
 "' 

                                                                                                 • 

P, ' is • i~~:'~`:v:' ..

 482

 .41: 1f

• 

.'i 

..•       

• 

                    •

OF A

STANDING 

SPATIALLY

PULSE-L IKE 

AGGREGATING

SOLUTIONS 

POPULATION MODEL



学 位 審 査 報 告

氏 名 池 田 勉

学 位 の 種 類 理 学 博 士

学 位 記 番 号 論 理 博 第 号

学 位 授 与 の 日 付 昭 和 年 月 白

学位 授 与 の要 件 学 位 規 則 第5条 第2項 該 当

(学 位 論 文 題 目)
s

S,andi。gP。1se-likes。1。 、i。n「 。f。 、p。 ・i。ll,。ggreg翫i。g

populationmodel

(あ る集 中 過程 を含 む個 体群 モ デ ル の パ ル ス状 定 常 解)

'

,

論 文 調 査 委 員

主 査 山 口 昌 哉

池 部 晃 生 溝 畑 茂

理 学 研 究 科



氏 名 池 田 勉

(論 文内容の要 旨)

生物個体群 の数理 モデルの一 っ に個体群 のパ ター ン形成 を数学 的に説 明

しよ うと してつ くられた非線型微分積分方 程式が ある。 この方程 式は退 化

型 の拡散項 と生 物の個 体の求心本能よ りくる集 中過程 をあ らわす項 とか ら

な り,Uを 時刻tと 位置Xの 関数 と して の個体群密度 と して,次 のよ うに

書 け る。

麻 ・)一(um)(X,tXX)+卜 伝 ・){焙 ・(仏 ・)d・一 典 ・)}]
x

こ こでrは 生 物 の 認識 範 囲 を 示 す 正 パ ラ メー タ ーで あ り ,mは1よ り大 き

な数 で あ る。

申 請 者 は この方 程 式 の定 常 解 につ いて 次 の よ うな結 果 を 得 た 。 こ こで

　 セ

IlIIはLは ノ ル ム,lll[はLノ ル ム を あ らわ す こ と と す る 。
　 　

定 理1(i)上 の 方 程 式 はr211ull2「m≦2と な る よ う な0で な い 定 常 解
oo

を もた な い。(のF(司 を次 の よ うに定 義 す る:

F(か2i蜘 ∫i{η(1一 η)}-1%η と洛 正 数,≧F(司2・ ・対 して,上 の
0

方程 式 はr211ull島m=qで あ り,uの 台 の 長 さがr以 下 の0で な い 定常 解

を 必 らず もっ 。 この 定 常 解 は台 の内 部 で 正 値 で あ り台 は連 結 で あ る。 この

よ うな 定 常解 を 申 請者 はStandingSolitaryPulseと よ ん だ 。(m}関 数

u(x)が 上 の 方 程 式 の0で な い定 常 解 な らば,u(x)は 上述 のStanding

SolitaryPulseに よ って展 開 で き る。 す な わ ち,

U(X)=

i葛Ui(X)

(1)

こ こに{・i}i∈ 、は 次 の 条 件 を み たす 郁 艮又 は 可 撫 限 個 のStandi・g

SolitoryPulse列 で あ る:

湖{Ilu・II・ ・}〈+..・1§ 、IIUII【1<+0.(2){
1キJl,」 ∈」(u1とUjの 台 の 間 の 距 離)≧r



逆 に{・i}を(2)を み た すStandi・gS・1it・ ・yP・lseの 列 と す れ ば(1)で 定 義

さ れ るu(x)は 上 の方 程 式 の0で な い定 常 解 で あ る。

更 にmゴ2の 場 合 に は更 に詳 しい次 の 結 果 が 得 られ て い る。 定 理 皿は次

の よ うに述 べ られ る。

(1)r2≦2な らば0以 外 に定 常解 を もた な い。

qDr2>2の と き方 程 式 はu(0)=1且 っu(x)は 連 続 な 偶 関 数 と い う条
rr

件 を み たす 唯一 つ のStandingSolitaryPulseur(x}を 定 常 解 と して もつ 。

この定 常 解Urの 台 は コ ンパ ク トで あ り,そ の長 さをs(r)と して お く。一

方 関 数u(x)が 方 程 式 の0で な い定 常 解 と な る た め の 必要 十 分 条 件 は,上 の

StandingSolitaryPulseur有 限 個 又 は可 算 個 の平 行 移 動 か らな るパ ル

ス列 が 定 理1の ② の条 件 を み た しそ れ に よ って(1)の よ うに展 開 で き る こと

で あ る。u(x)とs(r)は 次 の性 質 を もっ:
r

(a)Ur(x)は(一 。。,o)で 単 調 非 減 少,s(r)はrはrの 単 調 非 増 加 連 続 関

数,(b}s(r)=π(r≧ π),s(r}〉 π'(r〈 π),r2→2の と きs(r)は 増 加 し て

無 限 大 とな る・(・}・≧ πな らば・ ・,(・)一 ・・砥(曙 ≦ ・ ≦ 号)

(d}r〈 π な らば(-s(r)/2,s(r)/2)上 でur(x)はC2級 で あ る がC3級 で

は な い 。

な お 定 理1は 定 理"と と も にr=。 。の と き に も有 効 で あ る 。



氏 名 池 田 勉

(論 文 審 査 の 結 果 の要 旨)

申請 者 の主 論 文 は集 中過 程 を含 む,非 線 型 拡 散 方 程 式 で 表 現 され た 生 物

個 体 群 の パ ター ン形 成 に つ いて の 数 学 的研 究 で あ る。 この種 の 方程 式 の 研

究 が 単 独 方 程 式 で あ るに もか か わ らず 困難 で あ った理 由 は この 方 程 式 が 非

線 型 拡 散項(密 度 依存 の 拡 散)と 集 中過 程 を あ らわ す 積 分 で あ らわ さ れ た

移 流項 を もっ 微 分 積 分方 程 式 で あ り,取 り扱 い の手 が か りが 見 出せ な か っ

た こ と に よ って い る。 特 別 な場 合r=0の 場 合 に は,方 程 式 は 多 孔物 質 中

を 拡 散 す る流 れ の方 程 式 とな り,積 分 項 は消 え るのでAronsonの 数 篇 の

論 文 と な った 。 ま たr=。 。の 場 合 に は,こ の モ デ ル の 提 唱者 三 村 一永 井

の結 果 が あ るが,こ の モ デル と して は現 実 的 な0〈r〈 ・。の 場 合 に は,現

在 まで 全 く結 果 は無 か った 。 申請 者 は0〈r≦ 。。の場 合 につ いて,定 常 解

に関 す る限 り,き わ めて 詳 細 な,大 局 的 構 造 を 含 め た数 学 的研 究 を な しと

げ大 き くこ の方 面 の 研 究 を前 進 せ しめ た。 得 られ た2っ の定 理 の特 色 を 次

の よ うに ま とめ る こと がで き る。

1)非 自 明 な定 常 解 の存 在 の 条 件 を 明示 した こ と。

2)台 が 連 結 で 台 の 内 で は正 値 な定 常 解 をStandingSolitaryPulse

とな づ け,こ れ を 定 常 解 の 最 小 単 位 と して と りあ げ,そ の存 在 の 条 件

と,任 意 の 非 自明 定 常 解 は この よ う なStandingSolitaryPulseの

列 に よ って展 開 で き る こ とを 示 した こ と。 又 逆 に そ の よ うな 展 開 が で

き る関 数 は定 常 解 で あ る こ と を示 した 。

3)m=2の 場 合 に は 更 に詳 細 に上 に述 べ た展 開 の た あの 列 は 唯一 っ の

特 別 な形 のStandingSolitaryPulseの 有 限 又 は可 算 個 の 平 行 移 動 に

よ って 得 られ る こ とを 示 した。

4)m=2の と き はパ ル スの 間 隔 と大 き さ に つ いて,正 確 な 定 量 的 結 果

を 得 て い る こ と。

5)証 明 の 方 法 も新 し く,た とえ ば2階 の微 分 と,2階 の 差 分 との バ ラ



ンスを研究す るなど独創 的な ところが多い。

上の結果 は この種の モデル方程式の解 の性質 と して は,予 想外 の詳 細な も

のであ り,申 請者の考察が きわめて徹底 した ものであったことを示 している。

参 考 論 文1,2,3は 非 線 型 偏微分方程式の差分化 の研究 であ り,456

は申請者 の得意 とす る移流項 の加 った拡散方 程式 の差分化の研 究で あ り,

特 に6は 重要 なモ ノグラフであ る。7は 主 論文の離散 化の研究 で あ り,い

つれ も申請者の学識 の深 さを示 す もので あ る。

よ って本論文 は理学博士 の学位論 文 と して価値 ある もの と認 め る。

なお,主 論文及び参考 論文 に報告 されている研究業績 を中心 と し,こ れ

に関連 した研 究分野 について試問 した結果,合 格 と認 めた。
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Abstract. The present paper is devoted to the study of stationary 

solutions of a nonlinear degenerate diffusion equation involving a 

nonlocal convection term, which represents a mathematical model for 

spatially aggregating phenomena of populations. The equation has 

two ecological parameters: m > 1 for the diffusion process and 0 <_ r 

 <- 00 for the aggregating process expressed by the convection term. 

For the special case of m = 2, this paper gives all stationary solu-

tions of the one-parameter family {P(2,r)} of the equations. The 

result asserts that P(2,r) has no non-trivial stationary solution 

when 0 <_ r <_ /2, while P(2,r) has many pulse-like stationary solu-

tions when r > /2. The paper also states a partial result for the 

general case of m, and offers a view of the global structure of 

stationary solutions of P(m,r).

Key words and phrases. Stationary solution, Nonlocal interaction, 

   Density-dependent dispersal, Free boundary problem, 

   Eigenvalue problem of differential-difference type.

Running head. A spatially aggregating population model.



1. Introduction 

     In the present paper, we study the stationary solution of the 

following nonlinear degenerate diffusion equation involving a non-

local convection term 

 ut(x,t) _ (um)xx(x,t) + [u(xt)fru(yt)dY - fx+ru(y,t)dy}lx 
                                                              in RX(0,c), 

where m > 1 and 0 r co are parameters and u(x,t) >_ 0 denotes the 

population density at position x e R and time t > 0. We denote the 

above equation by P(m,r), by taking into account the parameters m 

and r.

     Before the mathematical study of P(m,r), we consider an ecolo-

gical meaning of the equation. 

     Ecology has become a mathematical subject in recent years. 

There have been proposed many spatially spreading population models 

for the study of the spatial distribution of organisms, dispersal of 

insects, migration of animals, plankton patchiness, coexistence of 

competing species, etc. (Okubo [36] among others). These spatially 

spreading population models, which are usually given by partial dif-

ferential equations, include biological interactions and diffusion 

processes due to a spatial inhomogeneity in the density distribu-

tion; convection effects caused by a spatial inhomogeneity in envi-

ronment also are included in several models. 

