wavy equilibrium solutions for the same eA* in a small range near
the bifurcation point. Additional two wavy solutions appear as a
result of bending of the branch of W2 solutions. The appearance
of new wavy solutions is similar to that in CS. However, the ap-
pearance is not connected to the existence of both of baroclinic
and topographic instability of the Hadley solution contrary to
their conclusion. For n=1 or n=2, on the other hand, there is no
wavy solution in the range of 0<eA*20.2. Because the value of
B'/2a is 0.750 for n=1 and 0.187 for n=2.

The stream functions of three equilibrium solutions for n=3
and eA*=0.15 are presented in Fig.4. The Hadley solution has no
flow in the lower layer (Egqs. (3-15) and (3-16)). The W1l solution
is nearly out of phase with topography and the W2 solution is
nearly in phase. In both wavy solutions, the trough line has a
westward tilt with height. The stationary wave transports heat
northward. The sum of the convergence of the heat flux due to the
meridional circulation and the stationary wave balances the time
rate of the diabatic heating. Compared with the Hadley solution,
the rate of the heating is large because of the small value of
0,

Next we analyze the linear stability of the equilibrium
solutions in the non-conservative case. Fig.5 shows the growth
rates (o) of the perturbation. Pure real eigenvalue is denoted by
a dot and eigenvalues of complex conjugate are denoted by a
plus-sign. The Hadley solution 1is stable for 0<eA*<0.09,

topographically unstable for 0.09;6Aﬁ;0.ll, and baroclinically

unstable (influenced by the topography) for 0.ll<6A*. Note that

- 16 -



the point at which the topographic instability arises coincides
with the bifurcation point of the wavy solutions, (OA*)C- The
broken line in the figure shows the growth rate in the case of no
topography, i.e., the purely baroclinic instability. Topographic

effect reduces the growth rate and then shifts the critical wvalue

&
A‘

All the W1l solutions are stable, while W2 solutions are

to larger 6

baroclinically or topographically unstable. These stability prop-
erties correspond to those in the conservative case: Equilibrium
solutions 1inside the resonance curve are neutral and those out-
side it are unstable(see Figs.2-(c) and (d)).

In the present case there do noé exist multiple stable
equilibria like the high-index and blocking states in CD. The on-
ly stable equilibrium solution is the Hadley solution for
GA*<(9A*)c and the W1l solution for BA{;(GA*)C.

This is similar for n=4 or n=5 with a small exception near
the bifurcation point. Both wavy solutions are stable near that
point. Indeed two stable equilibrium solutions exist in the small
range around 6,%=0.052 for n=4 and 0.034<6,%<0.036 for n=5.
However, near the bifurcation point two wavy solutions have only
small difference from each other. Therefore the multiple stable
equilibria 1in the present two-layer model are different from
those in the CD's barotropic model.

Somé numerical integrations are performed to clarify the
global structure of the system (3-1)-(3-6). Trajectories of the
time-dependent behavior are projected onto wA - wK and Yy —wL
planes (Fig.6). Initial states are unstable equilibrium

solutions(the Hadley and the W2 solutions) with small perturba-

tions. The initial behavior depends on the initial condotion. But

- 17 -



once captured by the attractor basin of the W1l solution, the de-
pendent variables asimptotically approach the W1l solution with a
similar trajectory- This behavior agrees with the linear
stability analysis(Fig.5): The W1l solution is a stable focus.
Attraction to the Wl solution requires about 1,000 time steps(in

dimensional 112.5 days).

- 18 -



4, System with two meridional modes (M=2)

a. Role of the second meridional mode

In the previous section we restricted the meridional mode to

only one component. In such a case it is impossible to depict the
barotropic process by eddy momentum flux, because the wave is
symmetric in the horizontal plane without tilting of the trough
and ridge lines. Time-variation of the zonal component is de-
termined by the eddy heat flux, the topographic term and the for-
cing and dissipation terms(Egs. (3-1) and (3-4)). If the second
meridional mode is permitted, it becomes possible to depict the
barotropic process. Interactions betweén the waves of the first
and the second meridional modes contribute to the time wvariation
of zonal flow of the second mode (Table 1).

When we permit the second meridional mode by setting M=2, we
obtain a dynamical system with 12 degrees of freedom. Equations
(3-1)-(3-6) for the case of M=l constitute a sub-system of the
present system when we take all the second mode components equal
to zero. Therefore, the equilibrium solutions obtained in the
previous section(Fig.3) form a part of the equilibrium solutions
in the present system(M=2).

However, this 1is not the case for M=3,4...., because the
interaction between the lowest modes produces the higher modes.
For example, in the case of M=3 the interaction between K, and L

1 1

components produces A, component as well as A, component because
3 p

1
of CA3K1L1¥0 (see Yoden, 1979). In such an extended system of M=3
the equilibrium solutions in the system of M=1 are no longer one

part of the equilibrium solutions.

In the present system of M=2 it is difficult to obtain all
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the equilibrium solutions by a similar manner as that adopted in
CS. Therefore we are not concerned with the equilibrium solutions
with the second meridional mode except for the solutions obtained
by numerical integrations.

The stability of the equilibrium solutions is examined by
solving an eigenvalue problem of the 12x12 coefficient matrix of
the linearized equations. For the equilibrium solutions of the
first meridional mode, the characteristic equation can be re-
written in the product of two sixth-order equations of for the
first and the second meridional mode perturbations. The stability
properties for the first mode perturbation are identical to the
result obtained in the M=l case(Fig.5 for n=3). The growth rate
for the second mode perturbation is shown in Fig.7. The Hadley
solution 1is topographically unstable for the second mode per-
turbation 1in the range of 0.0{26A*<0.054 and baroclinically un-
stable for 0.054;6A*- In the case of 1fi=3 the Hadley solution 1is
more unstable with respect to the second mode perturbation than
the first mode for eA*:O'l74' However, the selection of the most
unstable mode depends on the wavenumber (e.g., for n=5 the first
mode perturbation has a larger growth rate than the second mode
for most of eA*). This is due to the dependency of the stability
criteria and the growth rate on the square of wavenumber(m2+n2).

Both of the wavy solutions are baroclinically unstable
(topographically affected). Here we use the term 'baroclinically
unstable' in the sense of instability with 0,70 (propagating
disturbance). Indeed barotropic conversion terms are also
included in the perturbation equations as well as baroclinic con-
version terms. Note that the W1l solution is unstable with respect

to the perturbations of the second meridional mode. Therefore all
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the equilibrium solutions which was obtained in the system of the

first mode components (M=1) are unstable for 0.04;9A* in the pre-

sent system of M=2.

b. Numerical solutions

When all the equilibrium solutions of the first meridional
mode are unstable in the M=2 system, there may exist equilibrium
solutions with the second meridional mode or time dependent solu-
tions which are either periodic or aperiodic. Some numerical
integrations were performed to find thém. Appearance of these
solutions depends on the external parameters. 1In this subsection
the dependency on the external forcing parameter GA* is
investigated by changing the parameter bit by bit.

The result is summarized in Fig.8. For ©,%<0.038 there ap-
pears the Hadley solution even if we include the second mode per-
turbation. When the Hadley solution becomes unstable(eA*=O.04 and
0.042), twelve variables in the system converge to either of the
two steady solutions with wave components depending on the ini-
tial conditions. The equilibrium values of each component are
listed in Table 2. Two stable equilibrium solutions have the same
first meridional components and have the opposite sign of the
second components each other. 2onal components of the first
meridional mode and wave components of the second meridional mode
have large amplitude in the equilibrium. It is impossible,
however, to confirm that these two solutions are all the
equilibrium solutions with both of the meridional modes, because

they were obtained by numerical integrations with several initial
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conditions.

For 6,%=0.044 and 0.046 there appear two periodic solutions
depending on the initial condition. Trajectories for eA*=0.046
projected on three phase planes(wAl—wAz, wAl-wKz and wAl—sz
planes) are shown in Fig.9-(a). Two periodic solutions are
oscillations around the unstable equilibrium solutions and they
are symmetric with respect to the axis of the second mode compo-
nents wX2=0(X is A, K or L). Namely one periodic solution has the
second mode components with opposite sign of that of the other
solution. Period of the oscillation is 74.3 days for eA*=0.044
and 79.4 days for GA*=0.046. In these periodic states the ampli-
tude and phase of the wave components fluctuate around a mean
value and the wave does not propagate to one direction.

