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Intreduction.

Various cohomology groups related to c¢lass field theory have
been investigated by many authors., Especially there are import-
ant results on the Galois cchomology groups of ldeles and idele
classes of finite Galcis extensions of algebraic number fields
(see, for example [3]). The latter result was first obtained
by J.Tate [9). He also announced the corresponding result for
the multiplicative group of the algebraic nhmber field itself
in [10], of which the proof was published latser in [11] , under
a more general setting. Recently, we haVe.investigated in (4]
the Galois cchomology groups of the factor gfouplof idele class
group by its connected component of the unity. In [5], we have
constructed an isomorphism between the Galois cchomolegy groups
of the unit group of a local field and those of some Artin’s
splitting module,

In this paper, we shall prove the following theorem on the
cohomology groups over finite groups snd show the known results
¢ited above appear as its special cases,

Let G be a finite group. Suppose that we are given the follo-

wing commutative diagram of G-modules with exact rows and columns
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Then we have the feollowing theorem

Theorem (

(I11) Le

$¥%ren the long exact secuences derived from

A).

t A,

and 52

he conomplogically troivigl

With the noitation as abhove, we have

G-moduleas.
1

3 ¥—»C,—>C

0—>a, —>3) ;

and O —>C

—C

are isomorphic.,

——
1 2 TTEy—>0

We have the sinilar resultie for the following c&asS2sS,
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In §1, we shall show

the

above theoranm.

mzin resuilt of

{ITT) of Theo

lemmas on theg cohomology groups of invegral groug rings.
shall construct a2 cohemclegicelly triyial module Kz

25 & G-sudbmodule, for svery place D

F41

rem

(&).

is considered to be

af

In

&

k.

arg cghomelegiczlly trivisal.

areg cohaomologically trivizl.

gre conomologically triwvial.

ars cohomelogically trivisl,
are cononologically trivizl,

ares cohomologically trivial (81, Theorsn

§2, we shall show the

coroll=zry of the casge -

In §3, we shall show sevseral auxilizry

In &2

,'WE

including Kﬁ

P~

Here K is z finite



Galeois extensjon of an algebraic number field ¥k with the group
X X .
G, and Kp is a G-submodule of ¥, consisting of all tihe icsles

=

whose a-factors are 1 excest when o divides »n. In §£, we
ghall study a new treatment of the Galeis cohomology groucs of CW{DK

usin

1K)

the result of §4, whers CK is the idels class group cof K
end D, is its connected component of fthe unity. In §§, we shall
show the announced result of [10] in a2 more genersl setting, but
not guits genersl as that of [11].

Hotation and Terminology

Let C be 2 finite grous and A ©be a G-module. Hr(G,A) 21WaYS
denotes the r-dimansionzl ecohomolozy group and is often abbreviated
to HY(A). For a cocycle x of HT(G,A), {x} deﬁotes the cohomolo-
gy ¢lass containing X Although, in 81, we use several syvmbols to
exoress the connecting hofmomorchismns derived irom short exzet segquen-

el

ca2s, in othker sectioné’f%’a%éte the connacting homomorphisc: by 3;.
For a G-module A, Ga denotes a2 G-supmoédule of 4 consisting of 211
G-invariant elsments of A. Let B be a mocdule and P be a3 condit-
ion on B. Ue denote by £x|lx is the el=ment of B satisfying the

concdition P» the submodule of B generated by all the elements of

-

2 which satisfyv the condition P,



51. Sucpose that we are given the two diagrams of moduless

{1.1) M, M
K K
I !
M € M € .

where and gf are homotmorzhisme. For fthe sske of simplicity,

8y
wg denocte these diazgrams by the symbols ﬁ{Ml.Mz,MS} and

4 be the homomorphisms from ¥, to M, {(121is

which satisfv the conditions g+h, = +.h,.g,, &;°N, = £ hysg,, &ih

A(m{,mé,ué). Let h

= + hl'ga‘ By abuze of language, we call the triplet of homomorghi-

ms h = (hl,hg,hs) an anti-howomorchism from ﬂ(Hl,M M.) to

2 .
é(Fﬁ,Mé,Mé) when at least one of the diagrams is antrjgg;ggtative.
We cz2il h = (hl,hz,ha) an anti-isomorphism in cass everv homcmorg-
hism h, s an isomorphism. In case all the diagrams ars commutat-
ive, we call the triplet h = (hl,hz,ha), as usual, & homomerphism

from .&(Ml,ME,MS) to é(M{,Hé,Mé} and an iscomorphism when svery

J1. 1s an isomorphisa. If the triplet h = (hl’hz’h3) is either an
Mg

anti-nomomorphism or & horomorphism, that is, satisfies the conditiens

-

g,-hy =+ hyrgy, g0, =t ha-sa,'ss-h3 = & hy- g5, we call b, an
(2)-homomorphism and an (a)-isomorphism when every h, is an isomor-
ghism.

In the fnllowinﬁ, we shall prove & theorsm on the cohomology of gro-
uzs. Although one can generallize the resulﬁ in a natural wa}, using
the functors Tor or Ext, here we shall be concerned with only the

casz of the cohomelogy of groups. Let G be a2 finits group. We



ere glven a commutative diagram orf G-modules

(1.2) 0 0 0
boe | ow |
O——>2 I A 1 54 - > 0
1 2 z
oy ¢ ¥ v \l"{a

2 . Et ~
sl Fa llge
NG GRS - TS SN T SR
~1 - g -
v ¥
0 o 0 .

Here, &ll row and vertical sacuences are ekact. Lest us define the

graded modules xi, Yi’ Zi {(1£iE3) by

X, Z B7(A,),

=

=

L Z H"{B_i),

=—=o

L
i

=D

Z. iZ 1837

1

]
a Iy
H
Lt
1
=
L
-y
A,

T=—00

r . I _ T DA

Let o, be the homomorghism from H (G,Ai} to H (H,Bi) induced
[

from cfi. e denote the homomorphism I [ off ¢ x —>Y; by the

I'—==00 1 1 o

same symbol ¢{,. The homomorphisms f,, 92 end ¥, are defined
in a similar way. Let us denote the connecting homomorghisms derived
from (1.2) Ey

03

r
1

Hr(Ci)—} ur+lea (1£153),

a

i)

1
HE(AL) —> HT 7 (4,),

Ln



r o, ., r+l
§p ¢t H(B)—=> H" "7 (B,),

Fy r -y - L d

55 ¢ BO(c ) —> T he)  (rez).

3 3 1 o
'l - = "y p— - P - 5 i =
e dencets the homomornhisus r=| _L Ui : Zi—)-.{i bv ?f* and

(==
l | Sl; by E: Then, from {1,2), we have the following diagram

I'=—sa

(1.3) y‘l = 52 271
% | ?l of 4 5y = ?2
. g D3 Y2
\ia Lo \Ye

Hers the triplet o = ( o, oiz, ;) 1s a homomorghism. In the same
Wiev as o , one sees that § = ( Pl’ Fla, ?3), ¢ = {"?l, CPE, ':PE) and
({J = (‘Fl, ‘-]-'2, t}JS) are homomorphisms. On the other hand, one sees
the following dlagram is snticommutative (se= for example, [2], Ch.
ITII. §4) 3
(1.4) Z———>X,

3 53

&s . x

h]
_ % .
zl x1
1 2 2 o 2

Hence &= ( S:;, S5 S;) anc J. = {b"*l, 3;, '5;] are znti-homomorn-

fism. Finally, we have the following dlagram



(1.3)

In the Ifollowing, we treat the case when two of the nine graded
modules of {1.%) are zero module, especially the case when the

two G-modules of (1.2} ars concmologiczlly frivial. If the two

of the nine G-modules of (1.2) are cohomologically trivial, there
remain two short sxact sanuenczs contzined in (1.2) such a5 non

of the G-modules of the ssauencess ars azssumed to be ¢ohomologically
trivial, Then if{ is natursl to sxgect the assumction implies some
relation befwe=sn the cohomclogy sequenceé derived from the Femain- )
ing two short sxact sequences. Cerfainly, if we supcose the G~mo-
dules C1 and Ca are cohemeclegically trivial, the diagram (1.5)
&ncides with %the diagram (1.3} and the triplet o = ( dl, 5{2, 5{3}
is an isomorphism from ﬂ(:{l,xz,xa} to &(Yl,Yg,YS).

