学位申請論立：
A Theorem on the Cohomology of Groups and Some Arithmetical Applications片山真—

主 論文

A Theorem on the Cohomology of Groups and Some

Arithmetical Applications；

A Theorem on the Cohomology of Groups and Some Arithmetical．
Applications
By Shin－ichi Katayama
Department of Mathematics，Kyoto University
Introduction．
Various cohomology groups related to class field theory have been investigated by many authors．Especialiy there are import－ ant results on the Galois cohomology groups of ideles and idele classes of finfte Galois extensions of algebraic number fields （see，for example［3］）．The latter result was first obtained by J．Tate［9］．He also announced the corresponding resuit for the multiplicative group of the algebraic number field itself in［10］，of which the proof was published later in［11］，under a more general setting．Recently，we have investigated in［4］ the Galois cohomology groups of the factor group of idele class group by its connected component of the unity．In［5］，we have constructed an isomorphism between the Galois cohomology groups of the unit group of a local field and those of some Artin＇s splitting module．

In this paper，we shall prove the following theorem on the cohomology groups over finite groups snd show the known results cited above appear as its special cases．

Let G be a finite group．Suppose that we are given the follo－ wing commutative diagram of G modules with exact rows and columns

Then we həve the following theorem
Theoren (A). with the notation as above, we have
(III) Let A_{2} and B_{2} be conomologically triviel G-modules. (dyhen the long exact secuences derived from $0 \rightarrow A_{1} \longrightarrow 3 \boldsymbol{H}^{1} \rightarrow C_{1} \longrightarrow 0$ and $0 \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{2} \rightarrow 0$ are isomorphic. We have the siailar results For the following cases:
(I) C_{2} and B_{3} are cohomologically trivial.
(II) A_{1} and C_{2} are cohomologically trivial.
(IV) A_{3} and C_{I} are conomologically trivial.
(V) A_{2} and B_{1} are cohomologically triviel,
(VI) A_{3}, B_{3} and C_{3} are conomolozicelly trivial.
(VII) A_{2}, B_{2} and C_{2} are cohomologically trivial (is, mheorem 1.1).

In $\$ 1$, we sinall show the above theorem. In $\$ 2$, we shall sinotitre main result of [4] is considered to be a corollary of the case. (III) of Theorem (A). In §3, we sinal show several auxiliary lemmas on the cohomology sroups of integral grous rings. In δ sinall constrict a cohomologically triyial module ${\underset{F}{\mathrm{X}}}_{\mathrm{X}}^{\mathrm{X}}$ including ${ }_{\mathrm{K}}^{\mathrm{X}}$ as A G-submodule, for every place p ō̃ k. Here K is a Inite

Galois extension of an algebraic numioer field x with the group G, and K_{p}^{X} is a G-submociule of K_{A}^{X} consisiing of all the iteles whose a-íactors are 1 encejt when a divides p. In $\S \in$, we shall study a nev treatment of the Galois conomology groups of C_{K} / D_{K} using the result oî §4, where C_{K} is the icele class group or K and $D_{i d}$ is its connectec comonent or the unity. In δ, we shall show the arnounced result of [10] in a more general; setting, but not quite generel as that of [1.1].

Hotation and Terminology
Let G be a finite group anc A be a G-module. $H^{r}(G, A)$ always denotes the r-dimansional cohomology group and is often abbreviated to $H^{r}(A)$. For a cocycIe x or $H^{r}(G, A),\{x\}$ denotes the cohomolog. y class containing x . Although, in §I, we use several symbols to express the connecting homomorphisms derived from short exact sequences, in other sections, wavienote the connecting homomorphism by \mathcal{S}_{5}. For a G-moduie A, G_{A} ienotes a G-suomódule of A consistinz of all G-invariant elements oí A. Let B be a mocule and P be a condition on B. we denote by $\langle x| x$ is the element of B satisiying the concition $P>$ the slibmocule of B generated by all the elements of 3 which satisfy the concition P.
51. Suppose tiat we are given the two diagrams of modules
(1.1)

and

where g_{i} and g_{i}^{\prime} are homomorphisins. For the sake of simplicity, we denote these diagrams by the symbols $\Delta\left(M_{1}, M_{2}, M_{3}\right)$ and $\Delta\left(M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right)$. Let h_{i} be the homomorphisms from M_{i} to $M_{i}^{\prime}(1 \leqq i \leqq 3)$ wich satisfy the conditions $g_{1}^{\prime} \cdot h_{1}= \pm . h_{2} \cdot g_{1}, g_{2}^{\prime} \cdot h_{2}= \pm h_{3} \cdot \xi_{2}, g_{3}^{\prime}: h_{3}$ $= \pm h_{1}+\varepsilon_{3}$. Ey abuse of lañuage, we call the triplet of homomorphillass $h=\left(h_{1}, h_{2}, h_{3}\right)$ an anti-nomomorehism from $\Delta\left(M_{1}, M_{2}, M_{3}\right)$ to $\Delta\left(M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right)$ when at least one of the diagrams is anticcommutative. We cail $h=\left(h_{1}, h_{2}, h_{3}\right)$ an anti-isomorphism in case every homomorphism h_{i} is an isomorphism. In case all the ciagrams are commutative, we call the triplet $h=\left(h_{1}, h_{2}, h_{3}\right)$, as usual, a homomorphism from $\Delta\left(M_{1}, M_{2}, M_{3}\right)$ to $\Delta\left(M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right)$ anc an isomorphism when every埌i is an isomorphism. If the triplet $h=\left(h_{1}, h_{2}, h_{3}\right)$ is either an anti-iomomorphism or a homomorphism, that is, satiseies the conditions $g_{1} \cdot h_{1}= \pm h_{2} \cdot g_{1}, s_{2} \cdot h_{2}= \pm h_{3} \cdot g_{2}, g_{3} \cdot h_{3}= \pm h_{1} \cdot g_{3}$, we call h, an (a)-homomorphism and an (a)-isomorphism when every h_{i} is an isomorFhism.

In the following, we shall prove a theorem on the cohomology or groups. Although one can generalize the result in a natural way, using the functors Tor or Ext, here we shall be concerned with only the case of the conomology of groups. Let G be a finite group. We
are given a commutative diagram of G-mocules
(1.2)

Here, all row and vertical sequences are exact. Let us define the graced modules $X_{i}, Y_{i}, Z_{i}(1 \leqq i \leqq 3)$ by

$$
\begin{aligned}
& x_{i}=\sum_{r=-\infty}^{\infty} H^{r}\left(A_{i}\right), \\
& Y_{i}=\sum_{\Gamma=-\infty}^{\infty} H^{r}\left(\Xi_{i}\right), \\
& z_{i}=\sum_{\Gamma=-\infty}^{\infty} \pi^{r}\left(\Xi_{i}\right) \quad(i \leqq i \leqq j)
\end{aligned}
$$

Let α_{i}^{r} be the homomorphism From $H^{r}\left(G, A_{i}\right)$ to $H^{n}\left(O, B_{i}\right)$ induced from α_{i}. We denote the homomorphism $\prod_{r=-\infty}^{\infty} \alpha_{i}^{r}: x_{i} \longrightarrow Y_{i}$, by the same symbol α_{i}. The homomorphisms β_{i}, φ_{i} and Ψ_{i} are defined in a similar way. Let us denote the connecting homomorphisms derived from (1.2) by

$$
\begin{aligned}
& \gamma_{i}^{r}: H^{r}\left(C_{i}\right) \longrightarrow H^{r+1}\left(A_{i}\right) \quad(1 \leqq i \leqq 3), \\
& \delta_{i}^{r}: H^{r}\left(A_{3}\right) \longrightarrow H^{r+1}\left(A_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{2}^{r}: H^{r}\left(B_{3}\right) \longrightarrow H^{r+1}\left(S_{1}\right) \\
& \delta_{3}^{r}: H^{r}\left(O_{3}\right) \longrightarrow H^{r+1}\left(C_{1}\right) \quad(r \in Z)
\end{aligned}
$$

We denote the nomomoronisas $\prod_{r=-\infty}^{\infty} \gamma_{i}^{r}: z_{i} \longrightarrow x_{i}$ by γ_{*}^{i} and $\prod_{r=-\infty}^{\infty} \delta_{i}^{n}$ by $\delta_{\dot{*}}^{i}$. Then, from (1.2), we have the following diagram (1,3)

Here the triplet $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a homomorphism. In the same Wry as α, one sees that $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right), \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ and $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ are homomorphisms. On the other hand, one sees the following diagram is enticommutative (see for example, [2], Ch. III. §4)
(1.4)

Hence $\delta_{*}=\left(\delta_{*}^{1}, \delta_{*}^{2}, \delta_{*}^{3}\right)$ and $\gamma_{*}=\left(\delta_{*}^{1}, \gamma_{*}^{2}, \gamma_{*}^{2}\right)$ are anti-homomorpRim. Finally, wive have the following diagram
（1．5）

