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Abstract. The present paper is devoted to the study of stationary
solutions of a nonlinear degenerate diffusion equation involving a
nonlocal convection term, which represents a mathematical model for
spatially aggregating phenomena of populations. The eguation has
two ecological parameters: m » 1 for the diffusion process and ¢ £ r
s « for the aggregating process expressed by the convection term.
For the apecial case of m = 2, this paper gives all stationary solu-
tions of the one-parameter family {P{2,r)} of the equations. The
result asserts that P(2,r) has no non-trivial stationary solution
when 0 £ r £ v2, while P(2,r) has many pulse-like stationary solu-
tions when r > V2, The paper also states a partial result for the
general case of m, and offers a view of the global structure of

stationary sclutions of P(m,r).

Key words and phrases. Stationary solution, Nonlocal interaction,
Density-dependent dispersal, Free boundary problem,

Eigenvalue problem of differential-difference type.

Running head. A spatially aggregating population model.



1. Introduction

In the present paper, we study the stationary solution of the
following nonlinear degenerate diffusion equation inveolving a non-

logal convection term

uglx,t) = (0™ ety + (w0 (5 juty, )dy - [ Taiy, taand],
in Bx(0,=),

where m > 1 and 0 s r s » are parameters and u(x,t) 2 0 denotes the
population density at position x £ R and time £t > 0. We denote the
above equation by P(m,r), by taking into account the parameters m

and r.

Before the mathematical study of Pim,r), we consider an ecolo-
glcal meaning of the equation.

Ecology has become a mathematical subject in recent years.
There have been proposed many spatially spreading population models
for the study of the spatial distribution of organisms, dispersal of
insects, migration of animals, plankton patchiness, coexistence of
competing species, etc. (Okubo [36] among others), These spatially
spreading population models, which are usuwally given by partial dif-
ferential equations, include bhiological interactions and diffusion
processes due to a spatial'inhomogeneity in the density distribu-
tion; convection effects caused by a spatial inhomogeneity in envi-
romment alse are included in several models,

We here note that some animals in nature congregate and form



groups having clear interfaces (insect swarms and bird flocks for
instance), and we proceed to the study of a mathematical model for
spatially aggregating phenomena of organisms. Among others (for
instance, a mathematical model for the aggregation of amoebae (Keller
and Segel [24]) and the spatial pattern of amoeba aggregation (Sperb
[42])), we are concerned with a class of spatially aggregating
population models, proposed by Nagai and Mimura [32],

u (x,t) = (um}xx(x,t} + [ulx, ) f"_R{zx-y)uly,t)dy «

(1.1}
in Rx{0,®),

where each K{x) 1z an odd function such that
Kix) & O for x > 0.

The second term on the right-hand side of (1.1} ecologically shows
an aggregating mechanism of individuals, which is motivated by the
notion of "centripetal instincts" (Hamilton [19]). In fact, the
term provides a mechanism that moves individuals at position x to

the right (resp. left) direction when
[oR(Y) (ulxsy, t)-u(x-y,t)}dy > 0 (resp. < 0)

since I:K[y)[u[x+y,tj-u{x*y,t}}dy = -Ithtx-y}u(y,t}dy represents
the velocity of drift at position x. The first term on the right-
hand side of (1.1) corresponds to the transport of population
through a nonlinear diffusion process called density-dependent dis-
persal (Gurney and Nisbet [16] and Gurtin and MacCamy [17]). We
note that the diffusion speed rnum"1 decreases with the density u and
vanishes at position x where u(x) = 0. Consequently, the first

term yields a homogenizing process while the second term yields a



dehomogenizing process; a delicate balance between thesze two
processes may give rise to a spatial pattern that shows an aggrega-
tion of individuals.

The egquation P{m,r) is a special case of {1.1), where the

integral kernel K(x) is given by

1 for 0 < x < r,
41.2) K({x) = -1 for -r < x < 0,

0 otherwise.

Thus a non-trivial stationary solution of P(m,r) ecclogically
exhibits a spatially aggregating pattern of individuals.

As stated in Nagai [31), mathematical models providing nonlocal
interactions such as (1,1) are utilized to explain physicai phe-

nomena in other fields (Ruramoto [26] and Munakata [(30]).

We now return to the mathematical discussion on the stationary
solution of P(m,r}. (Later in this section, we will briefly review
mathematical works related to the Cauchy problem {1.1) subject to a
non-negative initial condition.}

The triwvial functicn u = 0 is always a stationary solution of
P(m,r), and we naturally are concerned with the non-trivial station-
ary solutiens.

All stationary solutions of P(m,0) and P{m,) have already been

obtained. The equation P(m,0) agrees to the porous medium equation
(1.3) u, = (u™) in R<(0,=)
v t XX =i

which appears in the theory of fluld flow through a porous medium



(Bear [B] and Scheidegger [40]). Clearly, (1.3) has no non-trivial
stationary solution. On the other hand, P{m,®) has non-trivial
standing solitary wave solutions with connected compact support
{Mimura and Yamaguti [29]}. These solutionas are determined by the
total population and the position of the center of support. In

Section B8, we shall discuss these stationary solutions in detail.

In the present paper, we shall study the stationary solution
of P(m,r) for 0 < r € =,
First we shall deal with the special case of m = 2. The

result is summarized as

Thecorem 1.1 (Stationary scolutions of P(2,r)).
(I) Let r s v2. Then P(2,r) has no non-trivial stationary solu-

tion.

(II) Let r > V2. Then P(2,r) has a unique stationary solution u,

such that

u, is a continucus even function,

u_(0) = 1,

(1.4) r
u has a connected compact support and is positive on the

interior of the support.

Mcreover, a function 1 becomes a non-trivial stationary solution of
P{2,r) if and only if u is expressed in the form

(1.5} u(x) = Eignaiur(x_ci,'

where {ai}ieﬂ
saquences of real numbers satisfying the conditions

and {ci}isﬂ {(A: an index set) are finite or countable

(1.86) a; > 0 for al} ie A, Iisnai < ®,



|e; - e.] 2 r + (the length of the support of ur]
(1.7) i
for allie nA, je A, 1 % 3.

{See Figure 1.1.) The length z{r) of the support of u, has the

properties

(1) glr} =7 forrzwm and s(r)>nr forr < w,
{2} s{r) increases with decreasing r,

(2) s(r) is continuous in {v¥2,«),

(4) s{r) tends to infinity as r tends to /2.

The atationary solution u. has the properties
{i) .. 1ls non-decreasing on (==,0),
. 1 1
{ii} for r 2 w, ur(x) = COSX o©on [—%,%} = {—Es(r],is(r}],
(iii) for v2 < r < =u, u, is twice continucusly differentiabhle on

(-%s[r),%s(r)) but u. is not thrice continuously differen-

tiable on (-%s(r),%s(r)). I

We need the condition (1.6} since the stationary solution of
Pim,r) is defined as a non-negative valued function belonging to
L”(R) and L1(R} {Section 2). The condition (1.7) asserts that the
distance between two arbitrary connected components of the support
of a stationary solution is greater tham or egqual to r. For in-
stance, d1 $ r and dz 2 r in Figure 1.1. We note that Theorem 1.1
is valid for all 0 s r £ «; when r = », the support of a stationary
solution should be connected by (1.7) and its length equals 7 by the
property (1) of s(r).

We shall show, in Section 3, that all stationary solutions of
P(m,r) are decomposed into simple ones, each of which has a con-
nected support and is positive on the interior of its support. In

accordance with Nagai and Mimura [33], we refer to these simple



gtationary solutions as standing solitary pulses. The stationary
solution u. is a standing solitary pulse. A standing solitary pulse
becomes a soluticn of a free houndary problem of differential-
difference type (Section 4). This free boundary problem is reduced
to a linear one when m = 2, and we can characterize the stationary
solution u,. by using a principal eigenfunction of an eigenvalue

problem derived from the free boundary problem (Sections 5 to 7).

Furthermore, we shall deal with the general case of m % 2
(Section 8). The above method of proof cannot apply to the general
case since the free boundary problem becomes a nonlinear one when m
¥ 2. Ve have not yet obtained a satisfactory result., However, we
can extend, to the general case, the first assertion in Theorem 1.1
and the fact that P(2,r) has a stationary selution such that the
length of its sﬁpport is less than or equal to r when r 2 7.

{Cbserve the property (1} of s(r}.}

Theorem 1.2 {(Stationary solutions of P(m,r) for m % 2).

(I) P(m,r} has no non-trivial stationary solution u such that
2 2-m
{(1.8) w2 s 2,

where [+|_ denotes the supremum norm.

1-2{[“[ -1fllldn

(I1) Let F(m) = 2 5N (1-n)) for m > 1, For each
positive number g such that
(1.9) gz Fim?,

P({m,r) has a stationary soclution u such that

(1.10) 22 2™ = g



and the length of the support of u is less than or equal to r.
(See Figure 8.1.) |

The conditions (1.8) and (1.9) with (1.10) are reduced to
rs /2 and T2z W,
raespactively, when m = 2, Hence Theorem 1.2 i3 a partial extensioen
of Theorem 1.1. We shall also give a conjecture for the global

structure of stationary solutions of P{m,r) in Section 8,

We here review mathematieal works related to the Cauchy problem
(1.7) subject to a non-negative initial condition.