We restrict ourselves to the cases when the derived c¢ohcnolozy grewmea



of the remaining two seguences of (1.2) are (a)-isomorphic. One

can #a3s5ily show that there are only fiftesn cases which

satisfy the

condition, The diagram (1.2) is sfﬁhetrical with respecf to the

dizgonal line I’BE’C? From the duality theorem of the cchomology

grouns, the dizgram (1,2) can be considerecd to be also symmetrical

with respect to the diagonzl line A3,3 C

2'71°

rherefore,

onga sees

that there zre essentially following seven cases (I),...,(VII):

(1) C2 and B

{II) A; and

3
C
(EX1) A3 and B
c

are copnomologically trivizal, Heﬁce 22 = Y3 = 0,
o @re eohomolegically trivizl. Hence ;1 = 22 =. 0.

are ecphomologically trivial. Hence XB =Y, = 0.

2
(IV) As and C, are cohomologicailﬁ trivial. Hence X, = z, =0,
{(v) A, and B; are cohomelogically trivial. Hence X, = Y, = Q.
(V1) Any two of the three wmodulas Aa, 3 and .ﬂa 2re cohomologic—
ally trivial, that is, 211 the G-modules AB,BS and 03 are
cohcmalogically trivial. EHEence xé = Ya = 23 =0,
{(VIT} Anv two of the thrse tmodules Ay, B, and C, are cohomologi-
callv trivial, that is, all the G-modules AE, 52 and cé
ara cohomologically trivial., Hence XE = ?2 = ZE = 0.
Theorem 1l.1. VWith the notaftion as above, we see that ETQ;TZ,T;)

For the case (I), (X

,xz,xaj and {x &

l lllls-'lj

anti-isomor=hic,

anti-isomerchic,

For the case (II), (%,,¥,,Z2,) and (gl,Zé,gé are

-

anti-isomorohic,

anti-isomorphie,

isomorphic,

isomorshice,

For the cazse +(V), (Z,,Z,,2,) =and (X5.¥5,2,) are
For the case (VII), (X,,Y,,Z,) and (Xs,_s 3} are
For th= case (ILI), (xl"l"l) and (”1’22’23) are
For the case (IV), (X,,Y,,Z,) and (¥,.¥,,Y,) ere
For the case (VI), (Kl,Yl,zl) and (xa,_g, 2} are

ilsomorchic.




Proof. Hers, we shall prove tie casss (II) and (III) which
we shall use lator.

Cage (III). It is sufficient to show the dizgram (1.5) induces
the following wertical isemorcniszms u and u’ such &g the followi-

ng dlagram iz commutative
r el ""+l

S 1T L. A Y N (e

o |k @ 2
e Y3 e ot

. _;.Hr(cl}_.+_._':..+:_: (CE}

(C Y= --- (re z).

-
ry
"

Construction of u. From the assumption, the homemorphisms

. i
M;fi‘.l . r,r+1(n }—.!I- r"'l{;_z) and ‘ﬁ’g : Hr(ce)qt‘{r.ﬁ-(}lz} are

Hr+1

bijective. The isomorghism u ! (Al}—rz-zr'(ca} is defined by

( E;}_l‘ EF {+1.

Then from the commutative diagran

Find

[
HO(C ) — 2T A
tfr »+1
3 1

¥ (c,) ngf—m“lmz) ,
we see the diagram @& 1is commutative.
Cnstruction of u’., From the assumption, the homomorchisms
Sg : Hr{BEJ-——%HP+1(B ) and ﬁE'= HP(EE)'-—}HP(CE) ars bijective.

. r+l \ .
The isomorphism u’: (By)—> = {CS) is defined by putting

Br-(S5)

10



Then,from the commutative diagranm

r
S}i’_}ﬂr(csy
Js: >

r+1
Hr+l(51} 1 Hr'+1.(c ),

Y (B

we see the dizgram © is commufative.

Low, we shall show the following diagram () 1is commutative

r+1

z'+1(‘,!L ) 1 s Hr+1(3

I

e, @ HT(B,)

B
[ - I

r 3 w
H (Cz) H (63}.

Hr+1(Al]. Then  (,{F (2)) is 2 cocyele

l)

L

et a be anv cccycle oiF

of Hr+1(32] = {D} Hencs there exists & rpr—-cechajin b with values

in' B, such as  §(b) = o, (F,(a) Then JF(B,(0)) = P, ( &(b))
FE( d:z( '-fl(a)}]= 0, andé so Fe(b) is 2 r-cocvele with values in

C,. From the eguation 3{v) = o5 (‘Fl[a)), we Sees 'E}’r{( 15’ (‘o))}

= '[EFl(a}} in Hr+1(A2). Therefore we have {a} {ﬁz(b)}, and 50

$IulEh = {g,f,(0) in #57Cy.

On the other hand, from the condition ‘5 (4 {a)y= o (¢|= (a)) = §(v),
we sge Sg{"{"a(b}} - {dl(a)} . So we have g{r"'l({a‘; {53 er(b)}
in HP(C ). Hence, by virtue aof the fact PS"'{JE = L[—’sepz, wa have

ch.u = df+1, and so the diagram () is commutative.

10



Cese {(IX). It is sufficient to show the cdizgram (1.5} Induces

the following isomorphisms v and v’ suvhh as the following dlagram
is either commutative or anticommutative
r tFrﬂ LIJ’""I-I
T8, ) —2suTt (B ) — 2 a3 )— 2w )
o [l o v e, |
hod -Hr* r+l
i 3
e —pH (B J— (C )

BT (A —2—r 4™ 3 )5 - (re2).

Construction of v. the homomorshisns
r+l

1 *1(s )-——?hr+1( C,) and 33_$:TEE:E> are bliective. The
. z*+l

isomerphism v (B p——ly (C ) is defined by { SE)_I. T+l

From the assumption,

l L]
Theh , from the commutative diagram
*: -
2
uf(3,) —=>u" (s )
ﬁr r+1i
3 1
r

o

(G, ) = wTt(C,),

we have the diagram (&) is commutative.

Construction of v'.

‘" dr‘+1

From the assumption, the homomoronisms

s ET A —H™ B, ane YT wTTRA) ——aT (a,) Tare
bijective. The imomorphism v': Hr+1(n y—>ul "t 1(Aa) is ée flned by
r+l :’{r+l -1

1

Then, from the commutative diagram

4+l
Hr+1(A2}i:2=%==:aﬂr*1(A3)
r+l r+1

r+l1

nTl(s,) — 2 5u" ),

we see the diagram &) 1s commutative.