     We here note that some animals in nature congregate and form 
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groups having clear interfaces (insect swarms and bird flocks for 

instance), and we proceed to the study of a mathematical model for 

spatially aggregating phenomena of organisms. Among others (for 

instance, a mathematical model for the aggregation of amoebae (Keller 

and Segel [24]) and the spatial pattern of amoeba aggregation (Sperb 

[42])), we are concerned with a class of spatially aggregating 

population models, proposed by Nagai and Mimura [32], 

         ut(x,t) _ (um)xx(x,t)+ [u(x,t)fK(x_y)u(y,t)dy] 
(1.1) 

                                                           in  RX(0,co), 

where each K(x) is an odd function such that 

                    K(x) 0 for x > 0. 

The second term on the right-hand side of (1.1) ecologically shows 

an aggregating mechanism of individuals, which is motivated by the 

notion of "centripetal instincts" (Hamilton [19]). In fact, the 

term provides a mechanism that moves individuals at position x to 

the right (resp. left) direction when 

            f~K(y){u(x+y,t)-u(x-y,t)}dy > 0 (resp. < 0) 

      cosince fOK(y){u(x+y,t)-u(x-y,t)}dy=-fL.K(x-y)u(y,t)dy represents 
the velocity of drift at position x. The first term on the right-

hand side of (1.1) corresponds to the transport of population 

through a nonlinear diffusion process called density-dependent dis-

persal (Gurney and Nisbet [16] and Gurtin and MacCamy [17]). We 

note that the diffusion speed mum-1 decreases with the density u and 

vanishes at position x where u(x) = 0. Consequently, the first 

term yields a homogenizing process while the second term yields a 
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dehomogenizing process; a delicate balance between these two 

processes may give rise to a spatial pattern that shows an aggrega-

tion of individuals. 

     The equation P(m,r) is a special case of (1.1), where the 

integral kernel K(x) is given by 

                            1 for  0  <  x  <  r, 

(1.2)K(x) _ -1 for -r < x < 0, 

                                0 otherwise. 

Thus a non-trivial stationary solution of P(m,r) ecologically 

exhibits a spatially aggregating pattern of individuals. 

     As stated in Nagai [31], mathematical models providing nonlocal 

interactions such as (1.1) are utilized to explain physical phe-

nomena in other fields (Kuramoto [26] and Munakata [30]).

     We now return to the mathematical discussion on the stationary 

solution of P(m,r). (Later in this section, we will briefly review 

mathematical  works related to the Cauchy problem (1.1) subject to a 

non-negative initial condition.) 

     The trivial function u E 0 is always a stationary solution of 

P(m,r), and we naturally are concerned with the non-trivial station-

ary solutions. 

     All stationary solutions of P(m,0) and P(m,co) have already been 

obtained. The equation P(m,0) agrees to the porous medium equation 

(1.3)ut = (um)XXin Rx(0,00), 

which appears in the theory of fluid flow through a porous medium 

                              3



(Bear  [8] and Scheidegger [40]). Clearly, (1.3) has no non-trivial 

stationary solution. On the other hand, P(m,00) has non-trivial 

standing solitary wave solutions with connected compact support 

(Mimura and Yamaguti [29]). These solutions are determined by the 

total population and the position of the center of support. In 

Section 8, we shall discuss these stationary solutions in detail. 

     In the present paper, we shall study the stationary solution 

of P(m,r) for 0 < r < 00. 

     First we shall deal with the special case of m = 2. The 

result is summarized as 

     Theorem 1.1 (Stationary solutions of P(2,r)). 

(I) Let r /2. Then P(2,r) has no non-trivial stationary solu-

tion. 

(II) Let r > /2. Then P(2,r) has a unique stationary solution ur 

such that 

           u
r is a continuous even function, 

           ur(0) = 1, 
(1.4) 

ur has a connected compact support and is positive on the 

           interior of the support. 

Moreover, a function u becomes a non-trivial stationary solution of 

P(2,r) if and only if u is expressed in the form 

(1.5)u(x) _ . Aaiur(x-ci), 

where {ai}i
sfl and {ci} n (A: an index set) are finite or countable 

sequences of real numbers satisfying the conditions 

(1.6)ai > 0 for all i E A, 1.a. <                                                 leA 
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              ~ci-  c.r + (the length of the support of ur) 
(1.7) 

                                       for all i s A, j c A, i k j. 

(See Figure 1.1.) The length s(r) of the support of ur has the 

properties 

(1) s(r) = Tr for r >_ Tr and s(r) > Tr for r < Tr, 

(2) s(r) increases with decreasing r, 

(3) s(r) is continuous in (^2,m), 

(4) s(r) tends to infinity as r tends to 1/2. 

The stationary solution ur has the properties 

(i) ur is non-decreasing on (-co,0), 

(ii) for r >_Tr, ur(x) = cosx on (2,)-(-2s(r),2s(r)), 
(iii) for 1/2 < r < Tr, ur is twice continuously differentiable on 

    1 1         ( -s(r)s(r)) but u
r is not thrice continuously differen- 

       tiable on (-2s(r),2s(r)). p 

     We need the condition (1.6) since the stationary solution of 

P(m,r) is defined as a non-negative valued function belonging to 

Lco(R) and L1(R)(Section 2). The condition (1.7) asserts that the 

distance between two arbitrary connected components of the support 

of a stationary solution is greater than or equal to r. For in-

stance, d1 >- r and d2 >- r in Figure 1.1. We note that Theorem 1.1 

is valid for all 0 <- r <_ co; when r = m, the support of a stationary 

solution should be connected by (1.7) and its length equals Tr by the 

property (1) of s(r). 

     We shall show, in Section 3, that all stationary solutions of 

P(m,r) are decomposed into simple ones, each of which has a con-

nected support and is positive on the interior of its support. In 

accordance with Nagai and Mimura [33], we refer to these simple 
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stationary solutions as standing solitary pulses. The stationary 

solution  ur is a standing solitary pulse. A standing solitary pulse 

becomes a solution of a free boundary problem of differential-

difference type (Section 4). This free boundary problem is reduced 

to a linear one when m = 2, and we can characterize the stationary 

solution ur by using a principal eigenfunction of an eigenvalue 

problem derived from the free boundary problem (Sections 5 to 7). 

     Furthermore, we shall deal with the general case of m k 2 

(Section 8). The above method of proof cannot apply to the general 

case since the free boundary problem becomes a nonlinear one when m 

k 2. We have not yet obtained a satisfactory result. However, we 

can extend, to the general case, the first assertion in Theorem 1.1 

and the fact that P(2,r) has a stationary solution such that the 

length of its support is less than or equal to r when r >_ rr. 

(Observe the property (1) of s(r).) 

     Theorem 1.2 (Stationary solutions of P(m,r) for m k 2). 

(I) P(m,r) has no non-trivial stationary solution u such that 

(1.8)r2IIuII2-m 2, 

where II•II. denotes the supremum norm. 

(II) Let F(m) = 21 -2 /m J 10 {fl (1 -fl) } -1 /mdfl for m > 1. For each 

positive number q such that 

(1.9)q F(m)2, 

P(m,r) has a stationary solution u such that 

(1.10)r2'lull 2-m = q                                                                     co

6



and the length of the support of u is less than or equal to r. 

(See Figure 8.1.)  p 

     The conditions (1.8) and (1.9) with (1.10) are reduced to 

 r  ^2 and r > ~r , 

respectively, when m = 2. Hence Theorem 1.2 is a partial extension 

of Theorem 1.1. We shall also give a conjecture for the global 

structure of stationary solutions of P(m,r) in Section 8. 

     We here review mathematical works related to the Cauchy problem 

(1.1) subject to a non-negative initial condition. 

     When the integral kernel K = 0, (1.1) is reduced to the porous 

medium equation (1.3). The distinctive feature of (1.3), which is 

caused by the degeneracy of diffusion at u = 0, is that an initial 

distribution with compact support spreads out at a finite speed 

(Oleinik et al. [37]) and loses its initial smoothness (Aronson [4] 

and Kalashnikov [22]). We can observe this feature in an exact 

solution obtained by Barenblatt [7] and Pattle [38]. A similar 

exact solution of ut = (u2)
xx + u(1-u) was found by Newman [35]. 

A solution of the Cauchy problem (1.3) is therefore defined in a 

generalized sense, and the regularity of the generalized solution is 

discussed in Aronson [3], Caffarelli and Friedman [9], Gilding and 

Peletier [14], etc. Because of the finite propagation property, 

there appear interface curves that divide the half plane Iac(0,(m) 

into two regions {(x,t); u(x,t) > 0} and {(x,t); u(x,t) = 0} (for 

instance, Aronson [5], Caffarelli and Friedman [10] and Knerr [25]). 

Graveleau and Jamet [15] and Tomoeda and Mimura [43] have proposed 
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finite difference schemes where the degeneracy of diffusion is taken 

into account. Schemes proposed by DiBenedetto and Hoff  [12], 

Mimura et al. [28] and Hoff [20] approximate the interface curves as 

well as the value of the unknown function. 

     The Cauchy problem (1.1) has the same distinctive property as 

that of (1.3). For a class of integral kernels K including the 

simple one given by (1.2), Nagai [31] has shown the unique existence 

and the regularity of the generalized solution of (1.1), and he has 

proved the finite propagation property. Nagai and Mimura [33] have 

obtained the asymptotic behavior of the solution of P(m,00): as time 

t tends to infinity, a solution of P(m,c0) tends to a stationary 

solution uniquely determined by the initial condition. Recently, 

Nagai and Mimura [34] have derived an equation that describes the 

motion of the interfaces to P(m,03), and have obtained the asymptotic 

behavior of the interfaces. Ikeda [21] has devised a finite differ-

ence scheme for P(2,c0) and has obtained the asymptotic behavior of 

the discrete solution. (Figure 1.2 displays a solution of the 

Cauchy problem P(2,00) obtained by this scheme.) A modification of 

this scheme has been useful in the study of the stationary solution 

of P(2,r). 

     Alt ([1] and [2]) has studied stable patterns reproduced by 

another spatially aggregating population model providing both a 

degenerate diffusion process and an aggregating process expressed by 

a nonlocal interaction.

8



2. Regularity of a stationary solution 

     In this section, we first define a stationary solution of 

P(m,r) and then consider its regularity. 

     A stationary solution u of P(m,r) is defined to be a non-nega-

tive valued function belonging to  L1(R) and Lw(R) that satisfies 

(2.1) [(um)x + u{fx-rudy - fx+rudy},x = 0 
in the distribution sense. (We denote by C°(S2) the space of infi-

nitely differentiable functions defined on an open subset S2 of R 

having compact support in c2.) 