When the integral kernel K = 0, (1.1) is reduced to the porous
medium equation (1.3). The distinctive feature of (1.3), which is
caused by the degeneracy of diffusion at u = 0, is that an initial
distribution with compact support spreads out at a finite speed
{Oleinik et al. (37]) and loses its initial smoothness (Aronson [4)
and Kalashnikav [22]). Wé can observe this feature in an exact
solution obtained by Barenblatt {7] and Pattle [38). A similar
exact solution of uy = (ul)

A solution of the Cauchy problem (1.3) 1s therefore defined in a

«x * W(1-u) was found by Newman [35].
generalized sense, and the regularity of the generalized solution is
discussed in Aronson [3], Caffarelli and Friedman [9], Gilding and
Peletier [14], etc. Bacause of the finite propagation property,
there appear interface curves that divide the half plane Bx (0,0)
into two regions {(x,t); u{x,t) > 0} and {{(x,t); uix,t) = 0} {(for
inatance, Aronson [5], Caffarelli and Friedman (10) and Knerr [25]).

Graveleau and Jamet [15] and Tomoeda and Mimura [43] have proposed



finite difference schemes where the degeneracy of diffusion is taken
into account. Schemes proposed by DiBenedetto and #Hoff [12],
Mimura et al. [28) and Hoff [20] approximate the interface curves as

well as the value of the unknown function.

The Cauchy problem {1.1) has the same distinctive property as
that of {1.3}. For a class of integral kernels K including the
gimple one given by {1.2), Nagal {31] has shown the unique exiatence
and the regularity of the generalized solution of (1.1), and he has
proved the finite propagation property. Nagai and Mimura [33] have
obtained the asymptotic behavior of the solution of P{m,2}: as time
t tends to infinity, a solution of P{m,») tends to a stationary
solution uniquely determined by the initial cendition. Recently,
Nagai and Mimura [34] have derived an equation that describes the
motion of the interfaces to P(m,»), and have cbtained the asymptotic
behavior of the interfaces, Ikeda [271] has devised a finite differ-
ence scheme for P(2,») and has obtained the asymptotic behavior of
the discrete solution. (Figure 1.2 displays a solution of the
Cauchy problem P(2,=} obtained by this scheme.) A modification of
this scheme has been useful in the study of the staticnary solution
of P(2,r}.

Alt {([{1] and [2]) has studied stakle patterns reproduced by
another spatlally aggregating population model providing both a
degenerate diffusion process and an aggregating process expressed by

a nonlocal interaction.



2. Reqularity of a stationary solution

In this section, we first define a stationary seolution of
P{m,r) and then consider its regularity.
A stationary solution u of P{m,r) is defined to bas a non-nega-

tive valued function belonging to L1{R} and LM{R) that satisfies

X+

(2.1) (") + u{fi__udy - [X

udy}]x =0

in the distribution sense. (We denote by Cgtn) the space of infi-
nitely differentiable functions defined on an open subset § of R
having compact support in 0.)

Let u be a stationary sclution of P{m,r}. An application of

the distribution theory yields that the distribution

Flul = (u™)_ + u(f;__udy - {3 Tudy}

is a constant C, and that this constant C is represented by
C = Flul{¢) = <F{u],d>

with ¢ € Cy(R) such that jo ¢(x)dx = 1 (Schwartz (41,pp.51-531).

The constant C equals zero by the following propositieon.

Proposition 2.1 (Regularity of a statiomary solution). If u

is a stationary solution of P{m,r), then

1e C(R) and ™ £ C(R),

and u satisfies

X+r

X udy} = 0 in R

(2.2)  Flul = ("), + ulfs_udy - |



in the classical sense. Moreover, u ils twice continuously dif-

ferentiable on the region Du = {x ¢ R; uix) > 0}.

Proof. We fix a function ¢ ¢ CE{R] satisfying jfm¢(x]dx = 1,

and define by ¢n{x} = %¢[§) a sequence {¢n}n=1,2,.. r b, € CE{R}

and ffm¢n{x]dx = 1. Since u belongs to L1(R] and L”(R), the con-

stant C = <Fl{u],¢> = <F[u],¢n> iz estimated by

)rx{'r

lc] s |<um,(¢n)x>| + |<u{f:_rudy - Jx

udy}:¢n>|
2
(2.3) s "l o0 0, + fulle,l,

1 2
= U o+ Tull Yol b + 0 as ot =,

which implies that C egquals zero. (The symbol [+, denotes the

usual norm of L1(R}.} Since Fl[u] = 0, (um)x is represented by
X+T

(2.4) (u™), = -u(f udy - [;77udy),

The right-hand side of (2.4) belongs to L1(R} and Lm(R}, hence u" c
C{R), and v ¢ CI(R}. We know that um E C1(R] by using {2.4) once
again. Hence u satisfles t2.2} in the classical sense,

In general,
(2.5 { if £ ¢ C11G) and £ > ¢ on G {G: an open set),

then £2 £ C1{G} for all a £ R.

m

Applying (2.5) to the case where G = D, £ = u and a = 1/m, we know

1/m

that u = {um) is continucusly differentiable on Du. Now (2.4)

yields that u® is twice continuously differentiable on Dy since

jz_rudy - f:+rudy E C1(R}. Hence u is twice continuously differen-
tiable on D, since wu = %u1—m(um}x on D, and u1—m is continuously

10



differentiable on Du by {(2.5). 1

A stationary solution u of P{m,®) iz infinitely differentiable
on D, = {x € R; u(x) » 0} (Mimura and Yamaguti {291}. When 0 < r <
«, however, a stationary solution u of P(m,r) is not always thrice
continucusly differentiable on D, 1In fact, a non-trivial stationa-
ry solution u of P(2,r) is never thrice continuously differentiable
on D when r < 7, while u is infinitely differentiable on D, when r
z * {Theorems 1.1 and 5.9).

As stated in Section 1, a stationary solution u of P{m,r) is
called "a standing solitary pulse" if u has a connected support and

is positive on the intericr of its support.

11



3. Decomposition of a stationary solution

In this section, we discuss the support of a stationary solu-
tion of P(m,r) and decompose a stationary solution into the standing
solitary pulses. The support of a continuous function v is denoted

“SS"'

by supplv]. A standing solitary pulse is abbreviated to an
pulse".

Even if bhoth u and v are ss-pulses of P{m,r), u + v is not
always a stationary solution of P(m,r), of course. However, 1if the
distance between supp{ul]l and supplv] is greater than or equal to r,
then Flu+v] = Flul + F[v]l ((2.2) in Proposition 2.1) and u + v
becomes a stationary solution of P(m,r),.

The following theorem aasserts that all non-trivial stationary

solutions of P(m,r) are obtained by adding ss-pulses in the above

way:

Theorem 3.1 (Decomposition of a stationary solution), All
non-trivial stationary solutions u of P(m,r), r > 0, are expressed
in the form

U= Lieq Yy

where {ui}isA

(A: an index set) is a finite or countable sequence of
ss-pulses such that

dis(supp[ui],supp[uj]) 3 o for all ie A, Je A, 1 % 3,
where dis(A,B) denotes the distance between subsets A and B of R.

Proof . The proof is given later in this section. |

12



By virtue of Theorem 3.1, we have only to study the ss-pulse in

the forthcoming sections.
We begin with a change of the unknown function. With a sta-

tionary solution u of P(m,r), we associate a function U defined by
(3.1) utx) = [* uly)dy for x € R,
This function U has the following properties:

e CitR), U is non-decreasing on R,
{3.2) Ulx) + 0 as x ¢+ -=» and U(x) * [u]|, as x t e,

U is thrice continuously differentiakle on Du'

where D, = {x € R; u{x) > 0}. By the function U, (2.2) is
rewritten as

m : ,
{3.3) {Ux(x) }x - Ux(x){U(x+r}+U{x-r)-2U{x)} =0 in R..

A primitive function J[U] of the function on the left-hand side of

(3.3) is given by

JLULx) = U ()" + [0 (v {U(y-r)-U(x) }dy
(3.4)
= u()™ + [ Tu(y) (Uly-r)-U(x))dy for x ¢ R.

By (3.3), JIlU] equals a constant C. Moreover, since u € Lm(R] by

the definition of a stationary solution,

-,f:+rukY)IU(y-r)-Utx}}dy + 0 as ¥X 4+ =

, 1
by ({3.2). Hence lim_. . u(x)}" exists and eqguals C. Since ™ e L (R)

X

by the definition of a stationary solution, C = limx_mu[x)m = (0, and

{3.5} JUI(x) = O for x € R.

13



By using the function J[U), we obtain
Lemma 3.2, Let u be a stationary selution of Pim,r}. If
u{y) = 0 at a point y € R, then there exists a closed interval I

such that ye¢ I, (the length of I)2 r and u(x) =0 for xe¢ I.

Proof. Let a = inf{x e [y-r,yl; u = 0 on [%,y]} and b =
sup{x ¢ (y,y+#T]; w = 0 on [y,x]}. It suffices for the proof to
show that r s b - a. Suppose that r > b - a. Let U be a non-
decreasing function defined by (3.1). By the assumption,

Ui{x) < O{a) for x < a
and there exists a real number ¢ such that
b < ¢c < a+r and Ux{x} = u{x} > 0 for b« x < ¢.

These together with (3.2) lead to the estimate

d+T

J(Ul(a) 2

u(a)” + f

u{x){U{x-r)-Ufa) }dx

j§+ru{x){u{x—r]—u{a}}dx s Igu(x}{U(x-r)—U(a)}dx < 0,
which contradicts (3.5). Thus the proof is completed. |

Lemma 3.2 enables us to prove Theorem 3.17.