11



Let us show the fellewing dizzram is anticemmutative
r 1
oo+l LD+L
:i —a -‘I
(2,) (3,)

P
Z T+l 8 o+l
WP z
g+l r+l
- -~ l'_'r 1
1'1 A {Lal) @ [ (n.z)
g SP ( r+l
= _Er i) 1
HT(C,) S sutiay) .
Let b be znv cocycle of Hr+1(31}. Zincs Hr+1(02} = 0 , thers
exists a r-cochain ¢ with values in G, such as ﬁ%( Fl(b))

0, and so '+q{c)

= §{c). Hence §(Y,(e)) = YO0 E,(61))
is a coewcle of HP(CQ}. By the dEEIHlLiOﬂ of the conneciing homo-
morphism, we hsve 8;( {%E(c)}) = -{Fl(g)} Hence we have v({®})
{ﬁ;(c)k. Since ﬁz is a surjective homemorzhism, there exists
2 p-cochain b with valuss in B, such as B (E) = c. Then we
z2e Po({=D
= (ﬁ:;( ﬁl(b)}
.. 1"+1{

m, there exists 2 (r+l)-coc¥ecle & of

2
fo,tm) - 3E} 1 =™y en2 B0 F00) - SBY)

$(c) = 0. Since ¢, 1is an injective homomorchi-

Ay ) satisiving
of,(a) = Po) - @(5). Then we have vLEST e = Y ().
On the other hand, we ses  Pyle) = ¥, Bo(8)) = B.(Y,(8)) anc
SCP,(E)) = F0 8(8)) = ¥(P,(0) - dly(a)) = - $hlly(a))

= — dé( ﬁi{a)). By the definition of the connectiing homomorphism,
we have B’;({Ll-’a(c)}) = -{‘{"1(&]}. Hence, we have

v, *?r*l + 3;*“ = 0, and so the diagram (P is anticommutative.

[
£ is easv to show the other casss in the same way 25 above.

12



From this theorem, the following corocllary is obvious.

Corellzpy 1.1. For the case when one of the exvonents or the

cracdes modules X X Z and Z, is at most 2, 2ll the guacril-

1+ 737 71 2
atersl dizgrams contalned in the dizzram (1.5} =zr: commutative.

Hance, for all the cssas (I},...,(VII), two irisnzular diagramss

gre isomornhic.

We ghall show another application of the above theorem. YWe assune

G-modules A B B., C eand C of th

L
2* T3* T2t s 2 3
(1.8) are cohomol@@éfally trivizl and 211 the row and vertical s=ao-
%

b

following diagram

uencss &re exact.

(1.5)

V

v

O G e U] e et e ©
£

=
[

X
O}

W

e
L e (e D

4%
(0

=

v

€
LS

v

W

O f— (E— — ) +— 0O
v
o

=
na
)
I

o
e .
) e ) e [ e 2 e O

Ce— O

From this dizgram, we gzt the
L

G-modules with exact rows and columns

L]
O
1=
—
2
b
=}
HH

new commuitative dizgrams of

(1.7} Q Q 0

1oy,

1
0O &) —> 4, — > In '-Pl —>0

R

0—> B, —> B, —2> Im L]JE—:»-O

2
L, Y
0——}01 ?—Cg > I ‘-}-’3—'}0
[y !
) o ]

13



(1.2) 0

-
0 g e O

Q
}

D-—}-Im‘{—’l———} 3 > A, >0
{

0—:*117;*32 S a >3, =0
| Y

L ———a—cr———ﬁbc

[l o |
3
N

-

1
wnere In Y, is a C-mocule consisting of sll the elemerts & x),

Y = = A = = i =

et us denote the connecting homomorphisms of apove dizgrams bv

3‘2 : H?(Ci)—aﬂ”l(ai) {1218&4),

BT (Im 4 —>uTM I gy,

81 ¢ HT(Im ) — ") (121%£3), where M

Bk
]
il

=
=

ra
"
to

and M3 = Cl.

3o wT) —>ET NI YY) (1=ig2), where N = A,, N, = B

— - ™
snd NS: = u4.

Then , from Theorsm 1.1 case (VYII), we have the following diagram

vs

(1.8) - AT (2 )—> E (B )—> &7(C) — 857 s

= r = r = [ = = ol

23 r ® 83 2 E_s @_ s 8 51

v d v ]’PT v

RN S qJ}—%“r+1(Im‘P]*—9“r+1(1n 3 . ur+E(IHq:)_}”
s —_— 1 - ] 2 = i 3 m Lk l -
r+l1 r+l r+l r+2
281 @ 252 @ = @I"Q 2 1
p A/ ¥ 11-_ Y

i4d



In this diagram, the Glagram @, @), & and (§) are commutative
ané (o) and GE} sre anticommutatsive. Hence, we have

.~6-1r~+2C S?lﬂ —g g} _ fﬁr+2o 821»1) 8 : = (- Sr+9o % r-.;.]_:' .gg

- - 8:4—2( E m-ln gg} _ Sri‘+2( Ei+1ﬂ -ﬁ-i} EST—E —-r*+1) Ed_

Finally, we have the following commutative diagram Y

{1.10) «--=>4" (r. )—437(5,) ——=ul (¢ )—> [—:r(_i.d)—rn-

R i R’ R
T2 {2

.=l ﬂl)—a-:q”'?(al)—» z-;!"’?{cl}-—;- H“"3(;.1 )= e+ (re&Z).

Here ths verticsl arrows ares ths compnositions of the connecting homom—

of;hisms af (1.2). We define the grsded modules Xi, Yi and Zi

(1% 154), in the same way a5 Theorem 1.1 and denote-the homomornhi-

."h- corresnonding to 8: and g: oy 8,:' and '§*i. Then we have

Corollary 1.2, Sunooss thet the G—nodules Aa, AE, BE’ BS’ 02 and

of the dizgram (1.8) &ars cohomologicslly trivial. Then the tri-—

o,

G

il

=
-

rr

— o —
of homonroronisns { Si. S*ls 5 . S* 53 o S u) is the iscmorohi-

S LIOm A{X4JY4IZ4} m &(xl,yl’zl)' shat LE_'»_, the dizzram {1.10)

b

tt‘

{=l

s commutative,




¢2. Let G be & finite group anéd A be a G-module, Let
E be a 2-cohomology class of A and let A be Artin’s spli-
tting moduls of §. Then we have the followlng lemma which was
oroved Sy J.Tate ([e], Thearem 1).

Lesmza 2.1, With the netation as ahove, the following two

concéitions ars ecuivalant:

o
i) Hl(i'I,AJ =0 and 9 (¥,A) is & cveclic grouc of the sams

order 2s M, generated bv (5, , §, for all subgrouss MN<G.
] 1

Hare PG n 18 the restriction homosorchnisa from G 19 .
L

ii) BYM,E) = H2(:4,E) = O for all subgrouns M CG.

Remzrk. It is well known that if A satisfies the conditi-
on 1ii) of this lemma, A 1is cohomologiclly trivial, that is,
2T(N,E) = 0 for all subgroups N<CG and for all integers re€Z

([3], €h.I, Th. B.1).

b e
- L

3

g o~ i - i - =3 - ! —_—
In *this gaction at the Z-module A z2nd the cohom-

ology class E satisfving the conditions i) and ii) of the

above lemma. YWe assume we &are given &n exact sequencs of G-mod-
ules:

d . L4
(z2.1) 0—C rA >3 —>0,

Let us denote the 2-cohomology class d*(g Ye HE(G,B) by -q

and Artin’s splitting module of % by E. Then we can define
& G-homomornnism & A—>3 by putting E{(:a + %) = ola} + x,
for every &€A and xgIfGl. Here I[E)] 1s the augmentation
ideal of the group ring 2Z[G] generatad by dcr =T -1 {(geag),

Then 1t is easy to show ker of = C. Hence we have the fallowing

15



eXacy saguence of G-modules

! »5—20,

(2.2) 0—=>C—=X
Combining (2.1) and {(2.2), we have the feollowing comnutative

diagram of G-modules

(2.3) 0 0

|
c C
|

0 > A >A ——> T[] ——=0
Boola |

0 B > B > [G] >0
Loy
0 0 .

Since A 1is cohomologically trivial, we have the following
theorem from (III} of Theorem 1.1,

Theorem 2.1. Lest A, A, B, C and I(3] be C-mocdulss in

(2.2). Then the fellowing disgram is commutative for every

o A

S«
o3 (3) s BT(E) —— HT(1[e]) = ™ m)— -

R

where Sx is the ceonnecting homomorohisms and we have apbrevia-

ted HI(G,X) to HUX) for z G-—module X.