For GA*=0.048, two periodic solutions are coalescent and the
trajectories are complicated(Fig.9-(b)). This is a transition
stage from (a) unsymmetric oscillation with respect to the second
meridional modes to (c) symmetric oscillation. Symmetric oscilla-
tion (b) has both of the properties of the periodic solutions (a)
and (c). Period of the oscillation is 181.7 days for the first
mode variables.

For further 1increased GA*(;O.OS) there appears another
symmetric oscillation with respect to the second meridional
mode (Fig.9-(c)). The variables of the second meridional mode
oscillates with a double period(l57.4 days) of the first
mode (78.7 days). In this periodic state all the wave components
propagate westward. There is no structural change of the periodic
behavior 1in the range of 0.0§§6A{§0.2. As eA* increases, wave

amplitudes of the second mode components become large but other

components change a little. Namely the increase of the differen-
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tial heating is mainly compensated by the increase of the eddy
heat flux by the second mode wave. The period of the oscillations
does not depend on BA* so much and are 60-70 days.

These periodic solutions are not similar to those obtained
in CS, in which the first meridional mode wave propagated west-
ward while the second mode wave propagated eastward. The dif-
ference between the periodic solutions is discussed in detail in

the next subsection.

c. Some other results with halved frictional parameters

For the external parameters given in section 2, there ap-
pears only one periodic solution for 0.048;6A*. However, two or
more periodic solutions are discovered in the cases with a small-
er frictional parameter for the same external conditions. In this
subsection we halve the value of frictional parameters used so
far; 2k=0.01 and k'=0.0025. Figs.l0 show the two periodic solu-
tions for eA*=o.14. If the Hadley solution or the W1 solution
with small perturbation is taken as an initial condition, there
appears the periodic solution (A). On the other hand, the peri-
odic solution (B) appears for the initial condition of the W2
solution. Here the equilibrium solutions of the first meridional
mode conponents do not change substantially by halving the
frictional parameters, except for the appearance of two addition-
al wavy solutions by the bending of the W2 branch.

The first mode components of the solution (A) have a period
of 49.9 days and those of the solution (B) have a period of 10.1

days. In the periodic solution (A) the second mode wave has a
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large amplitude and both of the wave components propagate west-
ward. In the periodic solution (B), on the other hand, the first
mode wave has larger amplitude than the second mode and the sec-
ond mode wave propagates eastward. The periodic solutions
obtained in the previous subsection are similar to (A) and those
in CS are similar to (B).

As GA* increases or decreases, the periodic solution (A)
does not have a structural change of the periodic behavior. On
the other hand, the solution (B) has a quite different behavior
depending on the external parameter eA*. The period of the
oscillating solutions is plotted in Fig.1ll and some typical
trajectories projected on wAl—wKz plane are presented in Figs.1l2,

There appears the periodic solution or aperiodic solution of
the type (B) for eAf;0.132. Here the discrimination between peri-
odic and aperiodic solutions were taken in the integrations for
30,000 non-dimensional time steps(in dimensional 3,375 days). Ap-
eriodic solution is denoted by a cross on the abscissa in Fig.ll.
Figs.12-(1) and (2) are trajectories for both of the periodic
solutions (A) and (B) for eA*=0.135. The solution (A) 1is
symmetric with respect to the second meridional mode but the
solution (B)' is not symmetric.

However, the solution (B) becomes symmetric in the range of
0.1356=<6A*=<0.1454(Fig.lz—(3)). When 6,* exceeds a critical
value (=0.1455), the symmetry of the periodic solution breaks down
again with respect to the second mode components. There appear
two periodic solutions of type (B), which have the second mode
components with opposite signs each other. One of them are shown

in Fig.l1l2-(4). Period of the first mode components is doubled and

equal to that of the second mode components. With increasing 6,%*
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the period-doubling bifurcations take place and there finally ap-
pears an aperiodic solution for 0.1508<6,%<0.153(Figs.125(5) and
(6)).

When eA* is increased further, there appears another peri-
odic solution of 78.7 days(eA*=0.1531) and the period-halving
transitions take place at eA*=0.15325 and BA*=0.15448
(Figs.12-(7), (8) and (9)). Again aperiodic solutions appear
within the range of 0.1548;6A{§0.1685(Fig.lz—(lO)). At GA*=0.1686
periodic solution appears as shownin Fig.l12-(11l) and the period-
halving transition takes place at eA*=0.1819 (Fig.1l2-(12)).

For a wide range of GA* there exist at least two time-
dependent solutions: Periodic solution (A), and periodic or ap-
eriodic solution(s) of type (B). There is a large difference in
the time-dependent behavior between the two solutions of (A) and

(B) .
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5. Discussion

In the conservative case of M=l we obtained the resonance
condition(Fig.2). Contrary to CS's result, there is an infinite
number of combinations of mean zonal wind wA and mean wind shear
TA(=GA) which satisfy the resonance condition (3-14). This is a
distinctive feature of the baroclinic atmosphere. It was shown by
Tung and Lindzen(1979) that there is an infinite number of wind
configurations that can satisfy the single resonance condition:
The resonance condition is a function of the mean zonal wind over
the whole region between the ground and the turning level. The
resonance condition obtained in section 3 is a specified one for
the present two-layer model. The resonance condition for the
barotropic case is wA =BY% a in the present notation and is
included in (3-14) with 9,=0. For the case of (b, +8,) =

( i', 0 ), wave component ¥, has infinite value and 6K=—hn/Yn.

As regards the topographic instability we analyzed the line-
ar stability of the equilibrium states obtained in the conserva-
tive case. Most of the wavy equilibria outside the resonance
curve in Fig.2 are found to be topographically unstable. Namely
the perturbation embedded in the wavy equilibria grows without
propagation. The growth rate is large even in the off-resonant
area and e-folding time is of the order of 0.5-2.0 days. The
topographic instability is very interesting in connection with
the amplification of large-scale planetary waves. An analysis of
the NMC tropospheric data shows that in wintertime planetary wave
of n=3 amplifies with time-scale of several days in a quasi-
stationary state(Itoh, 1983).

In the non-conservative case with source and sink terms, we

obtained the multiple equilibrium solutions(Fig.3). It is also



interesting to note that the type of bifurcation in the present
two-layer model is different from that in the barotropic model.
In the present model new wavy solutions (Wl and W2 solutions)
branch from the Hadley solution when the primary Hadley solution
becomes unstable(cf., Fig.5). The lowering of the degree of
symmetry in the system takes place in connection with the
bifurcation: The Hadley solution has no wave component but the
wavy solutions branch off from it. This is one type of the
bifurcations appearing in the steady problem of the fluid
dynamics (see Matsuda(1982b) as for a general account on the
bifurcations and symmetry breaking in fluid phenomena). An exam-
ple of this type is the Bénard problem, in which the convection
solution branches off from the heat conduction solution.

As shown in Fig.l1l3 for CD's barotropic result, on the other
hand, the equilibrium solutions appears above the snap
point (denoted by S). These are slightly above resonance solution
(2) and high-index solution (3). There exist three equilibria to-
gether with pre-existing, slightly below resonance solution (1).
For a large external forcing parameter wA*, the branches (1) and
(2) are coalescent and there exists only the solution (3) above
the critical value(out of range in Fig.l1l3). Because the branches
(1) and (3) are always stable and the branch (2) 1is unstable,
this type of bifurcation is characterized by the appearance and
disappearance of a pair of stable and unstable solutions. An ex-
ample of this type is found in the model of the circulation sys-
tems in the Venus atmosphere(Matsuda, 1980, 1982a).

If the second meridional mode components are
permitted(section 4), there exist several types of solutions de-

pending on the external parameters. As shown in Fig.8, there
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takes place a transition of solutions with increasing GA* : the
Hadley solution > steady solution »> unsymmetric periodic-solution
(vacillation) = symmetric periodic-solution (vacillation). This
transition resembles that 1in the zonal flow-baroclinic wave
interaction model without topography(Lorenz, 1963; Yoden, 1979).
However, in the present parameter range of GA*, there does not
appear the corresponding upper Hadley regime for a large thermal
Rossby number (=6,*). This difference is probably due to the as-
sumption of constant static stability- In the interaction model
of Lorenz(1963), the static stability 0ois determined dynamically
and has a large value for large 9,¥ . This stabilization
suppresses the baroclinic instability in the upper Hadley regime.