In the following，we treat the case when two of the nine graded modules of（1．5）are zero．module，especially the case when the two G－modules of（1．2）are conomologically trivial．If the two of the nine c－modules of（1．2）are cohomologically trivial，there ren彐in two short exact sęuences contョined in（1．2）such as non of the G－modules of the sequences are assumed to be cohomologically trivial．Then it is natural to expect the assumption implies some relation betiveen the cohomology sepuences derived from the remain－ ing two short exact sequences．Certainly，if we suppose the G－ino－ dules C_{1} and C_{2} are cohomologically trivial，the diagram（1．5） c发ncides with the diagram（1．3）and the triplet $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is an isomorphism from $\Delta\left(X_{1}, X_{2}, X_{3}\right)$ to $\Delta\left(Y_{1}, Y_{2}, Y_{3}\right)$ ． We restrict ourselves to the cases when the derived concmolosy
of the remainins t:oo sequences of (1:2) are (a)-isomorphic. One can easily shov that there are only fifteen cases which satisfy the concition. The diagram (1.2) is sfmetrical with respect to the diagonal line A_{1}, B_{2}, C_{3}. From the duality theorem of the cohomology grouns, the diagram (1.2) can be consicierec to be also symetrical With respect to the diagonal line A_{3}, B_{2}, C_{1}. Therefore, one sees that there are essentially following seven cases (I),..., (VII);
(I) C_{2} and B_{3} are conomologically trivial. Hence $Z_{2}=Y_{3}=0$.
(iI) A_{1} and C_{2} are conomologically trivial. Hence $X_{1}=Z_{2}=0$.
(III) A_{3} and B_{2} are cohomologically trivial. Hence $X_{3}=Y_{2}=0$.
(IV) A_{3} and C_{1} are cohomologically trivial. Hence $X_{3}=z_{1}=0$.
(V) A_{2} and B_{1} are cohomologically trivial. Hence $X_{2}=Y_{1}=0$.
(VI) Any two of the three modules $A_{3},{ }^{3}{ }_{3}$ and C_{3} are cohomologically trivial, that is, all the G-modules A_{3}, B_{3} and C_{3} are cohomologically trivial. Hence $X_{3}=Y_{3}=Z_{3}=0$.
(VII) Any two of the three todules A_{2}, B_{2} and C_{2} are cohomologically trivial, that is, all the G-modules A_{2}, B_{2} and C_{2} are cohomologically trivial. Hence $X_{2}=Y_{2}=Z_{2}=0$.
Theorem 1.1. With the notation as aoove, we see that $\left(Y_{1}, Y_{2}, Y_{3}\right)$ For the case (I), $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(X_{1}, Y_{1}, z_{1}\right)$ are anti-isomorphic, For the gase (II), $\left(X_{3}, Y_{3}, Z_{3}\right)$ anc For the case (V), $\left(z_{1}, z_{2}, z_{3}\right)$ and For the case (VII), (X_{1}, Y_{1}, Z_{1}) and For the case (III); ($\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{z}_{1}$) and For the case (IV), $\left(X_{2}, Y_{2}, z_{2}\right)$ and For the case (VI), $\left(X_{1}, y_{1}, z_{i}\right)$ and

Proof. Here, we shall prove the cases (II) and (III) mich we shall use later.

Case (III). It is sufficient to show the ciagrary (1.5) induces the following vertical isomorphisms u and u, such as the followmg diagram is commutative

Construction of u. From the assumption, the homomorphisms $\operatorname{lin}_{1}^{r+1}: H^{r+1}\left(A_{1}\right) \longrightarrow H^{r+1}\left(A_{2}\right)$ and $\gamma_{2}^{\Gamma}: H^{r}\left(C_{2}\right) \longrightarrow H^{r+1}\left(A_{2}\right)$ are bijective. The isomorphism u: $\mathrm{H}^{\mathrm{r}+1}\left(\mathrm{~A}_{1}\right) \longrightarrow \mathrm{H}^{\mathrm{r}}\left(\mathrm{C}_{2}\right)$ is defined by $\left(\gamma_{2}^{r}\right)^{-1} \cdot \varphi_{1}^{r+1}$.
Then from the commutative diagram

we see the diazrani (3) is commutative.
Construction of u^{\prime}. From the assumption, the homomorenisms $\delta_{2}^{r}: H^{r}\left(B_{3}\right) \longrightarrow H^{r+1}\left(B_{1}\right)$ and $\beta_{3}^{r}: H^{r}\left(S_{3}\right) \longrightarrow A^{r}\left(C_{3}\right)$ are bijective. The isomorphism $u^{\prime}: H^{r+1}\left(B_{1}\right) \longrightarrow H^{r}\left(C_{3}\right)$ is defined by putting $\beta_{5}^{r} \cdot\left(\delta_{2}^{r}\right)^{-1}$.

Then, from the commutative diagram

we see tine diagram (C) is commutative.
Bow, we shall show the following diagram (3) is commutative

Let a be any cocycle of $H^{r+1}\left(A_{1}\right)$. Then $\alpha_{2}\left(\varphi_{1}(a)\right\}$ is a cocycie of $H^{T+1}\left(B_{2}\right)=\{0\}$. Hence there exists a r-cochain b with values in B_{2} such as $\delta(b)=\alpha_{2}\left(\varphi_{1}(a)\right.$. Then $\delta\left(\beta_{2}(b)\right)=\beta_{2}(\delta(b))$
$=\beta_{2}\left(\alpha_{2}\left(\varphi_{1}(a)\right)\right)=0$, and so $\beta_{2}(b)$ is a r-cocycle with values in c_{2}. From the equation $\delta(b)=\alpha_{2}\left(\varphi_{1}(a)\right)$, we see $\gamma_{2}^{r}\left\{\left(\beta_{2}(0)\right)\right\}$ $=\left\{f_{1}(a)\right\}$ in $H^{r+1}\left(\hat{A}_{2}\right)$. Therefore we have $u(\{a\})=\left\{\beta_{2}(b)\right\}$, and so $\psi_{3}^{r} \cdot u(\{a\})=\left\{\psi_{3} \cdot \beta_{2}(b)\right\}$ in $4^{r}\left(c_{3}\right)$.
On the other hand, from the condition $\varphi_{2}\left(d_{1}(a)\right)=\alpha_{2}\left(\varphi_{1}(a)\right)=\delta(b)$, we see $\delta_{2}^{r}\left\{\Psi_{2}(b)\right\}=\left\{\mathcal{\alpha}_{1}(a)\right\}$. So we have $u^{\prime} \cdot \mathcal{d}_{1}^{r+1}\{\{a\})=\left\{\beta_{3} \cdot \psi_{2}(b)\right\}$ in $H^{r}\left(C_{3}\right)$. Hence, by virtue of the fact $\beta_{3} \cdot \psi_{2}=\psi_{3} \cdot \beta_{2}$, we have $\psi_{3}^{r} \cdot u=u^{\prime} \cdot \alpha_{1}^{r+i}$, and so the diagram (b) is commutative.

Case (II). It is sufficient to show the diagram (1.5) induces the following isomorphisms v and v ' suvh as the following diagram is either commutative or anticommutative

Construction of v. From the assumption, the homomorphisms
$\beta_{1}^{r+1}: H^{r+1}\left(B_{1}\right) \longrightarrow H^{r+1}\left(C_{1}\right)$ and $\delta_{3}^{r}: H^{r}\left(C_{3}\right)$ are bijective. The isomorphism $v: H^{r+1}\left(B_{1}\right) \longrightarrow H^{r}\left(C_{3}\right)$ is defined by $\left(\delta_{3}^{r}\right)^{-1}, \beta_{1}^{r+1}$.

Then , from the commutative diagram

we have the diagram (a) is commutative.
Construction of v^{\prime}. From the assumption, the homomorphisms $\alpha_{2}^{r+1}: H^{r+1}\left(A_{2}\right) \longrightarrow H^{r+1}\left(B_{2}\right)$ and $\psi_{1}^{r+1}: H^{r+1}\left(A_{2}\right) \longrightarrow H^{r+1}\left(A_{2}\right)$ are bijective. The isomorphism $\mathrm{v}^{\prime}: \mathrm{H}^{\mathrm{r}+1}\left(\mathrm{~B}_{2}\right) \longrightarrow \mathrm{H}^{\mathrm{r}+1}\left(\mathrm{~A}_{3}\right)$ is defined by $\Psi_{1}^{r+1} \cdot\left(\mathcal{N}_{2}^{r+1}\right)^{-1}$.

Then, from the commutative diagram

we see the diagram (C) is commutative.

Let us snow: the following cisaram 3 is anticomutative

Let b be en v cocycle of $H^{r+1}\left(B_{1}\right)$. Since $H^{r+1}\left(C_{2}\right)=0$, there exists a r-cochain c with values in c_{2} such as $\varphi_{3}\left(\beta_{1}(b)\right)$ $y=\delta(c)$. Hence $\delta\left(\psi_{3}(c)\right)=\psi_{3}\left(f_{3}\left(\beta_{1}(b)\right)\right)=0$, and so $\psi_{3}(c)$ is a cocvcle of $H^{n}\left(C_{\hat{E}}\right)$. By the definition of the connecting homomorphinism, we have $\delta_{s}^{r}\left(\left\{\psi_{s}(c)\right\}\right)=\left\{\beta_{1}(\sqrt{4})\right\}$. Hence we have $v(\{b\})$ $=\left\{\psi_{2}(c)\right\}$. Since β_{2} is a surjective homomorphism, there exists a r-cochain \bar{b} with values in B_{2} such as $\beta_{2}(\bar{b})=c$. Then we
 $=\varphi_{0}\left(\beta_{1}(b)\right)-\delta(c)=0$. Since α_{2} is an infective homomarohism, there exists a $(r \div 1)-\operatorname{coc} j \mathrm{icle}$ a $0 \hat{\mathrm{I}} \mathrm{H}^{\mathrm{r}+1}\left(\mathrm{~A}_{2}\right)$ setisiring $\alpha_{2}(a)=\varphi_{2}(b)-\delta(\bar{b})$. Then we have $v^{\prime} \cdot \varphi_{2}^{r^{+1}}(\{b\})=\left\{\psi_{1}(a)\right\}$. On the other hand, we see $\psi_{3}(c)=\psi_{3}\left(\beta_{2}(\bar{b})\right)=\beta_{3}\left(\psi_{2}(\bar{b})\right.$) and $\delta\left(\Psi_{2}(\bar{b})\right)=\Psi_{2}(\delta(\bar{b}))=\Psi_{2}\left(\varphi_{2}(b)-\alpha_{2}(a)\right)=-\psi_{2}\left(\alpha_{2}(a)\right)$ $=-\alpha_{3}\left(\Psi_{1}(a)\right) . \quad$ By the definition of the connecting nomonorohisiin, we have $\gamma_{3}^{r}\left(\left\{\psi_{3}(c)\right\}\right)=-\left\{\Psi_{1}(a)\right\}$. Hence, we have $v^{\prime} \cdot \varphi_{2}^{r+1}+\gamma_{3}^{r} \cdot v=0$, and so the diagram (3) is anticommutative. It is easy to show the other cases in the same way as above.