+1 .
Let us write the isomorphism §,: H'(E)== H' 7(C) 1in 2 more
expiicit form. First, we fix @ 2-cocycle u contained in § ,
Though the module A 1is detemined cnly up to G-isomoronisses, we

can rezzrd the module A zs the splitting module of u. Since
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v = o{{(u) is a2 2-cocycle contained in ", the module B 1is
similarly rezarded as the spliti{ing module of v. Thersiore we
<¢an censider the mapping d! G——2I[G] satisfies the feollowing
eouation in A

Teq =dgp -~ dy +ule,n] . for every o,T €5,

where we st d ufl,ij. Then we see HltG,I[G]):; Z/(Gi1] 2

1
is generatsd by the cohomology class {&}. For the saks of the

fl

following propeosition, we renlace the integer r bty p+l. Let
NDCTHP(G,Z} be the subgroup consisting of all the cocvcles h
satisiying fthe condition

(x) v Uh= {5,

where g 1s a (p+l)-cochain with values in B and & denotes
the corresgondence o0f cochalins which induces the cup product {for
details, sse {31, Ch.I, §5.4). Let Hp+1 be the subgroup of
Hp+l(G,E) consisting of all the cohomology classes {dUh - g},

wnere h and g satisfiesg the above condition (X%X). It is eszs-

ol -
ily verified tnat M__, = H" ~(G,B)}, So we obtain an explicit
=
form of S #PTN(G,E) & #2600 by
§,1¢vh - g} = juunh - §(seg}l, "’

where s 1s a ¢ross section from B te A such as Jos = idg.

Here we shall show this explicit form implies the main theo-
rem of our previcus pacer [5]1. Let Lk be g local field and K
be its Gazlois extension of finite degres. We denote the Gz=loisg

groun by G, Let us denote the unit group of K by U,.. Then

we have the following exact seauence of G-modules

15



L \.'_’:{ &
1 .{UK + Lk -'z -'1.-

dere ol is the normzal exponential valua<ion with rescec:t to

K, Let ‘§w W = {u} be the canonical cohomology ¢lass for
(R
T * i - —_— —_— -
K/#. Let us denote ti} gK,k) = {dyu = v} N4 nK,k and
Artin's splitting module of %, , by Z. Then, in our previ-
]
ous paper {51, we have showed there exisis an isomorphism
z . -
Yo Hp+‘(G,UK} e HP*I{G,Z) for every integer p.

o’
Proposition 2.1.. For everv intsger pée& 2, we have an isom-

"_ orcipism

y_: ®8073(G,u,) o w7

P K
guch that the following dizcram is commutative

o+l

e P Pty — s WP (1 1al ) > HPP R (2 -

b

co 3y PTlizy—s yPHE U ) — Pt 2y — s Py .. .

o~

([5], Theorem

Let us renlace A, B and C of Theorem 2.1 hy K", Z and

UK' respectively and other morphisms and symbols by corresspond-

ing ones. From the explicit form of S;, we have

S#: -'-3+1(n i HP"'E(C U ) and S‘{dUh - g} = '[(LIU n)/ S(Sag)]‘,
where s 1s a cross section from 2 to k* and h 1is a p ASh_
R P~Cacajele

(EE;cle of Hp(G Z) and g is & ({p+l}-cochain with valuss in

Z which satisfies the condition (X). On the other hand, by

the definition of _Lk, we can ezsily verify that

v ftuun)/ §seg)} = {dun - gf.
Hence Y = (Sf}_l. Therefore Proposition 2.1 is obtained as =z

corollsrr of Theorem 2.1,



§3. Let G be a finite group and N be its subgroup of

index n. %e put & =;D_ O‘;. H with 0’1 = 1{the identitv of
i=1

G). Let us denote by ZI[G/H] the frze Z-module generatecd bv
N (L=£i4dn). Let EG be an onte G-homomorphism from Z[G/N]
to Z defined by putting EG( criN} = 1 for every 1i. Then we
have the following exact sequence of G-modules '

0——a1I [G/H]l— ztc-/m}i Z—s0,
where I[G/H)] 1is the kernel of EG‘ Since G 4is a finite
t,_:-'oup, ZIG/H]) = 'Indgz is isomorvhic to Homzm{ZIG'] 2]
= Coindgz {[1),Ch. IITI, {5.9)Prop.). Therefore we have

-Lemmz 3.1. ¥ith the notatien as above, we have the isomor-

tsm  HU(Z,Zzle/N)) & HE(H,Z) (r€2).

Let us define a G-homomorphism £, from ZI[G] to Z[G/N] by
vutting SN(U} = ON {for every o €3). WYe cenote the kern-
el of E’T.—i bv KLG,N]. Then it is essily verified that
EN(IIG]} = I[G/H] and K{G,H)] < I{$]. Tnersfore we have the
following commutative diagram- of G-modules with exact rows and
columns

{(2.1) 0 0

'K'[t;.m =g {3,M]

| L e,

o— 1 {31 7 [G] £5 »7 —D
i Ex

0—=>1 (/8] — z [3/M) —> 2——0

l L

o Q

Since ZI3) is cohomalegically trivial, this diagram satisfies
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the conditieons of case (III}I aof Theorem lL.l. Herice we have

Lemma 3.2. The two ¢ohomelogy sequences derived from

0—K[G,N] —>I[6]——=I[G/N]—>0 &nd 0—3-I|.'G/I~I]——>Z[_<‘i/2{])

f~—>72—>0 are isomorphic,_ that 1Is, the following diagram is comm-—

utative for every r€:z

et (G, K [6,8]) —>HT(G, T [61) —=HT (G, T [6/K] ) —aT+ L (6, K [a, 5] )—>-e-

" T, " " ' ﬂ

e (N zy—— " (G 2)—H (G, T [6/H]) —>uT(¥,2)—> "

where ’CH'G is the transfer homomorohism from N to G.

Let us investigate the cohomology group of Z[G/N] more preciselv,
Let H be another subgroup of & and let E be a set of reprase-
ntatives for the double coesets HON, Then as H-module

zfc/u] = E z[HoN/NIS= z z[H/Hn ono "] ([1},ch. III,

o<k oskE
(€.8) Prop.}. Hence, from Lemma 3.1, we have

Lemma 3.3. Let H and ¥ be subgroups of G and let E be a

set of recresentatives for_the doublie cosets HI . Then we have

¥ (H,zla/N]) o= § 4 (un ono~l.2) (rez).
ret

Trom the cohomology ssquences derived from O-—3»K[G,N]—zZ [G'l)

C——=zla/N1—>0, we have H™*'(H,x[3,81) & HT(H,2Z[e/N]) for every
r€ Z, Therefore, from Lemma 3.3, we have

Corollary 3.1. W¥ith the notation as above, we have

g™ n,xle,Nl) & v (H,z[e/n]) & E H' (Ha oo™ l,z) (rez).
_ : o€ =
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tlow we consider the relation of the feollowing two exact segusnc-
es

C—>I(H]l—Z2[H]l—> Z2—0,

0——¥ [(G,N] > 2 [¢] »Z (G/H) ——0.

By viriue of the fact that Z[5] 1is H-projective, the functor

G .

Iru.:l....I is an exzct functor. Sa, from the upper exasct ssgquence of
i .

abhove, we obtain an exact 2ouence of G-modules

0—> Tn ng [2]—> Indgz [3]—> Indﬁz — 0.

a
We can easily verify that Inng[Hj o K[G,N] and IndﬁZ[H]QE
Z[3]. EHEence we have

Lemma 3.4, With the notation as above, the following two

exact seauences of G-modules ars isonorchic

0—> '_rndf;z [ —>Ind§z [5] —> Indg

N i n

o—x 6,8 ——> 2z [6) —— z [6/11—0.