For smaller values of frictional parameters there appear
irregular solutions. This is also consistent with the result in
the interaction models of Lorenz and Yoden, in which the transi-
tion from vacillation to irregular regime takes place with
increasing the Taylor number. The Taylor number 1is inversely
proportional to the square of frictional coefficient. The transi-
tions from the Hadley solution to the irregular solutions via
steady and periodic solutions are general properties of the non-
linear baroclinic systems, although there are some differences
due to the inclusion of the topography and the assumption cf con-
stant static stability-

The period-doubling sequence phenomenon was found in cases
with smaller frictional parameters(Figs.ll and 12). As the exter-
nal forcing parameter GA* increases or decreases by bits, period
of the stable periodic solution becomes doubled, quadrupled, and
so on. This phenomenon is interesting in connection with the

transition from periodic solution to irregular one. The period-
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doubling sequence is also obtained in the barotropic model of CD.
Fig.1l4 is a result for the barotropic case with 6 degrees of
freedom(M=2 and N=1 in CD). When the external forcing wA* exceeds
a critical value(=0.205), there appear periodic solutions by a
Hopf bifurcation (see e.g., Marsden and McCracken, 1976). As wA*
increases, the period-doubling bifurcations take place and final-
ly aperiodic solution appears. The dependency of the solutions on
the external forcing parameter is more complicated in the two-
layer model(Fig.ll) than in the barotropic model. Similar
period-doubling phenomena were also found in the numerical an-
alyses of the amplitude equations governing the dynamics of a
weakly unstable finite-amplitude baroclinic waves(Pedlosky and
Frenzen, 1980; Pedlosky, 1981l). They discussed the relation be-
tween their results and the work of Feigenbaum(1978) on the uni-
versality of the period-doubling structure in a large class of
recursion relations xn+l=Af(xn). However, it is difficult to
clarify the strict relations between the result obtained here and
the workK of Feigenbaum(1978). We only gave some numerically an-

alyzed results for the dynamical systems applied to a problem of

the atmospheric circulation.
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6. Summary

A two-layer, quasi-geostrophic, low-order model in a mid-
latitude B-plane was constructed to study the nonlinear interac-
tions between the zonal flow and waves in the presence of the
surface topography- In Part I only one wave component was per-
mitted in zonal direction(N=l) and one or two meridional
modes (M=1 or 2) were considered for the zonal component and the
wave,

In most highly truncated case(M=1l), the model becomes a
dynamical system with 6 degrees of freedom. First of all we
obtained the equilibrium solutions in the conservative case with-
out the external thermal forsing and dissipation. It was shown
that there 1is an infinite number of wind configurations which
satisfy the resonance condition. Two kinds of instability of the
equilibrium solutions were also obtained; topographic
instability(growing in place) and topographically-modified
baroclinic instability.

For the non-conservative case multiple flow equilibria were
obtained in our two-layer model. However, the stable equilibrium
solution 1is only the low-index (blocking) state as in CS and
Roads (1980). There 1is no counterpart of the stable high-index
state of the CD's barotropic case. Therefore it is difficult to
connect the multiple stable equilibria in CD directly to the
blocking phenomena in the atmosphere.

If the second meridional mode components are included(M=2),
all the equilibrium solutions of the first mode components become
unstable except for the weak Hadley solutions. By some numerical
integrations, several types of solutions were obtained depending

on the external parameters. There take place the transitions of
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solutions (Hadley solution - steady solution = unsymmetric
vacillation -> symmetric vacillation) with increasing the thermal
Rossby number or with increasing the Taylor number. These transi-
tions are general properties of the nonlinear baroclinic systems
as in Lorenz(1963) and Yoden(1979). The period-doubling sequence
phenomenon was found in the transition from periodic solution to
irregular one.

Besides 1it, we found the multiplicity of time-dependent
solutions in a certain range of external parameters. There exist
two or more stable periodic(or aperiodic) solutions for the same
external conditions. One of which is similar to the periodic
solutions obtained in CS. Characteristics of the time-dependent
behavior are different in these solutions. The selection of a
solution depends on the initial condition. However, there is a
possibility of the transition form one periodic state to the oth-
er state if the external thermal forcing eA* slowly varies with

time like a seasonal variation.
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Figure captions
Fig. 1 Two-layer representation of the model atmosphere.

Fig. 2 (a): Equilibrium values of wK for combinations of wA
and GA (n=3) . The regions of equilibrium values greater
than 1.0 are shaded. (b): Equilibrium values of eK . {c):
Resonance curve and three lines of ¥, - 6, = 0,
(o+Y™D Y- B' + aeA = 0 and awA - B' - (yn-a) 0, =0. There
is also shown the equilibrium solutions in the non-
conservative case(the Hadley, Wl and W2 solutions). (d):

Linear stability of the equilibrium solutions. Growth rate

0, for the most unstable mode is contoured.

Fig. 3 Equilibrium solutions 1in the non-conservative case
(n=3).
Fig. 4 Stream functions of the equilibrium solutions (n=3 and

GA*=0.15). Phase of the forced wave ) and phase difference

between the layers A)A are presented. Surface topography is

shown in right-bottom with negative region shaded.

Fig. 5 Linear stability of the equilibrium solutions (ii=3).
Pure real eigenvalue is denoted by a dot and eigenvalues of

complex conjugate are denoted by the plus sign. Broken line

shows the growth rate in the case of no topography-

Fig. 6 Projection of the trajectory of amplitude coefficients

onto ¥, - ¥ (top) and y, - ¢y, (bottom) planes(n=3 and



GA*=0.2). Initial conditions are denoted by an asterisk

(left: Hadley solution, right: W2 solution).

Fig. 7 Linear stability of the equilibrium solutions (A=3)
with respect to the perturbation of the second meridional
mode. Notations are the same as in Fig.5. Note that the

scale of the ordinate is half of that in Fig.S5.

Fig. 8 Numerical solutions depending on GA*. Trajectories of

the periodic solutions(a-c) are shown in Fig.9.

Fig. 9 Projection of the trajectories of periodic solutions
onto wAl— wAz (top), wAl- wKz (middle) and wAl- sz (bottom)

planes. Scales in (b) and (c) are the same as in (a).

Fig.1l0 Two periodic solutions for the same external condi-
tions (eA*=o.14 and frictional parameters are halved;
2k=0.01 and k'=0.0025). The first integer in each par-
enthesis refers to the meridional mode and the second one
the zonal wavenumber. Initial conditions are (A): Hadley or
W1l solution, and (B): W2 solution with small perturbations.

1,000 nondimensional time corresponds to 112.5 days.

Fig.1ll Periods of the oscillating solutions of (A) (denoted
by a broken line) and (B) (denoted by a dot). Simbol X on

the abscissa denotes the aperiodic solution. 1Integer 1in

each parenthesis refers to the number in Fig.l2.

Fig.l1l2 Projection of the trajectories of periodic and ap-



eriodic solutions onto wAl- wK plane. Scales in (2)-(12)
2

are the same as in (1).

Fig.1l3 Equilibrium solutions of the first meridional mode in
the barotropic model of CD. External parameters are same as

those in their Table 1.

Fig.1l4 Periods of the oscillating solutions in the barotropic
model of CD. Values of external forcing parameter at which

the period-doubling phenomenon takes place are also listed.
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Abstract

Nonlinear interactions between the zonal flow, topographi-
cally forced waves and free baroclinic waves are investigated by
using the two-layer, quasi-geostrophic, low-order model con-
structed in Part I(Yoden, 1983). An idealized topography is given

by a Fourier component with the largest scale permitted in the

present model.

When the zonal flow is more unstable with respect to a free
wave than to the forced wave, there appears a final steady state
in which the finite amplitude free wave with a constant phase
velocity balances with the marginally stable zonal flow and the
forced wave decays out. On the other hand, when the flow is more
unstable with respect to the wave component directly coupled with
the topography, the flow system has both of the forced and free
wave components.

All the wave components are coupled with the topography in
least severely truncated case in this paper (two meridional modes
and three zonal wavenumbers of n, 2n and 3n are permitted). Then
the flow system has several types of time-dependent behavior de-
pending on the external parameters such as the external thermal
forcing, the frictional dissipation and the static stability:
Steady flow with constant forced wave and propagating free wave,
periodic or quasi-periodic oscillation and irregular fluctuation.