From this theorem, the following coroliery is obvious.
Corolyary 1.1. Fon the case winen ore of tine exponents of the graciec mociules X_{1}, X_{3}, Z_{1} and Z_{3} is at most 2 , all the cuacrilatersil dizarams conteined in the diamiam (1.5) are commutaive. Hence, for all the cs.ses (I), .., (VII), two trifneular dianians Ere isomorohic.

We shali show another application of the atove theoren. Ge assume G-modules $A_{2}, A_{3}, B_{2}, \bar{B}_{2}, C_{2}$ and C_{3} ot the following diagram (1. o) are conomolokicelly trivial and all the row and verticel senuences are exact.
(1.5)

From this diagram, we get the followina new commutative diagrams of G-itodules with exact rows and columns
(1.7)

(1, 8)

Were In Ψ_{i} is a E-mocule consisting of all the elenarts $\Psi_{i}(x)$, $x \in L_{i}$. Here $L_{1}=A_{2}, L_{2}=E_{2}$ and $L_{2}=C_{2}$.

Let us denote the connecting homomorphisms of above diagrams by

$$
\begin{aligned}
& \gamma_{i}^{r}: H^{r}\left(C_{i}\right) \longrightarrow j^{r+1}\left(A_{i}\right) \quad(1 \leqq i \geqq 4), \\
& \bar{\gamma}^{r}: H^{r}\left(\operatorname{In} \Psi_{3}\right) \rightarrow H^{r+1}\left(\operatorname{Im} \Psi_{1}\right) \text {, } \\
& \delta_{i}^{r}: H^{r}\left(\operatorname{Ir} \psi_{i}\right) \longrightarrow H^{n+1}\left(M_{i}\right) \quad(1 \pm i \leqq 5) \text {, where } M_{I}=A_{1}, M_{2}=B_{1} \\
& \text { and } M_{3}=C_{1} . \\
& \bar{\delta}_{\underline{i}}^{r}: H^{r}\left(N_{i}\right) \longrightarrow H^{r+1}\left(\operatorname{Im} \Psi_{i}\right) \quad(1 \leq i \leqq s) \text {, where } \quad N_{1}=A_{4}, N_{2}=B_{4} \\
& \text { and } N_{3}=C_{4} .
\end{aligned}
$$

Then, from theorem 1.1 case (VII), we have the following diagram

In this diagram, the cisaramid (a), (e), (3) and (3) are commutative and (C) and (C) are anticomulative. Hence, we have $\gamma_{1}^{r+2}\left(\delta_{3}^{r+1} \cdot \bar{\delta}_{3}^{r}\right)=\left(\gamma_{1}^{r+2} \cdot \delta_{3}^{r+1}\right) \bar{\delta}_{3}^{r}=\left(-\delta_{1}^{r+2} \cdot \bar{\delta}^{r+1}\right) \bar{\delta}_{3}^{r}$
$=-\delta_{1}^{r+2}\left(\bar{\gamma}^{r+1} \circ \bar{\delta}_{\underset{2}{r}}^{r}\right)=\delta_{1}^{r+2}\left(\bar{\delta}_{1}^{r+1} \cdot \gamma_{4}^{r}\right)=\left(\delta_{i}^{r+2} \in \bar{\delta}_{1}^{r+1}\right) \gamma_{4}^{r}$.
Finally, we have the following comitative diagram
(1.10)

Here the vertical arrows are the compositions of the connecting homoorphism of (tie). We define the graded modules X_{i}, y_{i} and z_{i} ($1 \leqq i \leqq 4$), in tine same way as Theorem 1.1 and denote the nomomorphi--lis corresponding to δ_{i}^{r} and $\bar{\delta}_{i}^{r}$ by δ_{*}^{i} and $\bar{\delta}_{*}^{i}$. Then we have Corollary 1.2. Suppose that the t-modules $A_{2}, A_{3}, B_{2}, B_{3}, C_{2}$ and C_{3} of the diagram (1.6) are cohomologically trivial. Then the trio<compat>ᄅ<compat>ᅩ<compat>ᄂ of homomorphisms $\left(\delta_{*}^{1} \cdot \bar{\delta}_{*}^{1}, \delta_{*}^{2} 0 \bar{\delta}_{*}^{2}, \delta_{*}^{3} \cdot \bar{\delta}_{*}^{3}\right)$ is the isomorohism from $\Delta\left(x_{4}, Y_{4}, z_{4}\right)$ to $\Delta\left(x_{1}, y_{1}, z_{1}\right)$, that is, the diagram (1.10) is commutative.
§2. Let G be a finite group anc A be a G-module. Let \mathcal{F} be a 2-cohomology class of A and let \bar{A} be Artin's splitting module of ξ. Then we have the following lemina which was provec by J.Tate ([g], Theorem 1).

Lemma 2.1. With the notation as above, the following two concitions are ecuivalent:
i) $H^{2}(4, A)=0$ and $H^{2}(H, A)$ is a cuclic grove of the same orcer as N, generated by $P_{\mathcal{C}, \mathrm{N}} \xi$, for all subgroues inco. Here G, N is the restriction homomormism from G to M. ii) $H^{1}(N, \bar{A})=H^{2}(i, \bar{A})=0$ for all subgraups $N \subset G$.

Remark. It is well known that ī $\overline{\mathrm{A}}$ satisfies the condition ii) of this lemma, \bar{A} is cohomologiclly trivial, that is, $\mathrm{N}^{\mathrm{r}}(\mathrm{N}, \overline{\mathrm{A}})=0$ for all subgroups NCG and for all integers $\mathrm{n} \in \mathrm{Z}$ ([3], Ch.I. Th. 8.1).

In this seetion, \forall fe sheil treat the o-noduie A and tine cohomology class ξ satisfying the conditions i) anc ii) of the above lemma. He assume we are given an exact sequence of g-mociules:

Let us cenote the $2-$ cohomology class $\alpha_{*}(\xi) \in H^{2}(G, 3)$ by η and Artin's splititing module of η by \bar{B}. Then we can define a G-homomorphism $\bar{\alpha}: \bar{A} \longrightarrow \overline{\bar{B}}$ by putting $\bar{\alpha}(\bar{a}+x)=\alpha(\bar{a})+x$, for every $a \in A$ and $x \in I[G]$. Here $I[\}]$ is the auganntation ideal of the group ring $Z[G]$ generated by $\epsilon_{\sigma}=\sigma-1$ ($\sigma \in G$). Then it is easy to show ker $\bar{\alpha}=C$. Hence we have the following
exact sequence of G-modules
(2.2)

Combining (2.1) and (2.2), we have the following comatative diasran of G-modules
(2.3)

Since \bar{A} is cohomologically trivial, we have the following theorem from (III) of Theorem 1.1.

Theorem 2.1, Let A, \bar{A}, B, C and $I[G]$ be g-mocules in (2.E). Then the following diagram is commutative for every $r \in Z$
where δ_{x} is the connecting homomorphisms and we heve aoorgviated $H^{a}(G, X)$ to $H^{a}(X)$ for a G-module X.
Let us write the isomorohism $\delta_{*}: H^{\Gamma}(\bar{B}) \cong H^{r+1}(C)$ in a more expincit form. First, we fix a 2-cocycle u contained in ξ. Though the module $\overline{\mathrm{A}}$ is detemined only up to G-isomorynisms, we can regard the module $\overline{\mathrm{A}}$ as the solitting module of u. Since
$\mathrm{v}=\alpha(\mathrm{u})$ is a 2 －cocycle contained in η ，the module \bar{B} is similarly regarded as the splitting module of v ．Therezore we can consider the mapping $d: G \longrightarrow I[G]$ satisifies the following eauもちion in \bar{A}

$$
\sigma d_{\tau}=d_{\sigma \tau}-d_{\sigma}+u[\sigma, \tau] \text {, for every } \sigma, \tau \in G,
$$

where we set $d_{1}=u[1,1]$ ．Then we see $H^{1}(G, I[G]) \cong z /[G ; 1] z$ is generated by the conomology class $\{c\}$ ．For the sake of the following proposition，we replace the integer r by p＋1．Let $N_{p} \subset H^{\circ}(G, Z)$ be the subgroup consisting of all the cocvcles h setisizying the concition
（x）$v \operatorname{con}^{\prime}=\delta \bar{x}$ ．
Where g is a $(y+1)$－cocnain with values in B and U denotes the correspondence of cochains which induces the cup prociuct（for details，see［3］，Ch．I，§6．4）．Let $\hat{H}_{\mathrm{p}+1}$ be the subsroup of $H^{\overline{\Gamma+1}}(\mathrm{G}, \overline{\mathrm{B}})$ consisting $\overline{\mathrm{F}}$ all the cohomology classes $\{\mathrm{du} n-\mathrm{E}\}$ ， where h and g satisi゙ies the àove condition（＊）．It is eas－ ily veriミiec that $M_{F+1}=H^{5+1}(G, \bar{B})$ ．So we obtain an explicit form of $\delta_{*}: H^{p+1}(G, B) \cong 4^{5+2}(G, C)$ by

$$
\delta_{*}\{d \cup h-\varepsilon\}=\{u \cup h-\delta(s a g)\},
$$

where s is a cross section from B to A such as $d_{0}=i d_{B}$ ．
Here we shall show this explicit form implies the main theo－ rem of our previous pacer［5］．Let k be a local fielc anc k be its Galois extension of finite degree．Ve denote the Galois group by G ．Let us denote the unit groug of K by U_{K} ．Then we have the following exact seguence of c－modules

$$
1 \longrightarrow U_{K} \longrightarrow \kappa_{K}^{\alpha} \xrightarrow{\alpha} 2 \longrightarrow 1 .
$$