Z—4Q

L+
I



§4, Let Kk be either an algebraic number field of finite
degree or an algebraic function field over & finite fileld, and K
be 1ts finlte Galols extension with the group G, Let p be a
place of k and P be one of its extensions to K. We denote
the decomposition group of P by N. Let KJ; be a G-submodule

X

of KA

when § divides p; Let ue £ix a canonlcal class EK K of K/k
r

consisting of all the idelea whose 'Q-factors are 1 except

and denote Artin's splitting module of -§K x Y UK. Here we
L
shall construct a cohomologically trivial G-module Eg such as

the following diagrem is commutative

P
{4.1) O0—>K —> KX —x[e,N]—>0

P p
0—> C—> EK > I[G] >0,

where ap ig a naturasl G-homomorphism and IN 1s also the nat=-

ural embedding and ‘;p is an into G-ismomorphism, Let IP be

the natural embedding from Klf (the multiplicative group of the

b 4
pi

!
(4.2)  HE(N,KD) >——F—u? (N, k%) — B s K2(N,Cp)

2 X
H (G!Kp} -

P-oompletion of K) to K Then we have a commutative diagram

By virtue of the fact that the restriction homomorphism
PG N;HE(G,CK)———)HE(N,CK) 1s an onto homomorphism, there exist
L

& canonical class of KP/kp denoted by EP such as
3
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a s Lp(E) - Poml E i)

Hence we have a commutative diagram

{4.,3) 1 Kx > Y —_— N —>1
e
1 CK ‘;‘.*IK'R > G >1,
where WK,k and WKP’kp are the Weil groups of gK,k and §P,

n
respectively. We put G = U a M, with a, = 1. VYe set &=

e 1 i

when O bhelongs to the coset aiN. Then any element g€ & is

uniquely written as the product o o{o€HN), Therefore, if we co-

nsider the 2-cocycles of §K " and §P as the factor sets of the
b

group extensions of (4.3}, we can take the coeyeles u and v

which satisfy the following concditions.

fp = {u} such as ule,?] = ugu, Uga T (orem,
vhere O -—>u is a2 e¢ross section from N +to WK . with u, = 1.
2'p
Sy ,x = v} h 7 = 1o
v = {vl such as vlIowt] = v, Vo Vo o, €G),

where a-‘-——;vo, is the cross sec¢tion from G to I-EK K which sat-
L]

isfies v, = VE‘VE = VEUE' with vy = 1}11,&,“_ Wﬁfrﬁpiamu&ib%a.
— indadded in Wk, k,
Let us define the G-=module structure of K:; using these cocycles
u snd wv. %Ye consider K}p: is a G-submodule of ;E and so, for
r~~

the purpose of defining a G-module structure an K::.{’ it is sufficient

to define the G~action on K['G,NI. Since K{G,N] is, as Z-module
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t Z(ai P-ai). we can define the G-module structure of

i=1, PE N
4

b
K, by

Ola, p-a)=cap-oa +vo.apl/ivio,e] (0es PEN).
33; the definition of v, we have

v[or,a,pl /vic,a,)

=({v v . lv B v v -1
o8 & @ o P OHP
-1 -1
- v v V. Ve v
0% OF% £ o8p o8y

— T
= Uai u[gai.p]e I(:
Then the above definition is well defined and from the-fact that

a,p -a = daiP - dai, the commutativity of the diagram F;:.LI)

ig obvious. Let us show the cochomological triviality of Kp.

‘Let K-g be Artin's splitting module of uw. Then, as a Z-module,

wWe Bee

;’; = k[e,N]® xg =i ait?gl.

i=1
where ai(g). = ai(lti.,{) ® aitI[N]); Since the isotropy subgroup
of Kg is N and v[o,ep] /vio.a -O'_a‘;u[ﬁi, Pl (for
every O€G, PEN), ve see O(a,(K0) = Fa,(KD) = (7, (KN).
Therefore, from a characterization theorem of the fnduced module
Eae, for example, {11, Chap. III, (5.3) Prop.}, we see

X & X G
Kp P :;ndN I%.G 0: the other hand, we see K|[G,N]a=t ImlN 1[Nl
and Kp =4 InclN KP"
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Summarizing these, we can easily show

Lemma 4,1, With the notation as above, we have the follow-

ing G-isomorphism of two exact Beguences

0—> Indg K’Pf — Indg Eg—:» Indg' I[N]—> 0O
R R R _
0 > xg -~ K;f > ¥K[c,N]—— 0.

From this lemma, we see K p 18 cohomologically trivial.

Remark 1, In the above discussion, we have fixed cocycles

u and v. But, as i1s well known, Artin’s splitting module is

uniquely defined by the cohomology class up to -G—isomorphism;

s
Hence, we can consider the module Kg iz defined by the cohocmo-

logy class E P;'

F

Remark 2; We can show the cohomological triviality of Kz
in a more straight way. For every H<G, we have the following
derived cohomology sequence of (4.1),

0——>H1(H,£§)—+ chn.x[(;,rﬂ}——-:-Hz(H.Kﬁ)—»Ha(H.g)
—> u® (u,k[e,N]).

From Corollary 3.4, we have HQ(H.K[G,N]) Ot Hl(H,ZfG,N'I) = 0,
o

Therefore, to show the cohomological triviality of Ki:, it i=s

necesgsary and sufficient to show the connecting homomorphism
EE HI(H,K[G,N])—-}HE(H,K};) is an isomorphism., Let E be a
set of representatives for the double cosets HON. Then, from
Corollary 3,1 and K: = Indg Kg, we have the following cowmmu—

tative diagram
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1.-_1.“.-" "'LE rx
Sy: HT(H,x[z,47) >H (H,ﬁp]

12 e}
~ 0 v =1 .2 - -1 %
) ...H (In oHo ™ ,2) == E_[—:(Hﬁr_‘r,.!o‘ "{6-?)'
ogeEz ez
L

. . . - . N .
Hence S:g is an isomorphism, and so X, is cohomelogically

trivizl,

§5. Let k be an algebraic number field of finite degres
and XK/k be a finite Galois extsnsion with the grous G, In
the follawing, we assurie the numbsr of thgwflaces of Kk which
ramifv in K 1is 2%t most 1. Let us dencte by CK the idele
glass group of K and by DK the connecited component of the
unity of CK' We denote bv N the decowposition grourn of the
real place which ramifies in X. Let EE{,',{ be the cznonical
cohomology ¢lass of HE{G,CK]. we denote by ‘WK,R the image

of EE{,I-: by a natural homomorghism from C ta CK;’DK. Let

K
us denote Artin's splitting modules of '§K " and ??K v b

EK and by CK/GK, respectively. Then we nave the following

commutative dizgram of GCG-modules with exact rows arnd columns

-

(.1} T 0
Dy By
i L 1

O = g (iK S GK > I[G] — (]

| |

0= o/ Dy—> C 7T, —> 116} —>0

b .
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Since EK is conomologically trivial, wa have the following
lemma from Theorem 1.1 casa (ITI)

Lemma S5.1. For evervy p& Z, the derived cohomgologr sgouences

of O—>Dp—>8—>C /D,—>0 and 0—>T, /Dy ’CK?DK“‘}_I_E':L?

C——=9 are isomoronic, that is the following diaerem is commuta—

ive T+l

--~—-+HP(DK] — HP(CK}—) HF(CK;"DK)—?H e
s Rs. Ii ks

=1, —— =1 . . o e R
—3H (C, /Dy )—>H (L[5]1)—=E {CK!’DK)—}H {CKKDK)—'r .
Now, we shall prove & general proposition concerning the extansi-
ons ¢f groups as follows.