For the external parameters corresponding to the real
atmosphere, there appears an irregular fluctuation with large-
amplitude waves. Statistical relation between the zonal flow and
waves 1in the irregular fluctuation is investigated over a 1long

time-span. The flow pattern at each time step is classified into



one of three categories in terms of the magnitude of the mean
zonal flow. Composite fields in three categories are
characterized by the zonality in the high-index state and the
moderate state and by the meander of the flow in the low-index
state. When the flow is in the low-index state, both of the mean
value and vertical shear of the zonal flow are small, the
stationary waves have larger ampl{tudes, and the transient waves

have smaller amplitudes compared with the high-index and the mod-
erate states. The structure of the stationary waves in the

irregular fluctuation is different from that of the forced wave

in the equilibrium solutions in Part I.



1. Introduction

This paper is the second part of a two-part report on the
‘nmonlinear interactions between the zonal flow and long waves in a
two-layer quasi-geostrophic model with topography- In
Part I(Yoden, 1983) a low-order model(i.e., a highly-truncated
spectral model) was constructed and the zonal flow-forced wave
interaction was investigated by neglecting the components of free
baroclinic waves. It was revealed that the multiple stable
equilibria as in the barotropic model (Charney and DeVore, 1979)
do not exist in the parameter range of the earth's atmosphere.
However, the multiplicity of time-dependent solutions were found
in the topographically forced planetary wave system. In this
Part II free baroclinic waves are included to study the interac-
tions between the zonal flow, topographically forced waves and
free baroclinic waves.

From a standpoint of the interactions between the zonal flow
and long waves some different theories have been proposed to ex-
plain the blocking phenomena(see e.g., Austin, 1980; Treidl
et.al., 1981 as to recent observational studies). Charney and
DeVore{1979) and Charney and Straus(1980) obtained multiple
equilibrium states in low-order models with topography and
jnsisted that two stable states correspond to high and low
indices in the atmosphere. Solitary Rossby wave theory was ap-
plied to the blocking by McWilliams (1980) and Patoine and
Warn(1982). Implications of the linear and nonlinear resonance of
stationary long waves were discussed by Tung and Lindzen(1979)
and Trevisan and Buzzi(1980). For the onset of blocking

Frederiksen(1982) considered the instability characteristics of

three dimensional flow with stationary long waves.



Numerical experiments have also been performed to study the
dynamics of blocking or quasi-stationary waves. Egger (1978) prop-
osed that nonlinear interactions between forced waves and slowly
moving free waves lead to a development of the blocking and ex-
amined the idea by using barotropic and baroclinic(two~layer)
models with a constant topographic forcing. Further development
of Egger's work was performed b§ Schilling (1982). He obtained
model-generated blockings in a series of numerical integrations
and discussed the flow configuration and energetics. Yao(1980)
also studied the energetics for the maintenance of the quasi-
stationary waves. Two types of energy cycle were obtained depend-
ing on the magnitude of differential heating with latitude. For a
small gradient of the heating the flow is 1less irregular and
kinetic energy of the stationary wave is mainly converted from
that of the zonal component through the topographic effect in the
form of a vertical geopotential flux at the surface. On the other
hand, the flow becomes highly irregular for a larger gradient of
the heating and the quasi-stationary waves are generated mainly
by the baroclinic instability of the forced waves. There are some
differences between their numerical models and the present model
on the parameterizations of friction and heating, the formulation
of the topographic effect and the truncation of spectral compo-
nents.

The goal of our present study is to investigate the interac-
tions between the zonal flow, forced waves and free baroclinic
waves for a better understanding of the blocking phenomena. 1In
Part I it was pointed out that the multiple flow equilibria in
the low-order models are not directly related to the atmospheric

blocking. However, there is a possibility that time-dependent



solutions in the low-order models may give an insight to the na-
ture of the blocking.

The influence of the free baroclinic waves on the
equilibrium and time-~dependent solutions in the zonal flow-forced
wave system will be investigated by a stepwise relaxation of the
truncation level. Fig.l shows the schematic representation of the
interactions permitted in the systems of several truncation
level. Three cases are considered in the present study. The sur-
face topography is given by a single component of the lowest zon-
al wavenumber(n) with the gravest meridional mode(m=1). (In
Part II the same notations are adopted as in Part I.) The most
simplified system(case 1) with both of the forced and free waves
is 1limited to one meridional mode (M=1) and two waves(N=2). In
this case each wave component interacts with the zonal component
independently. If we permit the second meridional mode and
harmonics of the lowest wavenumber, it becomes possible to de-
scribe the wave-wave interactions. 1In the case 2 of M=2 and N=2,
there is only one type of wave-wave interaction, in which (1,n),
(2,f1) and (1,2n) components are combined with one another by the
Jacobian term and the topographic term. Hereafter the first
integer in each parenthesis refers to the meridional mode and the
second one the zonal wavenumber. 1In the case 3 of M=2 and N=3,
another type of interaction is possible, i.e., triad interactions
between the waves of n, 210 and 3n. In this truncation level all
the wave components interact with the topography of (1,n) compo-
nent.

Effects of the truncation are examined in section 2 for
three cases shown in Fig.l. In section 3 dependency on the exter-

nal parameters such as the external differential heating, the



static stability and the frictional time constants is examined by
changing the parameter values. We can obtain an irregular
fluctuation with a similar energy spectrum to the atmosphere in
least severely truncated case and in some ranges of the external
parameters. In section 4 some numerical integrations are per-
formed for 2,800 model days to investigate the relation between
the zonal flow and long waves statistically. Discussion and con-

clusion are in sections 5 and 6.



2. Effects of truncation

In this section we will show how the gross features of the
interactions between the zonal flow, forced waves and free waves
are affected by the truncation(Fig.l). Ordinary differential

equations of the present low-order model are Egs. (2-8) and (2-9)
in Part I. Then the degrees of freedom of the systems are 10 for

case 1, 20 for case 2 and 28 for case 3.

a. case 1 (M=1,N=2)

In the case of M=1, each wave component interacts with the
zonal component independently(Fig.l). Therefore the equilibrium
solutions obtained in most severely truncated case(Fig.3 in
Part I) are one part of the equilibrium solutions in the present
system when we take all the free wave components equal to zero.

First we examine the linear stability of the equilibrium
solutions in the present system. The growth rate o, is obtained
as a real part of complex eigenvalues of the 10x10 coefficient
matrix. The characteristic equation can be rewritten in the pro-
duct of the sixth-order equation of ¢ for the zonal flow and for-
ced wave part and the forth-order equation for the free wave
part. The stability properties for the zonal flow and forced wave
part are identical to the result obtained in the case of M=1 and
N=1 in Part I. Because the forced wave and the topography do not
directly interact with the free wave, the characteristic equation
for the free wave contains only the zonal flow components of the
equilibrium solutions. Therefore the stability of the equilibrium

solutions with respect to the perturbations of the free wave is



determined by the conventional baroclinic stability analysis of
the zonal flow.

The growth rate of the most unstable perturbation embedded
in the equilibrium solution of n=3 is shown in Fig.2 for the zon-
al wavenumber n=1-12. Note that the ordinate is the external for-
cing parameter eA* (not the vertical shear of the zonal wind),
although the vertical shear depeﬁds on GA* linearly only in the
Hadley solution(Eg. (3-15) in Part I). The growth rate for n=3
must be excluded(broken lines in the figure), because the per-
turbation of n=3 feels the surface topography and then it is not
free. The Hadley solution is most unstable with respect to the
perturbation of fi=9 in the iange of 0.016<6,"<0.018, h=8 in
0.02§6Ai§0.048 and n=7 in 0.0§§6A*. Both of the equilibrium solu-
tions with wave components (Wl and W2 solutions shown in Fig.3 in
Part I) are unstable with respect to the free waves of 4<n<ll and
most unstable for n=7. Because the zonal flow of the Wl solution
does not depend on GA* so much, the growth rate is almost inde-
pendent of BA* for the Wl solutions.

Almost all the equilibrium solutions obtained in the zonal
flow-forced wave system are baroclinically unstable with respect
to a perturbation of free wave. If a free wave perturbation is
added to the unstable equilibrium state, it will grow up and
interact with the zonal flow. Then the zonal flow will change and
the forced wave will also change in time.