     Let u be a stationary solution of P(m,r). An application of 

the distribution theory yields that the distribution 

F[u] = (um)x + u{fx -rudy - fx+rudy} 

is a constant C, and that this constant C is represented by 

                        C = F[u](4) = <F[u].(1)> 

withE CD(R) such that f~.(I)(x)dx = 1 (Schwartz [41,pp.51-53]). 
The constant C equals zero by the following proposition. 

     Proposition 2.1 (Regularity of a stationary solution). If u 

is a stationary solution of P(m,r), then 

u E C(R) and um E C1(R), 

and u satisfies 

(2.2) F[u] E (um)x + u{fx-rudy - fX+rudy} = 0 in R 
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in the classical sense. Moreover, u is twice continuously dif-

ferentiable on the region  Du  = {x E R; u(x) > 0}. 

     Proof. We fix a function 4) E C3(R) satisfying fm.(I)(x)dx = 1, 
and define by 4)n(x) =n4)(n) a sequence {4n}n=1,2,...'~nc CO(R) 
and f_ .4)n(x)dx = 1. Since u belongs to L1(R) and Lm(R), the con-

stant C = <F[u],(I)> = <F[u],(1)n> is estimated by 

ICI <<um,(4)n)x>~+ I<u{fx-rudyx+r 

(2.3)`_umII 001l (d)n) x1I 1 + Ilull24n11. 

                              2 

              n{~~umIII~~xll1+ lIul111~~~~m} 4 0 as n T co, 

which implies that C equals zero. (The symbol Ill 1 denotes the 

usual norm of L1(R).) Since F[u] = 0, (um)x is represented by 

(2.4)(um)x = -u{fx -rudyfx+rudy}. 

The right-hand side of (2.4) belongs to L1(R) and Lm(R), hence um E 

C(R), and u E C(R). We know that um E C1(R) by using (2.4) once 

again. Hence u satisfies (2.2) in the classical sense. 

      In general, 

          if f c C1(G) and f > 0 on G (G: an open set), 
(2.5) 

          then fa E C1 (G) for all a c R. 

Applying (2.5) to the case where G = Du, f = um and a = 1/m, we know 

that u = (um)1/m is continuously differentiable on D. Now (2.4) 

yields that um is twice continuously differentiable on Du since
xf
x-rudy - fX+rudy E C1(R). Hence u is twice continuously differen- 

tiable on Du since ux=mu1-m(um)x on Du and u1-m is continuously 
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differentiable on  D
u by (2.5).  0 

     A stationary solution u of P(m,') is infinitely differentiable 

on Du = [x E R; u(x) > 0) (Mimura and Yamaguti [29]). When 0 < r < 

co, however, a stationary solution u of P(m ,r) is not always thrice 

continuously differentiable on Du. In fact, a non-trivial stationa-

ry solution u of P(2,r) is never thrice continuously differentiable 

on Du when r < Tr, while u is infinitely differentiable on D
u when r 

> Tr (Theorems 1.1 and 5.9). 

     As stated in Section 1, a stationary solution u of P(m,r) is 

called "a standing solitary pulse" if u has a connected support and 

is positive on the interior of its support.
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3. Decomposition of a stationary solution 

     In this section, we discuss the support of a stationary solu-

tion of P(m,r) and decompose a stationary solution into the standing 

solitary pulses. The support of a continuous function v is denoted 

by  supp[v]. A standing solitary pulse is abbreviated to an "ss-

pulse". 

      Even if both u and v are ss-pulses of P(m,r), u + v is not 

always a stationary solution of P(m,r), of course. However, if the 

distance between supp[u] and supp[v] is greater than or equal to r, 

then F[u+v] = F[u] + F[v] ((2.2) in Proposition 2.1) and u + v 

becomes a stationary solution of P(m,r). 

     The following theorem asserts that all non-trivial stationary 

solutions of P(m,r) are obtained by adding ss-pulses in the above 

way: 

     Theorem 3.1 (Decomposition of a stationary solution). All 

non-trivial stationary solutions u of P(m,r), r > 0, are expressed 

in the form 

                          u = i
EI1ui, 

where {ui}i
EA (A: an index set) is a finite or countable sequence of 

ss-pulses such that 

          dis(supp[ui],supp[uj])>_r for all i E A, j E A, i k j, 

where dis(A,B) denotes the distance between subsets A and B of R. 

     Proof. The proof is given later in this section. p 
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     By virtue of Theorem 3.1, we have only to study the ss-pulse in 

the forthcoming sections. 

     We begin with a change of the unknown function. With a sta-

tionary solution u of P(m,r), we associate a function U defined by 

(3.1)U(x)  = fxu(y)dy for x e R. 

This function U has the following properties: 

             U e C1(R), U is non-decreasing on R, 

(3.2) U(x) + 0 as x + -co and U(x) T Dull1 as x T 03, 

             U is thrice continuously differentiable on Du, 

where Du = {x E R; u(x) > 0}. By the function U, (2.2) is 

rewritten as 

(3.3) {Ux(x)m}x - Ux(x){U(x+r)+U(x-r)-2U(x)} = 0 in R. 

A primitive function J[U] of the function on the left-hand side of 

(3.3) is given by 

           J[U](x) = Ux(x)m + fX+rUy(y){U(y-r)-U(x)}dy 
(3.4) 

                      u(x)m + fx+ru(y){U(y-r)-U(x)}dy for x E R. 

By (3.3), J[U] equals a constant C. Moreover, since u E L:3(R) by 

the definition of a stationary solution, 

                fx+ru(y){U(y-r)-U(x)}dy;0 as x T 

                   x by (3.2). Hence limx} u(x)m exists and equals C. Since um e L1(R) 

by the definition of a stationary solution, C = limx+ u(x)m = 0, and 

(3.5)J[U](x) = 0 for x e R. 
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     By using the function  J[U], we obtain 

     Lemma 3.2. Let u be a stationary solution of P(m,r). If 

u(y) = 0 at a point y e R, then there exists a closed interval I 

such that y e I, (the length of I) >_ r and u(x) = 0 for x e I. 

     Proof. Let a = inf{x e [y-r,y]; u = 0 on [x,y]} and b = 

sup{x e [y,y+r]; u = 0 on [y,x]}. It suffices for the proof to 

show that r b - a. Suppose that r > b - a. Let U be a non-

decreasing function defined by (3.1). By the assumption, 

                          U(x) < U(a) for x < a 

and there exists a real number c such that 

          b < c < a+r and U
x(x) = u(x) > 0 for b < x < c. 

These together with (3.2) lead to the estimate 

      J[U](a) = u(a)m + faa+ru(x){U(x-r)-U(a)}dx 

              = fa+ru(x){U(x-r)-U(a)}dx < fbu(x){U(x-r)-U(a)}dx < 0, 

which contradicts (3.5). Thus the proof is completed. p 

     Lemma 3.2 enables us to prove Theorem 3.1. 

     Proof of Theorem 3.1. Let u be a non-trivial stationary solu-

tion of P(m,r), r > 0. Lemma 3.2 shows that the distance between 

two arbitrary connected components of supp[u] is greater than or 

equal to r. This implies that the number of connected components of 

supp[u] is finite or countable. Let {Si}1enbe the sequence of 

connected components of supp[u] (A: an index set). With each Si (i 

e A), we associate a function ui given by 

u.(x) = u(x) for x e Si and u.(x) = 0 for x k Si. 
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Then, u(x) =  i EAui(x) for x e R, and each ui is positive on the 
interior of Si by Lemma 3.2. Now it suffices to show that each u

i 
becomes a stationary solution of P(m,r): F[ui] = 0 on R ((2 .2) in 

Proposition 2.1). Since ui = 0 on R\Si, F[ui](x) = 0 for x h Si. 

Lemma 3.2 implies 

          u(y) = ui(y) for y c R such that dis({y},Si) <_ r; 

hence F[ui](x) = F[u](x) = 0 for x s We We thus complete the 

proof of Theorem 3.1. p 

     Remark 3.3. Theorem 3.1 and Lemma 3.2 are valid for all 0 < r 

_̀ c()• hence a stationary solution of P(m,00) has a connected support 

(Mimura and Yamaguti [29]). 0 

      Remark 3.4. Let u(x,t) be a solution of the Cauchy problem 

P(m,r) subject to a non-negative initial condition. Then the total 

populationf_cou(y,t)dy = ilu(•,t)111 is kept constant (Gilding 

[13]). Hence P(m,r) is transformed into 

        Ut(x,t) _ {U
x(x,t)m}x - Ux(x,t){U(x+r,t)+U(x-r,t)-2t(x,t)} 

through the same change of the unknown function as (3.1). By J[U], 

this equation is expressed in the divergence form 

                      Ut(x,t) = J[U]x(x,t). p 

     Remark 3.5. Let u be a stationary solution of P(m,r) and 

define a non-decreasing function U by (3.1). The function J[U] is 

rewritten as 

        J[U](x) = Ux(x)m - U(x)(U(x+r)-U(x)) + fx+rUy(y)U(y-r)dy. 

Since u = Ux 0 on R, J[U] = 0 on R and the third term on the 
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right-hand side of the above equality is non-negative by (3.2), 

 IIuII~ = supxsR{u(x)m}=supx~R{Ux(x)m} 

(3.6)< supxsR{U(x)(U(x+r)-U(x))} 

sup xsR{U(x)( IIu1I1-U(x))} = (I1uII1/2)2. 

When r = co, J[U](x) is reduced to 

J[U](x) = Ux(x)m - U(x)(IIu1I1-U(x)), 

and (3.6) is replaced by the equality 

IIuII: = supxsR{u(x)m} supR{Ux(x)m} 
(3.7) 

                  = sup xER{U(x)(IIu111-U(x))} = (IIu1I1/2)2.
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4. Standing solitary pulses 

     In Sections 4 to 6, we study the ss-pulse of P(2,r). 

     The present section gives a linear differential-difference 

equation that the ss-pulse satisfies in the interior of its support. 

By using this linear equation, we show that P(2,r) has no non-

trivial stationary solution when r  <_ 1/2. 

     Let u be an ss-pulse of P(m,r). Since(um)x =
mm1u(um-1)x on 

the interior int(supp[u]) of supp[u], dividing (2.2) by u > 0, we 

obtain 

            m(4.1)—j(um-1) x+ {jx-rudy - jX+rudy} = 0in int(supp[u]). 

Hence an ss-pulse u of P(m,r) satisfies the differential-difference 

equation (Hale [18] and Lange and Miura [27]) 

I (4.2)mm1(um-1)xx- {u(x+r)+u(x-r)-2u(x)} = 0 in int(supp[u]), 

which is obtained by differentiating (4.1). We note that 

(1) both (4.1) and (4.2) are valid for all m > 1, 

(2) um-1 H1(R) for all m > 1, 

(3) (4.2) is reduced to the linear equation when m = 2. 