Proof of Theorem 3.1, Let u be a non-trivial stationary soclu-
tion ¢of P{m,r), » > 0. Lemma 3.2 shows that the distance between
two arbitrary connected components of supp{u] is greater than or
equal to r., This implies that the number of connected components of
supplu]} is finite or countable. Let {Si}izn be the sequence of
connected compeonents of suppl[ul]l (A: an index set). With each Si (i

e A), we associate a function uy given by

ui{x} = ul(x) for x & Si and uilx} = 0 foar x k Si'

14



Then, u{x) = Eiaﬁui{x} for x € R, and each u; is positive on the
interior of Si by Lemma 3.2. Now it suffices to show that asach u;
becomes a stationary solution of P(m,r): F[uil = 0 on R ((2.2) in
Proposition 2.1}, Since u; = 0 on R\Si, Flu,1(x) = 0 for x & 5, -
Lemma 3.2 implies

u{y) = uity) for vy € R such that dis({y},si) s r;
hence F[ui](xl = F[u](x) = 0 for x ¢ Si‘ We thus complete the

proof of Theorem 3.17. i

Remark 3.3. Theorem 3.1 and Lemma 3.2 are valid for all 0 s r
2 »; hence a stationary solution of P(m,»} has a connected support

{Mimura and Yamaguti [291}. |

Remark 3.4. Let u({x,t}) be a solution of the Cauchy problem
Pi{m,r} subject to a non-negative initial ceondition. Then the total
population ffmu(y,t)dy = Iu(°,t)ﬂ1 is kept constant (Gilding

[13]).7 Henge P(m,r) is transformed into
U (x,t) = {Uxtx,tjm}x = U {X,£) {U(%+r,t)+U(x-1,t)-2U(x,1)}

through the same change of the unknown function as {(3.1). By J[U],
this equation is expressed in the divergence form

U (x,8) = JIUI A%, t). |

Remark 3.5. Let u be a stationary solution of P{m,r) and
define a non-decreasing function U by (3.1). The function J[U] is
rewritten as

I§+r

JIUI(x) = U {x)" - U(x) (U(xex)-T(x)) + U (¥)Uly-T)dy.

Since u = Ux € 0 on R, J[U] = 0 on R and the third term on the

15



right-hand side of the above egquality is non-negative by (3.2},

lully = sup,_ tu(x)™ = sup (U (x)™}
(3.6} g Supst{U(x}(U(x+r}—le)}}
s sup L U(x)( fuf -0z} = (ful,/2)2.

When r = ®, J[Ul(x) is reduced to
Julex) = U 0" - v fuf j-u(x)),

and (3.6) is replaced by the equality '

It

m m m
fulg = sup, glutx)™} = sup, p{u (x)")

(3.7)

1}

sup, o {U(x) {[luf ,-U(x))} = (Hun1f2>2. !

16



4, Standing solitary pulses

In Sectiona 4 to 6, we study the ss-pulse of P(2,r}.

The present section gives a linear differential-difference
equation that the ss-pulse satisfles in the interior of its support.
By using this linear equation, we show that P(2,r) has no non-

trivial stationary solution when r = V2.

Let u be an ss-pulse of P(m,r). Since lum]x = —%Tu(u

m-1
- )

on
x

the interior int{suppl(ul) of supplul, dividing {2.2) by u > 0, we
cbtain

(4.1) E%T(um'1)x + {fz_rudy - f:+rudy} =0 in int(suppiul).

Hence an ss-pulse u of P(m,r) satisfies the differential-difference

equation (Hale [18)] and Lange and Miura [27])

v
(4.2) E%T(um—1’xx - {u{x+r)+ulx-r)=2u(x)} = 0 in int(supplul}.,
which is obtained by differentiating {(4.1). We note that

(1) both (4.1) and (4.2} are valid for all m > 1,
(2) u® ' ¢ 4'(R) for all m > 1,

(3} (4.2) is reduced to the linear equation when m = 2.

We denote by A and V, respectively, the Laplacian operator and

the gradient operator:
-
¥x T ax”

We introduce a discrete Laplacian operator ﬁb and a discrete gradi-

= = 2
Av = Vey = {(a/dx)“v and Vv

ent operator ?b given by the central finite difference approximation

for & and V, respectively:

17



(A} (x) = (5)2(v(xsb) + v(x-b) - 2v(x)},

(va}(xl %{v[x+%) - v(x—%}} for b > 0.

For m = 2, the eguation (4.2) is now rewritten as

(4.3) Au - %rzaru =0 in int(supplul).

The first and second terms on the left-hand side of (4.3) correspond
to the nonlinear diffusion process {uz}xx and the aggregating pro-

cass [u{f;_rudy-j:+ru&y] raspectively. We note that the problem

X.I'
of the balance between the diffusion process and the aggregating
process is reduced to that of the balance between the Laplacian
operator and the discrete Laplacian coperator when m = 2. We also

note that if w{x) is an ss-pulse of P{2,r}), then so is au(x) (a: an

arbitrary positive numbeér) as well as any translation of u(x).

By (4.3), an ss-pulse u of P(2,r} satisfies
1 2
| {Au - 3T ﬂru}v = 0 in R
for all v ¢ H1(R} such that v = 0 on R\int(supplul]). Integrating

this equation on R, we abtain
1.2
(4.4) {va,vw) - i (V,u,v.v) = 0

for all v ¢ H1(R) such that v = 0 on R\int(suppl(ul), where (*,*)
denotes the inner product of LEIR). {(For brevity the norm of L2{Rl

is denoted by |+ in the present paper.)

Lemma 4.1, The Laplacilan operator is stronger than the
discrete Laplacian operator in the sense that

{Vv,7v) > (vbv,vbv] for all v ¢ H1(R}\{D} and b > 0.

Proof. Holder's inequality yields

18



[v(x+b)-v(x)[2 [fi*b

2 x+b 2
vy (¥)dy|® s Bf 7 |v, (y) [“dy.

In the above, the eguality sign holds only when v is constant on the

interval (x,x+b). Since v ¢ H1(R)\{0], v is not constant on R and

(va,?bv] {%)sz,lv[x+%)-v(x-%)[2dx = {%jzjfm|v{x+h)—v{x}|2dx

x+b

M

B/ P v, ) 1%ay = BT avfY v, (v) | Pax

I:n]vyty) ] de = [(Vv,Vv),

which completes the proof. 1

An ss-pulse u of P(2,r) must satisfy (4.4). Hence Lemma 4.1
implies that P(2,r) has no non-trivial ss-pulse when r 2 /2. Com-

bining this fact and Theorem 3.1, we obtain

Theorem 4.2 (Non-existence of a stationary solution for r s v2).

Let r s V2, Then the equation P(2,r} has no non-trivial stationary
gsolution. |
Lemma 4.3. Let b and ¢ be positive numbers (b £ ¢}. Then,
|9, v=-%_v] = g|c--b|||vv|| for all v ¢ H (R)
b c c *
Proof. We put B = b/2 and ¥ = c/2. By Cauchy's inequality,

{bc[?hv—?cvl}z = |cfx+B (y)dy - bf** Yy (y)ay|?

x- B ¥ o Y ¥
= |le- b)fx*Bv (Y)dy - b{f}’ EVY(Y)dY+f::;V (y)dy}|?
s 20c-b) 2| [EBv ay1? + 207 S5 0 ay+ f5TEv ay?
< 2{c-b}2|f:+g v 4 v1? 4b2|f::$vydy|2 + 4b2|f§15v ay| 2.

12



Then Holder's inequality vields

2 2 2
{be|V,v-7_v[}? s 2blc-b] j:j§|vy| dy

2 -
+ 2b |c-b|f§_$|vy|2dy + 2b2|c—b|fi:givy]2dy.

Now, by the same method as in the proof of Lemma 4.1, {bc"vbv-vcvl}z

is estimated by

2 2
{bc”?bv-vcvﬂ} ffm[bc|?bv-vcv|} dx

2b?|c-b| 2 [vv|? + b%|c-b|?9v]? + bZ|c-b|Z|vv|?

[ Y

{2h|c-b;"vv"}2.

This completes the proof. 0

Lemma 4.4. Let {v,V} be a pair of functions on R such that v
£ C(R), V & C1{R) and both v and V are twice continucusly differen-
tiable on a bounded interval (a,8). IfEV=0o0n (-,a], v=10on

R\{a,R) and -av + %rzabv = 0 in (z,B), then

(4.5) 18 (-avegr?a, vivax = V(B)v, (8-0) + %{%)zfg_hvtx+b]v(x]dx.

Proof. Let € and § be small positive numbers. By integra-

tion by parts,

B-$ B-8 _ (B-S.
IG+E[-Av1vdx IV V1o * Jare ViV 9

B-6 , (B=8
aee + Jgegl-8VIVAEX

B-§ _ (B-8§,1.2
ase fa+e¢2r &bv)de.

[va-vxv]

[va-vxv]

Letting ¢ + 0 and § + 0, and noting that v(e) = v(a) = v(8) = 0, we
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cbtain

(4.6) f-avivax = (B xPs vivax + v(BIv, (8-0).
Hoting that v = 0 on R\{a,B) and V = 0 on (-»,a], we obtain
1.2 @ w 1 2
IE(EI A VYIvdx = I l; 2abV)vdx = [ _ol3r 4pvivdx

(4.7 = fﬁ{%rzﬁbv]de + ;{£)215+bv(x-h]V{x}dx

Ig{%rzﬁbV}de + 2 b) f _pVix+b)vix)dx.