Some numerical integrations are performed to elucidate the
time-dependent behavior of each component. Time-variations of the
zonal flow and the waves are presented in Fig.3. The zonal wave-
number of the topography is fi=3 and that of the free wave is

n'=7. The external forcing parameter GA* is fixed to 0.2 and the



initial state is the W1 solution with a small perturbation of the
free wave. 1Initially the free wave grows up with eastward phase-
propagation of 16 m/s in dimensional value and the zonal-mean
meridional temperature difference 6(1,0) decreases. These fea-
tures are 1in agreement with those predicted by the linear
baroclinic instability theory. Simultaneously vertically averaged
zonal flow ¥(1,0) increases and the amplitudes of the forced
wave ¢v(1l,3) and 8(1,3) decrease due to the changes 1in the
topeographic and Jacobian terms.

After some fluctuations of each component (about 500 non-
dimensional time steps), the zonal flow converges to a small
value and the forced wave decays out. The free wave converges to
a constant amplitude with the westward phase velocity of 0.92 m/s
(see also Table 1). Because the zonal flow in the lower layer is
equal to zero(i.e., V¥(1,0)- 6(1,0)=0), there is no effect of the
topography. The same final steady state of the weak zonal £flow
and free wave with constant amplitude and constant phase velocity
is also obtained for other initial conditions(e.g., the Hadley
solution and the W2 solution).

Similar final steady states are obtained for other forcing
parameter BA*(Table 1). It is found that the zonal flow
components( y(1,0) and 6(1,0)), the phase difference between the
upper and lower layers(4¢) and phase velocity(c) of the free wave
are independent of the external forcing. As the forcing parameter
eA* increases, only the amplitude of the free wave(y, (1,7) and
¥3(1l,7)) becomes large to compensate the increment of differen-
tial heating.

Note that the magnitudes of the zonal flow are equal to

those at the critical point where the Hadley solution becomes



baroclinically unstable with respect to the free wave. The value
of 6," at the critical point is 0.01813 for n'=7, which is sub-
stituted into the equation (3-15) in Part I to obtain the criti-
cal value of ¢ (1,0)= 6(1,0)=0.01716. At the critical point the
phase velocity of the perturbation is equal to zero in the case
without friction(see the baroclinic stability analysis in the
two-layer model by e.qg., Pedlosky; 1979) . But in the present mod-

el the phase velocity has a small negative value due to the fric-

tion and diabatic heating of the eddy component.
If we vary the zonal wavenumber of the free wave in the

range of 4§H'éll, we obtain a final steady state in which the
zonal flow with the critical value balances with the finite-
amplitude free baroclinic wave. Dependency of the phase
velocity(c) on the zonal wavenumber reminds us of the dispersion

relation of free Rossby waves. On the other hand, when we put

A

n'

2 or 52212, the dependent variables asymptotically approach
the W1 solution as in the zonal flow-forced wave system(Part I).
In this truncation level of M=1 and N=2, there finally ap-
pears either the W1l solution with forced wave or the final steady
state with free wave. There does not appear such a state that
both of the forced and free waves exist together and interact

with the 2zonal flow.

b. case 2 (M=2,N=2)

If we permit the second meridional mode and the harmonic of
the lowest zonal wavenumber, we obtain a dynamical system with 20

degrees of freedom, which contains the wave-wave and wave-



topography interactions between (1,n), (2,n) and (1,2n)
components (broken line in Fig.l).

Time-variation of vertically averaged zonal flow and wave
components is shown in Fig.4. The 2zonal wavenumber of the
topography is n=3 and the harmonic wavenumber 2fi=6. The initial
condition is the W1l solution with small perturbations of every
components. The external forcing OA* is again 0.2.

Variations of the zonal flow and forced wave of the first
meridional mode resemble those obtained in case 1l(Fig.3).
Initially ¢ (1,0) increases and the forced wave becomes weak. Af-
ter some fluctuations the zonal flow converges to a weak state
and the forced wave decays out. All the free wave components grow
up first due to the baroclinic instability of the zonal flow.
However, as the zonal component of ¢¥(1,0) converges to a small
value, all other components except for ¢(2,6) decay out. The fi-
nal steady state of a weak zonal flow and free wave of constant
amplitude and constant phase velocity is similar to that obtained
in case 1. The meridional mode of the free wave, however, is the

secondary mode which has no interaction with the topography.

Similar final steady states are obtained for other external forc-

*
A

. . . . *
increases with increasing eA .

ing parameter ©6 and only the amplitude of the free wave

For the topographic wave of n=4 there appears a similar fi-

nal steady state but for n=5 corresponding steady state does not
appear. All the variables go on fluctuating irregularly in the
n=5 case. Meanwhile, if the static stability parameter 0, is
changed to a larger value(l.25 times or 1.5 times of the value
given in Part I), the final steady state is obtained as well.

However, when the static stability exceeds a «critical value,



e.g., doubled Go(ig/AP=60K/SOOmb), there appears an irregular
fluctuation. 1In these situations (1,2n) component is more un-
stable than (2,2f) component and interacts with the topography
and other waves as well as the zonal flow. The linear baroclinic
instability theory(Eady, 1949) shows that stability criterion is
proportional to the product of the static stability and square of
wavenumber (mtJox(m2+n2)). Therefore the most unstable wavenumber
shifts toward a small value with increasing the static stability
go-

In the present truncation level, there appears either a fi-
nal steady state or an irregular fluctuation. Only (1,0) and
(2,211) components have non-zero values in the final steady state
and then there do not exist the wave-wave and wave-topography
interactions. On the other hand, in the irregular fluctuation all
the components fluctuate with interactions of =zonal flow-wave,
wave-wave, zonal flow-topography and wave-topography. The
alternative of two flow regimes depends on the horizontal scale
of the topography(and therefore that of the forced and free
waves) and the static stability but is independent of the exter-

nal forcing parameter.

c. case '3 (M=2,N=3)

Because (2,2n) component is not coupled with the topography

in case 2, the final steady state is possible. 1In case 3 of M=2
and N=3, however, all the wave components are coupled with the
topography by the fi-2fi interaction and the triad interactions be-

tween n, 20 and 3A. Therefore, if one of the wave components is

- 10 -



not zero, another wave component will be induced by the wave-

topography interaction. Final steady states like those in cases 1
and 2, in which there is no topographic effect, are not possible
in the present case.

Time-variations of the vertically averaged zonal flow and
wave components are presented in Fig.5 for the same external par-
ameters as those in Figs.3 and 4. There appears the same periodic
solution for the initial conditions of the Hadley, W1 and W2
equilibrium solutions with small perturbations. As in cases 1 and
2, the zonal flow of the first meridional mode Yv(1,0) has a
small magnitude and the wave of the smallest scale ¥(2,9) has
the largest wave amplitude. However, other wave components also
have non-zero values by the triad interactions. The amplitude of
¥ (2,6) is about a half of that of ¥(2,9) and other four compo-
nents have rather small amplitudes(see also Table 3).

The 2zonal flow of the first meridional mode v (1,0)
fluctuates with the periods of 7.6 days and 85 days. The ampli-
tude of the wave components have the same periodicity. Wave com-
ponents of ¢¥(2,6) and V(1,9) propagate eastward with the period
of 85 days. The characteristics of the time-variations are dif-
ferent depending on the external parameters such as the external
forcing GA*, the static stability o, and the frictional
coefficients k and k'. This dependency will be discussed in the

next section.

Effects of the truncation were investigated in three cases

with different truncation level. It is not possible for the sys-

- 11 -



tem of case 1 (M=1,N=2) to depict such a state that both of the
forced and free waves exist and interact with the zonal flow. In
case 2 (M=2,N=2), such a state is obtained for a small-scale
topography(n>5) or a large static stability(c,x2). For the param-
eter values given in Part I(which are typical in the atmosphere),
however, there appears the final steady state in which the zonal
flow and a free wave have non-zeré values and the topography has
no contribution. On the other hand, both of the forced and free
waves exist and interact with each other in case 3, because all
the waves are coupled with the topography(Fig.l). At least 28 de-
grees of freedom(case 3) are necessary for the system to depict
the coexistence of both the forced and £free waves and the
interactions with each other. 1In the next two sections we will
investigate the interactions between the zcnal flow and these

waves at the truncation level of case 3.

- 12 -



3. Dependency on external parameters

In Part I we tentatively fixed the external parameters such
as the frictional and heating coefficients, the static stability
and the amplitude of the topography. As a control parameter, only
the external forcing parameter eA* was varied from 0 to 0.2(The
corresponding temperature difference across the channel is from
OK to 150K at the radiative equilibrium state.). 1In this section
we will show the effects of OA*, Oo, k and k' on the behavior of
the zonal flow and waves. The zonal wavenumber of the topography
is fixed to n=3; wavenumbers permitted in the present model are
3, 6 and 9.