Here α is the normal exponential valuation $w t h$ respect to K. Let $\mathcal{E}_{\mathrm{K}, \mathrm{K}}=\{u\}$ be the canonical conomology class for K / K. Let us denote $\alpha_{i}\left(\xi_{K, k}\right)=\left\{\alpha_{0}=v\right\} \quad b y \quad \eta_{K, k}$ and Actin's splitting module of $\eta_{k, k}$ by \bar{z}. Then, in our previous paper [5], we have showed there exists an isomorphism $\nu_{p}: H^{p+2}\left(G, U_{K}\right) \simeq H^{p+1}(G, \bar{Z})$ for every integer p.

Proposition 2.1. π For every integer $p \in Z$, we have an icon-

orphism

$$
\nu_{\mathrm{P}}: \mathrm{H}^{\mathrm{P}+2}\left(G, \mathrm{U}_{\mathrm{K}}\right) \cong \mathrm{H}^{\mathrm{D}+1}(G, \bar{z})
$$

such that the following diagram is commutative
$\cdots \rightarrow H^{p+1}(Z) \longrightarrow H^{p+1}(\bar{Z}) \longrightarrow H^{D+1}(I[G]) \longrightarrow H^{p+2}(Z) \rightarrow \cdots$
$\cdots \rightarrow H^{\mathrm{D}+1}(Z) \longrightarrow H^{\mathrm{D}+2}\left(\mathrm{U}_{K}\right) \longrightarrow \mathrm{H}^{\mathrm{p}+2}\left(K^{\mathrm{X}}\right) \longrightarrow \mathrm{E}^{\mathrm{p}+2}(z) \rightarrow \cdots$.
([5], Theorem)
Let us replace A, B and C an Theorem $\hat{2}, 1$ by K^{X}, Z and U_{X}, respectively and other morphisme and symbols by corresponding ones. From the explicit form of δ_{x}, we have $\delta_{x}: H^{p+1}(G, \bar{z}) \xlongequal[=]{=} H^{p+2}\left(G, U_{K}\right)$ and $\delta_{x}\{G U h-E\}=\{(U \cup i) / \delta(s, g)\}$,
 z which satisfies the condition (*). On the other hand, by the definition of ν_{p}, we can easily verify that

$$
\mathcal{V}_{p}\{(u \cup h) / \delta(s: g)\}=\{d \cup h-z\} .
$$

Hence $\nu_{p}=\left(\delta_{\gamma}\right)^{-1}$. Therefore proposition 2.1 is obtained as a corollary: of theorem 2.1.
§3. Let G be a ininite group and $i v$ be its subgroup of incex n. We put $G=\bigcup_{i=1}^{n} \sigma_{i}$ with $\sigma_{1}=1$ (the icentity or G). Let us denote by $Z[G / N]$ the free Z-module generatec by $\sigma_{i} N(1 \leq i \leq n)$. Let ε_{G} be an onto G-homomorphism from $Z[G / N]$ to Z defined by puting $\varepsilon_{G}\left(\sigma_{i} N\right)=1$ for every i. Then we have the following exact sequence of G-modules

$$
\mathrm{Q} \longrightarrow I[\mathrm{G} / \mathrm{N}] \longrightarrow \mathrm{z}[\mathrm{G} / \mathrm{iN}] \xrightarrow{\varepsilon_{\mathrm{E}}} \mathrm{z} \longrightarrow 0,
$$

where $I[\hat{G} / \mathrm{N}]$ is the kernel of \mathcal{E}_{G}. Since G is a finite troup, $\mathrm{Z}[\mathrm{G} / \mathrm{M}]=\operatorname{Ina}_{\mathrm{N}}^{\mathrm{G}} \mathrm{Z}$ is isomorphic to $\mathrm{Hom}_{\mathrm{Z}[\mathrm{NJ}}(\mathrm{Z}[\mathrm{G}], \mathrm{Z})$ $=\operatorname{Coind}_{\mathrm{H}}^{\mathrm{G}} \mathrm{Z}$ ([1],Ch. III, (5.9)Prop.). Therefore we have Lemma 3.1. Fith the notation as above, we have the isomorPhism $H^{r}(E, Z[G / N]) \approx H^{r}(N, Z) \quad(r \in Z)$.

Let us define a G-homomorphism ε_{N} from $\mathrm{Z}[\mathrm{G}]$ to $\mathrm{Z}[\mathrm{G} / \mathrm{N}]$ by putting $\varepsilon_{\mathrm{N}}(\sigma)=\sigma \mathrm{N}$ (for every $\sigma \in G$). We cenote the kernel or ε_{L} by $k[G, N]$. Then it is easily verified that $\mathcal{E}_{\mathrm{NH}}(\mathrm{I}[G])=I[G / \mathrm{H}]$ and $K[G, H] \subset I[G]$. Therefore we have the following comatative diagram of G-modules with exact rows and columns
(3.1)

Since $Z[G]$ is cohomologically trivial, this diagram satisfies
the conditions of case (III) of Theorem 1.1. Hence we have Lemma 3.2. The two cohomology sequences derived from $0 \longrightarrow K[G, N] \longrightarrow I[G] \longrightarrow I[G / N] \longrightarrow 0$ and $0 \longrightarrow I[G / N] \longrightarrow Z[G / N])$ $\longrightarrow Z \longrightarrow 0$ are isomorphic, that is, the following diagram is commutative for every $r \in z$

where $\tau^{5, G}$ is the transfer homomorphism from iv to G. Iet us investigate the cohomology group of $z[G / N]$ more precisely. Let H be another subgroup of G and let E be a set of representatives for the double cosets $H O N$. Then as H-module
$z[G / H]=\sum_{\sigma \in E} z[H \sigma N / N] \cong \sum_{\sigma \in E} z\left[H / H \cap O N \sigma^{-1}\right]$ ([1], ch. III, (5.6) Prop.). Hence, from Lemma 3.1, we have

Lemma 3.3. Let H and $i t$ be subgroups of G and let E be a set of recresentatives for the double cosets $h o \mathrm{~N}$. Then we have

$$
H^{r}(H, z[G / N]) \cong \sum_{\sigma \in E} H^{r}\left(H \cap \sigma N \sigma^{-1}, z\right) \quad(r \in Z)
$$

 $r \in 2$. Therefore, from Lemma 3.3, we have

$$
\begin{aligned}
& \text { Corollary 3.1. With the notation as above, we have } \\
& H^{r+1}(H, K[G, N]) \cong H^{r}(H, Z[\mathrm{G} / \mathrm{H}]) \cong \sum_{\sigma \in E} H^{r}\left(H \cap \sigma H \sigma^{-1}, Z\right) \quad(r \in Z) .
\end{aligned}
$$

How the consider the relation of the following two exact sequences

$$
\begin{aligned}
& 0 \longrightarrow I[\mathrm{H}] \longrightarrow \mathrm{Z}[\mathrm{~N}] \longrightarrow \mathrm{Z} \longrightarrow 0, \\
& 0 \longrightarrow \mathrm{X}[\mathrm{G}, \mathrm{~N}] \longrightarrow \mathrm{Z}[\mathrm{G}] \longrightarrow Z[\mathrm{G} / \mathrm{H}] \longrightarrow 0 .
\end{aligned}
$$

By virtue of the fact that $Z[G]$ is M-projective, the functor Ind is an exact functor. So, from the upper exact seauence of above, we obtain an exact wuence of c-modules
$0 \longrightarrow \operatorname{Ind}_{\mathrm{N}}^{\mathrm{C}} \mathrm{I}[\mathrm{H}] \longrightarrow \operatorname{Ind}_{\mathrm{N}}^{\mathrm{G}}[\mathrm{N}] \longrightarrow \operatorname{Ind}_{\mathrm{N}}^{\mathrm{C}} Z \longrightarrow 0$.
He can easily verify that $\operatorname{Inc} \mathrm{G}_{\mathrm{N}}^{\mathrm{G}}[\mathrm{H}] \cong \mathrm{K}[\mathrm{G}, \mathrm{N}]$ and $\mathrm{Inc}_{\mathrm{N}}^{\mathrm{G}}[\mathrm{H}] \cong$ $z[G]$. Hence we have

Lemme 3.4. With the notation as above, the following two
exact seouences of g-modules are isomorchic