Now (4.5) is obtained by adding (4.6) and (4.7). 0

We here classify ss-pulses inte four groups according to sup-
port and symmetry. An ss-pulse u is called a finite ss-pulse when
suppl[u) is compact. Finite ss-pulses are classzified into two
groups; one is the group of symmetric finite ss-pulses that are
symmetric with respect to the center of support and the other is the
group of non-symmetric ones. An ss-pulse u is called an iﬁfinite
ss-pulse when supplu] = R, while u is called a semi-infinite ss-
pulse.when suppl(u)] is a semi-infinite intervél., "Thus we have
classified ss-pulses into four groups:

{symmetric finite ss-pulses},

{non-symmetric finite ss-pulses},

{infinite ss-pulses},

{semi-infinite ss-pulses}.
For the equation P(2,r), T > ¥2, we shall show the existence of a
symmetric finite ss-pulse in Section 5, and show the non-existence

of other three kinds of ss-pulses in Section 6.
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5. Symmetric finite standing solitary pulses

In this section, we study the symmetric finite ss-pulse of
P{2,r}).

Let u be & symmetric finite ss-pulse of P(2,r). We may assume
suppl(u] to equal an interval [-%,%] {s: an unknown positive number)
since any translation of u also is a symmetric finite sa-pulse. In
gensral, (4.1) is not equivalent to (4.2), which is obtained by dif-
ferentiating {(4.1), Az for even functions however, (4.1} and (4.2)
are mutually equivalent: if an even function is a solution of (4.2),
then it also fulfils (4.1). Thus the problem to find a symmetric
finite ss-pulse is described in the form of the following free

boundary problem:

Find an even function u ¢ C(R) and s > 0 such that
2

(5.1) { -8u + 2r’Au=0 in (-35),

5 s, e ss
u >0 on (-3,3), u =20 on R\{ Sr5)e
By the coordinate transformation x + %x, {3.1) is transformed into

Find an even function we C¢(R) and b > § such that

(5.2) _Aw + %rz

w >0 on [-%,%l, w =20 on R\(-%vgl-

Aw =0 in (~%,§},

Here is the following one-to-one correspondence between the solu-
tions {u,s) of (5.1) and {w,b} of {5.2):

(5.3} .. sb =7r and wi{x) = u{%x} for x ¢ R.

We now consider the following eigenvalue problem:
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For r 2 0 and b > 0
E(r,b) find an even funection v £ C(R}\{0} and X € R such that

. T T T W
Ar,bv = Av in {-5,3), v =0 on R\{—f’f)’

where Ar " denotes the operator -A + %rzﬁb. Clearly, {u,s} is a
r
solution of (5.1} if and only if {v(x)-u{%x),o] is a solution of

E(r,mr/s) that satisfies the positivity condition

m

{5.4) v >0 on "%'E"

In the following four subsections, we shall show that when r >
¥2, P{2,r) has a symmetric finite ss-pulse characterized as a prin-
cipal elgenfunction of E(r,b) through the coordinate tranfformation
X + %x. We shall also show that the symmetric finite ss;pulse of
P(2,r) is unigque up to the coordinate translation and the multipli-
cation by a positive number. In practice, we shall prove the
following propertiés of the family of eigenvalue problems E{(r,b},
rz0and b > 0:

(1} each E(r,b) has an increasing sequence of eigenvalues (Subsec-
tion 5.1},

{2) for each r » ¥2, there exists a unique positive number b(r)}
such that the principal eigenvalue of E{r,b{r)) equals zero
(Subsectién 5.2},

{3) the principal eigenvalue df E(r,b(r)) is simple and a principal
eigenfunction is positive on (-%,%] or negative on (-%,%} {Sub-
section 5.3},

(4) no n-th eigenfunction (n » 1} is of one sign on (-%,%) when the

corresponding eigenvalue eguals zero {Subsection 5.3),

23



5.1. Variational formulation of the eigenvalue problem

We practically consider the variational formulation of E(r,b).
For this purpose, we introduce a function space H_ and a symmetric
continuous bilinear form a. p in HS associated with the operator

Ar b* The function space Hs is a subspace of H1(R] given by
[ ]

Hs = v e H1{R]; v =0 on R\(‘g'f?zr']r vix) = v(-x) for x ¢ R}
equipped with the norm
1
“V“2,1 = {{v,V)+(yv,Tv)} !2.

The space HS is identified with the space that consists of even func-
, 1 T 1 T Ty, o T
ticns belonging to HO“‘?’E)) HU((-E,E}}. the closure of CU[['?'?)’

. 1 L a s . .
in H ((—%,%H]. The bilinear form ar pt H,Hg + R is given by
) = (Y, VW) - SEA{TLV, VW)
p,plVe¥) = 1V 25 VYVt
We thus obtain the variational formulation of E(x,b}:

For r 2 0 and b » 0, find v ¢ Hs\{U} and A ¢ R such that
e{r,b} {

ar,b(v'W} = )(v,w) for all w ¢ H_.

A solution of E{r,b) becomes a soclution of e(r,b), of course,
Let {v, )} be a solution of e(r,b). We can identify v with the

solution w of the egquation

TE

—AW = —%rzabv + v in (_%r%)r w=20 on R\(_sz}'

The golution w is twice continuously differentiable on {-%,%} since

the right-hand side of the above equation belongs to H1[R). Conse-
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quently, e{r,b) is eguivalent to E{(r,b).

We assoclate a symmetric continuous bilinear form in Hy
3 = )+ 252 (v, W)
ar'b(v,w} = ar'b(v,w + b '
with B 1t and consider another eigenvalue problem
r

. For r 2 0 and b > 0, find v ¢ HS\{G} and % £ R such that
er,b} {

ar'b(v,w] = xMv,w) for all w ¢ H_.

Clearly, {v,A} is a solution of e(x,b} if and only if [v,l+2(%}2] is

a solution of e{r,b). By the estimate
1 b L, 2 1/2 2
lopyvl = gir2 ivix+3)y-v(x-3) | “dx} s £lvl  for all v e m
and the Poincaré inequality, the bilinear form Er;b is Hs-elliptic:

2 T2 2 r, 2 2
Il 2 - % loel? + 252

ar'b(V.VJ

L)

(5.5) bovll® = (2)9v] 2en? Jov) 21/ (240°)

L1

2||Vi|§r1/[2+1r2] for all v ¢ H.

Proposition 5.1 {(Characterization of principal eigenvalue).
(1) The sigenvalue problem e{r,b) has an increasing seguence of

eigenvalues

10071

—m < A1(r,b) P Aztr,b] S sewee ’ with lim, X.(r,b) = =.

(2) Eigenfunctions v, associated with Ai {ia1,2,...) can be

arthonormarized so that

- liﬁij and (vi,vj) = aij for all i and j,

where § dencotes Kronecker's delta.

ar,b(vi'vj }
{3) The principal eigenvalue A1(r,bl is characterized by
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11(r,b] = inf{Rr'b(v]; v € Hs\{O}} = Rr,b[v1’
with the aid of the Ravleigh quotient
- 2
R, p(v) = ar'b(v,v)fﬂv" for v € H\{0}.
(4) A function v ¢ HS\{G} becomes a principal eigenfunction of

e(r,b) if Rr,b(v’ = hglr,b}.

Proof. The assertions of the proposition have been proved for
the symmetric continuous Hs—elliptic bilinear forms. {For in-
stance, refer to Ciarlet [11,pp.283-286), Riesz and Nagy [39%,pp.231-
2351 and Kato (23,pp.260-262).) This together with the foregoing

argument on the relation between e(r,b) and e(r,b) completes the

proof., i

The operator ﬂb is reduced to -2/b2 when b z n, hence the solu-

tions of e{r,b), b z T, are given by

) and A, = (21-1)2-(§J2.

(ST

vi(x} = cos(21-1}x on {-

Thus, when b 2 7, the principal eigenfuncticn of e(r,b) is positive
on [—%,%J or negative on t—%,%}, the support of the eigenfunction

equals [—%,%} and

Iov, 12/ 0v,l? = 121-09%  for i = 1,2,... .

When 0 < b < 7, a principal eigenfunctien of e(r,b) is not aiways of
one sign on (-%,%}, which will be discussed in Subsection 5.3. But
we obtain the folloewing two propositions about the support of an

eigenfunction and the Hs—norm of a principal eigenfunction,

Proposition 5.2 (Support of an eigenfunction). The support of

an eigenfunction of e(r,b) eguals [—%,%].
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Proof, We omit the complete proof, and show only that the
support of an eigenfunction is never included in (—g}g}. We have
already noted that the support of an eigenfunction of e(r,b) equals
[-§1%J when b z n. Suppose that e(r,b), b < m, has a solution
{v, A}l such that supp(v] is included in an interwval [—%+d,3hd] (d: a
positive number). We may assume that =n/b is not an integer since we

21} {(1-2d/71 < ¢ <« 1) if nec-

can replace {v,A} by some {w(x)=v(cx},c
essary, which is a solution of e(r,%] such that supp{w] is included
in (-%;g)- Let n = max{i ¢ Z; ib < r}. We may assume d to be less

than %{w-nh}. We partition [—%,%] into the intervals

{ [yi:yi+d]. (y;+d,z;-d}, [z;-d,2,] (i=0,7,...,n),
(Zi’yi'l'.l) (i=ﬂ',1,...,n-1],
whera Y; = —%+ib and zZ; = %—(n-i)b (i=0,1,...,n). (See Figure 5.1.)

Since {v, A} is regarded as a solution of E{(r,b) and v = {0 on

[Y01Y0+d1:
1,r,2
g = Ar'bv{x} - Av(x} = E{E) v(x+b) for x ¢ (yo,y0+d}.
This implies that v = 0 on [y1,y1+d] since v £ C{R). By math-
ematical induction, we know that v = 0 on [yi,yi+d] (i=0,...,n).