The characteristics of the time-variations are different de-
pending on the external parameters. In Table 2 the time-
dependency 1is classified into four categories: Steady flow with
wave components (S), periodic oscillation (P), gquasi-periodic
oscillation (Q) and irregular fluctuation (I). Some typical
variations of the zonal component ¢ (1,0) for each category are
presented in Fig.6. Here quasi-periodic oscillation is sub-
jectively discriminated from irregular fluctuation by looking
over the time series of the amplitudes as in Fig.6.

For a wide range of eA* there appears a periodic oscillation
in the cases with external parameters given in Part I. As the
frictional parameters decrease, there appears a quasi-periodic
oscillation or an irregular fluctuation instead of the periodic

oscillation. The time-dependency is influenced by the external

forcing parameter GA* and frictional parameters k and k'.

However, as shown in Table 3, the dominant components such as
(1,0),(2,6) and (2,9) are insensitive to the changes in these ex-

ternal parameters. Here the mean zonal flow( $(m,0)) and the mean

- 13 -



amplitude of the wave( ¥(m,n)) are given by

_ N

P(m,0) = = § ¥, ( to+idt ) (3-1)
i=1

_ N

Y(m,n) = %121[ ng( totiAt )2 + ng( to+iAt )2 llf2 (3-2)

The dependency of the time-éependent behavior of solutions
on the static stability 0o is shown in Table 2-(b). For a small
0, there appears a steady flow(Fig.6-(g)) , in which the westward
propagating wave ¥(2,9) is dominant and the forced wave V¥ (1,3)
is stationary. As the static stability increases, there take
pPlace transitions from the steady flow to the periodic oscilla-
tion and from the periodic oscillation to the irregular
fluctuation(Figs.6-(c), (h) and (i)). For a large O,, there ap-
pears another type of the periodic oscillation(Fig.6-(j)).

With increasing oy, the magnitude of the zonal component
with the first meridional mode increases and wave components of
small zonal wavenumbers(n=3 and 6) become dominant (Table 3). For
the case of o¢x 4, $(1,3), $(2,3) and 5(1,6) have large ampli-
tudes. Difference of the periodic solutions between the cases of
Ooxl and o0yx4 is clearly seen in the mean values of the wave
amplitudes. The dependency of the dominant wavenumber on the
static stability is reminiscent of the 1linear baroclinic
instability theory(Eady, 1949) mentioned in the previous section:
The stability criterion and the most unstable mode are dependent
on the product of the static stability and the square of the

wavenumber.

For the external parameters given in Part I, the amplitude

of the wave (1,3) with the same scale as the topography is rather
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small compared with (2,6) and (2,9) components. This is not the
case in the real atmospheric circulation, where ultra-long waves
in general have larger amplitude than long waves in the mid-
latitude troposphere. External parameters must be change in the

present system of N=3 in order to obtain a similar energy

spectrum like that of the atmosphere.

As shown in Table 3, mean amplitudes of wave components of
small zonal wavenumbers become large with increasing the static
stability o,. Although ¢,=5.64x10"%(in dimensional 20/AP =
30K/500mb) adopted in Part I is a typical value in mid-latitudes,
a larger value is usual in winter (see e.g., Tomatsu, 1979).
Charney and Straus(1980) adopted the value 2G/AP = 43.6K/500mb
and Yao(1980) did 31.8K/500mb. 1Increase of the static stability
parameter to 1.25 times(37.5K/500mb) or 1.5 times(45K/500mb) is
not far from the atmospheric conditions.

Fig.7 shows the time-variations of vertically averaged zonal
flow and wave components for the case of the increased static
stability(og,x1.25). All the components have large amplitudes and
fluctuate in a highly irregular manner. The behavior of the zonal
flow and the forced wave does not resemble to that obtained in
the zonal flow-forced wave system.

The 2zonal component p{1,0) fluctuates around the mean
value (denoted by broken line) and sometimes has extremely large
or small values. Such extreme states continue during the period
ranging from several days to several ten days. The amplitude and
the phase of each wave also vary in connection with the fluctua-
tions of the zonal flow and other waves. After t=7,000, for exam-
ple, ¥(1,0) takes extremely small values for 140 nondimensional

time (about 15 days). In this period ¥(1,3) has a small amplitude
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but the phase is rather quasi-stationary. While, $(1,9) has a
large amplitude and is quasi-stationary-

In the next section we will clarify the relation between the
zonal flow and waves statistically over a long time-span. We have
so far used the term 'forced wave' to the wave (1,3) because it
has the same sizes in both x and y directions as those of the
topography. But this usage is nét the conventional one except
when the wave happens to be steady and stationary. In the present
truncation level of case 3, all the wave components are affected
by the topography and the topographic effects vary in time due to
the variation of flow itself. Therefore the *forced wave' is not
appropriate in the present problem and is not used in the next
section. We will define 'stationary wave' as a mean wave over a
time and direct our attentions to the relation between the 2zonal

flow and the stationary waves.
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4. Zonal flow and stationary waves in irregular fluctuations
Numerical integrations for three combinations of external
parameters(Table 4) are performed for 25,000 time steps(in di-
mensional 2,813 days). Three initial conditions are taken in each
case, i.e., W1, W2 and Hadley solutions with small perturbations.
Mean value (MV) and standard deviation(SD) of (1,0) over 23,750
time steps except for initial stage are listed in Table 4. As the

forcing parameter BA*

increases or the static stability 0y
increases, MV and SD also increase with a few exceptions. SD is
smaller than MV in the cases of 0yx1.25 but is comparable with MV
in the case of C0ox1l.5 and OA*=0.2. In each case MV and SD have
variations of 1-15% depending on the initial conditions.

We classify the flow at each time step into three categories
in terms of V¥ (1,0) component. The threshold values are MV * SD as
denoted by dotted 1lines in Fig.7. We term the state with
¥ (1,0)>MV+SD high-index state (H), the state with MV+SD > y(1,0)
>MV-SD moderate state (M), and the state with MV-SD > ¥(1,0) low-
index state (L). Mean zonal component Y(1,0) fluctuates
irregularly and transits between these categories. The ratio of
the time span in each category is almost (H):(M):(L) = 15:70:15
independently of the initial conditions(Table 5).

The composite fields of stream function in three categories
are shown in Fig.8 for the case of 0,x1.25 and GA* =0.2(the W2
initial conditions). In the high-index state (H) the flow pattern
is nearly zonal in both layers. In the moderate state (M) the
zonal flow component is dominant in the upper layer but there is
almost no motion in the lower layer. In the low-index state (L)

the flow pattern is wave-like and the ridge of the dominant com-

ponent is located in the western slope of the mountain. The zonal

- 17 -



flow in the lower layer is easterly in this category- The dis-
tinctive feature of the composite flow pattern is the zonality in
(H) and (M) and the meander in (L).

Magnitude of the zonal components averaged in each category
is listed in Table 5. Of cource, the vertically averaged zonal
flow P(1,0) has the largest value in the category (H) and the
smallest (negative) value in (L). fhe meridional difference of the
zonal potential temperature 0 (1,0) (i.e., mean vertical shear of
the zonal wind by the thermal wind relation) also decreases with
the decrease of V¥ (1,0): 6(1,0) in (L) is about 80% of that in
(H) . On the other hand, zonal components of the second meridional
mode ( ¢(2,0) and 6(2,0)) are very small in all the categories.

The stationary waves are defined in three categories; cosine

and sine components are given by

— 1 N'
Vo (mn) = o5 ] yen (4-1)
— 1 N’
Y(mn) = & F yon (4-2)

where N' is the total number in the category. Fig.9 shows the
amplitude and phase of the stationary waves in three categories.
Only the lowest mode (1,3) with the same scale as the topography
has large amplitude. Other components have small amplitudes with
a few exceptions and have phase variations of 40°-70° depending
on the initial conditions. The stationary wave of ¢(1,3) has a
large amplitude in (H) and (L) and small value in (M). Note that
the phase in (L) is very close to each other (<8°) in the three

numerical integrations. While, ©6(1,3) has a large amplitude and

nearly the same phase in (L) and (M). The phase difference be-

- 18 -



tween ¥(1,3) and ©(1,3) is 115° in (L) and very small in (H).
In the category (L) the heat flux by this stationary wave is
southward (counter—-gradient for the zonal mean temperature).