$\mathrm{O} \longrightarrow \mathrm{K}[\mathrm{G}, \mathrm{N}] \longrightarrow \mathrm{z}[\mathrm{G}] \longrightarrow \mathrm{Z}[\mathrm{G} / \mathrm{N}] \longrightarrow 0$.
64. Let k be either an algebraic number field of finite degree or an algebraic function field over a finite field, and K be its finite Galois extension with the group G. Let p be a place of k and P be one of its extensions to K. We denote the decomposition group of P by N. Let K_{p}^{X} be a G-subrodule of K_{A}^{X} consisting of all the 1deles whose Q-factors are 1 except when Q divides p. Let us fix a canonical class $\xi_{K, k}$ of K / k and denote Artin's splitting module of $\xi_{K, k}$ by \mathcal{C}_{K}. Here we shall construct a conomologically trivial G-module $\widetilde{K}_{\mathrm{p}}^{\mathrm{X}}$ such as the following diagram is commutative

where a_{p} is a natural G-homomorphism and l_{N} is also the natural embedding and \tilde{a}_{p} is an into G-isomorphism, Let \boldsymbol{l}_{p} be the natural embedding from K_{P}^{X} (the multiplicative group of the P-oompletion of K) to K_{p}^{X}. Then we have a commutative diagram
(N, K

By virtue of the fact that the restriction homomorphism $P_{G, N}: H^{2}\left(G, C_{K}\right) \longrightarrow H^{2}\left(N, C_{K}\right)$ is an onto homomorphism, there exist a canonical class of K_{p} / k_{p} denoted by ξ_{p} such as

$$
a_{p} \circ l_{\mathrm{P}}\left(\xi_{\mathrm{P}}\right)=\rho_{G, \mathrm{H}}\left(\xi_{\mathrm{K}, \mathrm{~K}}\right)
$$

Hence we have a commutative diagram

where $W_{K, k}$ and $W_{K_{p}, K_{p}}$ are the Weill groups of $\xi_{K, k}$ and ξ_{P}, respectively. We put $G=\bigcup_{i=1}^{n} a_{i}$ ir, with $a_{i}=1$. We set $\bar{\sigma}=a_{i}$ when σ belongs to the coset $a_{i} N$. Then any element $\sigma \in G$ is uniquely written as the product $\bar{\sigma} \tilde{\sigma}(\tilde{\sigma} \in N)$. Therefore, if we coinsider the 2-cocycles of $\xi_{K, k}$ and ξ_{F} as the factor sets of the group extensions of (4.3), we can take the cocycles u and v which satisfy the following conditions.

$$
\xi_{p}=\{u\} \text { such as } u[\sigma, \tau]=u_{\sigma} u_{\tau} u_{\sigma \tau} \quad(\sigma, \tau \in N)
$$

where $\sigma \longrightarrow u$ is a cross section from N to $W_{K_{P}}, k_{p}$, with $u_{1}=1$.
$\xi_{K, k}=\{v\}$ such as $v[\sigma, \tau]=v_{\sigma} v_{\tau} v_{\sigma} \tau^{-1}(\sigma, \tau \in G)$,
where $\sigma \longrightarrow v_{\sigma}$ is the cross section from G to ${ }^{W} K, k$ which satisfies $v_{\sigma}=v_{\bar{\sigma}}{ }^{v} \tilde{\sigma}=v_{\bar{\sigma}}{ }^{u} \tilde{\sigma}$, with $v_{\bar{I}}=1$, whore $W_{K_{p}}, k_{p}$ is considered to be invaded in W K, k. Let us define the G-module structure of $\widetilde{K_{p}^{X}}$ using these cocycles u and v. We consider K_{p}^{X} is a G-submodule of $\widetilde{K_{p}^{X}}$ and so, for the purpose of defining a G-module structure on $\widetilde{K_{p}}$, it is sufficient to define the G-action on $K[G, N]$. Since $K[G, N]$ is, as z-module
$\sum_{\substack{i=1, p \in \\ \mathbb{X}_{p}^{X} \text { by }}}^{n}$
$\sigma\left(a_{i} \rho-a_{i}\right)=\sigma a_{i} \rho-\sigma a_{i}+v\left[\sigma, a_{i} \rho\right] / v\left[\sigma, a_{i}\right](\sigma \in G, \rho \in N)$. By the definition of v, we have
$v\left[\sigma, a_{i} \rho\right] / v\left[\sigma, a_{i}\right]$
$=\left(v_{\sigma a_{1}} v_{a_{i}}^{-1} v_{\sigma}{ }^{-1}\right)\left(v_{\sigma} v_{a_{i} p} v_{\sigma a_{i} p}{ }^{-1}\right)$
$=v{\overline{\sigma^{a}}}^{v} \widehat{\sigma}_{i} v_{\rho} v{\overparen{\sigma^{a}}{ }_{i}}^{-1} v{\bar{\sigma}^{a}}^{-1}$
$=\overline{\sigma^{a_{1}}} u\left[\tilde{\sigma}_{1}, \rho\right] \in K_{p}^{X}$.
Then the above definition is well defined and from the fact that $a_{i} p-a_{i}=d_{a_{i}} p-d_{a_{i}}$, the commutativity of the diagram (4.1) is obvious, Let us show the cohomological triviality of K_{p}. Let \bar{K}_{P}^{X} be Artin's splitting module of u. Then, as a z-module, we see

$$
\widetilde{K_{p}^{X}}=K[G, N] \oplus K_{p}^{X}=\sum_{1=1}^{n} a_{i}\left(K_{p}^{X}\right)
$$

where $a_{i}\left(\overline{K_{P}^{X}}\right)=a_{i}\left(K_{p}^{X}\right) \oplus a_{i}(I[N])$. Since the isotropy subgroup of K_{p}^{X} is N and $v\left[\sigma, a_{i} p\right] / v\left[\sigma, a_{1}\right]=\overline{\sigma a_{1}} u\left[\sigma_{i}, \rho\right]$ (for every $\sigma \in G, P \in N)$, we see $\sigma\left(a_{i}\left(\bar{K}_{P}^{X}\right)\right)=\overline{\sigma^{a_{i}}}\left(\overline{K_{P}^{X}}\right)=\sigma a_{i}\left(\overline{K_{P}^{X}}\right)$. Therefore, from a characterization theorem of the induced module (see, for example, [1], Chap. III. (5.3) Prop.), we see $\widetilde{K}_{\mathrm{p}}^{\bar{X}} \xlongequal{\underline{x}} \operatorname{Ind}_{N}^{G} \overline{K_{P}^{X}}$, on the other hand, we see $K[G, N] \underline{\underline{L}} \operatorname{Ind}_{N}^{G} I[N]$ and $K_{p}^{X} \cong \operatorname{Ind}_{N}^{G} K_{P}^{X}$.

Summarizing these, we can easily show
Lemma 4.1. With the notation as above, we have the following G-isomorphism of two exact sequences

From this lemma, we see K_{p}^{X} is cohomologicially trivial.
Remark 1. In the above discussion, we have fixed cocycles u and v. But, as $1 s$ well known, Artin's splitting module is uniquely defined by the cohomology class up to G-isomorphism. Hence, we can consider the module $\mathrm{K}_{\mathrm{p}}^{\bar{X}}$ is defined by the cohomology class E E_{p}.

Remark 2. We can show the cohomological triviality of \mathcal{K}_{p} in a more straight way. For every $H<G$, we have the following derived cohomology sequence of (4.1).

$$
\begin{aligned}
& 0 \rightarrow H^{2}\left(H, \widetilde{K}_{p}^{\tilde{X}}\right) \longrightarrow H^{1}(H, K[G, N]) \longrightarrow H^{2}\left(H, K_{p}^{X}\right) \longrightarrow H^{2}\left(H, \widetilde{K_{p}^{X}}\right) \\
& \longrightarrow H^{2}(H, K[G, N]) .
\end{aligned}
$$

From Corollary 3.4, we have $H^{2}(H, K[G, N]) \propto H^{1}(H, Z[G, N])=0$. Therefore, to show the conomological triviality of $\mathcal{K}_{\mathrm{p}}^{\mathrm{X}}$, it is necessary and sufficient to show the connecting homomorphism $\delta_{*}: H^{1}(H, K[G, N]) \rightarrow H^{2}\left(H, K_{p}^{X}\right)$ is an isomorphism. Let E be a set of representatives for the double cosets HON. Then, from Corollary 3.1 and $K_{p}^{X} \cong \operatorname{Ind}_{N}^{G} K_{P}^{X}$, we have the following commutative diagram

$$
\begin{aligned}
& \delta_{*}: H^{1}(\mathrm{H}, \mathrm{~K}[\Omega, \mathrm{BV}]) \longrightarrow \mathrm{H}^{2}\left(\mathrm{H}, \mathrm{~K}_{\mathrm{p}}^{\mathrm{Q}}\right)
\end{aligned}
$$

Hence δ_{*} is an isomorphism, and so $\overparen{\mathbb{R}_{0}^{x}}$ is conomologicaliy trıvíl.
§5. Let k be an algebraic number field of finite degree and k / k be a finite Galois extension with the group G. In the following, we assume the number of thexplaces of k which ramify in k is at most 1 . Let us denote by C_{K} the idele class group of K and by D_{K} the connected component of the unity of C_{K}. We cenoce by N the cecomposition group of the real place which ramifies in k. Let $\xi_{\mathbb{K}, k}$ be the cenonical cohomology class of $H^{2}\left(G, C_{K}\right)$, we denote by $\eta_{K, K}$ the imaze of $\xi_{K, k}$ by a natural homomorphism irom C_{K} to C_{K} / D_{K}. Let us denote Artin's solitting modules of $\xi_{\mathrm{K}, \mathrm{k}}$ and $\eta_{\mathrm{K}, \mathrm{k}}$ by $\overline{\mathrm{c}}_{\mathrm{K}}$ and by $\overline{\mathrm{c}_{\mathrm{K}} / \overline{\mathrm{u}}_{\mathrm{K}}}$, respectively. Then we have tine foilowing commutative diasram of c-modules with exact rows and columns (E.1)

Since $\overline{\mathrm{C}}_{\mathrm{K}}$ is conomologically trivial, we have the following lemma from Theorem 1.1 case (III).