      We denote by A and V, respectively, the Laplacian operator and 

the gradient operator: 

             Av = v= (d/dx)2v and Vv = vx=dx' 
We introduce a discrete Laplacian operator Ab and a discrete gradi-

ent operator Vb given by the central finite difference approximation 

for A and V, respectively: 
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 (Abv)(x) _ (b)2{v(x+b) + v(x-b) - 2v(x)}, 

(Vbv)(x) =1—b{v(x+2) - v(x-2)} for b > 0. 

For m = 2, the equation (4.2) is now rewritten as 

(4.3)Au -Zr2Aru = 0 in int(supp[u]). 
The first and second terms on the left-hand side of (4.3) correspond 

to the nonlinear diffusion process (u2)
xxand the aggregating pro- 

cess [u{frudy_frudy}}x, respectively. We note that the problem 
of the balance between the diffusion process and the aggregating 

process is reduced to that of the balance between the Laplacian 

operator and the discrete Laplacian operator when m = 2. We also 

note that if u(x) is an ss-pulse of P(2,r), then so is au(x) (a: an 

arbitrary positive number) as well as any translation of u(x). 

     By (4.3), an ss-pulse u of P(2,r) satisfies 

          {Au -2r2Aru}v = 0 in R 
for all v e H1(R) such that v = 0 on R\int(supp[u]). Integrating 

this equation on R, we obtain 

(4.4)(Vu, Vv) -2r2(Vru, Vrv) = 0 

for all v E H1(R) such that v = 0 on R\int(supp[u]), where (•,•) 

denotes the inner product of L2(R). (For brevity the norm of L2(R) 

is denoted by ll•il in the present paper.) 

     Lemma 4.1.The Laplacian operator is stronger than the 

discrete Laplacian operator in the sense that 

(pv,Vv) > (Vbv,Vbv) for all v e H1(R)\{0} and b > 0. 

     Proof. Holder's inequality yields 
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        Iv(x+b)-v(x)I2 = IfX+bvy(Y)dy12 <  bfX+blvy(Y)I2dy. 

In the above, the equality sign holds only when v is constant on the 

interval (x,x+b). Since v e H1(R)\{0}, v is not constant on R and 

    (Vbv,Vbv) _ (b)2f_.Iv(x+2)-v(x-2)I2dx = (b) f_.Iv(x+b)-v(x)Idx 

             br.dxfX+Ivy(Y)I2dY=bfwcodyfYy-blvy(Y)I2dx 

              = I Iv
y(Y)I2dY = (Vv,Vv), 

which completes the proof. p 

     An ss-pulse u of P(2,r) must satisfy (4.4). Hence Lemma 4.1 

implies that P(2,r) has no non-trivial ss-pulse when r <_ 1/2. Com-

bining this fact and Theorem 3.1, we obtain 

     Theorem 4.2 (Non-existence of a stationary solution for r <_ /2). 

Let r < 1/2. Then the equation P(2,r) has no non-trivial stationary 

solution. p 

     Lemma 4.3. Let b and c be positive numbers (b < c). Then, 

         Ilobv-Vcvll < I c-b I IIovII for all v E H1(R) . 

     Proof. We put R = b/2 and y = c/2. By Cauchy's inequality, 

  {bc1Vbv-Vcv1}2 = IcfX+svy(Y)dy - bfX±Yvy(Y)dYI2 

          = 1(c-b)fX±avy(Y)dy - b{fx-1,31,vy(Y)dY+fx+Rvy(Y)dy}l2 
< 2(c-b)2IfX+avydyl2 + 2b21fx-yvydy+fx3vydYI2 

                    2x+S
vd2+ 4b2x-Rvd2+ 4b2x+Yvd2              2(c-b)Ifx -RyYIIfx_YYYIIfx+RYYI. 
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Then Holder's inequality yields 

 {bcIVbv-Vcvl}2<_2blc-bI2fX+QIvyl2dy 
                + 2b2Ic-blfX_RIvyl2dy+ 2b2Ic-blfX+Rlvyl2dy. 

Now, by the same method as in the proof of Lemma 4.1, {bcllpbv-V cv11}2 
is estimated by 

{bc Ilobv-Vcvll } 2 = f' {bc l Vbv-Vcv I } 2dx 

                                 + b2 l c-b 12ilovll2 + b2 l c-b 12llovll2 < 2b2Ic-b 12 IIVvII 2 

                = { 2b I c-b I IIVvII } 2 . 

This completes the proof. p 

     Lemma 4.4. Let {v,V} be a pair of functions on R such that v 

c C(R), V c C1(R) and both v and V are twice continuously differen-

tiable on a bounded interval (a,1). If V = 0 on (-00,a], v = 0 on 

R\(a,13) and -Av + 2r2Abv = 0 in (a,), then 

(4.5) f301(-AV+2r20bV)vdx = V(R)vx0-0) + 2(1f).)24-10V(x+b)v(x)dx. 

     Proof. Let E and 3 be small positive numbers. By integra-

tion by parts, 

fa(-AV)vdx = -[Vxv]a+s + fa+sVxvxdx 

                          [Vvx-Vxv]a+e+ fa+6(-Av)Vdx 

_ [Vvx-Vxv]a+Sfa+s(2r20bv)Vdx. 

Letting s + 0 and ó + 0, and noting that V(a) = v(a) = v((3) = 0, we 
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obtain 

(4.6) fa(-AV)vdx = fa(-2r2,6bv)Vdx 

Noting that  v 0 on R\(a,(3) and V 0 

       fa(2r2pbV)vdx = fw~(Zr2pbV)vdx 

(4.7)= fa(2r2Abv)Vdx + 

                  fa(2r20bv)Vdx + 

Now (4.5) is obtained by adding (4.6)

+ V(a)vx(13-0). 

 on (-m,a], we obtain 

fmAr2pbv)Vdx 

2(b)2f3+bv(x-b)V(x)dx 

  (b)2fR -bV(x+b)v(x)dx. 

and (4.7). 0

     We here classify ss-pulses into four groups according to sup-

port and symmetry. An ss-pulse u is called a finite ss-pulse when 

supp[u] is compact. Finite ss-pulses are classified into two 

groups; one is the group of symmetric finite ss-pulses that are 

symmetric with respect to the center of support and the other is the 

group of non-symmetric ones. An ss-pulse u is called an infinite 

ss-pulse when supp[u] R, while u is called a semi-infinite ss-

pulse when supp[u] is a semi-infinite interval. Thus we have 

classified ss-pulses into four groups: 

           {symmetric finite ss-pulses}, 

            {non-symmetric finite ss-pulses}, 

           {infinite ss-pulses}, 

{semi-infinite ss-pulses}. 

For the equation P(2,r), r > /2, we shall show the existence of a 

symmetric finite ss-pulse in Section 5, and show the non-existence 

of other three kinds of ss-pulses in Section 6. 
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5. Symmetric finite standing solitary pulses 

     In this section, we study the symmetric finite ss-pulse of 

 P(2,r). 

     Let u be a symmetric finite ss-pulse of P(2 ,r). We may assume 

supp[u] to equal an interval[ -2,2] (s: an unknown positive number) 
since any translation of u also is a symmetric finite ss-pulse . In 

general, (4.1) is not equivalent to (4.2), which is obtained by dif-

ferentiating (4.1). As for even functions however, (4 .1) and (4.2) 

are mutually equivalent: if an even function is a solution of (4.2), 

then it also fulfils (4.1). Thus the problem to find a symmetric 

finite ss-pulse is described in the form of the following free 

boundary problem: 

         Find an even function u E C(R) and s > 0 such that 

(5.1) -Au +2r2Aru = 0 in (-2,2), 
u > 0 on (-2,2), u = 0 on R\(-2,2):. 

By the coordinate transformation xSx, (5.1) is transformed into 

r Find an even function w E C(R) and b > 0 such that 

(5.2) -Aw +2r20bw = 0 in (-2,2), 
w > 0 on (-2,2),w= 0 on R\(-2'2). 

Here is the following one-to-one correspondence between the solu-

tions {u,s} of (5.1) and {w,b} of (5.2): 

(5.3) sb = Trr and w(x) = u(x) for x E R. 

     We now consider the following eigenvalue problem: 
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 For  r  '_  0  and  b  >  0 

E(r,b)find an even function v E C(R)\{0} and A E R such that 

TT 7 Ar by = av in (-2,2), v = 0 on R\(-22,2, 

where Ar,b denotes the operator -0 + j-r2i. Clearly, {u,s} is a 
solutionof (5.1) if and only if {v(x)=u( ,s—~x),0} is a solution of 

E(r,Trr/s) that satisfies the positivity condition 

(5.4)v > 0 on (-2,2). 

     In the following four subsections, we shall show that when r > 

/2, P(2,r) has a symmetric finite ss-pulse characterized as a prin-

cipal eigenfunction of E(r,b) through the coordinate transformation 

x}Sx. We shall also show that the symmetric finite ss-pulse of 
P(2,r) is unique up to the coordinate translation and the multipli-

cation by a positive number. In practice, we shall prove the 

following properties of the family of eigenvalue problems E(r,b), 

r - 0 and b > 0: 

(1) each E(r,b) has an increasing sequence of eigenvalues (Subsec-

     tion 5.1), 

(2) for each r > /2, there exists a unique positive number b(r) 

     such that the principal eigenvalue of E(r,b(r)) equals zero 

     (Subsection 5.2), 

(3) the principal eigenvalue of E(r,b(r)) is simple and a principal 

      TT7      eigenfunction is positive on (-2,2) or negative on (-2,2) (Sub-
     section 5.3), 

(4) no n-th eigenfunction (n > 1) is of one sign on (-2,2) when the 
     corresponding eigenvalue equals zero (Subsection 5.3). 
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5.1. Variational formulation of the eigenvalue problem 

     We practically consider the variational formulation of E(r,b). 

For this purpose, we introduce a function space  Hs and a symmetric 

continuous bilinear form ar
,b in Hs associated with the operator 

Ar b. The function space Hs is a subspace of H1(R) given by 

Hs = {v E H1(R); v = 0 on R\(-2,2), v(x) = v(-x) for x E R} 

equipped with the norm 

The space Hs is identified with the space that consists of even func- 

tions belonging to H1((-2,2)) (H1((-2,2)): the closure of Co((-2,2)) 
in H1((-22))]. The bilinear form ar,b: HsxHs } R is given by 

ar,b(v,w) = (Vv,Vw) -2r2(Vbv,Vbw). 

We thus obtain the variational formulation of E(r,b): 

            For r > 0 and b > 0, find v E Hs\{0} and A E R such that 
e(r,b) 

a
r,b(v,w) _ x(v,w) for all w E Hs. 

      A solution of E(r,b) becomes a solution of e(r,b), of course. 