Proposition 5.1, Let &G be a finlte zroup and N be its

O

subgroun and A bes a G-module. Let oy Be the resvriction
T

homomorpisa froa HE(G,A) to HE{N,A}. ¥e fix & cohomolosy glass

§ T H2 Z,A)}) and denoie , bw “'Z. Then tne following
G, —_—

g

4

r goandition ecuivalant:

o

in

F-u
-

n

HE(N,A)-

1)

o
5

n=
2) Let Eg andé A, Dbe anv of Artin’s splittine mocules

—

corresoonding to € d 7N, res-ectivelvw, Then the ext-

-

ension O—)ﬁ——-‘a-f‘-:-,z—?I[N]—rG is split as ah extensi-

— ———— Wi —

on of W-modules and thers exisis azn injecfive H-homomorhi-

sm K such thet the following diacram is commutative

O—>A—> Ay > [N]—>0

[«

o—> A*-—ﬁ-ﬁf —>TI[G]—>0,

where the right srrow is a natural gmbedding |
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Z) Let 1 A—s—>G—>1 ané 1—A—H—r—>1

be anv of the extensions of groucs corressonding to § and

n, respectiveiv, Then the extension 11— A—Y{—>il—
__-—-'/

“—1 is spliv and there exists an injestive homomeorohnism

A  such that the following diagram is commutative

1—> A —2 Y —> H~—>1
13.
1—> A—}C;i}ﬂ —>1,

wnere the right arrow is the natural embedding,

(]

4} There exists a cocvcle u of § which satisfies th

— —

ecuation

ulor>Tpl

5) For anvy or Artin’s splitting modules iﬁg correseconding

ulo.t], for any g,z €3 2n¢ pex;

to & , there exists an injective G-homomorshism A such

that the following dizgram Ls commutative

= ar
K[-J,-’i'l

th

Here the wverticzl arrow is an natural embedding,

6) For any of Artin’s splitting modules corresoonding to g y

Pl
there exists a G-module A which is an extension of T ([3/M]

with the kernel A snd also exisis a2 surjective C~homosorp-

hism yp  such that the following diagram is commutative

0 >4 ~E§ >7 (31 —0

N

0—> A—=4 — > I[5/4]1—=0,

where IIG]—>I[G/N] is the natural onto homomorphisa.




Proof. %We can consider the intezrsl grour ring Z[¢] to be &
sunplemented alzebrz with a Z-zlgebra homomorphism £: Z[Gl——2,
Then, from & well known relation of the extensions eof grsuons, the
2—-comnomology groups of grouns anc the extensions of sugmentation
ideals, it is easy to show the eculvalence 1)<==22)}4=>3)}. (ZSese,
for example 2], Chap. XIV}.

Rl—ra). We cah take & croces section U from ©  to ™

such &s
u_-u = 1 I0r evary € .
ey o ocr GVEs o, T
We gat 4o = U i, where E 15 a sst of representatives., For
e B

-

every o0 € E, w2 fix an element u, & 0§ such as To(uy ) = & .
In the same wav as %4, we set C= when oN = odli (d€E),
and denote ‘5_?'.3- by & . Since every element g€ 2 is unicu-

. . o - ]
elv written as the product O.g , we can define & cross section

u frosm G to & by putting Ug = Ul
Then, for every O, &G and f € M, wa have
=1 -1 -1
u -u = Wil u LY Qe
*F o P ( T ’fp” oxT.p T )
-1 =] -1
= U— Lil =1 -1l Ul | | Jp—
't'( TTp P o ) U
U U 2 i -1 ’
T ETor T OTT
U, .U e
T ot O
-1 _ -1 .
Hence we have uo-'u'tp‘ ua_..t,F = uo_-u,t-uo.,t « Therefore the -

-1
factor set {u[G’r’t} = UgUalga | O €G} satisfies the co—

ndition 4).



4}y—>:t). Let .Eu be Artin’'s splitiing module of the cocvcle

u, Then the conrdition 4} L& nething but the condition in order

that a module KE[3,M) mav be z G-submodule of P\u. Let Au' be
Artin’s splitting module of anv cocycle u’ contained in € .

Since Ru is ezuivalent to iu” we have 2 commutative diagram

o—>4A —}iu —>I[G] —0

||

0—>a —i , —>I[3]—>0. Eﬁ'|KEG;N] ,
Then the restricted homomorghism A= ¥ IK[G,N]—>& 6 satisiies

,

the recuired relation.

g)==5). Since c_’kg / JA(K[G,N]) is a G-module, it is obvious
that the seguencsa D-—}A—}Eg J ULKIG,MN])—I[6/H]—>0 is exa-
ct as G-modules. So, if we denote ig / WIKIG,N]) bty &, &7 sati-
afies the condition 8&).

6§)=—>l). From the exact sequencs C-——I(G/U]—2[G/I]—>2

—_—_ -
C, we see Hl(G,I[-G,fH]) o= Z/[G:¥)2. lioreover, if we set Gy

=g -H in T{G/H], we ses d&[or] = doy (ES) is 2 cocycle
.contzined in the generator of Hl(s-,l[-:-ﬂi]). From the commutative (Ll@g'-aum
of 6), we have the following commutative diagrazm of derived cohom-

alogy groups

alia,100]) —=HZ(G,A)

J
HI(G,I[G/H]J/ - s X e

Hence, if we put ufo,7l-= Odpwy ~ %% au * Son (di'i 7is an ele-

ment of A), we have § = ‘[u} Therefore, for g ,p €N, we have

f
Py



ulo,x]) = ¥ dy. We define an 1l-cochain [, with value A& by
Blol= dy. Then we have od, = (3 E)[o,y] (o,tr €%). Hence

P g = {:55} = 0, which complet=s the proof,

WEogad

Remarik. Let E(I[3],A) be the set of all the equivaleni clas-
ses o the extenslons of G-modules of I[3]1 and A. Then, as is
well known, E(I{3],A} is considered to be a commutative grouv with
; 2 ' .

Baepr multizlication and E(I[3],A) 1is isomorphic to H™(3,A) in a

N L O
natural wav. In the above oronosition, we have writisn AE- S

- = j; T

anv of Artin's splitting modules corresponding to g s Which means
iy £ o~ - a
AE- e z2ny of the G-modules belonging to the eauivalent class

s ot - 2,4
which corresponds to £ € H*(3,4).
In the fellowing ciscussion, one shall ses Theorem 5,1 is triwvial
for the cs&ss when there is no real place of k which ramifies in K.
Eence, in the followlng, we suprcose thers exists s re=al rvlace Py
of Kk which remifies in K. L2t us fixz one of the extensions of
®p *© %, and dercte its dsgcornopsition grows v N, Frarx ccrcllarib

. - 2

€3~ of our previous paper [4], we have H {(N,6./Dy) = 0 and

2, . et .
H (u,CKfDK] =< ?K'k}.%'ZICG.MIQ. Thersfore QK  Satisfies the

gondition 1) of the zbove propositicn. So, there exists an exacst
-

gseguence or G-modules
T .
{5.2) 0~—>C../D,. —>C. /D, —>1 [c/n] —0.
. Ve
Now we shall show that CK/DK is cohomologically trivial, Let us

denote the connectzd component of the unity of the idele group Ki

Since D, is the closure of. EK = H er/Kx in CK ([2],

b H K

KI
Ch. III., § 7.2., Lem. 2.), we have the following commutative diagram



of GC-modules with exzect rows and columns

(5.3) Q
|
9 Dy /Fy
|
0"__}HK__"*CK'_}CKéhK__é;O
|
O%EK——-; (:I':K% CKJ;DK—} 0
an'K Jé
\L !
0]