We obtain similar result in other cases in Table 4. The com-
posite fields of stream function in the upper layer are shown in
Figs.1l0. For a smaller forcing parameter(eA*=0.15, Fig.1l0-(1)),
the zonal flow becomes weak a little in (H). In (L) similar flow
patterns are obtained like those in Fig.8. The amplitude and the
phase of (1,3) components are not influenced by the external for-
cing parameter, although there are some differences 1in small
scales. In the case of the increased static stability(coexl.5,
Fig.10-(2)), stationary waves of small scales have small ampli-
tude and the flow pattern is smoothed out. The amplitude of the
(1,3) components in (L) increases a little with increasing the
static stability and the phase of ¢(1,3) is shifted westward a-
bout 60 ° without a change in the phase of 6(1,3).

A control experiment is performed to verify the effect of
surface topography. We set the amplitude of topography equal to
zero in the case of 0yx1.25 and GA*=0.2. Mean value and standard
deviation of VY(1,0) are listed in Table 4. MV has nearly the
same value as in the case with topography but SD is small about
one order. The surface topography produces a large variability of
the vertically averaged zonal flow ¢(1,0) in the present model.
Composite fields for the control experiment are shown in
Fig.10-(3). The amplitude of all the stationary waves 1is small
and the phase of them is dependent on the initial conditions. Es-
pecially the amplitude of y(l,3) is small about one order or

more compared with the cases with the topography.
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5. Discussion

Almost all the equilibrium solutions obtained in the =zonal
flow-forced wave system in Part I are baroclinically unstable
with respect to a perturbation of free wave with 4<a'<l1(Fig.2).
When a perturbation of the free wave is added to the unstable
equilibrium states, the free wave grows up and the forced wave
decays out as shown in Fig.3. Finally there appears a steady
state in which finite amplitude free wave with a constant phase
velocity balances with the marginally stable zonal flow. This
steady state is independent of the forcing parameter 0,*, and has

A
no topographic effect because the zonal flow in the lower layer

is zero. In <case 2 with the second meridional mode and the
harmonic of the lowest zonal wavenumber, the wave-wave or wave-
topography interaction is possible between (1,n), (2,n) and
(1,2f1) components. However, we obtained a similar final steady
state as in case 1 with only (1,0) and (2,2n) components for the
external parameters given in Part I and the zonal wavenumber n=3
and 4. There is again no topographic effect because the 2zonal
flow in the lower layer is zero and the amplitudes of (1,n),
(2,n) and (1,2n) are also zero.

These final steady states are reminiscent of the baroclinic
adjustment process proposed by Stone(1978). He hypothesized that
baroclinic waves adjust the meridional gradient of the zonal mean
temperature so as to keep it just above the threshold value for
instability in a two-layer quasi-geostrophic model, and he
obtained an observational result that the meridional temperature
gradient in the northern troposphere is consistent with the
hypothesis in all the seasons. The final steady states obtained

in section 2 reveals that the baroclinic adjustment process oper-
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ates completely in these cases of the present low-order model.

In contrast to the final steady states in cases 1 and 2, all
the wave components have non-zero values in case 3, because all
the wave components are coupled with the topography by the n-2n
interaction and the triad interactions. There appear various flow
patterns(i.e., a steady flow, a periodic oscillation and an

irregular fluctuation) depending on the external parameters such

as the external forcing parameter GA* ’ the frictional

coefficients k and k', and the static stability o, (Table 2 and
Fig.6). Dependency of the flow patterns on these parameters is
consistent with that in the rotating annulus experiments with
differential heating and bottom topography(Leach, 1981; Jonas,
1981) and with that in the numerical experiments by Yao(1980):
The flow becomes irregular with increasing the Taylor
number ( ak"z) or with increasing the thermal Rossby number(<=eA*
or G,).

The wave component (1,3) with the same scale of the topogra-
phy fluctuates like a standing oscillation(Fig.5) or in a highly
irregular manner (Fig.7) . The behavior of the wave does not resem-
ble that in the zonal flow-forced wave system(Fig.l1l0 in Part I).
Isolated zonal flow-forced wave systems as in Part I and Charney
and Straus(1980) are not sufficient to depict the behavior of
forced waves when the flow system is more unstable with respect
to another disturbance with different scale(in the present case
baroclinic waves of 2n and 3n). Charney and DeVore(1979)
hypothesized that the baroclinic instability produces an ad-
ditional forcing which ultimately drives the flow system from one
metastable equilibrium state to another. However, the present

two-layer model which contains the baroclinic waves explicitly
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does not depict such a transition from one metastable state to
another.

When the static stability o, was increased to 1.25 times or
1.5 times, we obtained an irregular fluctuation of which the en-
ergy spectrum is similar to that in the real atmosphere.
Marcus (1981) examined the effects of truncation in a problem of
thermal convection in a sphere. ﬁis numerical examples indicate
that, as long as the kinetic energy spectrum decreases with wave-
number, a truncation gives a qualitatively correct solution. It
is not possible to apply his conclusion directly to our model.
However, it is thought that the present model with the truncation
level of case 3 and the increase of the static stability can de-
pict a qualitatively correct behavior of the zonal flow and the
waves in the atmosphere.

Irregular fluctuations obtained in some numerical integra-
tions in the model with an increased static stability were an-
alyzed 1in section 4 to elucidate the relation between the =zonal
flow and the stationary waves. However, the transient waves in
each category were not mentioned there. Mean amplitude of the
transient wave in each category is given by

Nl
Temn) = gr L [ L wgn - T mm) 32+ {yn - J_(mm) 12 1% (5-1)

The mean amplitudes of the transient waves are rather large com-
pared with those of the stationary waves. However, transient wave
components in the low-index state (L) are smaller than those in
the moderate state (M) with some exceptions. ﬁt(l,B) component
in three categories are as follows; (H):0.0313, (M):0.0323 and

(L):0.0293(0ox1.25 and eA*=o.2). In the 9 numerical integrations



the decrease of the amplitude in (L) is 5-12% of that in (M).
This decrease is consistent with the decrease of mean vertical
shear 6(1,0) mentioned in section 4.

If the low-index state is related to the blocking phenomena,
appearance of such a extreme state is not periodic but
unexpectedly (Fig.7). Irregularity of the present system is more
complicated than the 'deterministic nonperiodic flow' (the strange
attractor) in the Lorenz's system of three ordinary nonlinear
differential equations(Lorenz, 1963). Lorenz found that non-
periodic solutions are ordinarily unstable with respect to small
perturbations, so that slightly differing 4initial states can
evolve into considerably different states. His conclusion about
the predictability may be applied to the present system. Namely
the prediction of the 'blocking state' (low-index state) for a
very long range is impossible unless the initial conditions are
known exactly. In Lorenz's study(1965) of the predictability with
a 28-variable model, which is essentially identical to the pre-
sent model except the topography, the time required for initial
errors such as observational errors to grow to intolerable errors

is in the range from a few days to a few weeks.
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6. Conclusion

Nonlinear interactions between the zonal flow, topographi-

cally forced waves and free baroclinic waves were investigated by
using the two-layer, quasi-geostrophic, low-order model in a
mid-latitude B-plane(Yoden, 1983). An idealized surface topogra-
pPhy was included in the model by retaining only one Fourier com-
ponent of the zonal wavenumber ﬁ;3 with the gravest meridional
mode.

First of all, effects of the truncation were examined by a
stepwise relaxation of the truncation level. It was revealed that
at least 28 degrees of freedom(case 3 in Fig.l) are necessary for
the system to depict the coexistence of both of the forced and
free waves and interactions with each other. For more severely
truncated cases, there appears a final steady state with no for-
ced waves, because the baroclinic adjustment process(Stone, 1978)
operates completely and the topographic effect is absent.

For the system in case 3, there appear several types of
time-dependent flow patterns depending on the external parameters
such as the external thermal forcing, the frictional coefficients
and the static stability: Steady flow, periodic or quasi-periodic
oscillation and irregular fluctuation., There appears an irregqular
fluctuation with large amplitude waves for the external parame-
ters corresponding to the real atmosphere.

Irregular fluctuations obtained in the numerical integra-
tions over a long time-span were analyzed to elucidate the rela-
tion between the 2zonal flow and stationary waves. The flow
pattern at each time step was classified into one of three
categories, 1i.e., the high-index state (H), the moderate state

(M) and the low-index state (L), in terms of the vertically
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averaged zonal flow ¢¥(1,0). The ratio of the time span in each
category is 15:70:15 for 9 cases in Table 4 when the threshold
values are taken as the mean value(MV) * standard deviation(SD).