Lema 5.1. For every $r \in z$, the derived cohomology sefuences $\xrightarrow{\left.\text { of } 0 \longrightarrow D_{K} \longrightarrow c_{K} \longrightarrow C_{K} / D_{K} \longrightarrow 0 \text { and } 0 \longrightarrow C_{K} / D_{K} \longrightarrow c_{K} / D_{K} \longrightarrow I[G]\right)}$ ive

Nou, we shall prove a general proposition concerning the extensions of groups as follows.

Proposition 5.1. Let G be a finite group and N be its suospoup and A be a G-module Let $P_{G, N}$ be the restriction homomorpism from $H^{2}(G, A)$ to $H^{2}(N, A)$. fre fix E cohomology cless ξ of $H^{2}(G, A)$ and denote $P_{G, f} \xi$ by η. Then the folloving six concitions zne enuiveient:

1) $\eta=0$ in $H^{2}(\hat{i n}, A)$.
2) Let \bar{A}_{ξ} and \bar{A}_{η} be anv of Artin's srilitinc mocules corresoondins to ξ and η, respectivelv, Then the extension $0 \longrightarrow A \rightarrow \bar{A} \eta \longrightarrow I[M] \longrightarrow 0$ is solit as an extension or \hat{i}-modules and thers exists an injective i-homomorhism K such that the following diatrem is commutative

where the right arrow is a natural embedding.
 be any of the extensions of grouns corresponcing to ξ and η, respectiveiy. Then the extension $1 \rightarrow A \rightarrow H \rightarrow i=$ $\hookrightarrow 1$ is solit and there exists an injeqtive homomorenism λ such that the following diagran is commutative

where the right arrow is the natural embeciding,
3) There exists a cocvole u of \S which satisiies the equation

$$
u[\sigma, \tau \rho]=u[\sigma, \tau], \text { for any } \sigma, \tau \in G \text { and } \rho \in N
$$

5) For any of Artin's splitting moduies $\bar{A}_{\mathrm{F}} \mathrm{F}$ corresconding to ξ, there exists an injective g-homomorohism μ such that the following diagram is commutative

Here the vertical arrovis an natural embeciding.
6) For any of Artin's splitting modules corressoneine to ξ, there exists a G-module \tilde{A} which is an extension of $I[\hat{S} / \mathrm{N}]$ with the kernel A and also exists a surjective G-homomorphism ν such that the following diagram is commutative

where $I[G] \rightarrow I[G / N]$ is the natural onto honomorphism.

Prooi. Tie can consicer the inteqral group ring $Z[G]$ to be a supolemented alsebra with a Z-algebra homomorohism $\varepsilon: Z[G] \longrightarrow Z$, Then, from a well knoun reletion of the extensions of grouvs, the 2-cohomology groups of groups anc the extensions of augmentation iceals, it is easy to show the equivalence 1) \Longleftrightarrow 2) \Longleftrightarrow 3). (Ses, for example $\{2]$, Chap. XIV).
3) $\Longrightarrow 4$). (Ve can take a cross section u from N to γ such as

$$
u_{\sigma}^{\prime u_{\tau}}=u_{\sigma \tau} \text { for every } \sigma, \tau \in N
$$

we set $G=\bigcup_{\alpha \in \Sigma} \alpha$, where E is a set of representatives. For every $\alpha \in \bar{E}$, wefix an element $u_{\alpha} \in \mathcal{O}$ such as $\pi\left(u_{\alpha}\right)^{*}=\alpha$. In the same way as $\S 4$, we set $\bar{\sigma}=\alpha$ when $\sigma=\alpha=\alpha$ in $(\alpha \in E)$, anc denote $\bar{\sigma}^{-1} \cdot \sigma$ by $\widetilde{\sigma}$. Since every element $\sigma \in \hat{\sigma}$ is uniouelv written as the procuci $\bar{\sigma} \cdot \tilde{\sigma}$, wa can define a cross section u from G to of by putiting $u_{\sigma}=u_{\sigma} \cdot u_{\sigma}$.
Then, for ever: $\sigma, \tau \in G$ anc $p \in N$, we have

$$
\begin{aligned}
& u_{\tau \rho}{ }^{-u} \sigma \tau \rho^{-1}=\left(u_{\tau} \cdot{ }_{\tau \rho}\right)\left(u_{\sigma \tau} \cdot \rho^{-1} \cdot u \frac{\sigma \tau}{}{ }^{-1}\right) \\
& =u_{\tau}\left(u_{\widehat{\tau}} \cdot u_{\rho} \cdot u_{\rho} \rho^{-\frac{1}{u}} \overparen{\sigma \preccurlyeq}^{-1}\right) u_{\sigma \tau}-1 \\
& =u_{\tau} \widetilde{\tau}^{\prime i} \widetilde{\sigma \tau}^{-1} \cdot \frac{\sigma \tau}{}{ }^{-1} \\
& =u_{\tau} \cdot{ }_{\alpha} \tau^{-1} \text {. }
\end{aligned}
$$

Hence we have $u_{0} \cdot u_{\tau} \cdot u_{\sigma \tau} p^{-1}=u_{\sigma} \cdot u_{\tau} \cdot{ }^{u} \sigma \tau^{-1}$. Therefore the : factor set $\left\{u[\sigma, \tau]=u_{\sigma} \mathcal{Z}^{\prime \mu} \sigma \tau^{-1} \mid \sigma, \tau \in G\right\}$ satisifies the co-. ndition 4).
$4) \Longrightarrow 5)$. Let \bar{A}_{u} be Artin's spliting module of the cocrcle u. Then the condition 4) is nothing but the condition in orier
 Artin's splitting module or any cocvole u^{\prime} contained in $\hat{\xi}$. Since \bar{A}_{u} is equivalent to $\bar{A}_{u^{\prime}}$, we have a commutative diagram

$M^{\prime} \mid K[G, N]$
Then the restricted homomorchism $\mu=\sqrt[K]{K}(G, N) \longrightarrow \bar{A}_{u}$ saitisïies the recuired relation.
$5) \Longrightarrow 5)$, Since $\bar{A}_{\xi} / \mu(K[G, N])$ is a G-module, it is obvious thet the secuence $0 \longrightarrow A \longrightarrow \bar{A}_{\xi} / \mu(K[G, I I) \longrightarrow I[G / i N] \longrightarrow 0$ is exact as G-modules. So, if we denote $\bar{A}_{g} / \mu(K[G, N])$ by \tilde{A}, \tilde{A} satisfies the condition δ).
$6) \Longrightarrow 1$). From the exact sequence $0 \longrightarrow I[G / H] \longrightarrow z[G / H] \longrightarrow z$, $\longrightarrow 0$, we see $H^{1}(G, I[G / N]) \cong Z /[G: N] Z$. Horeover, if we set d $G N$ $=\sigma$ - N in $\mathrm{I}[\sigma / \mathrm{M}]$, we see $\mathrm{d}[\sigma]=\mathrm{a}_{\sigma \mathrm{H}}(\sigma \in G$) is a cocycle contained in the generator of $\operatorname{rin}^{1}(B, I[G / H])$. From the commutative dragram of 6), we have the following comutative diagran of derived cohomology groups

Hence, if we put $u[\sigma, \tau]=\sigma d_{\tau N}-a_{\sigma \tau i N}+d_{\sigma N}\left(d_{N}\left\langle\zeta_{i s}\right.\right.$ an element of A), we have $\xi=\{u\}$. Thererore, for $\sigma, \tau \in N$, we heve
$u[\sigma, \tau]=\sigma d_{N}$, We derine an 1-cochain ρ, with value A by $\beta[\sigma]=d_{N}$. Then we have $\sigma d_{N}=(\delta \hat{\beta})[\sigma, \tau](\sigma, \tau \in \mathbb{N})$. Hence $P_{G, i} \xi_{S}=\{\delta \beta\}=0$, which completes the proof.

Pemaris. Let $E(I[G], A)$ be the set of all the equivalent ciasses of the extensions of \hat{i}-modules of $I[0]$ and A. Then, as is well known, $E(I[G], A)$ is considered to be a commutative grouo with Eaer muItipigcation and $E(I[G], A)$ is isomorphic to $H^{2}(G, A)$ in a netural way. In the above proposition, we have writiten " $\bar{A} \xi$
 any or Artin's splitting modules corresponding to ξ ", which means \bar{A}_{E} which corresponcs to $\overline{\mathcal{E}} \in \mathrm{H}^{2}(G, A)$.