Let {v,A} be a solution of e(r,b). We can identify v with the 

solution w of the equation 

    1 27rTT TT -Aw =-2rAbv +)~v in(-2,2), w = 0 on R\(-2,2). 

The solution w is twice continuously differentiable on (-2,2) since 

the right-hand side of the above equation belongs to H1(R). Conse-
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quently, e(r,b) is equivalent to E(r,b). 

     We associate a symmetric continuous bilinear form in  H
s 

ar b(v,w) = ar b(v,w) + 2()2(v,w) 

with ar b, and consider another eigenvalue problem 

            For r > 0 and b > 0, find v E H
s\{0} and A E R such that e(r

,b) 
ar

,b(v,w) = a(v,w) for all w 6 Hs. 

                                                                             r Clearly, {v,A} is a solution of e(r,b) if and only if {v,A+2(b)2} is 

a solution of e(r,b). By the estimate 

    Ilvbvll =b{ JcOv(x+b)-v(x-b) 12dx}1 /2<<blIvIIfor all v E Hs 

and the Poincare inequality, the bilinear form ar b is Hs-elliptic: 

        ar,b(v,v)=IIVviI2-2r2IIVbvII2+ 2 (b)2Ilvii2 

(5.5)vll                     llv2={20vvll2+Tr2IIVviI2}/(2+72) 

> 211v1121/(2+72)for all v E H. 

     Proposition 5.1 (Characterization of principal eigenvalue). 