F |

b!hce DK/EK is uniguely divisible, we have an iscmorphism
H2(e,c /M ) & u2(G,C./D.). We shall denote bv C,/H, the exten-
TRRT T RO TR T KK 3
sion of I[G/N] with the kernel ¢, /R, corresponding to qﬁ,k
by this ilsomorpiism. Then, we have the following exact sequencs
- A — o ST
of G-modules O0—»D_ /H, —>»C /fH—>C./D.—>9. By wirtue of
K 'K KK E°TK
the fact DKKEK is5 uniquely divisible, for the purposs of showing
’)at E;?EK is conomologically trivial, it is Necessary and suffi-
P ’
clent , to show CKIHK is cohomolegically trivial,

is written in the form I | (K§)+- ' | KK- K

H, .
p#po , real £, imaginary P Po

K

where © runs all the infinite places of k except p,, and {Ki)*

dencotes the subgroup of Ki = ] I K§ consisting of non-negative

¥ Plp
elements of Kﬁ. Let ﬁ; be the G-module - -
B — ~
I X | | X & X . .
| (Kp}+. ' Kp-Kp ., wnare Kp is the extsnsion
P%?O, rezl p, imaginarcy 0 0

il

fad
0}



X ~ . . . . . :
of X by K|G,¥] defined in 84, Then it is easy &0 show
“0

the feollowing sacuence of G-modules &re exact

f—?

(5.4) O—> 7 {T{—:»-E,ﬁ Cp/H,—>0,

13 N -
e see HK is coheonologiczlly trivial from Lemms 4,1, and CK

/—l-..__,
is also cohomologicallv trivial, Therefore CFIEK is conomelegi-

cz2lly trivisl,

— —

Lemmz $.2, Let ?ZK i, be & generator of Hﬁ{G,CKIDw}ﬂn
— oy [

i

Z/{G:N]Z. Then theres exists a cohomologiczlly triyial G-modu-

Py
le C,/D, such that the following dimeram is exsct &s G-mocules

¢—> ¢, /D, —>C. 70, —>1le/ml—so0,

[

From Proposition 5.1 8§), there exists a commutative diagram ©
C-modules

(5.3)

{{} =
<0

KIE, N = X {z.H]
Q—>C._/D. ﬁci,/a}{ >I[3] > 0
ny )
0—> C%:”DK_} GK;’DK—ﬁ- [2/1] —= 0

- nr

since, for every re&€Z, H (3,K[3,8])

T |

r-1
H {N,Z is at most
erder 2, we have the following Lemmz from Corollary 1.1

Lemma $.3., From the diagram {5.5), we szs the dsrived cohom-

olegv sscuences of 0——=G, fD -y /D, —>I(3}—>C and

0—>Kig,H— 1[0} ——=1[6/dl—=0 ars isgocorcric, +het 1




e foflewing dupspam 2o commitetin

S (r{z/8])—>u (2, M) ~— e (1{z] ) —4T (1 [3/H ) —--

1 I I I

e BTC /D ) 8T (T 75, ) — T (I [ —s 27 e /D ) -

Compining Lemma 2.2, Lemmz £.1 &and Lemmg 5.3, we have the follow-

ing commutative diagram
Y G
—— 5, -2
c—pH '(J Z)mm o5 uPTE(

IZ |
- ( xlz,4])— 5"

R s,mx}—;- T

-l

y I ye— HT(G, I3/

0

e ) —at e, T (el )

_ia

” “L(s,1161)—>u" (5,0, /D, )—>--

I i I

-
-

< >55(3,D,) > HT (8,0, ) ——=>d7(3,0,./D )~>-  (re€Z),
e
where ’tJ’C is the transfer homomorghism from H o G&G. Hencs

we hawve the Tollowing theorsem

Tneores 5.1. ¥ith the notlation and assumption a2s above, wWe .-av

have the followine commutative dizcrem
N, G

NS "{n z)._JEL———ﬁaﬁ *(C Zy—sul~ 1{u,_[G qHl)— ..
T R i
R (G,DK) > B (G,u J—=H (G,CF_!DK)—?J--- {(re2),

§§. Firsi, we shall summarize the msin resul:is of [11].
Lat ¥ be an glgebraic number field of finits degres, or an
algedraic function field of one variable over a finite field. Let
/,ifk he 2 finite Galois extension with the group G. $ denotes =
K; set of places of K satisfying the following conditions
{(51) € is stable under G,

(52) & contains a2ll archimedeszn places,



(52) S contains zll places ranified over 2£J§
(54) S is large enough so that every iceal classes of K
contains an ideal with surport in §.

Thers sxist sxact sequences of G-modules:
’

(4) 0—» E—25 75 c—a0,
(3) 0—sX—23v—Lsz— 50,

in which:

E is the groupn of S-units of K, that is, elements of K

viich are uni%s at all places P not in 5,

J 1is the greup of S-1ideles of K, that is, ideles whosse P-c-

omzoneant iz an unit for each place P not in S5,

C 1s the group of S-idele classes, which in view of condition

(S£) 1is G-isomorphic to the group of zall idele c¢lasses of K,
Z 1is the grourp of intsgers, & operating triviaily,

Y is tha {fres Z-w0dlle generated Lty the tlaces F

b

4]
-

m

3

-

elenent © € G onerating by the rule

G’(E L Fj) = E n?(c: P) = E n 0,-—1” P.

PES PES PE s
&
X 1is the kN§rnel of the natural map b wihiich takes an element
g =E ng P into its ccefficient sum,g ng .
In these ststements, Tate provad the cchomology ssgquence derived
from (A) is isomerphic to that derived from (B), after a dimens-

ion shift of tTwo; that is, he has constructed & commutative diagram
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(6.1)
s BT (R) —— B (Y ) —— HE () —— s ) —=
FE TR
HT2 (2 )i T2 () s HT R () T3 ()t |

- —

gn¢ r £Z, ars

3]

. . . . 'y -
in which the wvertical arrows i? for i=1, -2,
isomorzhisms,
Here we shall prove the above result in somewhat resiricted situ-
ation. We assune the set of places & satisfies the following

. § S AiLon
accivional poisatoriy

(82) € 1is larze enough 50 that <G is the d&ecoammosition

PiGP
group of PES) = G,

Under this assumption, any "€ G is written in & form

0= Q) O, where O, €3, (?,€35),

1 ! ;
Let us denote Ty =1 and Ty = i}l.i.(ji(lé.iéin). Then we
See

Ti - t:L—1’EK["3":'Pi] (15 izm).
Hence we nave

d, = O~ 1e<;c{=:.,r}Pi]|1§1_S_ mpCI(G].

Therefors, from the fact that {ﬁ 0} {&e3) is & 2Z-basis of 1I[z2],
we obtaln
(s5)” {x[s.c}[P€s) = 1G],
Conversely, we can easily show (S5)=—=> ($5). Hence the condition
(55) is equivalent to the condition {s5) .

Remark, In case G 1is abelian, the condition ({2%) 1is equiva-
lent to that the homemorphism HD(G,J}———>HO(G,C) is surjective.
From the fact H (G,J) = 0, we see the condition (85) 1is sazisfied,

i and only if Hliﬁ,E} = 0,



_D:ot:a--that the conditions (S1),...,(858) a&are autcomaticallv satisf-

ied iff § 1is the set of all places of K. Let 50 be a set of

- .

E.iééés of k consisting of all the restrictions of pé€§&. Then,
from the condition (S1), S 1is considered to be the set of places

of XK consisting of a2ll the extensions of pe SU. For a place p
™

T

of %, we dente by K‘};‘ the G-module defined in 54, and by U13

the subgroup of Kx whose elements are "E,\-_i't at all places lying
P - umats
’

e ——
over p. Let K}; be the restricted product of {Kﬁ} with
pes & Ly
o

respect to {Up}.
Let {fh} AETI be the set of all mappings from SD to 5 such

that, for every pe€ 54, I, (p) 1s an extension of » to K.