In the following ciscussion, one shall see theorea 5.1 is trivial for the case when there is no real place of k wich ramifies in K. Fience, in the following, we suppose there exists a real place po of k which ramifies in X. Let us fix one of the extensions of
 $H^{2}\left(G, C_{K} / D_{K}\right)=\left\langle\eta_{K, k}\right\rangle \cong z /\left[G: N I Z\right.$. Therefore $\eta_{K . k}$ satisfies the condition 1) of the above proposition. So, there exists an exact sequence of G-modules

$$
\begin{equation*}
0 \longrightarrow \mathrm{c}_{\mathrm{K}} / \mathrm{D}_{\mathrm{K}} \longrightarrow \mathrm{C}_{\mathrm{K}} / \overline{\mathrm{D}}_{\mathrm{K}} \longrightarrow \mathrm{I}[\mathrm{c} / \mathrm{N}] \longrightarrow 0 \tag{5.2}
\end{equation*}
$$

Now we shall show that $\widehat{C_{K} / D_{K}}$ is cohomologically triviai. Let us denote the connected component of the unity of the idele group K_{A}^{X} by H_{K}. Since D_{K} is the closure of $\bar{H}_{K}=H_{K^{\prime}} K^{X} / K^{X}$ in C_{K} ([3], Ch. III., § 7.2., Lem, 2.), we have the following commutative diagram
of G-modules with exact rows and columns
(5.3)

She $\mathrm{D}_{\mathrm{K}} / \bar{H}_{K}$ is uniquely divisible, we have an isomorphism $H^{2}\left(G, C_{K} / \bar{H}_{K}\right) \cong H^{2}\left(G, c_{K} / D_{K}\right)$. We shall denote by ${\widetilde{C_{K}} /{ }_{K}}^{C}$ the externsion of $I[G / N]$ with the kernel c_{k} / \bar{H}_{K} corresponding to $\eta_{K, k}$ by tunis isomorphism, Then, we have the following exact feculence of e-modules $0 \longrightarrow D_{K} / \bar{H}_{\mathrm{K}} \longrightarrow{\overparen{\mathrm{C}_{K}} / \bar{H}_{\mathrm{K}}}^{\mathrm{C}_{\mathrm{K}} / \mathrm{D}_{\mathrm{K}}} \longrightarrow 0$. By virtue of the fact $\mathrm{D}_{\mathrm{K}} / \overline{\mathrm{T}}_{\mathrm{K}}$ is uniquely divisible, for the purpose of showing) $\overparen{C}_{K} / D_{K}$ is conomologically trivial, it is necessary and sufficlient. to show ${\overparen{\mathrm{C}_{\mathrm{K}}} / \bar{H}_{\mathrm{K}}}$ is cohomologicaily trivial.
 where p runs all the infinite places of k except p_{0}, and $\left(K_{p}^{X}\right)+$ denotes the subgroup of $K_{p}^{X}=\prod_{P \mid P} K_{P}^{X}$ consisting of nonnegative

of K_{0}^{K} by $\mathrm{K}[\mathrm{c}, \mathrm{N}]$ definec in \$4. Then it is easy to show the followinj secuence of G-modules are exact

We see \tilde{H}_{K} is conomologicelly trivial from Leman 4,1 , ance $\overline{\mathrm{C}}_{\mathrm{K}}$ is also conomologically trivial. Therefore $\overparen{C}_{K} / \bar{h}_{K}$ is coinomologically trivial.

Lemma 5.2 . Let $\eta_{k, k}$ be a generator of $\left.H^{2}\left(G, C_{k} / D_{K}\right)\right\}$
$\xlongequal{\approx} \mathrm{Z} /[\mathrm{G}: \mathrm{M}] \mathrm{Z}$. Then there exists a cohomolocicslly triyial G-module $\overparen{C}_{K} / D_{K}$ such that the iollowing diagram is ex三ct as onocules $0 \longrightarrow c_{K} / D_{K} \longrightarrow \widehat{C_{K}} / \mathrm{D}_{K} \longrightarrow I[\mathrm{G} / \mathrm{M}] \longrightarrow 0$.

From Proposition 5.1 (), there exists a commutative diagram oi c-modules (5.5)

Since, for every $r \in Z, H^{\Gamma}(G, K[O, N]) \cong H^{r-1}(N, Z)$ is at most orcer 2, we have the foliowing Lemma from Corollary 1.1

Lemma 5.3. From the ciasram (5.5), we see the dierived conom-
ology sequences of $0 \longrightarrow C_{K} / D_{K} \longrightarrow \bar{E}_{K} / D_{K} \longrightarrow E[E] \longrightarrow 0$ and

Ah following inospan is commuitative

$$
\begin{aligned}
& \cdots \operatorname{Na}^{r}\left(C_{K} / D_{K}\right) \longrightarrow \mathbb{S}^{r}\left({C_{K}}_{K} \bar{D}_{K}\right) \longrightarrow \mathbb{H}^{r}(I[G]) \longrightarrow A^{r+1}\left(C_{K} / D_{K}\right) \rightarrow \cdots .
\end{aligned}
$$

Comisining Lemma $\because .2$, Lemra E. 1 anc tenma 5.3 , we tave the following comnutative ciagram
 where $\tau^{N, G}$ is the trensier homomorghish from N to G. Hence we have the following theorem

Theorem s.l. \#ith the notation and assumption as above, we \because have ine followtig commutative diencem

\$も. First, ve shall summarize the main results of [11].
Let k be an aigebraic number fieli of finite degree, or an algobraic function field of one variable over a finite field. Let $\boldsymbol{\nabla} / \mathrm{K}$ be 2 finite Galois extension with the group G. S cenotes a set of places of K satisfying tie following conditions
(S1) s is stabie uncer G.
(32) S contains all archimeciean places.

(S4) S is larse enougin so that every iceal classes of K contains an iceal with support in S.

There exist exact secuences of G-modules:
(A)

(3)

$$
0 \longrightarrow x \xrightarrow{b^{\prime}} y \xrightarrow{b} z \longrightarrow 0
$$

in whic.
E is the group of S-units of K, that is, elements of K wifch are units at all olaces P not in S.
J is the group of $S-i d e l e s$ of K, that is, icieles whose $P-c-$ omponent is an unit for each place P not in S.

C $1 s$ the group of S-idele classes, which in view or condition (SA) is G-isomorphic to the group of all idele classes of K.
z is the group of integers, G operating triviaily.
 element $\sigma \in G$ operating by the rule

$$
\sigma\left(\sum_{P E S} n_{P} \dot{P}\right)=\sum_{P \in S} n_{P}(\sigma P)=\sum_{P \in S} n^{\left(\sigma^{-1} P\right)} P
$$

x is the keqrinel of the natural map b wilich takes an element $y=\sum n_{P} P$ into its coefificient suñ, $\sum n_{P}$.

In these stetements, Tate proved the conomology sequence derived from (A) is isomorphic to that derived from (B), after a dimension shift or two; that is, he has constructed a commutative diagram
(5.1)

in which the vertical arrows α_{i}^{r}, for $i=1,2, z$ and $r \in z$, are isomorphisms.

Here we shall prove the above result in somemat restricted situation. wife assume the set of places s satisfies the following additional perdition
(SS) S is large enough so that $\left\langle\hat{G}_{2}\right| \vec{g}$ is the decomposition group of $P \in S\rangle=G$.

Under this assumption, any $\sigma \in G$ is written in a form

$$
\sigma=\sigma_{1} \cdots \sigma_{m}, \text { where } \sigma_{i} \in \Xi_{p_{i}}\left(\Xi_{i} \in S\right)
$$

Lat us denote $\tau_{0}=1$ and $\tau_{i}=\sigma_{1} \ldots \sigma_{i}(1 \leq i \leq m)$. Then we See

$$
\tau_{i}-\tau_{i-1} \in K\left[G_{P_{i}}\right] \text { (} 1 \leq i \leq m \text {). }
$$

Hence we nave

$$
d_{\sigma}=\sigma-1 \in\left\langle K\left[G, \sigma_{1}\right] \mid 1 \leq i \leqq n\right\rangle \subset I[G] .
$$

 we obtain
$(5 S)^{*}\left\langle K\left[G, G_{p}\right] \mid P \in S\right\rangle=I[G]$.
Conversely, we can easily show $(S 5)^{\prime} \Longrightarrow$ ($\$ 5$). Hence the condition (S5) is equivalent to the condition $(S 5)^{\prime}$.

Remark. In case G is abelian, the condition (sj) is equivalent to that the homomorphism $H^{0}(G, J) \longrightarrow H^{\circ}(G, C)$ is surjective. From the fact $\mathrm{H}^{1}(G, J)=0$, we see the condition (S5) is satisfied, if and only if $H^{1}(S, E)=0$.

Note that the conditions (S1),....(S5) are autometically satisfyied if. S is the set of all places of K. Let S_{0} be a set of -
rices of k consisting of all the restrictions of $p e s$. Then, from the condition (S1), S is considered to be the set of places of K consisting of all the extensions of pe S_{0}. For a place p of k, we dente by $\widehat{K_{p}^{X}}$ the G-module defined in 54 , and by U_{0} the subgroup of K_{p}^{X} whose elements are $\frac{\text { unit at all places } 2 \text { in ing }}{\sim_{\text {wits }}}$ over p. Let $\prod_{p \in S_{0}}^{\prime} \widetilde{K}_{0}^{X}$ be the restricted product of $\left\{\begin{array}{l}\widetilde{X} \\ K_{p}\end{array}\right\}$ with respect to $\left\{U_{p}\right\}$.
Let $\left\{f_{\lambda}\right\}, \lambda \in I$ be the set of ali mappings from S_{0} to s such that, for every $p \in S_{O}, f \lambda(p)$ is an extension of p to K. Since X_{p}^{x} is defined when one fixes an extension of p to K, one can define
 the condition (SS)., there aferinitely many $k\left[G, G_{P_{i}}\right](i=0, \ldots, m)$ such that
(5.2) $\left\langle K\left[G, G_{P_{1}}\right] \mid O \leqq i \leqq m\right\rangle=I[G]$.