(1) The eigenvalue problem e(r,b) has an increasing sequence of 

eigenvalues 

-co < Al,(rb) < A2(r,b) < ..... , with limi
~~~`i(r,b)_m. 

(2) Eigenfunctions vi associated with Ai (i=1,2,...) can be 

orthonormarized so that 

a
r~b(vi,vj) = aidijand(vi,vj)=Sijfor all i and j, 

where S denotes Kronecker's delta. 

(3) The principal eigenvalue A1(r,b) is characterized by 
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            A1(r,b) =  inf{R
r  b(v); v e Hs\{0}} = Rr b(v1) 

with the aid of the Rayleigh quotient 

Rr,b(v) = ar,b(v,v)/HvII2 for v e Hs\{0}. 

(4) A function v c Hs\{0} becomes a principal eigenfunction of 

e(r,b) if Rr b(v) = 11(r,b). 

      Proof. The assertions of the proposition have been proved for 

the symmetric continuous Hs-elliptic bilinear forms. (For in-

stance, refer to Ciarlet [11,pp.283-286], Riesz and Nagy [39,pp.231-

235] and Kato [23,pp.260-262].) This together with the foregoing 

argument on the relation between e(r,b) and e(r,b) completes the 

proof. p 

      The operator Ab is reduced to -2/b2 when b >_ Tr, hence the solu-

tions of e(r,b), b Tr, are given by 

vi(x) = cos(2i-1)x on(-2,2) and A. = (2i-1)2-(b)2. 

Thus, when b =' Tr, the principal eigenfunction of e(r,b) is positive 

on (-2,2) or negative on(-2,2),the support of the eigenfunction 
equals [-2,2] and 

              

~IoviII 2/~~v~~2= (2i-1) 2 for i = 1 , 2, ... . 

When 0 < b < Tr, a principal eigenfunction of e(r,b) is not always of 

one sign on (-24), which will be discussed in Subsection 5.3. But 
we obtain the following two propositions about the support of an 

eigenfunction and the Hs-norm of a principal eigenfunction. 

     Proposition 5.2 (Support of an eigenfunction). The support of 

an eigenfunction of e(r,b) equals [-f,f]' 
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    Proof. We omit the complete proof, and show only that the 

support of an eigenfunction is never included in  (-2,2). We have 
already noted that the support of an eigenfunction of e(r,b) equals 

[ - TT 2] when b >_ Tr. Suppose that e(r,b),  b < Tr, has a solution 
{v,A} such that supp[v] is included in an interval [-2+d,2-d] (d: a 
positive number). We may assume that Tr/b is not an integer since we 

can replace {v,A} by some {w(x)=v(cx),c2X} (1-2d/Tr < c < 1) if nec- 

essary, which is a solution of e(r,b) such that supp[w] is included 

in (-2,2). Let n = max{i e Z; ib < Tr}. We may assume d to be less 

thanZ(Tr-nb). We partition [-2,2] into the intervals 

[Yi,Yi+d], (Yi+d,zi-d), [zi-d,zi] (i=0,1,...,n), 

(zyi+1) (i=0,1,...,n-1 ), 

where yi = -2ib and zi =  (n-i)b (i=0,1,...,n). (See Figure 5.1.) 
     Since {v,A} is regarded as a solution of E(r,b) and v = 0 on 

[y0,y0+dl, 

          0 = Arbv(x) - Av(x) =2(b)2v(x+b) for x s (y0,y0+d). 

This implies that v = 0 on [y1,y1+d] since v E C(R). By math-

ematical induction, we know that v = 0 on [yi,yi+d] (i=0,...,n). 

The fact that v = 0 on [zi-d,zi] (i=0,...,n) is shown by the same 

method of proof. 

Let vi be the restriction of v on (yi+d,zi-d) (i=0,...,n). We 

regard vi's as functions defined on the interval (O,1r-nb-2d) through 

suitable coordinate translations. Since {v,A} is regarded as a so-

lution of E(r,b) and v = 0 on [yi,yi+d] and [zi-d,zi] (i=0,...,n), 

v
i's (i=0,1,...,n) satisfy 
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 -tv
i +2(b)2(vi-l-2vi+vi+1) = avi in (O,ff-nb-2d), 

     vi(0)= (vi)
X(0) = vi(ff-nb-2d) = (vi)X(ff-nb-2d) = 0, 

where v -1 -vn+1 =0. This system of linear equations has no non- 

trivial solution for any A E R. Hence v = 0 on [yi+d,zi-d] 

(i=0,...,n). The fact that v = 0 on [zi,yi+1] (i=0,...n-1) is 

shown by the same method of proof. Thus, 

v = 0 on [-ff7], 

which contradicts the assumption that v is an eigenfunction of 

e(r,b). p 

     Proposition 5.3 (Hs-norm of a principal eigenfunction). A 

principal eigenfunction v of e(r,b) satisfies the estimate 

IIvvIl 2/ IIvII2 < 1 + 2(b)2 - K(r,b) . 

      Proof. Let v be a principal eigenfunction of e(r,b), associ-

ated with X1(r,b). Then v is a principal eigenfunction of e(r,b), 

associated with yr,b) = A1(r,b)+2(b)2. Using (5.5) and applying 

(3) of Proposition 5.1 to e(r,b), we obtain 

    Ilvi2/II~II2<ar ,b(v^v)/IIvIi2= inf{ar,b(w,w)/IIwll2; w E HS\{0}} 

< inf { [llvwIl2~22llwll2]/llwll2;  w E H\{0}}. 

This together with the equality 

inf{IIvwll2/IIwII2; w E Hs\{0}} = inf{RO ,b(w); w E Hs\{0}} 
                                         = Al(0,b) = 1 

(an application of (3) of Proposition 5.1 to e(0,b)) completes the 

proof. p
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5.2. Zero points of the principal eigenvalue 

     The purpose of the present subsection is to prove 

     Theorem 5.4 (Unique existence of a zero point). Let r >  /2. 

Then there exists a unique positive number b = b(r) such that the 

principal eigenvalue a1(r,b) of e(r,b) just equals zero. The 

function b(r) has the following properties: 

(1)b(r) = r for r >_ Tr and b(r) < Tr for r < Tr, 

(2)b(r) increases with r, 

(3)b(r) is a continuous function of r, 

(4)b(r) tends to zero as r tends to /2. 

(Figure 5.2 shows the graph of b(r) obtained by a finite difference 

approximation for e(r,b). The function b(r) has the property 

                       b(r) < rfor r < Tr, 

which will be proved in the next subsection.) p 

     We begin with the uniqueness of b(r). Let us show that if 

A1(r,b) = A1(r,c) = 0 for 0 < b c, then b = c. Let w be a 

principal eigenfunction of e(r,c), associated with a1(r,c). Define 

a function w by W(x) = w(f)x) for x e R. Then W E Hs and 

Rr
,b(W) = (b)2Rr,c(w) = (b)2X1(r,c) = 0. 

This together with (4) of Proposition 5.1 implies that w is a prin-

cipal eigenfunction of e(r,b), associated with a1(r,b). Hence b 

should equal c since if b < c, then supp[w] is included in 

and w is never an eigenfunction of e(r,b) by Proposition 5.2. We 
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thus obtain the uniqueness of b(r). 

     We next discuss the existence of b(r). As stated in Subsec-

tion 5.1, 

 X1(r,b) = 1 - (b)2 for b i, 
which implies 

(5.6)X1 (r,b) >_ 0 for b >_ max{Tr,r}. 

On the other hand, 

(5.7)A1(r,b) < 0for 0 < b < B(r) and r > /2, 

where B(r) denotes the smallest positive solution of the equation 

                        1 - 1r2Tr-x{sin(x/2)}2 = 0_                  2 
Tr x/2 

This is because the principal eigenvalue is estimated by 

A1(r,b) 5 Rr,b(W) <2(1 -2r2Tr-b{sinb/22) }2) 

                 l ((3) of Proposition 5.1), where w s Hs is given by w(x) = cosx for 

Ix'2.By (5.6) and (5.7), for r > /2, there exists a positive 
number b(r) such that A1(r,b(r)) = 0 if a1(r,b) is continuous with 

respect to b. Consequently, the following proposition completes 

the proof of the first assertion of Theorem 5.4. 

     Proposition 5.5 (Continuity of the principal eigenvalue). The 

principal eigenvalue A1(r,b) of e(r,b) is a locally Lipschitz con-

tinuous function of (r,b) e (0,00)x(0,co). 

     Proof. We fix arbitrary positive numbers R and 13. Let p, q, 

b and c be positive numbers such that 

p < R, q < R and 13 < b c. 

We first estimate IA1(q,b)-A1(P,b)I.Let vg and vp be principal 

eigenfunctions associated with A1(q,b) and X1(p,b), respectively. 
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Using the Rayleigh quotient, we obtain 

           A1(q,b)-X1(p,b) = R
q,b(vq)-Rp,b(vp)  5. Rq,b(vp)-Rp,b(vp) 

= 2(P+q) (P-q) ̂Iobvpll 2/ IIvpiI2, 

a1 (P,b)-A1 (q,b) 
                        1(

P+q) (q-P) Ilobvgll2/ Ilvgll 2- 

From the above estimates, Lemma 4.1 and Proposition 5.3, it follows 

that 

     

I a1(q,b)-a1(P,b) I                    4(p+q)iq_pImax{iiVvIi2/iIvli2, I1obvgll2/ Ilvgll2} 

(5.8)< 2 (P+q) I q-P l max{ Ilovp112/1117 IIp 2,Ilovgll2/ IIvg12 } 

                       =̀2(P+q)Iq-PIK(R,b)`=RIq-PIK(R,). 

We next estimate la1(p,b)-X1(p,c)l. By Lemmas 4.1 and 4.3, 

    IIvII2IRP,b(v)-RP,c(v) I =2P`I I1obv1i2-IIocvII2I 
(5.9)         1 2{Ilo

bvll+ Ilocvll} Ilobv-ocvll -cp2Ilovii2Ic-bI    2p for all v E Hs. 

Let vb and vc be principal eigenfunctions associated with A1(p,b) 

and A1(p,c), respectively. By (3) of Proposition 5.1, 

     A1(P,b)-X1(P,c) = RP
,b(vb)-Rp,c(vc) < Rp,b(vc)-Rp,c(vc), 

a1(p,c)-X1(P,b) `= Rp
,c(vb)-Rp,b(vb). 

Applying (5.9) to v = vc and v = vb and using Proposition 5.3, we 

obtain
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 IX1(p,b)-X1(P,c)I <- max{IRp ,b(vc)-RP,c(vc)1 IRP,c(vb)-RP,b(vb)I} 

                  cp2Ic-blmax{ IIWcII2/ IIv II2^IIVVb112/11vbII2) 
                     <_2p2lc-bIK(p,) < RR2Ic-bIK(R,R). 

This together with (5.8) completes the proof: 

I a1 (q,b)-A1 (P,c) I I X1 (q,b)-X1 (P,b) I + I X1 (P,b)-X1 (p,c) I 

<_ R{22RIc-bI+Iq-PI}K(R,R) 

                       for 0< p < R, 0< q < R and 0< R< b c. 

     We now proceed to the discussion on the properties of the 

function b(r). 

     The first property follows from the uniqueness of b(r) and the 

fact that A1(r,b)=1 - (b)2for b >_ Tr. 
     Let us show the monotonicity (2): 

                  b(p) < b(q)for /2 < p < q. 

Let v be a principal eigenfunction associated with X1(p,b(p)). By 

(3) of Proposition 5.1 and the fact that Vb(p)v V 0, 

         0=X1 (P,b(P))=Rp ,b(P) (v)_{114v112-fp211410(p) v112}/Ilvil2 

                                                         >OVA2-2g2II0b(p)v~I2}/IIvII2 = Rq,b(P)(v), 

which implies that X1(q,b(p)) < 0. This together with (5.6) and 

Proposition 5.5 implies that b(p) < b(q). 

     We next show the continuity of b(r). Let {rn} be an arbitrary 

monotone sequence of positive numbers rn > ^2 that converges to r > 

^2. Since {b(rn)} becomes a bounded monotone sequence by the 

property (2), b(rn) converges to a positive number b >_ b(inf{rn}) > 
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0. Proposition 5.5 yields 

 Ia1(r•b)1 = IX1(,b)-a1(rn,b(rn))I`= K{Ir-rnI+113-b(rn)I}, 

where K is a positive constant independent of n. The right-hand 

side of the above inequality tends to zero as n tends to infinity. 

Hence a1(r,b) equals zero,and lim
n}~b(rn)=S=b(r)=b(limn÷c0rn) 

since b(r) uniquely exists. 

     Let us show the last property. Let {r
n} be an arbitrary mono-

tone decreasing sequence of positive numbers rn > 1/2 that converges 

to 1/2. By the property (2) of b(r), b(rn) converges to a non-

negative number S. Suppose that b > 0. Then, using Proposition 

5.5, we obtain the estimate 

          IA1(^2,b)_Al(1/2,b)-a1(rn,b(rn) 

K{ ^2-rnI+1b-b(rn) } 4- 0as n + co, 

where K is a positive constant independent of n. The above esti-

mate implies that A1(1/2,b) = 0, which contradicts Lemma 4.1. Thus 

we have obtained the property (4). Now, the proof of Theorem 5.4 

is completed except for the parenthesized assertion.
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5.3. Sign of an eigenfunction 

     In the previous subsection, we have shown that for each r >  /2, 

there exists a unique positive number b(r) such that the principal 

eigenvalue A1(r,b(r)) of e(r,b(r)) equals zero. The present sub-

section is devoted to showing 

(1) a principal eigenfunction associated with A1(r,b(r)) is positive 

   on (-2,2) or negative on (-2'2)' 
(2) when the n-th eigenvalue An(r,b) (n > 1) equals zero, no eigen- 

    function associated with Xn(r,b) is of one sign on (-2'2). 

     When b '_ n, a principal eigenfunction of e(r,b) is positive on 

(-2,2)or negative on (-2,2) and no n-th eigenfunction (n > 1) is of 
one sign on the interval, as stated in Subsection 5.1. When b < n, 

however, this is not always true. See Figure 5.3, which depicts 

eigenvalues and typical patterns of eigenfunctions obtained by a fi-