The composite fields of stream function are characterized by
the strong and moderate zonal flows in (H) and (M) and the
meander of the flow in (L). 1In the low-index state (L) the domi-
nant stationary wave of (1,3) with the same scale as the topogra-
phy has a larger amplitude than in (H) and (M). The ridge is
located 1in the western slope of the topography. The effects of
the surface topography on this stationary wave is obvious from
the control experiment without the topography(Fig.10). The
stationary waves in the irregular fluctuation are different from
the forced waves in the equilibrium solutions(Fig.4 in Part I) in
their magnitude and structure. The difference between the
equilibrium solutions and the time-averaged states was already
pointed out by Yao(1980).

In summary, the present model similar to the atmospheric
conditions 1is characterized by the irregqularity(or transiency):
The flow varies irregqularly and transits between the categories.
When the flow is in a low-index state, both of the mean value and
the vertical shear of the zonal flow decrease, the stationary
wave has a larger amplitude, and free waves have smaller ampli-
tudes.

In the present study only the effect of the topography was
investigated. However, the land-sea distributions may play an im-
portant role in producing the forced planetary waves. Simple re-
presentation of the diabatic heating due to the land-sea dis-

tributions will be incorporated into the present model by wusing

the Newtonian heating with loagitudinal differential equilibrium
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temperature. It is a future problem to investigate the effect of

the land-sea distributions and the coupled effect with the

topography by using a simple low-order model.
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Table 1 Final steady states obtained by some numerical iwcegrations in
case 1l(fi=3). Amplitude of free wave component(n') in the upper layer is
denoted by wl(l,ﬁ') and that in the lower layer by w3(l,ﬁ'). Phase difference

between the layers and phase velocity of the free wave are A¢ and c, respectively.

Positive value of A¢ corresponds to the westward tilt of the phase lines with

height. For n'<2 or n'>12, free waves do not grow up and there appears the Wl
equilibrium solution of n=3.
GAT y(1,0) 6(1,0) wl(l,ﬁ') w3(l,ﬁ') A c
[ x 1074 ] °] [m/s]
7 0.05 172 172 488 154 14.9 -0.91
7 0.1 172 172 782 247 14.9 -0.92
7 0.15 172 172 993 314 14.9 =0.92
7 0.2 172 172 1166 369 14.9 -0.92
2 0.2 977 797 [ Wl equilibrium solution ]
4 0.2 422 422 1849 419 12.3 -3.92
6 0.2 213 213 1338 382 14.2 -1.62
8 0.2 150 150 1040 365 14.9 -0.29
10 0.2 163 163 933 419 11.5 1.50
11 0.2 347 347 1137 615 5.2 6.76
12 0.2 977 797 [ Wl equilibrium solution ]




(a)

(b)

Table 2 Classification of time-dependent behavior for some
combinations of external parameters. Four categories are
denoted by S: steady flow with propagating wave, P: periodic
oscillation, Q: quasi-periodic oscillation, and I: irregular
fluctuation. Subscripts 5 and a-j denote corresponding

figure in Fig.5 and Fig.6(a)-(j).

*
k-k'xeA 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.0 Qa P P P PC P P P P P5
0.75 Q P P P P Q I Q I Ie
0.5 Ib I I 0 Qd I I I I If
Og X
T 0.5 0.8 1.0 1.25 1.5 2.0 4.0
0.1 S Sg PC Ih I Il PJ
0.2 S S P5 I I I I




Table 3

Averaged period is from 3,750 to 7,500 in non-dimensional time.

Mean values of the zonal flow and amplitudes of wave component

0%  Kek'x oox | P(1L,00  $(2,00 V(1,3 $(2,3)  §E,6)  F(2,6) V(1,9 T(2,9)

[ x 10 1

0.02 1.0 1.0 177 0 3 10 10 6 31 43
0.08 " " 233 0 12 6 7 86 4 417
0.14 " 264 -0 15 8 14 191 9 584
0.2 " 279 -0 17 14 27 325 20 689
0.1 1.0 1.0 241 0 13 7 8 106 5 484
" 0.75 " 284 0 27 22 37 233 13 511
" 0.5 " 315 0 72 55 93 265 36 592
0.1 1.0 0.8 112 -0 6 9 8 0 1 452
" " 1.0 241 0 13 7 8 106 5 484
" " 1.25 270 3 189 185 188 150 189 311
" " 1.5 357 18 219 213 222 207 200 194
" " 2.0 414 -21 258 231 269 192 111 93
" 4.0 795 -0 56 111 41 3 3 2




Table 4 Mean value (MV) and standard deviation(SD) of ¥(1,0) for
12 numerical integrations. Period of the statistics is from 1,251
to 25,000 (in dimensional 2,672 days). Figure in parenthesis is the

result for a control experimemt without surface topography. All the

values are multiplied by 104.
Op X 1.25 O X 1.5
OA*
1 Wl w2 Hadley Wl w2 Hadley

0.15 MV 290 288 286 - - -

SD 182 173 178 - - -
0.2 MV 308(288) 263(291) 297(294) 296 321 323

SD 219( 21) 234( 21) 243( 18) 310 294 303




Table 5 Zonal components in three categories. All the values

are multiplied by 104. Total number in each category N' is also

listed.
T T T
N' ¥ (1,0) 0(1,0) v(2,0) 0(2,0)
category
Wl w2 H. Wl w2 H. Wl W2 H. Wl W2 H. W1l W2
(H) 3717 3471 3375 629 604 663 325 310 322 -11 3 5 -3 -3
(M) 16486 16579 16799 313 276 308 297 294 298 2 -3 =2 -1 -1
(L) 3547 3700 3576 -52 =119 -100 253 244 256 4 2 8 2 -1




Fig.l

Fig.2

Fig.3

Fig.4

Fig.5

Figure captions

Schematic representation of the interactions permitted
in three cases of different truncation level : case 1(M=1,
N=2), case 2(M=2, N=2) and case 3(M=2,N=3). Zonal flow-wave
interaction 1is denoted by a solid 1line and wave-wave
interaction by a broken line. Surface topography is given

by (l1,n) component(shaded). Interactions permitted in

case 2 are denoted by thin lines in case 3.

Linear stability of the equilibrium solutions(n=3)
with respect to free waves with zonal wavenumber
n=1-12(abscissa). Growth rate of the most unstable per-
turbation is contoured. In dimensional, 0r=0.l corresponds

to e-folding time of 27 hours.

Time - evolution of the zonal and wave components in
case 1. Initial condition is the Wl solution with small

perturbation (OA*=0.2). 1,000 nondimensional time

corresponds to 112.5 days.

As in Fig.3 for the truncation level of case 2. Only

y components are presented.

Time -variation of the zonal and wave components in
case 3(only ¥ components are presented).0,*=0.2. 2,500
time steps from t=5,001 to t=7,500 are presented(in di-

mensional 281.3 days).



Fig.é6

Fig.7

Fig.8

Fig.9

Fig.1l0

Four types of time variation of the 2zonal component
¥ (1,0). External parameters in (a)-(j) are 1listed in
Table 2. Steady flow(S): (g), periodic oscillation(P): (c),
(j), quasi-periodic oscillation(Q): (a), (d), and irregular

fluctuation(I): (b), (e), (£f), (h), (i).

As in Fig.5 except for oyxl.25. Initial condition is
the W2 solution with small perturbations. Note that scale
of the ordinate is 1/2 for the zonal components. Threshold
values for three categories(mean value + standard

deviation) are denoted by dotted lines.

Composite fields of stream function in three

categories. 0x1.25, OA*=0.2 and the W2 initial condition.

Amplitude and phase of the stationary waves in three
categories. Three independent runs with different initial
conditions are designated by symbols as follows; Wl(se),
W2 (A) and Hadley(+). ¢ (m,n) component is denoted by a
solid 1line and O(m,n) by a broken 1line. Amplitude is
multiplied by 10%. 6,x1.25 and 6,*=0.2.

Composite fields of stream function in the upper
layer. (l): 0ox1.25, eA*=o.15 and the Hadley initial condi-
tion. (2): o¢xl1l.5, eA*=0.2 and the Hadley initial condi-
tion. (3): control experiment without topography-

coxl.ZS,GA*=0.2 and the Hadley initial condition.
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