The fact that v = 0 on [zi-d,zi] {(i=0,...,n) iz shown by the same
method of proof.

Let A be the restriction of v on {yi+ﬁ,zi—d} (i=0,...,n}. We
reqgard vi's as functions defined on the interval (0,m-nb-2d) through
suitable coordinate translations. Since {v,A} is regarded as a so-
lution of E{r,b) and v = 0 on [y,,y;+d} and fz;-d,z;] (i=0,...,n),

vi's [i=0‘;1;¢..,n] satiSfy
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1,.r.2 .
-ﬂvi * E(E} {vi_1-2vi+vi+1] a Avi in (9,7=-nb-24),
ViIO) = (v}, (0) = v.{mg-nb-2d) = (v,)_(wr-nb-2d) = 0,
where V1 % Vnet = 0. This system of linear eguations has no non-

trivial sclution for any ) g R. Hence v = 0 on [yi+d,zi—d]
{(i=0,...,0}. The fact that v = 0 on [zi'Yi+1] (i=0,...n=1}) is
shown by the same method of proof. Thus,

v =0 on [~%,%],
which contradicts the assumption that v is an eigenfunction of

e{r,b}. i

Proposition 5.3 (Hs-nnrm of a principal eigenfunction). A

principal eigenfunction v of e(r,b}) satisfies the estimate
Jovl 2/ 1vh? s 1+ 2¢51% = x(x,m).

Proof. Let v he a principal eigenfunction of e(r,b), asscoci-

ated with A,(r,b). Then v is a principal eigenfunction of al(r,b),
- 2 .

associated with A1[r,b) = A1tr,h}+2(%) . Using (5.5) and applying

{3) of Proposition 5.1 to &(r,b}, we obtain
lovi2/ol® s & (v, )/ Ivll? = infld_ L (w,w)/|wl®; w ¢ H_\(0}]
w Vil & 8, ntVe - r,b' ! r v E g
< inf{[llvwﬁz+2(§}2llw||2 /wh%s w e BN},

This together with the equality
ine{ Jlowf 2/ W5 w ¢ B \(0})

inf{Rarb(w}; W e Hs\{ﬂl}

il

A1(0,b} = 1
{an application of (3) of Proposition 3.1 to @{0,b)) completes the

proof. !
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5.2. Zero points of the principal eigenvalune
The purpose of the present subsection is to prove

Theorem 5.4 (Unique existence of a zero point). Let r > V2,
Then there exists a unique positive number b = b(r) such that the
principal eigenvalue 11(r,b) of e(r,b) just equals zero. The

function b{r) has the following properties:

(1) bir) = r forrz and b(r) < w for r < mw,
{2) b(r) increases with r,

(3) b(r) is a continuous function of r,

(1} b(r) tends to zero as r tends to v2.

(Figure 5.2 shows the graph of b(r) cobtained by a finite difference

approximation for e{r,b). The funeticon b{r) has the property

bir) < r for r < w,
which will be proved in the next subsection.) |
We begin with the unigueness of b{r). Let us show that if

A1(r,b] = A1lr,c) = 0 for 0 < b 2 ¢, then b = c. Let w be a
principal eigenfunction of e(r,c), assoclated with 11{r,c}. Define

a function w by W(x)

w{%x) for x € R. Then W ¢ Hg and

]

- c, 2 a2
Rr,b{w} {El Rr,c(") = (E) A1{r,c) = 0.

This together with {4) of Proposition 5.1 implies that w is a prin-
cipal eigenfunction of e(r,b), associated with 11(r,b). Hence b
should equal ¢ since if b < ¢, then supp[w] is included in (-%,%)

and w is never an eigenfunction of e(r,b} by Proposition 5.2. We
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thus obtain the uniqueness of bi{r).

We next discuss the existence of bir). As stated in Subsec-

tion 5.1,

rteb) = 1 - (E)? for b z T,
which implies
(5.6} lT(r,b] g 0 for b 2 maxim,r}.
On the other hand,
{5.7) l1{r,b] < 0 for 0 < b < B{r) and r > v2,

where B(r) denotes the smallest positive sclution of the equation

1 21-x . sin(x/2).2
1-5:'__'_“_{ x2]=0'

This is because the principal eigenvalue is estimated by

o 1 27-b.sin{b/2),2
Ay (x,b) s R. p(W) < f[1 - 3t T{‘—_J{ﬂz_l} ]

({3) of Proposition 5.1), where w £ Hs is given by w{x) = cosx for
| x| = %. By (5.6) and (5.7}, for r > ¥2, there exists a positive
number bi{r) such that A1(r,btr)) =0 1if 11(r,b) 1s continuous with
respect to b. Consequently, the following proposition completes

the proof of the first assertion of Theorem 5.4.

Proposition 5.5 {(Continuity of the principal eigenvalue}. The
principal eigenvalue A,(r,b} of e{r,b) is a locally Lipschitz con-

tinuous Function of (r,b) € (0,«)x(0,=).

Proof. We fix arbitrary positive numbers R and B. Let p, q,
b and ¢ be positive numbers such that
P <R:, g <R and B <h & c.
We first estimate ]l1{q,b)—k1(p;hl|- Let L and vy be principal

eigenfunctions associated with A,(q,b) and A, (p,b), respectively.
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Using the Rayleigh quotient, we obtain
h1tq,b}—k1{p.b) = Rq,b(vq)_Rp,b‘vp} s Rq’b{vp]-Rp,b(vp}

Fip+a) (p-a) [uv | 2/ v I %,

o

1 2
A (B,B) -k ta,b) 5 3(p+a) (9-P) [V, /HVqHZ'

From the above estimates, Lemma 4.1 and Proposition 5.3, it follows

that

I

1 2 2 2 2
|2y {a,p) =2 (b} | 5 Flpvq) [a-plmaxt[9,v 17/ W IS 19w 157 Dy )7

1 2 2 2 2
(5.8) 3 zipra) fa-plmax ([Tv 5/ 1v b5, [9v k=7 Hv 1)

A

%(p+q)1q—pIK(R.bl < R|g~-p]R(R,B).

We next estimate |A1(p,b}-l1{p,c)|. By Lemmas 4.1 and 4.3,

2 1.2 2 2
IR, (V)R L (¥)] = 5 [Ty vE - 9,9 7]
(5.9)
s 2p |V v +]9 V] }[9,v-7_v] s Zp?|vv]|Z]c-b] for all v ¢ H
ZP b c Y Vel = P £ Hge
Let v and Vo be principal eigenfunctions associated with A,(p,b)

and A1tp,c}, respectively. By (3) of Proposition 5.1,

AppeP)=h(pec) = Ry (v )Ry (V) 8 By pive)-Ry (o),

-

11[p,c]-k11p,bl = Rp,c(?b}pr,b[vb]‘

Applying (5.9) to v = vc and v = Vi and using Proposition 5.3, we

obtain
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| A {psbY=2 (pye) | = max{ |Rp,b‘vc}'Rp,c{vc) J IRp'c(vb)—Rp’b(vb) | 3
s Zp?[e-bmaxt w2/ v 12, 1w ] 2/ vl ®)
3 %pz|c—b|K{p,B) 3 %R2|c-b[K[R,B).
This together with (5.8) completes the proof:

|3 ta,D)-2 e )| s [ (a,b)-A(p.b)| + | A te,bi-A(p,0)|
s R(ZR|c-b|+|a-p|IK(R, B)

for 0 <p <R, 0 <g <Rand 0 <B <b sec. I

We now proceed to the discussion on the properties of the
function bir).
The first property follows from the unigqueness of b(r) and the
fact that A1(r,b} =1 - (%)2 for b z .
Let us show the monotonicity (2):
b(p} < blq) for v2 < p < q.
Let v be a principal eigenfunction associated with l1(p,btp}}. By

(3} of Proposition 5.1 and the fact that Vbtp}v ¥ 0,
212 2 2
0 = PL.I(P:b‘p}] = Rp,b(p] (v) = {HQV“ "Ep uvb(p}vn }f“Vu
21 2 2 2
> {“W“ _—2-q "vb{-p:’v" ]-/“V“ = Rq,b(p}[v}'

which implies that Aq(g,b(p)) < 0. This togetherx wifh {5.6) and
Proposition 5.5 implies that b{p) < big).

We next show the continuity of b(r). Let {rn} be an arbitrary
monotone sequence of positive numbers r 2 ¥2 that converges to r >
V2. since {b{r,)} becomes a bounded mohotone sequence by the

property (2}, b(r ) converges to a positive number § 2 b(inf{r_}) >
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0. Proposition 5.5 vields

I (2 BY] = 12 (e, BY=2 (x_,Blxr )| s R{|z-z [+|B-b(x )|},

where K is a positive constant independent of n. The right-hand
side of the above inequality tends teo zere as n tends to infinity.
Hence 11{r,5} equals zero, and Lim _ b(r ) = B = b(r) = b(lim _ r )

since b(r) uniguely exists.