F il
=
Since K'; is defined when one fixes an extension of ©p to K, one

4 F o
can define | | Kc x l I U for every f, (32A€ I}. From
nes. F pes. P LA
H 0 0 . JE

the condition (S$5), there a-reﬁinitely many K[G,GP ] {i=0,...,m)
i

T

such that

(5.2) (K_[G,Gpi][o;-‘. 15 m) = rfcl.

i-

L
3 denotes the G-module I I K}; b4 l ] U corresponding to
L 2
P& S5, pE S,

the marping fi. We denote the decomposition group of fi{p] hy

Let fi = f)‘ be the mapping of {fh} which takes value P
i

J

31(!:}). Then it is obvious that J is a G-submodule of J; and

JifJ is G-isomorphic to : K[G,Gi(p)], We zlsc se= that
nES
. 0

38



= Z Z[G/Gi(p}] == z - zlels x{a,c, (p}] , where esch’
p&S )

pESO
X[z, ".(p)] is embedded in Z[G] in a natural wavy. Then we have the

following commutative dizgram

h‘ Fl
- \ 1 1
(8.2) by b >, L 5 zle] ——>Y —»0
P &5,
ci di b
0—=C » T » Z [G] > Z >0,

in which row ssquences are exact and the homomorphism a &and b are

, Jeurjective. The homomornhism d,; 1s also an onto homomorphism indu-

csd from the natural prejections. Since Ji is, as an abelian groun,

the direct sum of J and : K[G,Gi(pﬂ » ¢ is & G-homomerghism
pES
defined by nutting @

c;{x}) = a(x) = x mod E€T, for any x&J,

ci(y} =y&€C, for any vy€ K[G,Gi(p}] .
; n .
From (6.2), we see s E J ——9\. is & surjective G=homomor-
chism. Let us dencts I | ey by . Then we have the following
. 1=0D

comrutative dliagram
(6.4} "

o—>J]—>J e(z J. )—>(§ z[eh e(z J)—-—:a-&'—-a-cu

PE€ S,
a c E
0 —=C. > T 2 [¢] —>7 —=30,

where | = lo [ = Z;@id, l= {®0 and ¢ = d GEd l; (0 wmeans

the zero marning). Since 2ll the homomorphisms a, b, ¢, d are
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surjective, we have the following commutative diagrsm of F-modules

wlith exact rows ané golumns

(5.%) j j i j,
O0—= % ——2¥ar ¢ —>{ar ¢ — {——30
a’ J' :L ‘L‘.:u'r
0—=J =N - J > Y > 0
l= e F .
0~——>¢C > G >z (2] > Z >0
| |
0 Q 0 4]

?

]
3
m
=
1]
GI
13
|
o
ok
i
Loy
o
&
ﬁ

it
"Ti) by J and (E ZEG])EB{% JiJ by

=1 ng 8
~ ) 0 %
J. From the assumption (52) and the fact that KD is cohomol-

. . . F e
ogically trivial, we see J and J are cohomologically trivisl.
Hence we se&e Z-modules Ker ¢ and Ker d ars azlse cohomologica-

lly trivial. Hencs, from Corollaty 1.2, we have

n

Thecrsm 6.1, Let £ ke =z

£ K which satfisf-

st of placge

1]

ies the congitions (S1),...,(S8). Then the diacram {6.1) is

. . r
commutztive and the isomorzhisms di (rezZ, 1£1%2) 2zre obtai-

ned 82 the compesiticns of the connecisd homemorchisms S$ deri-

-

ved from (6.5). .
Let us generalize the zbove theorem to algehraic tori. Let
be a torsion free G-module. Then, from (6.5) we have the foll-

owing commutative diagram ol G-modules with exact rows and colum—

ns



(6.8) 0 f j) ‘DL
Q—3>E@ { ——> {Ker c}f M —>(ler )QIHI—> XQU——=>0

) ! }

O—=> JY ———> TR ————> JOQU ——> YU —— 0

l | |

G CQY — = R/ ——= Z[I@H——= 2 @1——>0
0 0

J |

a ] .
From [5] Theorsm 2, G-modules J@i, J@%, C®i and 2z2{3} @i
are G-mocdules of trivial c¢ohomelogy. Therefore we have

Theorem §.2. Lat $§ be the set of nlaces of K satisfving

(81),...,{85). Then, for any torsion fre== J—moedule M, the cohom—

ology seguence dserived from O——IQM—J@UN—CRAM—>0 is

isomornohic to that derived from O0—=A@H——2TRd——H—>0; that

is, we have the following commutative diagram

vre 3 HT(Z, K@) — > HT(G, Y@ M) ——= 27 (G, M)—> «r

! :
2 re2 2
ves >ETTE (G, EQ M) —>H TG, I @M)—> ETTE(E,CQM) > ..

where the vertical arrows sre the isomorsnisms inducsed from the

connecting homomorohisms derived from (6.8).

Aemark. The zbove theorems are not generzl as thosz of ° [11]
and the way of aprcroach does not really improves on that of [11],
but is primitive and shows the essentizl relation of I[2] and
T111 .
In the rest, we shall rafer to the cohomology orf =zlgsbraic teri.

ror the saike of simplicity, we restrict cursszlves to the casse that
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§ 1s the set of all places of K.
defined over Kk

isomorphism between the category of tori defined over &

ovar K

Z—mofules,

M
= Hom(T,Z) the integral duzl module of T,

Let T be an algesraic torus

whien splits over K, From [7], there exists an

zrid solit
and the duzl of the category of finitzly generatad I-iree

h - - -
We denote by T the charscter medule of T and by H

"hen Thearem .2 enabl-

es usg to describe the Calois conomology groupns of the torus T in
termne of the Z-fres module M.
Fer example, we can describe the Tamegawa numover of T of k by
the cohomology of X, ¥ and M, Let -Tk be the groun of k-razatio-
pal points of T and TA be the adels group of T over k. The
k
factor group TA /Tk is celled the adele class groun of T over k
ke
and dented by CM(T}' Since K is the splitting field of T, it is
w
known that T, & MEKS, T, 2= M@K: and C.(T) & M®C.. In [2],
1{ n._K .ﬁ. [y s
T.0no has cdefined the numbers h{(T) and i(T} <for a torus T
I =1
nir) = (w7, = [0, m],
. ay . \ 1 - .1
1(1) = [c (m)¥ie (1)] = [Ker(H™(C,7 ) —3H (6, T, D].
K ke K Ay
Let T(T) be the Tanmagswa number of T over ¥k, Then one has the

Tollowing fundamental rforaula {([3], Main theorsm),

T{T) 1i{T)} = a(T).’

Fron Theoren

i(T)

6.2, we have
= [xer(z~ (e, xou) — "1 (c,va ¥))]

[Qker(i™2(3,YQ® M—ai 2 (e, .
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For gvery place p of k, we fix & extension of p +to K and

denote it by P. Since Y is G-isomorphic io E Z[GKGE] (p
P

runs all places of Kk}, we have

HO(e,vyou) == E HT(Gp,M) (rez).
P

-~

Here Yo denctes the decomposition group ¢of P, Hence we have

T2,
1(?) = [Col-:er( z H™2(G ,M)——-——-——‘-—)H‘E(G,M))].
P

where U, is the transfer homomorphism from G, to G. From

the integral duality, we have

TTe,

1i(7} = [Ker(HE(G,J‘f) HE(G;,,"I")}] :

P
where P, is the restriction homomerphism from & to G,. The-

&

refore we have

Tr) = [ahce,Bils[ker [ [ Po « 0206, — | | #20e,, D).
2
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