nite difference approximation for e(r,b) with a fixed r and various 

values of b. The number of nodes of a principal eigenfunction v, 

which we here define by the number of zero points of v on (-2,2), 
increases with decreasing b, and n-th eigenfunctions (n > 1) can be 

of one sign on (-2,2) for suitable values of b. 
     To understand the behavior of eigenvalues and eigenfunctions of 

e(r,b), let us consider another eigenvalue problem: 

          For r > 0 and b > 0, find w e Ha\{0} and u e R such that 
ea(r,b) 

ar b(w,z) = u(w,z) for all z e Ha, 

where Ha denotes the orthogonal complement of Hs in the space 
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        H = {vsH1(R);  v = 0 on R\(-2,2)} - H1((--f2))' 
that is, 

       Ha = {w  e H1(R); w = 0 on R\(-2,2),w(x) = -w(-x) for xeR}. 
The same assertions as those in Proposition 5.1 hold for ea(r,b). 

Figure 5.4 depicts eigenvalues Li
n and typical patterns of eigenfunc-

tions wn obtained by a finite difference approximation for ea(r,b). 

See Figure 5.5, which is obtained by putting together Figures 5.3 

and 5.4. Figure 5.5 reveals that the curves of n-th eigenvalues 

(n=1,2,...) of e(r,•) and ea(r,•) intersect with each other many 

times, and that the number of nodes of an n-th eigenfunction of 

e(r,•) increases at points b such that 

A
n(r,b+y) < un(r,b+y) and An(r,b-y) > un(r,b-y) for 0 < y < E, 

where s is a small positive number. At points (r,b) such that 

An(r,b) = un(r,b), there is a relation 

                                 wn = (vn)x 

between the eigenfunctions vn and wn of e(r,b) and ea(r,b), respec-

tively. 

     The behavior of eigenvalues and eigenfunctions of e(r,b) is 

complicated as observed in the above. Nevertheless, the behavior 

of an eigenfunction is simple on the region where the corresponding 

eigenvalue is non-negative, and we can arrive at the following two 

theorems, Theorems 5.6 and 5.8, that imply the properties (1) and 

(2) described in the beginning of the present subsection. 

     Theorem 5.6 (Sign of a principal eigenfunction). If the prin-

cipal eigenvalue A1(r,b) of e(r,b) is non-negative, then a principal 

eigenfunction v associated with A1(r,b) is positive on (-2,2) or 
negative on (-2,2). More precisely, if A1(r,b) >_ 0, then
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       V > 0 on (-2,2) and v is non-decreasing on  (-°0,0) 
or 

v < 0 on (-2,2) and v is non-increasing on (-00,0). 

     Proof. Let v be a principal eigenfunction associated with a 

non-negative principal eigenvalue a1(r,b) of e(r,b). If v is non-

decreasing (resp. non-increasing) on (-00,0), then v(x) > 0 (resp. 

v(x) < 0) for x E (-2,2) by Proposition 5.2. Hence it suffices for 
the proof to show that v is unimodal: v is non-decreasing on (-03,0) 

or v is non-increasing on (-00,0). 

     We begin by showing that a unimodal function w E H
s given by 

             w(x) fx7/2Ivy(Y)Idy for x 0, 
w(x) = w(-xfor x > 0 

is a principal eigenfunction associated with a1(r,b). Clearly, 

(5.10) Ilowli = IIVvIl 

It is easy to show that 

(5.11) w ? Iv' on R and IVbWI ? IVbvl on R, 

which imply 

(5.12) 'HI Ilvii and Ilobwll IIVbvIl . 

respectively. By (3) of Proposition 5.1, the assumption on the 

sign of A1(r,b), (5.10) and (5.12), 

a1 (r,b) = Rr,b(v) _ {liVviI2-2r2llobvIl2}/ IIV112 

(5.13) > { IIVvlI2-2r2 Ilobwll 2 } /IIWII 2  {Ilowli 2-2r2Ilobwll2}/IIWII2 

                      = R
r,b(w). 

Hence w is a principal eigenfunction by (3) and (4) of Proposition 

5.1. 
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      Now, suppose that v is not unimodal. Then  v
x is not of one 

sign on(-2,0).Fix a small positive number d such that 2+d < 0 
and -2-b+d < =2.We first deal with the case where  vx is not of 
one sign on (-2,-2+d). In this case, 

  2b12I1I2    ~Obv(-2-2+d)~ =b~v(-2+d)-v(-2-b+d)I=~v(-2+d)-v(-2)~ 

       1 -it/2+d1-Tr/2+d~rb                        vx(x)dx1 < bf -,rr/2~vx(x) 1dx=Iobw(-2-2+d) 1. 

This together with (5. 1 1) implies that IIVbwII > IIObvll since both Vbw 

and Vbv are continuous. Hence (5.13) is replaced by 

                      A1(r,b) = R
r,b(v) > Rr b(w), 

which contradicts (3) of Proposition 5.1. We next deal with the 

other case where vx is of one sign on (-2,-2+d). We may assume 
that vx>=0 on (-2,-2+d). Then, w-v = 0 on (-2,-2+d), while 
w(0)-v(0)=f07T/2{Ivx(x)i-vx(x)}dy > 0 since vx is not of one sign 

on (-2,0). Hence w-v is a principal eigenfunction whose support is 
               Trincluded in [-2+d,2-d]. This contradicts Proposition 5.2. p 

     Corollary 5.7 (Simplicity of the principal eigenvalue). The 

principal eigenvalue of e(r,b) is simple when it is non-negative. 

     Proof. Suppose that a non-negative principal eigenvalue 

A1(r,b) of e(r,b) is not simple. Then, by (2) of Proposition 5.1, 

there exist two principal eigenfunctions v1 and v2 associated with 

A1(r,b) = A2(r,b) >= 0 such that (v1,v2) = 0. This contradicts 

Theorem 5.6.
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     Theorem 5.8 (Sign of an n-th eigenfunction). When the n-th 

eigenvalue An(r,b) of e(r,b) is non-negative (n > 1), no eigenfunc-

tion associated with  An(r,b) is of one sign on the interval (-2,2). 

     Proof. Let n be an arbitrary integer greater than the unity. 

When bb(r), the principal eigenvalue of e(r,b) is non-negative by 

the uniqueness of b(r), and e(r,b) has a principal eigenfunction 

such that v > 0 on (-2,2) by Theorem 5.6. Hence, when b > b(r), no 
n-th eigenfunction vn of e(r,b) is of one sign on (-2,2) since 
(v,vn) = 0 by (2) of Proposition 5.1. Suppose that there exists a 

positive number b < b(r) such that An(r,b) ? 0 and an n-th eigen- 

function vn associated with An(r,b) is of one sign on (-2,2): 

(5.14)Ar ,bvn= Allyn in(-2,2),vn>_0 on (-2,2) and an 0. 

We may assume that (vn,1) = 2. Let v be a principal eigenfunction 

associated with A1(r,b(r)): 

              Ar,b(r)v = 0 in22). 

The function v(x) = v(b(b)x) satisfies 

(5.15) Arby = 0 in (-did), 

where d = Trb/b(r). We may assume that (v,1) = 2 by Theorem 5.6. 

With vn and v, we associate non-decreasing functions 

         Vn(x) = fovn(y)dy and V(x) = Jov(y)dy, 

respectively. Integrating (5.14) and (5.15), we obtain 

Ar,bVn = AnVn in(-2,2) and Ar,bV = 0 in (-11) 
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respectively, since  v
n and v are even functions. Hence  Wn(x) 

1+Vn(x-2) and W(x) = 1+V(x-a) satisfy 

(5.16) Ar bWn = nWn - An in (O,Tr) and Ar
,bW = 0 in (0,d), 

respectively, and 

(5.17) Wn = W = 0 on (-03,0], Wn = 2 on [Tr,co) and W = 2 on [d,c0). 

Let w(x) = v(x-a). Then, since v satisfies (5.15), w satisfies 
Ar bw = 0 in (0,d), 

and w = 0 on R\(0,d). Applying Lemma 4.4 to {w,W}, we obtain 

           0=JO(A rbW)wdx=2wx(d-0) +)2Jd-bw(x)dx 

by the second equation in (5.16) and (5.17). We next apply Lemma 

4.4 to {w,Wn}. This results in 

          f(Ar ~bWn)wdx=Wn(d)wx(d-O) +2()2Jd-bWn(x+b)w(x)dx 
(5.18) 

                        >
n1W(d){2wx(d-0)+(r)2Jdd-bw(x)dx}=0 

            b since d = Trb/b(r) < Tr and Wn is strictly increasing on (0,70 by the 

assumption on the sign of vn and Proposition 5.2. On the other 

hand, noting the symmetry of w with respect to x =  and the anti-

symmetry of Wn-1 with respect to x = , we obtain 

JO(AnWn-An)wdx=An{ Jo/2(Wn-1 )wdx +Jd/2(Wn-1 )wdx} 
                         d/2                             A f

O{Wn(x)+Wn(d-x)-2}w(x)dx 

< A
nfOd/2{Wn(x)+Wn(Tr-x)-2}w(x)dx=0 

since An0, d < IT and Wn is strictly increasing on (0,70. This 

and (5.18) contradict the first equation in (5.16). p 
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     Using Theorem 5.6, we can prove 

(5.19)b(r) < r for r <  Tr 

(Theorem 5.4). Let v be a principal eigenfunction associated with 

a1(r,b(r)), r < Tr. We may assume v to be positive on (-2,2) by 

Theorem 5.6. Then, since b(r) < Tr by Theorem 5.4, 

(5.20)f' {v(x+b(r))+v(x-b(r))}v(x)dx > 0. 

By (3) of Proposition 5.1 and (5.20), 

         0 = IIvII 2Rr ,b(r) (v) 

           = IIDvII2+2(r/b(r))2J_.{v(x+b(r))+v(x-b(r))-2v(x)}v(x)dx 

           > IIovII2- (r/b(r))2J°° oov(x)2dx =IIovII2 - (r/b(r) )2IIv1I2, 

which implies (5. 1 9) since IIowII '= IIwII for all w E Hs, as shown in 

the proof of Proposition 5.3.
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5.4. Existence and uniqueness 

     We now prove 

     Theorem 5.9 (Symmetric finite ss-pulses of P(2,r) for r >  12). 

Let r > /2. Then P(2,r) has a unique symmetric finite ss-pulse ur 

such that 

(5.21) ur is an even function and ur(0) = 1. 

Moreover, a function u is a symmetric finite ss-pulse of P(2,r) if 

and only if u is expressed in the form 

(5.22) u(x) = aur(x-c) for x E R 

with a positive number a and a real number c. The length s(r) of 

supp[ur] has the properties (1) to (4) stated in Theorem 1.1, and 

the symmetric finite ss-pulse ur has the properties (i) to (iii) 

stated in Theorem 1.1. 

     Proof. By Theorem 5.4, for each r > /2, there exists a unique 

positive number b(r) such that the principal eigenvalue of e(r,b(r)) 

equals zero. Theorem 5.6 and Corollary 5.7 assure that e(r,b(r)) 

has a unique principal eigenfunction yr such that vr(0) = 1. (See 

Figure 5.6). The principal eigenfunction yr is unimodal and yr > 0 

on a.) by Theorem 5.6. 

     We define a function ur by 

(5.23) ur(x) = vr(b(r)x)for x E R. 
We can regard {vr,0} as a solution of E(r,b(r)), which satisfies the 

positivity condition (5.4). Hence, by the argument in the begin-

ning of this section, {ur,Tr/b(r)} is a solution of (5.1) and ur 

becomes a symmetric finite ss-pulse of P(2,r) that satisfies (5.21). 
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     Suppose that P(2,r) has another symmetric finite ss-pulse u 

that satisfies (5.21). Let s be the length of supp[u]. Then, by 

the argument in the beginning of this section,  {u,s} is a solution 

of (5.1) and the function v(x) = u(.x) becomes an eigenfunction of 

E(r,Trr/s), associated with a zero eigenvalue. Since v is positive 

on (-1,), v should be a principal eigenfunction of E(r,Trr/s) by 

Theorem 5.8, and Trr/s = b(r) by Theorem 5.4. Now, by Corollary 5.7 

and the condition v(0) = u(0) = 1, v = yr and u = ur. Thus we 

complete the proof of the unique existence of u
r. 

     Since m = 2, (4.1) is linear, and it is clear that a function 

given by (5.22) is a symmetric finite ss-pulse. 

     Let u be an arbitrary symmetric finite ss-pulse, and denote by 

c the center of supp[u]. We associate a function w given by 

                    w(x) = u(x+c)/u(c) for x e R 

with u. Then w becomes a symmetric finite ss-pulse that satisfies 

(5.21). Hence w = ur by the unique existence of ur, and 

              u(x) = u(c)w(x-c) = u(c)ur(x-c) for x s R. 

     The length s(r) of supp[ur] equals Trr/b(r) by (5.23). Hence 

the properties (1) to (4) of s(r) follow from those of b(r) stated 

in Theorem 5.4 and (5.19). 

     Before the proof of the properties of ur, we show 

(5.24) (ur)x(-2s(r)+0) =2Js(r)/2-rur(x)dx.> 0 for r > /2. 

The symmetric finite ss-pulse ur satisfies 

         Arrur= -Qur+zr24r.ur= 0 in (-2s(r),2s(r) ), 

and the function Ur(x)=fx ur(y)dy also satisfies                                             -00
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                 ArrUr= 0 in (-2s(r),Zs(r)) 

since  ur satisfies (4.1) with m = 2. An application of Lemma 4.4 

to {ur,Ur} yields 

         0 = Js(r)/2                -s(r)/2(AU)udx                                   r,rrr 

           = Ur(2s(r))(ur)x(2s(r)-0)+ 2Js(1.)/-rUr(x+r)ur(x)dx 
             -Ilurlll(ur)x(-Zs(r)+0)+ 2ilurl1Js(r)/2-rur(x)dx, 