Let us shew the last property. Lat {rn} be an arbitrary mono-
tone decreasing sequence of positive numbars r, > V2 that converges
to V2. By the property (2) of b(r), b(rn] converges to a non-
negative number b. Suppose that b > 0. Then, using Proposition

5.5, we obtain the estimate

|J\1 (,/'2,5}| = Il‘l (1"’2!5)‘11 (rn'b‘rn))*

s K{|v2-r_|+|B-bt{r ) [} ¥+ 0 asn t =,

where K is a positive constant independent of n. The above esti-
mate implies that 11{/2,53 = 0, which contradicts Lemma 4.1. Thus
we have obtained the property (4). Now, the proof of Theorem 5.4

is completed except for the parenthesized assertion.
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5.3. Sign of an eigenfunction

In the previous subsection, we have shown that for each r > v2,
there exists a unique positive number b{r) such that the principal
eigenvalue 11(r,b{r]) of e(r,bir)) equals zero. The present sub-
gection is devoted to showing
{1} a principal eigenfunction associlated with 11(r,b(r)1 ig positive

on (-%,%} or negative on ('%r%)r
(2) when the n-th sigenvalue ln(r,b) {n > 1) equals zero, no eigen-

function associated with An(r,b) is of one sign on (—%,%).

When b 2 7, a principal eigenfunction of e(r,b) is positive on
{-%,%} or negative on (-%,%} and no n-th eigenfunction (n > 1) is of
ohe sign on the interval, as stated in Subsection 5.1. When b < T,
however, this is not always true. See Figure 5.3, which depicts
eigenvalues_and typical patterns of eigenfunctions obtained by a fi-
nite difference approximation for elr,b) with a fixed r and various
values of b, The number of nodes of a principal eigenfunction v,
which we here define by the number of zerc points of v on [-%,%),
inereases with decreasing b, and n-th eigenfunctions (n > 1) can be
of one sign on (—%,%} for suitable values of b.

To understand the behavior of eigenvalues and eigenfunctions of

e(r,b), let us consider another eigenvalue problem:

a For r 2 0 and b » 9, find w ¢ Ha\{D} and uw ¢ R such that
e (r,b) {

ar,b{w'z’ = W(w,z) for all 2z & Ha'

where Ha denotes the orthogonal complement of HE in the space
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1
H={veH(R;v=0onR(EH = H(IIH,
that is,
1
H = {we H(R); w=0onR\(-3,5)}, wix) = -w(-x) for x ¢ R},

The same assertions as those in Proposition 5.1 hold for ea(r,b).
Figure 5.4 depicts eigenvalues H, and typical patterns of eigenfunc-
tions wo aobtained by a finite difference approximation for ea[r,b).
See Figure 5.5, which is obtained by putting together Figures 5.3
and 5.4, Figure 5.5 reveals that the curves of n-th elgenvalues
{n=1,2,...) of e{r,+) and ea{r,-l intersect with each other many
times, and that the number of nodes of an n-th eigenfunction of
e(r,+*}) increases at points b such that

An(r,h+y} < un(r,b+yj and ln{r,h-y) > un(r,b-y) for 0 < y < g,
where £ is a small positive number. At points (r,b) such that
ln(r,b} = un{r,hj. there is a relation

“n T (Vn’x

and w. of e(r.b) and ea(r,b}, respec-

between the eigenfunctions v "

tively.

The behavior of elgenvalues and eigenfunctions of e(r,b) is
complicated as observed in the above. Nevertheless, the behavior
of an eigenfunction is simple on the region where the corresponding
eigenvalue is non-negative, and we can arrive at the foll?wing two
theorems, TheoEems 5.6 and 5.8, that imply the properties i1} aﬁd

(2) describeﬁ in the beginning of the present subsection.

Theorem 5.6 (Sign of a principal eigenfunction}. If the prin-
cipal eigenvalue A1tr,bj of e{r,b) is non-negative, then a principal
eigenfunction v associated with 11[r,b) is positive on (—E,%] ar

negative on {-%,%}. More precisely, if 11(r,b) z 0, then

35



v >0 on (-E}E] and v 1is non-decreasing on {-=,0}

or

v <0 on (—%,3} and v is non-increasing on (-«,0).

Proof, Let v be a principal eigenfunction assoc¢iated with a
non-negative principal eigenvalue 11[r,b} of e(r,b). If v iz non-
decreasing (resp. non-increasing) on (-«,0}, then v(x) > 0 (resp.
vix) < 0) for x € (—%}%) by Proposition 5.2. Hence it suffices for
the proof to ghow that v 1is unimedal: v 1s non-decreasing on {-«,0)
or v is non-increasing on (-«,0).

We begin by showing that a unimodal function w ¢ Hs given by

{ wix) = jf“jzlvy(yl]dy for x = 0,

wix) = wi{-x) for x > 0

is a principal eigenfunction associated with 11(r,b). Clearly,
(5.10) 9wl = fvv].
It is easy to show that
{5.11) w& |v] onR and |V w| 2 |7 v|] onR,
which imply
(5.12) Wl 2 vl  and 9l = 9,
respectively. By (3) of Proposition 5.1, the assumption on the
sign of h1(r,b), (5.10) and (5.12),

21 2
hy(x,b} = Rp piv} = {{vv| —r ﬂvbvﬂz}flvﬂz
(5.13) L B R VR R L B R M

Rr,b{“)'

Hence w is a principal eigenfunction by (3) and {4) of Proposition

5.1. -
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Now, suppose that v is not unimeodal. Then Vo iz not of one
L
2ign on {JE,O}. Fix a small positive number 4 such that -%+d < 0
il
and =§-b+d < -%. We first deal with the casze where v, ia not of
m

one sign on [ai,a%+d}. In this case,

T b 1 T 1
|7 v(-5-34a) | = p|v(Z5+d)-v(-5-bs+d)]| = plvi-Z+a)-vi-3)|

1) (- _
= E|f_:;§+dvx(x}dx| < %f_:;§+d|vx(x)|dx = lvbw(-g.§+d;|_

This together with (5.11) implies that [V, w| > "vaﬂ since both V w
and ?bv are continuous. Hence (5.13) is replaced by
Ay(r,b)y = Rr,b(v] > Rr'b(w},
which c¢ontradicts (3) of Proposition 5.1. We next deal with the
octher case where Vi ig of one sign on (-%,-%+d}. We may assume
T % T o .

that v, ¥ 0 on {-5}-§+d}. Then, w-v = 0 an (-5,-§+d}, while

0 ) L] I3
w({0)-v(0)} = f_ﬂfz{lvx(x)l-vx(x)}dy > 0 since v, is not of one sign

on {-%,U]. Hence w-v is a principal eigenfunction whose support is

included in [-%wd,%-d]. This contradicts Proposition 5.2. 1

Corollary 5.7 (Simplicity of the principal eigenvalue). The

principal eigenvalue of e{r,b} is simple when it is non-negative.

FProof. Suppose that & non-negative principal eigenvalue
11{r,b) of e(r,b) is not simple, Then, by (2) of Proposition 5.1,
there exist two principal eigenfunctions v, and vV, associated with
11{r,h) = lz{r,b} 2z 0 such that (v1,v2} = 0. This contradicts

Theorem 5.6. 1

37



Theorem 5.8 (Sign of an n-th eigenfunction). When the n-th
eigenvalue A (r,b} of e{r,b) is non-negative (n > 1), no eigenfunc-

tion associated with A (r,b) is of one sign on the interval (-%,%).

Proof. Let n be an arbitrary integer greater than the unity,
When b 2 b(r), the principal eigenvalue of e(r,b) is non-negative by
the uniqueness of b{r}, and e{r,b) has a principal eigenfunction ¥
such that v > 0 on [-%,%) by Theorem 5.6. Hence, when b z b(r), no
n-th eigenfunction v, of e(r,b) is of one sign on {—% ,2) since
{ﬁ,vn} = 0 by (2} of Proposition 5.1. Suppose that there existszs a
positive number b < b(r) such that A {r,b) 2 0 and an n-th eigen-

function Vo assoclated with A (r,b} is af one sign on (-5 %]:

T T N
{5.14} Ar,bvn = knvn in (_5'5}' v, E 0 on (—2,2) and ln z 0.
We may assume that (v ,1) = 2. Let ¥ be a principal eigenfunction
associated with A1[r,b{r)):
— . 'l'r 1
Ar,b{r}v = 0 in {—2,2}.

The function v(x) = E(Qi%lij satisfies
. a4
{5.15) Ar'bv = 0 in (-2,2},

where d = mb/b(r). We may assume that (v,1} = 2 by Theorem 5.6.

With Vi and v, we associate non-decreasing functions

v (x) = [3v (y)dy and V(x} = [oviy)dy,

respectively. Integrating (5.%14) and (5.15), we obtain

m n _ dd
Ar,bvn = Anvn in (- f'f and Ar,bv =0 in (—2,2],
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respectively, since v, and v are even functioms. Hence W, (x) =

n
14V (x-F) and W(x) = 1+V(x-3) satisfy

{5.16} Ar'bﬂn = }.an - %_1 in (0, m) and Ar'bW =0 in (0,4},

respectively, and

(5.17) Wn =W=0o0on {-»,01, W= 2 on [(n,=) and W = 2 on [d,=).