Let $f_{i}=f \lambda_{i}$ be the mapping of $\left\{f_{\lambda}\right\}$ which takes value P_{i}.
J_{i} denotes the G-module
 the mapping f_{i}. We denote the decomposition group of $f_{i}(p)$ by $G_{i}(0)$. Then it is obvious that J is a $G-s u b m o d u l e$ of J_{i} and J_{i} / J is G-isomorohic to $\sum_{p \in S_{0}} K\left[G, G_{i}(p)\right]$, fe also see that
$Y \cong \sum_{p \in S_{0}} z\left[G / G_{i}(p)\right] \cong \sum_{p \in S_{0}} z[G] / x\left[G, G_{i}(p)\right] \quad$, where asch
$\mathrm{K}\left[\mathrm{s}, \mathrm{n}_{\mathrm{i}}(\mathrm{p})\right]$. is embedded in $\mathrm{z}[\mathrm{G}]$ in a natural way. Then we have the following commutative diagram
(6.3)

in which row sequences are exact and the homomorphism a and b are kuriective. The homomorphism d_{1} is also an onto homomorphism induscad from the natural projections. Since J_{i} is, as an abelian grown, the direct sum of J and $\sum_{p \in S_{0}} K\left[G, G_{i}(p)\right], c_{1}$ is a G-homomorphism define c by gutting

$$
\begin{aligned}
& c_{i}(x)=a(x)=x \text { mod } E \in \bar{C}, \text { for any } x \in J, \\
& c_{i}(y)=y \in \bar{C}, \text { for an } y \in K\left[G, G_{i}(p)\right] .
\end{aligned}
$$

${ }^{\prime}$ Front (6.2), we see $\prod_{i=0}^{n} c_{i}: \sum J_{i} \longrightarrow \bar{i}$ is a surjective G-homonormonism. Let us denote $\prod_{\frac{1}{2}=0}^{n} c_{i}$ by c. Then we have the following commutative diagram

where $l^{\prime \prime}=l_{0}, l^{\prime}=l_{0}^{\prime} \oplus i d, \quad l=l_{0} \oplus 0$ and $d=d_{0} \oplus \sum_{i=1}^{m} d_{i} \cdot l_{i}$ (0 means the zero manning). Since all the homomorphisms a, b, c, d are
surjective, we have the following connutative diagren of S-modules With exact rows anc columns (5.5)

where we derote $J_{0} \oplus\left(\sum_{i=1}^{\pi} J_{i}\right)$ by \bar{J} anc $\left(\sum_{i \in S_{0}} z[\operatorname{la}) \oplus\left(\sum_{i=1}^{m} J_{i}\right)\right.$ by J. From the assumption (Sa) anc the fact that $\mathrm{K}_{\mathrm{p}}^{\mathrm{X}}$ is cohomologically trivial, we see \bar{J} and \tilde{J} are cohomologically triviel. Hence we see \quad-modules Ker c and Ker d are also cohomologically trivial. Hence, from Corollsty 1.2, we Mave

Theorem 6.1. Let 5 te 크 set of pleoes of ies the concitions (S1),...,(S5). Them the diagrem (6.1) is commutative ane the isomoryhisms $\alpha_{i}^{r}(r \in z, 1 \leqq 1 \leqq z)$ are ootained as the comoositions or the connected homomorihisms $S_{\text {in }}$ deriVed Irom (6.5).

Let us generalize the above theorem to algebraic tori, Let in be a torsion free G-module. Then, from (6.5) we have the foilowing commutative dizgram of G-inodules with exact rowa and columns
(5.5)

From [6] Theorem 2, G-modules $\bar{J} \otimes i, \tilde{J} \otimes \hat{Q}$ are G-mocules of trivial cohomology. Therefore we have

Theorem 6.2. Let S be the set of places of K satisfying (S1),...,(S5). Then, for ary torsion frese 首-mocule \quad, the cohomology seguence cerived from $0 \longrightarrow E \otimes M \longrightarrow J \otimes M \longrightarrow C \otimes M \longrightarrow 0$ is isomorohic to that cerived from $0 \rightarrow X \otimes M \rightarrow Y \otimes: B \rightarrow M \rightarrow 0$; that is, we have the following commutative diagram

where the vertical arrows are the isomoryhisms incuced from the connecting homomorohisms derived from (6.6).

Remark. The above theorems are not general as those of' [11] and the way of approach does not really improves on that of [i1], but is grimitive and shows tine essential relation of [9] and [11].

In the rest, we shall rejer to the cohomology or algebraic tori. Gor the sake of simplicity, we resirict ourselves to the case that
S is the set of all places of \hat{k}. Let T be an aloseoraic torus defined over k which splits over K. Fron [7], there exists an isomorpinism between the category of tori deãined over k and solit over K and the dual of the category or finitely generated Z-free z-modules. We denote by T the character mocule of T anc by it $=\operatorname{Hom}(\hat{T}, z)$ the integral duel mociule of T. Then Theorem 6.2 enaioles us to describe the Galoie conomology grouns oi the torus T in terms of the $Z-f r e e$ module M.

For example, we can describe the Tamagatra numioer of T of k by the conomology of X, Y and M, Let. $T Y$ be the groun of kration nal points of T and T_{k} be the adele grous of T over k. The factor aroup $T_{A_{k}} / T_{k}$ is called the adele class group of T over k and dentea by $C_{k}(T)$. Since K is the solitting field of T, it is known that $T_{K} \approx M \otimes K^{X}, T_{A_{K}} \cong M \otimes K_{A}^{X}$ anc $C_{K}(T) \cong M \otimes C_{K}$ In [8], T.Ono has dezined the numbers $h(T)$ and $i(T)$ for a torus T

$$
\begin{aligned}
& h(T)=\left[H^{\ddagger}(G, \hat{T})\right]=\left[H^{-1}(G, M)\right], \\
& i(T)=\left[C_{K}(T)^{G}: C_{V}(T)\right]=[\forall \in H^{1}(G, \overbrace{K}) \rightarrow H^{1}\left(G, T_{A}\right))] .
\end{aligned}
$$

Iet $\tau(T)$ be the Tamagawa number of T over k. Then one has the Eollowing fundamental formula ([8], Main theorem), $\tau(T) i(T)=h(T)$.

Fron Theorem 6.2 , he have

$$
\begin{aligned}
i(P) & =\left[\operatorname{Ker}\left(H^{-1}(G, X \otimes M) \longrightarrow H^{-1}(G, Y \otimes M)\right)\right] \\
& =\left[G \in\left(H^{-2}(G, Y \otimes M) \longrightarrow H^{-2}(G, M)\right)\right] .
\end{aligned}
$$

For every place p of k, we fix extension of p to K and denote it by P. Since Y is $G-1 s o m o r p h i c$ to $\sum_{p} Z\left[G / G_{P}\right]$ (p runs all places of k), we have

$$
H^{r}(G, Y \otimes H) \leftrightharpoons \sum_{P} H^{2}\left(G_{P}, M\right) \quad(r \in Z)
$$

Here G_{P} denotes the decomposition group of P. Hence we have

$$
i(T)=\left[\operatorname{coker}\left(\sum_{\bar{p}} H^{-2}\left(G_{P}, H\right) \xrightarrow{T \tau_{p}} H^{-2}(G, M)\right)\right]
$$

where T_{P} is the transfer homomorphism from G to G. From the integral duality, we have

$$
1(\underline{Q})=\left[\operatorname{Ker}\left(\mathrm{H}^{2}(\mathrm{G}, \widehat{\mathrm{~T}}) \xrightarrow{\prod T P_{\mathrm{P}}} \prod_{\mathrm{p}} \mathrm{H}^{2}\left(\mathrm{G}_{\mathrm{P}}, \widehat{T}\right)\right)\right]
$$

where P_{P} is the restriction homomorphism from G to G_{p}. Therefire we have

$$
\left.\tau(T)=\left[H^{2}(G, \hat{T})\right] /\left[\operatorname{Ker} T T P_{P}: H^{2}(G, \hat{T}) \longrightarrow\right]_{P} H^{2}\left(G_{P}, \widehat{T}\right)\right]
$$

References
[1] K.S.Srown, Cohomology of Groups, Springer-Verlag, Berlin -Heicelberg-ifet York, 1982.
[2] H.Cartan and S.Eilencers, Homological Algeora, Princeton Univ. Prese, Princeton, 1955.
$[\mathrm{l}]$ S.IVanaga (ed.), The Theory of Numbers, North HoIIand/American Elsevier, 1975.
[4] S.Katayama, On the Galois conomology eroups of $C_{i K} / D_{K}$, Janan. J. Kath., 8 (19ع2), 407-415.
[5] S.Katayama, Conomology groups of the unit group or a local field, Proc. Japan Acai., 58, ser.A (1982), 406-400.
[6] T.Nakayama, Cohomology of class fielc theory anc tensor product modules I, Ann. or̂ Math., 65 (1957), 255-267.
[7] T.Ono, Arithmetic or algebraic tori, Ann. of bath., 7d (10.61), 101-139.
$[\mathrm{E}]$ T.Ono, On the Tamazava number of algesraic tori, Ann. of liath, 78 (1963), 47-7き.
$[\because]$ J.Tete, the higher dimensional cohomology groups or ciess field theory, Ann. of Math., 56 (1952), 294-297.
[10] J. Tate, The conomology groups or algebraic numier fields, Froc. Int. Cong. Nath., Amsterdem, Sept., 1954. J.Tate, The cohomolo気 groups or tori in finite Galois extens-