which implies (5.24). The property (i) of ur follows from the fact 

that yr is unimodal (Theorem 5.6). The second property is obtained 

by noting that 

vr(x) = cosx on [- ,Tr] and b(r) = r for rTr 

(Subsections 5.1 and 5.2). For r > /2, ur is twice continuously 

differentiable on (-2s(r),2s(r)) by Proposition 2.1. Let /2 < r < 

Tr. Then, the point x_ = -2s(r)+r belongs to (-2s(r),Zs(r)) by 

the property (1) of s(r), and 

(Aur)(x) =Zr2(Arur)(x) =1 
is not differentiable at x _by (5.24). Hence ur is not thrice con- 

              1 1 ti
nuously differentiable on (-2s(r),2s(r)) when /2 < r < Tr. 0
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6. Non-existence of other kinds of standing solitary pulses 

     We show in this section that the equation P(2,r) has no other 

kind of ss-pulse but the symmetric finite ss-pulse. 

     Non-existence of a non-symmetric finite ss-pulse. Suppose 

that u is a non-symmetric finite ss-pulse of P(2,r). We may assume 

that supp[u] =  [-2,2] (s: a positive number). We define an even 
function us by 

us(x) = 2{u(x)+u(-x)} for x e R. 

Since u is an ss-pulse, us > 0 on (-2,2) and us satisfies 

(6.1) -Aus +2r2Arus= 0 in (-2,2). 

Hence us is a symmetric finite ss-pulse of P(2,r), and s = s(r) = 

irr/b(r) and us(x) = us(0)ur(x) by Theorem 5.9, where ur is the 

unique symmetric finite ss-pulse of P(2,r) that satisfies (5.21). 

The function v s(x) = us(sx) becomes a principal eigenfunction of                                 TT 

e(r,irr/s), associated with A1(r,Trr/s) = 0, as shown in the proof of 

Theorem 5.9 (Trr/s = b(r)). We define an odd function ua and an 

even function Ua by 

ua(x) = j-{u(x)-u(-x)} and Ua(x) = fcoua(y)dy for x e R. 

Then, since u is a non-symmetric finite ss-pulse, ua X 0, Ua N 0 and 

Ua(x) = 0 for xeR\(-2,2).Moreover, Ua satisfies 

-AUa +2r2AUa = 0 in22) 

since ua(x) = u(x) - us(x) satisfies (4.1) with m = 2 in (-2, ). 
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Hence  Va(x) = Ua(ix) also is a principal eigenfunction associated 
with X1(r,nr/s). By (5.24) and the definition of V

a, 

          (vs)x(-2+0) = I(us)x(-2+0) = Ius(0)(ur)x(-2+0) > 0, 

         (Va)x(-2+0) =(U a)x(-2+0) =lua(-2) = 0, 

which implies that v
s and Va are linearly independent. This con-

tradicts the fact that X1(r,Trr/s) is simple (Corollary 5.7). 

     Non-existence of an infinite ss-pulse. An infinite ss-pulse u 

of P(2,r) must satisfy 

-Au +2r2Aru = 0 in R. 
Through the Fourier transformation, the above equation is trans-

formed into 

(C2-1+cosrC)u(C) = 0, 

where u denotes the Fourier transformation of u. The function 

2 - 1 + cosrC 

of C vanishes at most at a finite number of points on R, therefore, 

u= 0 and u = 0. This means that P(2,r) has no infinite ss-pulse. 

     Non-existence of a semi-infinite ss-pulse. Suppose that 

P(2,r), r > 1/2, has a semi-infinite ss-pulse w. We may assume 

supp[w] to equal [0,w] without loss of generality. By Theorem 5.9, 

P(2,r) has a unique symmetric finite ss-pulse u such that (u,1) = 2 

and supp[u] = [0,s] (s = s(r) = Trr/b(r)). We define non-decreasing 

functions U and W by 

         U(x) = focu(y)dy and W(x) = fOw(y)dy. 
Then U and W satisfy 

         Arr = 0 in (0,^) and Arr = 0 in (0,w), 
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respectively, since u and w satisfy (4.1) with m = 2. Applying 

Lemma 4.4 to  {u,U} and {u,W}, respectively, we obtain 

o = f0{Ar,rU}udx = 2ux(s-0)jrfs-ru(x)dx' 

0 =f0{ArrW}udx = W(s)ux(s-0) + jfW(x+r)u(x)dX 

                          > 2W(s){2u x(s-0)+fs_ru(x)dx} 

since W(x) is strictly increasing on (0,c0). The second inequality 

in the above contradicts the first equality. Hence P(2,r) has no 

semi-infinite ss-pulse.
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7. Stationary solutions of P(2,r) 

      In the present section, we complete the proof of Theorem  1.1 by 

combining the theorems obtained in the previous sections. 

      Proof of Theorem 1.1. The first assertion is the same as that 

of Theorem 4.2. 

     A stationary solution of P(2,r) that satisfies (1.4) is a sym-

metric finite ss-pulse of P(2,r) that satisfies (5.21). Hence 

Theorem 5.9 implies the unique existence of ur, the properties (1) 

to (4) of s(r) and the properties (i) to (iii) of u
r. 

     Let u be a function given by (1.5). Then u belongs to L (R) 

and L1(R) since 

•lluIl = llurll .supi sl1{ai } `_ llurll coXi EAai < 

Ilull1`IlurII•1~isna . < 

by (1 .6) . For each i e A, let 

                 ui(x) = aiu r(x-ci) for x e R. 

Theorem 5.9 assures that each ui is a symmetric finite ss-pulse of 

P(2,r). Since dis(supp[ui],supp[u]) >_ r for all i e A, j s A, 

i k j by (1.7), F[u] _ X.F[ui] = 0 ((2.2) in Proposition 2.1).                              icA 

Hence u is a stationary solution of P(2,r). 

     Let u be an arbitrary non-trivial stationary solution of 

P(2,r). By Theorem 3.1, u is decomposed into 

               u(x) _ X.ui(x), lEA

where {u.}.(A: an index set) is a finite or countable sequence of 

ss-pulses such that 

(7.1) dis(supp[ui],supp[u]) >_ r for all i E A, j c A, i k j 
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The equation P(2,r) has no other kind of ss-pulse but the symmetric 

finite ss-pulse (Section 6). Hence each  ui is a symmetric finite 

ss-pulse, and by Theorem 5.9, ui is expressed in the form 

                ui(x) =ui(ci)u
r(x-ci), 

where ci is the center of supp[ui]. Now u is expressed in the form 

(7.2)u(x) _ 1isAui(ci)ur(x-ci). 

Let us show how the sequences {ui(ci)}i
en and {ci}iEA satisfy the 

conditions (1.6) and (1.7), respectively. Since each ui is an ss-

pulse and 

m > lull=llu
r1I1ZiE/lui(ci) 

by (7.1) and (7.2), {ui(ci)}1CA satisfies (1.6). By (7.1) and 

(7.2), 

      Ici - c.I = dis(suPP[uil,suPP[uj1) 

+ j-(the length of supp[ui]) 
                     +2(the length of supp[u]) 

          r + (the length of supp[ur]) for all i E A, j e A, i k j, 

which implies (1.7). We thus complete the proof of Theorem 1.1. p
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8. Stationary solutions of P(m,r) for m  k 2 

     The present section discusses the stationary solution of P(m,r) 

for m k 2. 

     We could prove Theorem 1.1 by fully utilizing the speciality of 

the case m = 2 when the equation (4.2) is reduced to the linear dif-

ferential-difference equation when m = 2. We have not yet obtained 

a satisfactory result for the general case of m k 2. However, we 

can show a partial result and clarify the difference between the 

cases of m = 2 and m 2. 

     The results obtained in Sections 2 and 3 are valid for all m > 

1, hence we have only to study the ss-pulse. 

     We first review the case of r = co. A stationary solution of 

P(m,°°) is always an ss-pulse (Remark 3.3). Mimura and Yamaguti 

[29] have shown that for each positive number c, P(m,°°) has a sym-

metric finite ss-pulse uc such that Ncil1 = c, and that uc is unique 

up to the coordinate translation. 

     Let u be an ss-pulse of P(m,°O) such that 

        u = 0 on (-00,0] and u > 0 on (0,6) 

where E is a small positive number, and define a non-decreasing 

function U by (3.1). When r = °O, (3.5) is reduced to 

J[U](x) = Ux(x)m - U(x){lI141-U(x)} = 0 on R 

since U(-00) = 0 and U(00) = Dull 1 . Hence U(x) is determined by the 

relation 

x =f0(x) { ( nun—r) }-1 /mdfor x > 0, 
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and u(x) is obtained by differentiating U(x). The length s(u) of 

supp[u]  = supp[Ux] is given by 

         IIuII11 /m1 -2/m11 /m (8
.1) s(u) = Io(ffluIl1-&)}-d& = 11141!o(n(1-n)}do < 00. 

Consequently, s(u) is independent of IIu~I1 when m = 2, however, s(u) 

increases withIIulI1when m > 2, while s(u) decreases with increasing 

IIu1I1 when 1 < m < 2. This is a difference between the cases of m = 

2 and m 4 2. 

     Combining (3.7) and (8.1), we can rewrite the above fact as 

     Proposition 8.1 (Support of an ss-pulse of P(m,c0)). Let u be 

an ss-pulse of P(m,00). The length s(u) of supp[u] is given by 

(8.2) s(u)2 = F(m)2IIuIim-2, 

where F(m) is the same as that given in Theorem 1.2. Hence, s(u) is 

independent of IIuII cc, when m = 2, however, s(u) increases with Wilco 

when m > 2, while s(u) decreases with increasing ~IulI, when 1 < m < 

2. 0, 

     We now return to the case of 0 < r < 00. By the definition of 

a stationary solution, we obtain 

     Proposition 8.2 (Transformation of an ss-pulse of P(m,r) for 

m k 2). Assume u to be an ss-pulse of P(m,r) for m 2. Then, 

for all o > 0, 

(8.3)u0(x) = a2/(m-2)u(x/a) for x e R 

becomes an ss-pulse of P(m,ar). Moreover, 

(8.4)(cr)2IIuGII2-m=r2 1102-m 2-m for all a > 0, 
(8.5)2  (ar )mIIu0II-m1 rm ~IuII -m for all a > 0. 0 
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     Observing Proposition 8.2, we infer 

          "there exists a positive number Q(m) 
such that 

          (a) P(m,r) has no ss-pulse u such that 0 < r2llull2-m <_Q(m), 
(8.6) 

          (b) for each q > Q(m), P(m,r) has an ss-pulse u such that 

             r2llull2-m = q„ 

which is true for m = 2 as stated in Theorem 1.1. 

     We have not yet proved (8.6) in the general case. However, we 

obtain Theorem 1.2. 

      Proof of Theorem 1.2. Let u be a non-trivial stationary solu-

tion of P(m,r) and define a non-decreasing function U by (3.1). 

Let X = {x E R; u(x) = Ilull}. We first consider the case where X 

is not empty. Fix a point x0 e X, and let 

x = inf{y < x0; z e X for all z e [y,x0]}. 

Then x > -co since u e L1(R), and fyu(z)dz < (x-y)Ilull00for y < x. 
Noting that J[U] = 0 and u = Ux '= 0 on R, we obtain 

Ilullm = u(x)m = U(x)m = 1x+ru(y)(U(x)-U(y-r))dy 

(8.7)`= Ilullcofx+r(U(x)-U(y-r))dy =lluiliX+rfy-ru(z)dzdy
2< lluu X+r (x-y+r)llull oody =Zr2 llull 2 

In the other case where X is empty, we also obtain the same estimate 

as (8.7). The first assertion of Theorem 1.2 follows from (8.7). 

     Let q be a positive number that satisfies (1.9), and let s = 

rF(m)/^q r. Combining (8.1) and the argument on the stationary 

solution of P(m,O°), we know that P(m,00) has a symmetric finite ss-
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pulse  us such that the length of  supp[u
s] equals s. Let us show 

that u
s is an ss-pulse of P(m,r) satisfying (1.10). The ss-pulse 

u
s of P(m,00) satisfies (4.1): 

    mm1(usm-1)X + {fxusdy-fXusdy} = 0 in the interior of supp[usI. 

We can replace the second term on the left-hand side of the above 

equation by {f X-rusdy-fX+rusdy} since r>_s = (the length of 
supp[u s]). Then the resulting equation implies that us is an ss-

pulse of P(m,r). Since us is an ss-pulse of P(m,co), it follows 

from (8.2) that 

                    r2llus112-m = (S)2F(m)2 = q, 

which implies (1.10). Thus the proof is completed. p 

     We may appropriately conclude the present paper with the fol-

lowing conjecture. 

     Conjecture (Stationary solutions of P(m,r) for m k 2). 

(I) P(m,r) has no non-trivial stationary solution u such that 

                        r211ull2-m < 2. 

(II) For each real number q '= F(m)2, P(m,r) has an ss-pulse u 

such that 

                       r2 llult 2-m = q 

and the length of supp[u] is less than or equal to r. The ss-pulse 

u is unique up to the coordinate translation. 

(III) For each real number q such that 2 < q < F(m)2, P(m,r) has an 

ss-pulse u such that 

                       r2 11142-m 2-m = q 
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and the 

unique

 length of 

up to the

 supp(u] is 

coordinate

 greater than r 

translation. (See

The ss-pulse u is 

Figure 8.1.)  p
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