Let wix) = v[x—%). Then, since v satisfles {5.15), w satisfies

and w = 0 on R\(0,d). Applying Lemma 4.4 to {w,W}, we obtain
r.2 . .4
0 = fglhr,bW)wdx = 2w (d-0) + (§)"[q_pwixidax

by the second equation in (5.16} and {5.17}. We next apply Lemma

4.4 to [W,Wn}. This results in

fg(Ar'bwn}wdx = W_(d)w (d-0) + E)2 [T W (x+D)wlx)ax
(5-18) 1 2 4
> SH_(d) (2w _(d-0)+(5)“ g _pwix)ax)} = 0

since 4 = wb/b(r) < 1 and W, is strictly increasing on {(0,7) by the
assumption on the sign of v and Proposition £.2. On the other
hand, noting the symmetry of w with respect to x = % and the anti-

symmetry of Wh'1 with respect to x = %, we obtain

A2 nwax + 13, (0 -1 pwax)

Jo Ui 2g)wdx

a/2
Anju (W (x}+W_(d-x)-2}w{x)dx

a/z
Anfﬁ

kA

{Wn[x]+wn(ﬂ—x}—2}w{x}dx =0

since ln 2 0, & < and W is strictly increasing on (0,T). This

and {(5.18) contradict the first equation in {5.16}, |
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Using Theorem 5.6, we can prove
(5.19) b(r}) < r for r < 7
(Theorem &5.4). Let v be a principal eigenfunction associated with
l1tr,b{r}), r < T. We may assume v to be positive on [-%,%) by

Theorem 5.6. Then, since b{r) < v by Theorem 5.4,
(5.20) ST vi{x+bir})+vix-b{r)))}vix)dx > 0.

By (3) of Proposition 5,1 and (5,20},

o
1l

2
[l 2R, gy ()

||\?v||2 + %{r/b(r))szw{v(x+b(r]}+v(x—b(r}}—2v(x]}v{x]dx

'l

lovl? - (e/bir) 2™ vixyax = |99 ? - (e/binZ|v?,

which implies (5.19) since |Vw]| z [w| for all w ¢ H_, as shown in

the proof of Proposition 5.3.
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S.4. Existence and nniguensss

We now prove

Theorem 5.9 (Symmetric finite ss-pulses of P(2,r) for r > /2).
 Let r > Y2, Then P(2,r) has a unique symmetric finite ss-pulse u.
such that

{5.21) u. is an even functien and u (0) = 1.

Moreover, a function u is a symmetric finite ss-pulse of P(2,r) if
and only if u is expressed in the form

(5.22) u{x) = au_ (x-c) for x e R

with a positive number a and a real number c. The length s{r) of
supp[ur] has the properties (1) to (4) stated in Theorem 1.1, and
the symmetric finite ss-pulse u. has the properties (i) to (iii}

stated in Theorem 1.1.

Prookf. By Theorem 5.4, for each r > ¥2, there exists a unigque
positive number b(r)} such that the principal eigenvalue of e(r,b{r))
equals zero. Theorem 5.6 and Corollary 5.7 assure that e{r,b(r))
has a unique principal eigenfunctien v, such that v (0) = 1. (See
Figure 5.6). The principal eigenfunction v, is unimodél énd v, > Q

W .

" on (—%,%}'EyfTheorem 5.6.

=

We define a function u. by

(5.23) u_(x) = v_(2E, for x £ R.
We can regard {vr,O} as a solution of E(r,b(r}), which satisfies the

positivity condition (5.4}. Hence, by the argument in the begin-
ning of this section, {ur,nrfh(r)} is a solution of (5.1) and u_

becomes a symmetric finite ss-pulse of P{2,r} that satisfies (5.21).
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Suppose that P(2,r) has another symmetric finite ss-pulse u
that satisfies (5.21). Let 3 be the length of supplu]. Then, by
the argument in the beginning of this section, {u,s} is a solution
of {5.1) and the function vi{x) = u{%x} becomes an sigenfunction of
Elr,q/8), associated with a zero eigenvalue. Since v is positive
on {-},g), v should be a principal eigenfunction of E(r,rr/s) by
Theorem 5.8, and ur/s = b{r) by Theorem 5.4, Now, by Corollary 5.7
and the condition v(0) = uf{Q) = 1, v = V. and u = u . Thus we
complete the proof of the unigue existence of u..

Since m = 2, (4.1) is linear, and it is clear that a function
given by (5.22) is a symmetric¢ finite ss-pulse.

Let u be an arbitrary symmetric finite ss-pulse, and denote by
¢ the center of supplul. We associate a function w given by

o wix) = u{x+c}/ulc) for x € R
with u. Then w bhecomes a symmetric finite ss-pulse that szatisfies

(5.21). Hence w = u. by the unique existence of U, and

u({x) = ufg)wix-c) = u{c)ur(x-c] for x e R.

The length s{r) of supp[ur] equals m/bir) by (5.23). Hence
the properties (1) to (4) of s{r)} follow from those of b(r) stated
in Theorem 5.4 and {(5.19).

Before the proof of the properties of u_, we show

r

1j5{r}f2

1
(5.24) (u ) (-3s(r)+0) = 7 s(r)fz—rur(x)dx'> 0 for r > V2,

The symmetric finite ss-pulse u.. satisfies

1.2

. 1 1
Ar’rur = -t + 3T au. = 0 in (-gsirl,gsir}),

and the function Ur{x) = ffaPr{Y’dY also gatisfies
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A. U_ =0 in {—%ﬂ{r},%ﬁ{r])

since u_ satisfies (4.1) with m = 2. An application of Lemma 4.4

to {ur'Ur} yields

s{r)/2 (o 4 )u_dx

O = [Zs(r)/2 r,r r

1 1 1,.8(r}/2
= U.{zs(r){u) (58(r)-0) + f!s{rJIZ-rUr{x+r’ur{x)dx

] 1 2
= ~fudyuy (-5s(r}e0) + i"url1fz};=§2_rur{x}dx,

which implies (5.24). The property (i) of u. follows from the fact

that Ve is unimodal (Theorem 5.6). The second property is obtained
by noting that

v (x) = cosx on [‘%'%] and b(r) =r forr gz w
{Subsections 5.1 and 5.2). For r » /2, . is twice continucusly
differentiable cn {-%s(r),%s(r)] by Proposition 2.1. Let V2 < r <
e Then, the point =x_ = —%s(r}+r belongs to (-%s(r],%a(r]] by
the property (1) of sir), and

12 1
(aurl(xl =3¢ (au )ix) = 5{u, (x+r)-2u (x)+u (x-r)}

is not differentiable at x_ by (5,24). Hence u. is not thrice con-

1 1
tinuously differentiable on (-Es{r),fa(r]) when /2 < < 7. |
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6. Non-existence of other kinds of standing solitary pulses

We show in this sectlon that the equation P(2,r) has no other

kind of ss-pulse but the symmetric finite ss-pulse.

Non-existence of a non-symmetric finite ss-pulse. Suppose
that u is a non-symmetric finite ss-pulse of P(2,r). We may assume
that supplu] = [-%,%] {s: a positive number), We define an even
function ug by

ustx) = %{u(x]+u(-x)} for x £ R.

Since u is an ss-pulse, u, > 0 on (—%,%) and u, gsatisfies

1.2 5 S
{6.1} -.ﬂus + priau, = 0 in (_E'E .

Hence ug is a symmetriec finite ss-pulse of P(2,r), and s = s{r) =
me/bir) and us{x) = uBIODur[x) by Theorem 5.%, where u, iz the
unigue symmetric finite ss-pulse of P(2,r) that satisfies {5.21).
The function vstx) = us(%x] becomes a principal eigenfunction of
e{r,mc/s), associated with 11{r,nr/s} = 0, as shown in the proof of
Theorem 5.9 (mr/s = b(r}). We define an odd function u, and an

even function Ua by

ua(xj = %{u{x)-u(-x)] and Ua{x} = Ifmua(y]dy for x € R.

Then, since u is a non-symmetric finite ss-pulse, u, X 0, Ua X 0 and

Ua{x} = 0 for x € R\{—%,%}. Meoreover, Ua satisfies
1.2 i 88
-—ﬁUa + Er &rUa = (} in t'zrz’
since ua(x} = u{x) = us(x} satisfies (4.1) with m = 2 in (-%,%;,
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Hence V_{(x) = Ua(%x} also is a principal eigenfunction associated

with A, (r,wc/s). By (5.24) and the definition of V,r

(V) (-5+0) = 2(u ), (-5+0) = Zu_(0)(u ) (-5+0) > 0,

kil
(V) o (=3+0) = 2(u ) _(-5+0) = 2u_(-5) = 0,

which implies that Vg and Va are linearly independent. This ¢on-

tradicts the fact that lltr,ﬂrfs) is simple {(Corollary 5.7}.

Non-existence of an infinite ss-pulse, An infinite ss-pulse u

of P(2,r) must satisfy
-pu + 2r®su =0 inR.
Through the Fourier transformation, the above equation is trans-
formed into
(£2-1+c0srE)E(E) = 0,
where 1 denotes the Pourier transformation of u. The function
Ez - 1 + cosrg

of £ vanishes at most at a finite number of points on R, therefore,

9 20and u £ 0. . This means that P{2,r) has no infinite gs-pulse.

Non-existence of a seml-infinite ss-pulse. Suppose that
P{2,r}, r > ¥2, has a semi-infinite ss-pulse w. We may assume
supplw] to equal [0,*] without leoss of generality. By Theorem 5.9,
P{(2,r) has a unique symmetric finite ss-pulse u such that (u,1) = 2
and supplu] = [0,s8] (s = s(r) = rc/b{r)). We define non-decreasing
functions U and W by

U{x) = fguly)dy and W(x) = fZw(y)dy.
Then U and W satisfy

Ar,ru =-0 in (0,s) and Ar,rw = 0 in {(0,=),
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respectively, since u and w satisfy (4.1) with m = 2. 2Applying

Lemma 4.4 to {u,0} and {u,W}, respectively, we obtain

0 = Ig[ar'rU}udx

s
2u_(s-0) + fC__u(x)dx,

0 = [l Wludx = W(s)u,(s-0) + 218 W(x+riu(x)dx

v

TH(s) (20, (3-0)+f5_ u(x)dx)

since W(x) is strictly increasing on (0,#). The second inequality
in the above contradicts the first equality. Hence P{2,r) has no

semi-infinite ss-pulse.
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7. Stationary solutions of P(2,r)

In the present section, we complete the proof of Theorem 1.1 by

combining the theorems obtained in the previous sections.

Proof of Theorem 1.1. The first assertion is the same as that
of Theorem 4.2.

A stationary scliution of P(2,r) that satisfies {(1.4) is a sym-
metric finite ss-pulse of P(2,r) that satisfies (5.21}. Hence
Theorem 5.9 implies the unique existence of U, the properties (1}
to {4) of s{r}) and the properties (i) to (iii) of U..

Let u be a function given by (1.5). Then u belongs to L (R)
and L1(R} since

{ bl = ol supy o (ay) s ol opay < =

ball, s bogly 5 4, < o
by (1.6}. For each i £ f, let

ui(x] = aiur(x-ci) for x £ R.
Theorem 5.9 assures that each uy is a symmetric finite ss-pulse of
B(2,r). Since dia(supp[ui],supp[uj]) e xr for all i e A, §j € A,
i %43 by (1.7), Flu] = EienF[ui] =0 ((2.2) in Proposifian 2.1).
Hence u is a statisnary solution of P(2,r). ]

Let u be an arbitrary non-trivial staticnary solution of
P{2,r}). By Theorem 3.1, u is decomposed into

u(x) = J,_,u;i(x),

where Eui} (A: an index set) is a finite or countable sequence of

ien
ss-pulses such that

{7.1) dis{supp[uilfsupp[uj]) g r forall ieh, jeA, iiij.
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The eguation P(2,r) has no other kind of ss-pulse but the symmetric

finite ss-pulse (Section 6). Hence each u, 13 a symmetric finite

i
ss-pulse, and by Theorem 5.9, vy is expressed in the form

uy (x) = v le, ju (x-c,),
where = is the center of suppiuy, J. Now u is expressed in the form

(7.2} u({x) = Eieﬁui[ci}ur{x-ci].

Let us show how the sequences {1.11..[131..}0}1_5].l and {ci}ien gatisfy the
conditions (1.6) and (1.7), respectively. Since each u is an ss-
pulse and
= > Jully = TuglqEiepnte;)
by {7.1} and (7.2), {ui(ci]}iaﬂ satisfies (1.6). By {7.1) and
(?.2}'
ley - cjl = dis(supplu;J,suppluy])
+ %{the length of supp[ui])
+ z{the length of supplu, 1)
2 r + (the length of supp[ur]J for all i e A, e A, i % 3,

which implies {1.7). We thus complete the proof of Theorem 1.1. |

48



8. Stationary sclutions of P(m,r) for m % 2

The present section discusses the stationary solution of P(m,r)
for m & 2.

We could prove Theorem 1.1 by fully utilizing the speciality of
the case m = 2 when the equation (4.2) is reduced to the linear 4if-
ferential-difference equation when m = 2, We have not yet obtained
a satisfactory result for the general case of m ¥ 2. However, we
can show a partial result and clarify the difference between the
cases of m = 2’and m % 2.

The results obtained in Secticns 2 and 3 are valid for all m >
1, hence we have only to study the ss-pulse,

We first review the case of r = =, A stationary soluticn of
P{m,=) is always an ss-pulse (Remark 3.3). Mimura and Yamaguti
[2¢] have shown that for each positive number ¢, P{m,=) has a sym-
metric finite ss-pulse u, such that |u]l, = ¢, and that de_is unigue
up to the coordinate translation.

Let u be an ss-puiée of P{m,») such that

u=0 on {-=,0] and >0 on (0,g)
where £ is a small positive number, and define a non-decreasing

function U by {3.1). When r = », {3.5) is reduced to
JUlx) = v ()" - UG {ful,-u(x}} = 0 on R

since U(-«) = 0 and U(x) = ﬂu”1. Hence U(x) is determined by the
relation

X = fg‘X}{E(“u“1-E)}-1fde tor x > 0,.

49



and u(x) is obtained by differentiating O(x). The length s{u) of

suppl[ul = Bupp[Ux] is given by

“u"1 -1/m 1=2/m1 -1/m
(8.1} s(u) = o &Ml -8)1"TaE w Jull ;TP ptn(1-n) T NN < =,
Consequently, s{u)} 1ls independent of uu"1 when m = 2, however, s(u)
increases with ﬂu“1 when m > 2, while s(u) decreases with increasing
lu}; when 1 < m < 2. This is a difference between the cases of m =

2and m ¥ 2,

Combining {(3.7) and (B.1), we can rewrite the above fact as

Proposition 8.1 (Support of an ss-pulse of P(m,x)}). Let u be

an ss-pulse of P{m,=). The length s{u} of supp(u] is given by
(8.2) s(u)? = F(m)ZJu| ™2,

where F(m) 1s the same as that given in Theorem 1.2. Hence, s{u} is
independent of [ul|l_ when m = 2, however, s{u) increases with [u|
when m > 2, while s{u) decreases with increasing |lul|, when 1 < m <

2. 1

We now return to the case of 0 < r < o, By the definition of

a stationary selution, we obtain

Proposition 8.2 (Transformation of an ss-pulse of P{m,r) for
m ks 2). Assume 1 to be an ss-pulse of P(m,r) for m ¥ 2. Then,
for all g > 0,

2/(m-2)

(8.3} uo(x} 6 uix/a) for x ¢ R

becomes an ss-pulse of P{m,dr). Moreover,

r a2~ for all ¢ > 0,

(8.4) (or)?fu)2™

(8.5) (o)™ u J3® = Juf?™  for all o > 0. I
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Observing Proposition 8.2, we infer

( "there exists a positive number Q(m} such that
(8.6) 4 (a) P{m,r) has no ss-pulse u such that 0 < rzﬂuui-m £ Q(m),
{b) for sach q > 0{m), P(m,r) has an ss-pulse u such that

i 223 - gn,

which is true for m = 2 as stated in Theorem 1.1.
We have not yet proved (8.6) in the general case. However, we

obtain Theorem 1.2.

,Proof of Theorem 1.2. Let u be a non-trivial stationary solu-
tian of P(m,r) and define a non-decreasing function U by (3.1).
Let X = {x ¢ R; u(x) = fuj_}. 'We first consider the case where X
is not empty. Fix a point Xy € X, and lét
x = inf(y = Xgi T € X for all z € [y,xD]}.
1

Then x > -» since u ¢ L (R}, and fﬁu(z]dz < {x-y}|u], for v < x.

Noting that J[U} = 0 and u = U_ 2 0 on R, we obtain

lal® = wea™ = v (0™ = (X uty uix)-uiy-r)iay
X+ H+I X
(8.7) s fullfy  (ux)-oty-r))dy = |ul S jy_ru(zmzdy
) 1
< Jul S5 (x-yer) ol dy = 3r°lal 2.

In the other case where X is empty, we also obtain the same estimate

as tB.?i. The first assertion of Theorem 1.2 follows from (8.7).
Let q be a positive number that satisfies ({1.9), and let s =

rF(m)/vVg s r. Combining (8.1) and the argument on the stationary

solution of Pi{m,»), we know that P{m,») has a symmetric finite ss-
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pulse u, such that the length of supplu,] equals s, Let us show

that u, is an ss-pulse of P(m,r) satisfying (1.10). The ss-pulse
ug of P(m,») satisfies (4.1):

m—1)

— L x ¥ {Ifmpsdy—j;usdy} = 0 in the interior of supp[us].

We can replace the second term on the left-hand side of the above
equation by {I;_rusdy-I:+rusdy} since r 2 s = (the length of
supp[us]}. Then the resulting equation implies that U, is an ss-
pulse of P{m,r). Since ug is an ss-pulse of P(m,»}, it follows

from (8.,2) that

2 2=m r, 2 2
r Hus"on = (V' F(m)” = q,

which implies {1.10). Thus the proof is completed. |

We may appropriately conclude the present paper with the fol-

lowing conjecture.

Conjecture (Stationary solutions of P(m,r) for m ¥ 2}.

{I) P(m,r} has no non-trivial stationary solution u such that

)3 s 2.

(II) For each real number g € F(m)z, B{m,r} has an ss-pulse u
such that

2 uh2™ = g
and the length of supplul]l 1s less than or equal to r. The ss-pulse
u is unique up to the coordinate translation.
(I11) For each real number g such that 2 < g < F{m)z, P{m,r} has an
sg-pulse u such that

20 g2
o uls™ = g
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and the length of suppl[ul] is greater than r. The ss-pulse u is

unique up to the coordinate translation. (See Figure 8.1.) i
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5.6.

A pulse-like stationary solution of P(2,r) (d; 2 r
and d2 2 r).

A solution of the Cauchy problem P({2,*) obtained by a
finite difference method.

A partition of the interwval [—%,%] in = 2).

The graph of the function b(r).

Eigenvalues XA and typical patterna of eigenfunctions
of e({r,b} (r = 3).

Eigenvalues u and typical patterns of eigenfunctions
of ea(r,b} (r = 3).

Eigenvalues A and typical patterns of eigenfunctions
of el(r,b) and eigenvalues p of ea[r,hl (r = 3).
Principal eigenfunctions Vo of e{xr,bl(r)) {(r = m, 2.0,
1.5 and 1.42).

Existence and non-existence of ss-pulse of P(m,r)

{s{u) = (the length of suppliul)).
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